National Instrument 43-101

Technical Report

on the

Porcher Property

Skeena Mining Division

British Columbia, Canada

NTS: 103G16

UTM: 409,178 / 5,976,313 (NAD 83, Zone 9)

Latitude / Longitude: 53°55'38" N / 130°22'59" W

Published for:

Great Republic Mining Corp. 705-543 Granville Street Vancouver, BC, V6C 2T5 Published by:

SGDS-HIVE Geological Suite 330, 470 Granville Street, Vancouver, B.C., Canada, V6C 1V4

Author: Scott Dorion (P.Geo) Effective Date: June 9, 2021 Signing Date: June 23, 2021

Table of Contents

Title Page	1
Table of Contents	2
List of Figures	4
List of Tables	5
List of Abbreviations & Acronyms	6
List of Conversions	7
1.0 Summary	8
2.1 Purpose of Report and Terms of Reference	10
2.2 Qualified Persons and Site Visit	10
3.0 Reliance on Other Experts	10
4.0 Property Description and Location	11
4.1 Surface Rights	13
4.2 Indigenous & Traditional Territories	15
4.3 Permitting, Environmental Liabilities and Other Issues	15
4.4 Royalties	15
4.5 Agreement	15
5.0 Accessibility, Climate, Local Resources, Infrastructure and Physiography	16
5.2 Climate	16
5.3 Local Resources	17
5.4 Infrastructure	17
5.5 Physiography	18
6.0 History	
7.0 Geological Setting and Mineralization	19
7.1 Regional Geology	19
7.2 Property Geology	21
7.3 Mineralization	23
8.0 Deposit Types	23
9.0 Exploration	24
9.1 Airborne Magnetic Survey Parameters	24
9.2 Airborne Magnetic Survey Results and Processing	27
9.3 Rock Sampling and Prospecting Program	32
10.0 Drilling	

11.0 Sample Preparation, Analyses and Security	37
12.0 Data Verification	37
13.0 Mineral Processing and Metallurgical Testing	40
14.0 Mineral Resource Estimates	40
ITEMS 15.0 – 22.0 NOT APPLICABLE	40
23.0 Adjacent Properties	40
24.0 Other Relevant Data and Information	40
25.0 Interpretation and Conclusions	40
26.0 Recommendations	41
References	43
Qualified Person Certificate	45
Appendix A: 2019 Select Grab Sample Information	46
Appendix B: 2019 Assay Certificates	50
Appendix C: 2021 Site Tour Sample Descriptions	65
Appendix D: 2021 Site Tour Assay Certificates	68

List of Figures

Figure 1: Property Location	12
Figure 2: Property Tenures, Skeena Mining District.	14
Figure 3: Regional climate conditions respective to the Property (Canada G. o., 2021)	17
Figure 4: Regional geology surrounding the Property (Nelson, et al., 2014)	20
Figure 5: Property geology (Nelson, et al., 2014)	22
Figure 6: 2019 airborne geophysical survey flight lines (Friesen, 2019)	29
Figure 7: Total Magnetic Intensity ("TMI") (Friesen, 2019)	30
Figure 8: First vertical derivative ("1VD") (Friesen, 2019)	31
Figure 9: 2019 Rock Sample Locations (Friesen, 2019)	33
Figure 10: 2019 select rock grabs by iron (Friesen, 2019)	34
Figure 11: 2019 select rock grabs by titanium (Friesen, 2019)	35
Figure 12: 2019 select rock grabs by vanadium (Friesen, 2019)	36
Figure 13: October 28 th , 2020, site tour stations and tracks	39

List of Tables

Table 1: List of Abbreviations & Acronyms	6
Table 2: List of Conversions	7
Table 3: Summary of claims defining the Property's tenure.	13
Table 4: Units defining the Property's geology (Nelson, et al., 2014).	23
Table 5: Summary of GEM Systems GSMP-35A(B) magnetometer 2019 airborne survey (Friesen, 2019).
	25
Table 6: GEM Systems GSMP-35A(B) magnetometer flight deviations (Friesen, 2019)	25
Table 7: Specifications of GEM Systems GSMP-35A(B) magnetometer 2019 airborne survey (Friesen,	
2019)	26
Table 8: 2021 Site Tour sample assays	38
Table 9: Budget summary of Phase 1 recommendation	42
Table 10: Budget summary of Phase 2 recommendation	42
Table 11: 2019 select rock grab sample descriptions and locations (Friesen, 2019)	46

List of Abbreviations & Acronyms

Table 1: List of Abbreviations & Acronyms

Abbreviation	Long Form	
°C	Degrees Celsius	
a.s.l.	Above sea level	
BC	British Columbia	
CAD	Canadian Dollar	
Ext.	Extension	
EGBC	Engineers and Geoscientists British Columbia	
Fe	Iron	
FSR	Forest Service Road	
g (mg, kg,)	Grams (Milligram, Kilogram,)	
ha	Hectares	
m (mm, cm, km,)	Metres (Millimetre, Centimetre, Kilometre,)	
Ma	Million years	
MC4	Four Post Claim	
MCX	Mineral Cell Title Submission	
NI	National Instrument	
NSR	Net Smelter Return	
NoW	Notification of Work	
OZ	Troy ounce	
Pb	Lead	
ppm / ppb	Parts per million / -billion	
P.Geo	Professional Geologist (as recognized by EGBC)	
QA/QC	Quality Assurance / Quality Control	
t	Metric Ton (Tonne)	
Ti	Titanium	
tpd	Tons per day	
USD	United States Dollar	
V	Vanadium	
V ₂ 0 ₅	Vanadium(V) oxide (Vanadium Pentoxide)	

List of Conversions

Table 2: List of Conversions

Weights	Multiplier		
Assay-Ton (long) to Grams (British)	32.67		
Assay-Ton (short) to Grams (US/Can)	29.17		
Grams to Troy Ounces	0.03215		
Grams/Tonne to Troy Ounce/Short Ton	0.0292		
Kilograms to Pounds	2.20		
Pound to Grams	453.29		
Pound to Kilograms	0.45		
Pound to Troy Ounces	14.58		
ppb to ppm	0.001		
ppm to ppb	1000		
Short Tons to Tonnes	0.9071		
Tonnes to Short Tons	1.1023		
Troy Ounce/Short Ton to %	0.003429		
Troy Ounce/Short Ton to Grams/Tonne	34.2857		
Troy Ounce/Short Ton to Grams	31.1035		
Troy Ounce/Short Ton to Pounds	0.06857		
% to Pounds	20		
% to ppm	1000		
% to Troy Ounces	291.57		
Areas & Distances	Multiplier		
Acres to Hectares	0.405		
Feet to Metres	0.3048		
Hectares to Acres	2.471		
Kilometres to Miles	0.62		
Metres to Feet	3.28		
Miles to Kilometres	1.61		
Square Kilometres to Acres	247.105		
Square Kilometres to Hectares	100		

1.0 Summary

The Porcher property (the "Property") is in northwestern British Columbia, Canada, on Porcher Island. Porcher Island is approximately 40 kilometres southwest of the city of Prince Rupert, British Columbia. The Property consists of nine contiguous mineral titles covering an area of 3,560.4 hectares. Access to the Property is via helicopter or boat charter from Prince Rupert, British Columbia.

Great Republic Mining Corp. ("GRM"), a private company registered in the Province of British Columbia, has optioned the Property from the owners and operators, Ridgeline Exploration Services Inc.'s ("Ridgeline Exploration") Mr. Christopher Paul, Mr. Michael Blady, and Mr. Oliver Friesen. It is GRM's intention to use the Property as a qualifying property for listing on the Canadian Securities Exchange ("CSE"). The Property's mineral titles are in good standing until July 10th, 2023. The Property has had \$88,559.55 spent on it within the last three years.

Nelson et al. (2009) indicated that northern coastal BC is underlain by a series of roughly north-south trending tectonostratigraphic assemblages. The Property is located within the Alexander terrane.

Prior to 2019, only one known historical work program was carried out on the Property which is highlighted in an excerpt from a Geological Survey of Canada report on the Geology of *Vanadium and Vanadiferous Occurrences of Canada* published in 1973. The work included mapping, rock sampling, as well as polished thin section analysis (Rose, 1973).

The Property covers two large, roughly concentric, magnetic high features which are coincident with mapped interbedded metadiorites and metagabbros which are impregnated with clots and seams of titaniferous magnetite (Friesen, 2019).

Ridgeline Exploration of Kelowna, British Columbia, carried out a two-phased mineral exploration program on the Property in 2019. The '2019 Phase 1' included a helicopter-borne magnetic survey which was flown from March 22nd to 27th, 2019. The survey employed the GEM systems GSMP-35A(B) magnetometer and was flown in a low-level systematic grid pattern. A total of 472.48 line-kilometre were completed during the Phase 1 program, including 439.06 line-kilometre of 150 metre spaced flight lines oriented in an east-west (090°/270°) orientation, and 33.42 line-kilometre of 1500 metre spaced tie lines oriented in a north-south (000°/180°) orientation (Friesen, 2019).

Results from the 2019 Phase 1 program highlighted two large, roughly concentric, magnetic high anomalies in the central portion of the survey area. The northern anomaly is slightly elongated in the north-south direction, with dimensions of roughly 2.6 by 2.6 kilometres with magnetic intensities ranging up to 57,145nT. The southern anomaly is roughly 2 by 3 kilometres and is slightly elongate in an east-west direction with magnetic intensities ranging up to 57,145nT (Friesen, 2019).

Following the 2019 Phase 1 work program, Ridgeline Exploration carried out a '2019 Phase 2' groundbased prospecting and rock sampling program on the Property, focused on the magnetic high anomalies identified during the 2019 Phase 1 program, between April 16th to 25th, 2019. A crew of four, including two geologists and two field assistants, took periodic samples over exposed bedrock coincident with the magnetic high features. In many instances, the magnetite-rich outcrops formed resistive geomorphological features due to the rock's hardness compared to surrounding metasedimentary and metavolcanic rocks. A total of 61 rocks were collected during the campaign many which returned very anomalous iron, titanium, and vanadium results from various mafic intrusive units (ranging from metagabbros to metadiorites). 11 of the 61 selective outcrop grab samples returned >0.20% V₂0₅ with individual results up to 0.42% V205, including 47.8% Fe and 2.69% Ti (Friesen, 2019).

Due to the size of the magnetic high features identified by the 2019 Phase 1 airborne magnetic survey, and coincident iron, titanium and vanadium grades shown in samples collected during the 2019 Phase 2 program (Friesen, 2019), additional work is recommended to properly assess the exploration potential of the Property.

A 2021 site visit was completed on May 24th, 2021. A total of 3 select grab samples was retrieved by Mr. Scott Dorion, P.Geo (the "QP") on the Property, which returned values between 12-39.2% Fe, 1.18-3.89% Ti and 0.08-0.29% V₂0₅.

A 2021, two-phase exploration program is recommended on the Property with the focus of exploration on further expanding on the zones determined to be the most prospective for Fe-Ti-V mineralization within the two magnetic high anomalies.

Phase 1:

- Detailed geological mapping is warranted and should be focussed on identifying all magnetiterich outcrops within the two concentric magnetic high anomalies.
- Ground-based, high-resolution magnetometer survey, with a focus on identifying the highest magnitude readings within the concentric anomalies, which would likely be associated with increased vanadiferous magnetite concentrations.
- Trenching and channel sampling over the most favourable targets identified from the Phase 1 program.
- Budget of \$75,000.00.

Phase 2:

- Contingent on the results of Phase 1.
 - Phase 1 returns expands on 2019 results by further highlighting surface and subsurface structures of prospective magnetite-rich zones and delineates controls on specific targets.
 - Fe-Ti-V assays returning reasonably anomalous values over a practical interval length or set of intervals from respective channel sampling or trenching.
- Diamond drilling
 - Time and budget allocated for social licensing and permit approvals.
 - 6x drillholes designed to test the most convincing target generated from Phase 1.
 - 6 oriented holes (150m/hole) targeting the most prospective part of geophysical anomaly for a total of 900m.
- Budget of \$755,000.00

2.0 Introduction

The NI 43-101 Technical Report (the "Report") has been prepared at the request of GRM, a reporting issuer in the provinces of British Columbia which is intending to seek a listing on the CSE. GRM is the optionee under the Option Agreement and can earn a 100% right, title, and interest in the Property by making cash and share payments, completing various exploration expenditures, and granting a 2% NSR royalty. The author has been asked to review all data pertaining to the Property and to prepare a Report that describes historical work completed on the Property and makes recommendations for further work if warranted.

2.1 Purpose of Report and Terms of Reference

This report has been prepared in compliance with the requirements of National Instrument 43-101 and Form 43-101F1 in support of the material acquisition by GRM of the Property and the intension of GRM to seek a listing on the CSE. The purpose of reporting includes an updated review of the work history to date and revised recommendations for exploring the Property in the future.

Recent work on the Property has surpassed the CSE listing requirements of a \$75,000 minimal exploration expenditures within the last three years (CSE, 2018), with amounts totalling \$88,559.55.

As per Section 1.1 (BCSC, 2016), the Property is defined as an early-stage exploration property.

2.2 Qualified Persons and Site Visit

Mr. Scott Dorion visited the Property with Ridgeline Exploration personnel Mr. Christopher Paul and Mr. Corbin Stewart on May 24th, 2021. The three individuals flew to the Property via an Astar B2 operated by Helijet International Inc., and each conducted separate traverse lines in the eastern section of the Property. The samples were delivered by the QP on the May 27th, 2021, to SGS Laboratories in Burnaby, British Columbia.

3.0 Reliance on Other Experts

No other experts were responsible for the authoring of the Technical Report.

Details of the mineral title ownership for the Property were obtained from the BC Mineral Tenures Online ("MTO") database system managed by the BCMEMPR. The system is based on mineral titles acquired electronically online using a grid cell selection system. Title boundaries are based on lines of latitude and longitude.

A copy of the option agreement was provided to the author by Jerry Huang, a director for GRM, and the author has no reason to believe that the information is inaccurate. This reliance only applies to any mention of option agreement terms described in this report and detailed in Section 4.5 of the Report.

4.0 Property Description and Location

The Property is in the Skeena Mining Division, approximately 40 kilometres southwest of Prince Rupert, British Columbia, Canada. Prince Rupert has a population of 12,220 people (Canada S. , 2016) and is considered the land, air, and water transportation hub of British Columbia's north coast. The 3,560.4hectare Property is located on Porcher Island. The Property is centered at approximate latitude 53° 55' 38'' north and longitude 130° 22' 59'' west, which converts to 409178 Easting and 5976313 Northing using the UTM NAD83 Zone 9 coordinate system.

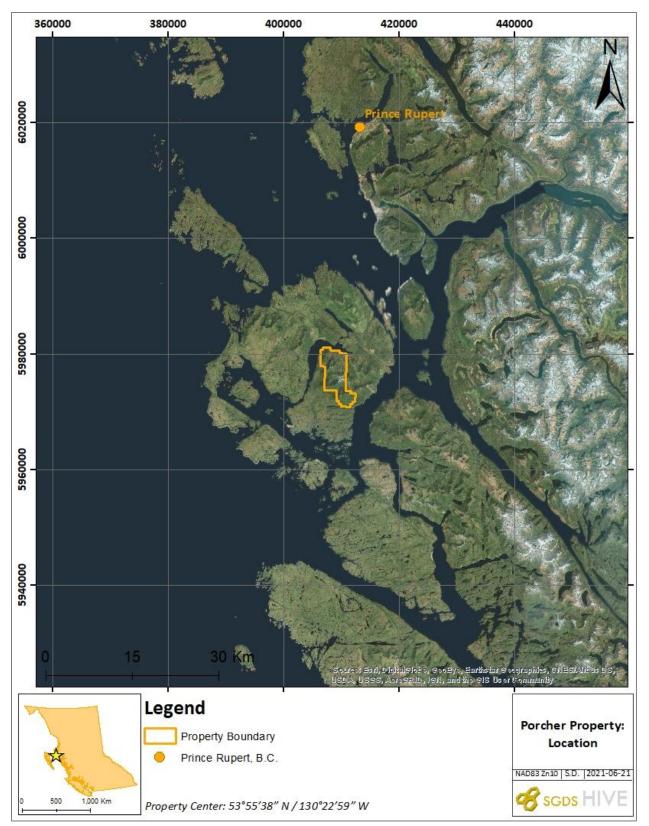


Figure 1: Property Location.

4.1 Surface Rights

The Property consists of nine contiguous mineral titles located on BCGS Map Sheet 103G16 covering an area of 3,560.4 hectares. The details of the claims comprising the Porcher Property are listed below in Table 3 and displayed in Figure 2. The claim information was obtained from the BC MTO database system managed by the British Columbia Ministry of Energy, Mines and Petroleum Resources (BCMEMPR) and indicate that the mineral title is 100% registered in the names of Oliver Friesen (50%) and Christopher Paul (50%). All the Property's registered claims are within the Skeena mining district.

Title Number	Claim Name	Issue Date	Good To Date	Status	Area (ha)
1057674	PORCHER2018A	2018/JAN/15	2023/JUL/10	GOOD	152.28
1057675	PORCHER2018B	2018/JAN/15	2023/JUL/10	GOOD	133.28
1059309	PORCHER2018C	2018/MAR/15	2023/JUL/10	GOOD	666.30
1059830	PORCHER2018D	2018/APR/05	2023/JUL/10	GOOD	647.11
1059832	PORCHER2018E	2018/APR/05	2023/JUL/10	GOOD	799.72
1050353	PORCHER2018F	2018/APR/30	2023/JUL/10	GOOD	323.95
1050848	PORCHER2018G	2018/MAY/30	2023/JUL/10	GOOD	399.52
1067679	PORCHER2019A	2019/APR/03	2023/JUL/10	GOOD	171.49
1067681	PORCHER2019B	2019/APR/03	2023/JUL/10	GOOD	266.78
· · · · ·		·		<u>TOTAL</u>	<u>3560.4</u>

Table 3: Summary of claims defining the Property's tenure.

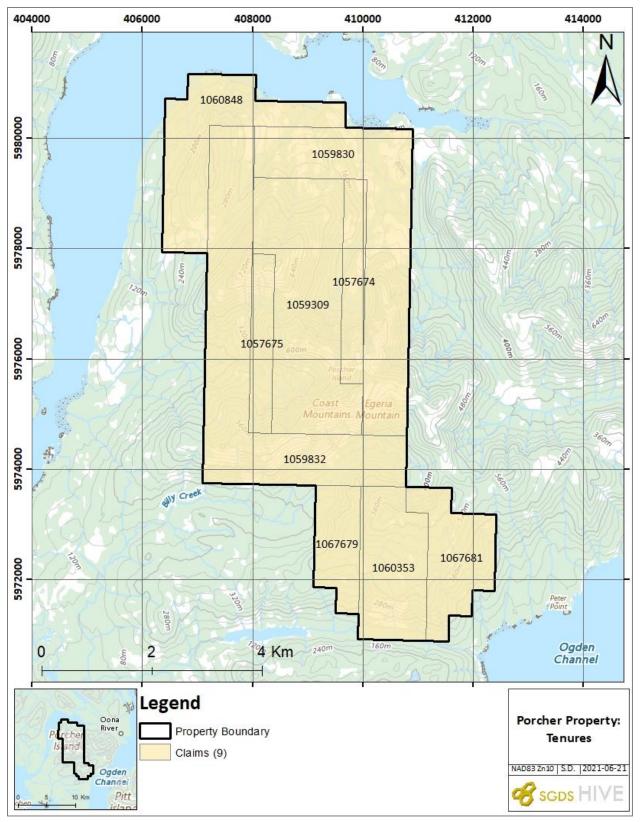


Figure 2: Property Tenures, Skeena Mining District.

4.2 Indigenous & Traditional Territories

The Porcher Property is located on the traditional territories of the Gitxaala, Kitselas, and Kitsumkalum First Nations. GRM plans on engaging and consulting in meaningful ways through all phases of exploration and regulatory processes as the Property advances. GRM expects to build positive lasting relationships with the First Nations that have an expressed interest in the area defining the Property.

4.3 Permitting, Environmental Liabilities and Other Issues

Prior to initiating any physical work such as drilling, trenching, camp construction, bulk sampling, a Notice of Work ("NoW") application must be filed and approved by BCMEMPR. Depending on the size of the program, a reclamation bond must be posted prior to commencing the approved work.

The filing of the NoW initiates engagement and consultation with other stakeholders including any surface landowners and Aboriginal Groups. No NoW will be required to carry out the work outlined in the 2021 Phase 1 work program recommendation but will be required to complete the respective Phase 2.

The author is not aware of any environmental, political, or regulatory problems that would adversely affect mineral exploration and development on the Property.

4.4 Royalties

As per the option agreement (Section 4.5) on the Property, the GRM (the "Optionee") will also grant the Mr. Christoper Paul, Mr. Michael Blady, and Mr. Oliver Friesen (the "Optionors") a 2% net smelter return ("NSR") royalty. Great Republic has the right to purchase ½ of the NSR Royalty for total consideration of \$1,000,000 at any time prior to such time when:

 the concentrator processing ores, for other than testing purposes, has operated for a period of 45 consecutive days at an average rate of not less than 70% of design capacity; or if a concentrator is not erected on the Property, when ores have been produced for a period of 45 consecutive production days at a rate of not less than 70% of the mining rate specified in a study and mine plan recommending placing the Property in production.

There are no pre-existing royalties attributed to the Property.

4.5 Agreement

The mineral titles defining the Property are under option to GRM as outlined in a letter agreement signed on May 17th, 2021, between the Optionee and the Optionors. GRM provided the writer with a copy of this option agreement which specifies the terms whereby GRM can earn a 100% undivided interest in the Property, subject to the 2% Net Smelter Return (NSR) Royalty, by completing \$1,600,000 in expenditures, issuing 2,200,000 shares, and making total cash payments of \$75,000.

The Optionee will make the following share issuances 1/3 to each Mr. Chris Paul, Mr. Michael Blady, and Mr. Oliver Friesen:

- 300,000 shares on or before the date the Optionee becomes a listed issuer;
- 400,000 shares on or before the 12-month anniversary of listing; and
- 500,000 shares on or before the 24-month anniversary of listing,
- 750,000 shares on or before the 48-month anniversary of listing.

The Optionee will make the following cash payments 1/3 to each Mr. Chris Paul, Mr. Michael Blady, and Mr. Oliver Friesen:

- \$6,000 within 5 days of signing the agreement;
- \$24,000 on or before the date the Optionee becomes a listed issuer; and
- \$45,000 on or before December 31st, 2022.

The Optionee will make the following exploration expenditures:

- \$100,000 within 12 months of listing on a public exchange on or before December 31st, 2022, whichever comes first;
- \$250,000 within 24 months of listing;
- \$500,000 within 36 months of listing; and
- \$750,000 within 48 months of listing.

5.0 Accessibility, Climate, Local Resources, Infrastructure and Physiography 5.1 Accessibility

The Property is located near the center of Porcher Island, approximately 40 kilometres southwest of Prince Rupert, British Columbia, and is only accessible by air or water. Access to the Property is via helicopter from the Prince Rupert/Seal Cove (Coast Guard) Heliport, or via hired boat charter from the Port of Prince Rupert located in Prince Rupert, British Columbia. While there are no road or trail systems on the Property, the main Property showings can be accessed by hiking from any boat accessible drop off spot along the shore.

5.2 Climate

The Property's region is within a temperate rainforest and is classified as an oceanic climate 'Cfb' using the standard Köppen–Geiger classification system. Prince Rupert is Canada's wettest city, with 2,620 millimetres of annual precipitation where 240 days per year receive at least some measurable precipitation, and only sees 1,230 hours of sunshine per year (Canada G. o., 2021).

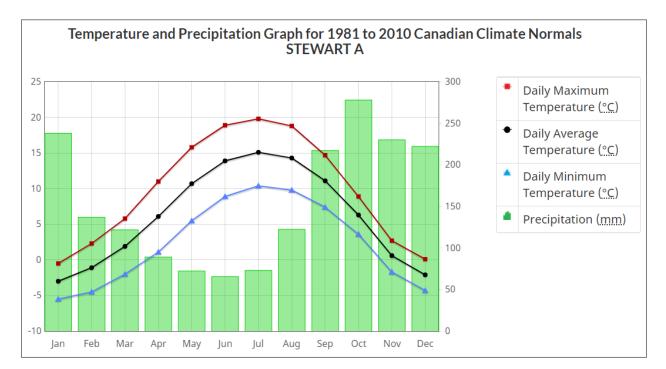


Figure 3: Regional climate conditions respective to the Property (Canada G. o., 2021).

5.3 Local Resources

Nearby Prince Rupert, British Columbia, provides essential public services for field crews, including airport, ambulance, a regional hospital, police, firehall, gas station, lodging, grocery store, and restaurants.

5.4 Infrastructure

The sparsely-populated Porcher Island is home to three small hunting and fishing communities – Porcher Island, Hunts Inlet, and Oona River. All three communities are serviced by BC hydro. Oona River can be accessed via the public Tsimshian Storm ferry which operates on a bi-weekly schedule connecting Prince Rupert to its terminus destination of Kitkatla. Reservations must be made in advance to have the ferry stop in Oona River along its path.

The nearest urban center is Prince Rupert, British Columbia, with a population of roughly 12,000 people. Prince Rupert has support services including heavy equipment rental, lodging, as well as fuel and supplies. The Prince Rupert airport provides daily passenger and freight services through Air Canada which runs daily flights to Vancouver, British Columbia. It is also serviced by BC Ferries which operates bi-weekly ferries to Port Hardy, British Columbia, located near the northern tip of Vancouver Island. Prince Rupert is also home to the Prince Rupert Port Authority, a deep-water port facility which offers the quickest transit times to Asia of any North American port facility. The historic Surf Point and Edye Pass Mines, currently owned by Imperial Metals Corp., are located 15 kilometres northwest of the Porcher Property along the northwestern shores of Porcher Island. The Surf Point and Edge Pass Mines operated between 1919 and 1939 and some historic mining infrastructure remains on sight (Cochrane, 1976)

5.5 Physiography

Porcher Island is the eight largest coastal island in British Columbia and is located on the eastern margin of the Coastal Trough of the Western Physiographic subdivision of the Canadian Cordillera (Hecate Lowland). The terrain on the island is characterized by gentle to moderate slopes, with local steep fluvial incised gullies. High year-round rainfall provides ample water supply to the various streams and creeks on the Island. Flora on the Property is sparse, with local dense stands of cedar, hemlock and stunted lodgepole pine mixed with wetter patches of muskeg.

The Property is centered along Egeria Mountain, which rises to a maximum elevation of 890 metres above sea level. The Property extends for over 6 kilometre north of Egeria Mountain where it covers several kilometres of tidewater along the southern shores of Porcher Inlet.

6.0 History

The only known historic work program on the Property prior to 2019 is highlighted in an excerpt from a Geological Survey of Canada report on the *Geology of Vanadium and Vanadiferous Occurrences of Canada* published in 1973. The work included mapping, rock sampling, as well as polished thin section analysis. The operator is unknown, and no analytical certificates or reports were made available from the work program. The work is detailed below (Rose, 1973):

"Porcher Island (8) 53°55'N, 130°24'W: On a mountain ridge in central Porcher Island a sill-like complex of interbanded, coarse- and fine-grained basic to ultrabasic, igneous rocks intrudes into fine-grained dark tuff, or slaty greenstone, and is intruded on the east by a granodiorite. The banded complex appears to be more than 100 feet thick and at least 600 feet long, possibly much more. It is composed of interbanded hornblende gabbro, anorthositic gabbro, and pyroxenite, mostly impregnated with clots and seams of titaniferous magnetite and ilmenite. The bands in the rock strike easterly and dip 45 to 60 degrees northerly but swing northwest and may reappear on the ridge to the north. Titaniferous magnetite is most abundant in two zones about 50 (15.2m) to 100 (30.5m) feet thick near the crest of the ridge, where it forms bands 4 (10.2cm) to 8 (20.3cm) inches thick carrying white plagioclase and tabular prisms of black hornblende arranged vertically and at right angles to the margins of the bands. Epidote and feldspar are common in seams both in joints parallel to the banding and in nearly vertical, north-south crosscutting joints. In polished section titanomagnetite and ilmenite form interlocking crystal mosaics that are interstitial to the silicate minerals, together with minor pyrrhotite, pyrite, and chalcopyrite. Samples from the host rock show > 5% Fe, 0.5 to 1.2% Ti, and 0.02 to 0.04% V. Samples from the mineralized zone showed > 5% Fe, 0.14 to 0.3% Ti, and 0.14 to 0.2% V."

7.0 Geological Setting and Mineralization

7.1 Regional Geology

Mapping compilations of the region are provided by the British Columbia Geological Survey (Nelson, et al., 2014).

Nelson et al. (2009) indicated that northern coastal BC is underlain by a series of roughly north-south trending tectonostratigraphic assemblages. From west to east, these include the Banks Island assemblage, the Alexander terrane, the Gravina belt, and the Yukon-Tanana terrane. The Property is located within the Alexander terrane.

The Alexander Terrane is comprised of a broad range of sedimentary, volcanic, and plutonic rocks, including their metamorphic equivalents primarily of Paleozoic age. These rocks underlie most of southern Alaska, where they have been subject to only minor metamorphism, deformation and plutonism. To the southeast, Cretaceous-aged plutons become more widespread, and the degree of younger deformation and metamorphism increases (Nelson et al., 2009).

The government-mapped, sinistral-striking 'Useless Fault' cuts through the northeastern section of the Property. It is part of a larger, sinistral-striking fault system which includes the Lamppost and Grenville Channel Faults.

Figure 4 displays the regional geology surrounding the Property.

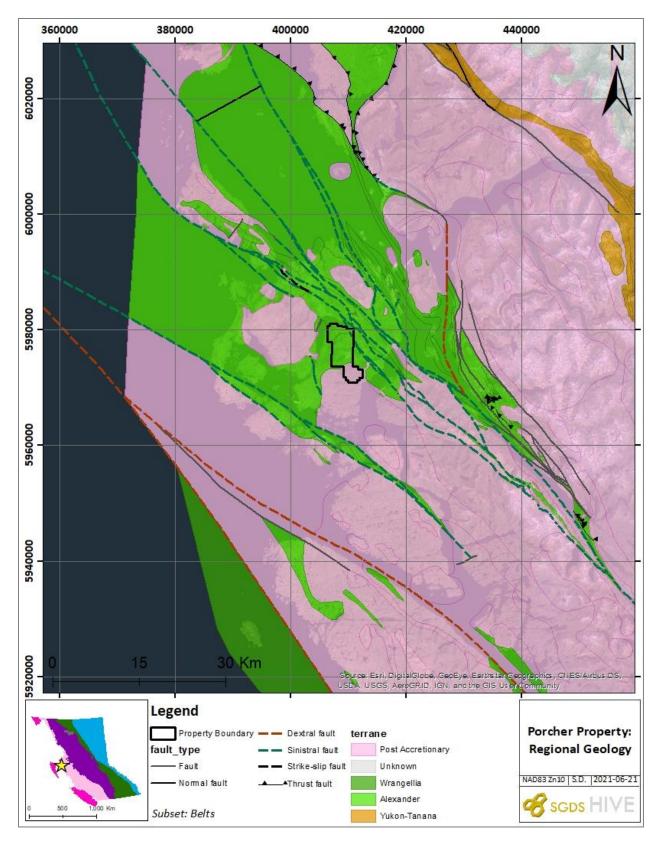


Figure 4: Regional geology surrounding the Property (Nelson, et al., 2014).

7.2 Property Geology

The Property is hosted in the Coast Belt's Alexander and Post Accretionary terranes. The Post Accretionary Terrane's Captain Cover Plutonic Suite (EKCqd) defines the southern portion of the Property, where the Alexander Terrane's Swede Point Pluton (DMSPgd) and Ogden Channel Complex (EDOCPmp and SDOCmp) define the rest. Figure 5 displays the local geology, where the units specific to the Property are further described in Table 4.

The Property is centered around mapped interbedded metadiorites and metagabbros which are impregnated with clots and thin layers of titaniferous magnetite. These units are a part of the Neoproterozoic Ogden Channel orthogneiss complex which intrude into various Wales Group metasedimentary units (pelites, calc-schist, marble, quartzite). The morphology of the Ogden Channel mafic intrusive units is unknown, however historically they were described as north-south oriented stacked sill-like complexes. The northeastern part of the Property is intruded by Devonian-aged Swede Point plutons composed of granodiorites and diorites (Nelson et al., 2009).

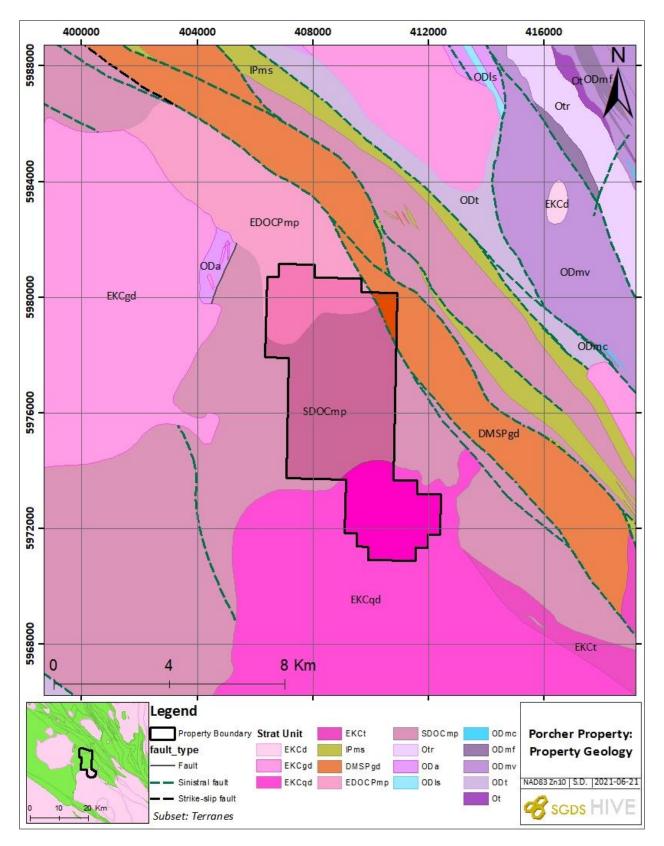


Figure 5: Property geology (Nelson, et al., 2014).

Strat Unit	Strat Age	Strat Name	Lithology	Description
EKCqd	Early Cretaceous	Captain Cove Plutonic Suite - Captain Cove pluton	quartz diorite	Quartz diorite
DMSPgd	Devonian to Mississippian	Swede Point pluton	granodioritic intrusive rocks	Protomylonitic granodiorite, granite, tonalite and diorite; some phases are small plagioclase phyric. Metamorphic garnet in places.
EDOCPmp	Early Devonian	Ogden Channel complex - Porcher Inlet pluton	diorite, gabbro, tonalite	Diorite, gabbro, tonalite and basalt; heterogenous, multiphase, late syn- to post-kinematic
SDOCmp	Silurian to Devonian	Ogden Channel complex	meta-diorite, meta-gabbro	Metadiorite, metagabbro, metatonalite, lesser metavolcanic and metasedimentary screens; polydeformed amphibolite facies

Table 4: Units defining the Property's geology (Nelson, et al., 2014).

7.3 Mineralization

The Property hosts numerous occurrences of vanadiferous magnetite-rich hosted in gabbroic to dioritic rocks. These occurrences are readily visible, as these areas produce substantial kill zones leaving these black outcrops generally barren. Mineralization found on the Property is generally ubiquitous across the large kilometre-scale gabbroic intrusives mapped, with only the percentage of blueish-coloured vanadiferous magnetite changing from roughly 5% of the total rock, to up to 30%. The magnetite is generally manifested as disseminations and clots, with the more magnetite rich rocks being dominated by larger grain sizes including clots up to 10cm in diameter locally (more commonly 1-2cm in diameter). Rarely, the rocks are crosscut by sulphide veinlets including pyrite and chalcopyrite. The clots and disseminations of magnetite are more resistive than the host mafic gabbroic and diorite rocks. As a result, weathering of the mineralized zones creates a very rough exterior face dominated by clots and disseminations of magnetite as more resistive mafic minerals preferentially weather away (Friesen, 2019).

8.0 Deposit Types

The main target type on the Property is vanadiferous titano-magnetite ("VTM") deposits which are typically hosted within oxide-rich horizons found near the upper parts of large layered mafic complexes such as the Bushveld Complex in South Africa (Kelley et al., 2017). The genesis of these magmatic ore deposits is highly affected by the chemical processes that were operating during the later stages of fractional crystallization within mafic intrusions. Specifically, during the later stages of cooling and fractional crystallization the formation and accumulation of Fe-Ti-V oxide minerals (e.g. magnetite, ilmenite, rutile) commences. These deposits are known to have two main subdivisions which are,

ilmenite-dominated deposits (typically found within anorthosite host rocks) and magnetite-dominant deposits, typically found within layered intrusions within gabbroic host rocks (Gross, 1996).

As described by Bartsch et al. (2020), the crystallization of magnetite commences when the fractionating magma becomes sufficiently iron-enriched to form iron-rich oxide minerals within the cooling magma chamber. Once formed, these minerals then settle generally within paleo-lows which results in the lowering of the overall magma density. This inverted density stratification results in the overturning of the magma, the mixing which leads to the further precipitation of magnetite and ilmenite. This process repeating causes to the formation of multiple stratified layers of oxide minerals. Throughout this process, vanadium is mobile and compatible within the magnetite crystal structure, which results in the lower most layers typically being the most enriched in vanadium, with the vanadium content generally decreasing upwards through the stratigraphic layers. Inversely, titanium is incompatible in magnetite, and becomes enriched within the residual magma leading to the uppermost ilmenite/rutile > magnetite rich layers being enriched in titanium.

Although Canada currently does not have any operating VTM mines, there are currently several promising prospects including the Lac Dore Complex in Chibougamau, Quebec, the Bell River Complex in Matagami, Quebec, the Sept-Iles Complex, Quebec, as well as the Pipestone Lake Complex in Manitoba (Taner, Ercit, & Gault, 1998).

9.0 Exploration

Recent exploration on the Property completed by Ridgeline Exploration includes an airborne magnetometer survey in March of 2019 and a follow-up 'boots on the ground' rock sampling and prospecting program in April of 2019 (Friesen, 2019).

9.1 Airborne Magnetic Survey Parameters

The following information is based on the airborne magnetometer survey conducted on the Property between March 22nd and 27th, 2019 by Ridgeline Exploration (Friesen, 2019). The survey included a total of 472.48 line-kilometres flown over the entire Porcher Property.

The survey was flown with a GEM Systems GSMP-35A(B) magnetometer, towed beneath an Astar 350 B2 helicopter operated by Silver King Helicopters and attached with a 100-foot-long line cable. Ancillary equipment consisted of a potassium "Fast Reading" (20 Hz) oscillatory sensor with a magnetometer PreAmp electronics box, radar altimeters, tilt sensors, radar antennas, and a digital data recorder. A Novatel GPS sensor mounted on the 'Bird' ensured accurate positioning of the geophysical data. A real time differential GPS system utilizing the DAQNAV system from Scott Hogg & Associates Ltd., was used to fly this survey. Following the field survey, the data was corrected, processed, and interpolated using Geosoft Oasis Montaj software. A total of 472.48 line-kilometres was flown over the Porcher Property.

Total survey coverage was 472.48 line-kilometres including 33.42 line-kilometres of tie lines. Flight lines were flown in an east-west direction at 150 metres spacing. Tie lines were flown perpendicular to the flight lines at a line spacing of 1500 metres. The details from the survey are summarized in Table 5.

Table 5: Summary of GEM Systems GSMP-35A(B) magnetometer 2019 airborne survey (Friesen, 2019).

Flight line direction	Tie line direction	Traverse Line (km)	Tie Line (km)	Total
090°/270°	000°/180°	439.06	33.42	472.48

The survey was flown in a systematic low-level flying pattern at roughly 75 metre mean terrain clearance. The terrain clearance did not deviate by more than $\pm 30\%$ over 800 metres from the mean contracted elevation, as shown in Table 6. There were a few areas within the property boundary with vertical to sub-vertical fluvially incised gulley's and valleys topographic features where the survey altitude would deviate by up to $\pm 80\%$ over relatively short distances. Ultimately, survey altitudes in these difficult areas were determined by the pilot's judgement of safe flying conditions.

Parameter	Specifications
Sample interval:	10 Hz, 3.3 m @ 130km/h
Aircraft mean terrain clearance: Mag sensors mean terrain clearance:	~105 m ~75 m
Navigation (guidance):	±3 m, Real-time GPS
Post-survey flight path:	±3 m

Table 6: GEM Systems GSMP-35A(B) magnetometer flight deviations (Friesen, 2019).

Nominal aircraft airspeed was between 50 to 70 knots for the survey and the nominal aircraft ground speed was approximately 2 to 5 metres per sample at a 0.10s sampling rate. The base station was placed within 8 kilometres of the survey area in a region of low magnetic interference near the community of Oona River. The base station internal time was synced with the airborne GSMP-35A(B) magnetometer internal clock using UTC standard time formatting.

Table 7 provides a brief description of the geophysical instruments used to acquire the survey data and the calibration procedures employed. The geophysical equipment was installed in an Astar 350 B2 helicopter operated by Silver King Helicopters Inc.

Table 7: Specifications of GEM Systems GSMP-35A(B) magnetometer 2019 airborne survey (Friesen, 2019).

	Airborne Magnetometer		
Model:	GEM Systems Magnetometer GSMP-35A(B)		
Sampling Rate:	20 Hz (0.1 sec)		
Sensitivity:	0.0003 nT @ 1Hz*		
Resolution:	0.0001 nT		
Absolute Accuracy:	± 0.05 nT		
Range:	15,000 to 120,000 nT		
Gradient Tolerance:	50,000 nT/m		
Comment: The magnetometer se	ensor is housed in the magnetic 'Bird', 30m below the helicopter	r.	
	Magnetic Base Station		
Model:	GEM Systems GSM-19T		
Sampling Rate:	2 sec		
Sensitivity:	0.022 nT @ 1 Hz		
Resolution:	0.01 nT		
Absolute Accuracy:	± 0.1 nT		
Range:	20,000 to 120,000 nT		
Gradient Tolerance:	over 10,000 nT/m		
Comment: The magnetometer ba	ase station was located near the community of Oona River, 8 kil	ometres from the center of the	
survey for the duration of the pro-	ogram (away from any areas of magnetic interference).		
	Radar Altimeter		
Model:	Dual antenna RA-4000, FMCW		
Altitude Range:	-20 to 2500 feet		
Altitude Accuracy:	0 to 100 feet ± 3 feet, 100 to 500 feet ± 3%,	Above 500 feet ± 5%	
Frequency Range:	100 MHz sweep 4.25 – 4.35 GHz		
Sweep Frequency:	100 Hz		

Navigation Software

A real time differential GPS system utilizing the DAQNAV system from Scott Hogg & Associates Ltd. was used to fly this survey. The DAQNAV system is a turnkey data acquisition and 3D navigation product for airborne geophysical operators.

During the survey flights, digital data output by the GEM35A towed bird is routed into the DAQNAV WireFree module and is transmitted wirelessly to a 10" DAQNAV tablet located in the cockpit of the aircraft. The DAQNAV system logs the data to a file and uses it to provide accurate 3D navigation to both pilot and operator to ensure precise survey flying. A cross-track bar indicates X,Y deviation from flight path, a altimeter bar indicates ground clearance and a terrain display indicates Z deviation from a pre-planned drape surface.

Once a survey flight is complete, the DAQ2xyz application is used to convert the DAQNAV logfile into a Geosoft compatible XYZ database file for quality control and processing.

9.2 Airborne Magnetic Survey Results and Processing

A GSM-19T magnetometer was operated near the community of Oona River to record diurnal variations of the earth's magnetic field. The clock of the base station was synchronized with that of the airborne system to permit subsequent removal of diurnal drift. The data were corrected for diurnal variations by subtracting the observed magnetic base station deviations. A GPS lag correction was applied based on a 2.2-metre separation of the magnetic sensor from the GPS antenna. A heading correction was applied to correct for the difference in signal strength received by the magnetometer when flown in different heading directions. A fourth difference editing routine was then applied to the magnetic data to remove any spikes. The results were then levelled using tie and traverse line intercepts. Manual adjustments were applied to any lines that required levelling, as indicated by shadowed images of the gridded magnetic data. The manually levelled data were then subjected to a micro levelling filter within Geosoft Oasis Montaj software.

The corrected magnetic data were processed in Oasis Montaj to produce the various interpolated products listed below:

• <u>TMI:</u>

The residual magnetic intensity (RMI) was calculated by subtracting the International Geomagnetic Reference Field (IGRF) gradient from the corrected data. This product highlights the variance in magnetic intensity across the property after being adjusted for regional-scale magnetic variations.

 <u>Calculated Vertical Magnetic Gradient (First Vertical Derivative; "1VD"):</u> The IGRF-corrected magnetic data were subjected to a processing algorithm that enhances the response of magnetic bodies in the upper 500 metres and attenuates the response of deeper bodies. The resulting vertical gradient grid provides better definition and resolution of near-surface magnetic units. It also identifies weak magnetic features that may not be quite as evident in the total field data. Regional magnetic variations and changes in lithology, however, may be better defined on the total magnetic field parameter.

The airborne magnetic survey results are displayed in below including a map of the airborne magnetic survey lines flown (Figure 6), total magnetic intensity ("TMI") (Figure 7), and first vertical derivative ("1VD") (Figure 8).

The survey results highlighted multiple magnetic features on the Property. The total variation in the TMI dataset was 3,025nT ranging from a low of 54,120nT to 57,145nT. The total variation in the 1VD dataset was 14.301nT/m ranging from -5.699nT to 8.602nT/m. Both products outlined two large roughly concentric high magnetic anomalies located in the central part of the Property. The northern magnetic high anomaly identified is slightly north-south elongate with dimensions of roughly 3.6 by 2.6 kilometres. The total magnetic intensities of the northern anomaly range from roughly 54505nT near the margins to roughly 57145nT at the center, for a total gradient of 2640nT. The southern magnetic high anomaly is roughly 3 by 2 kilometres. The total magnetic intensities of the southern anomaly range from

roughly 55590nT near the margins to roughly 57150nT at the center, for a total gradient of 1560nT. The survey results also identified a pronounced northwest-southeast trending magnetic trough located near the northeastern extent of the survey area. The anomaly is roughly 500 metres wide, and it can be traced for 3.2 kilometres and remains open in both directions.

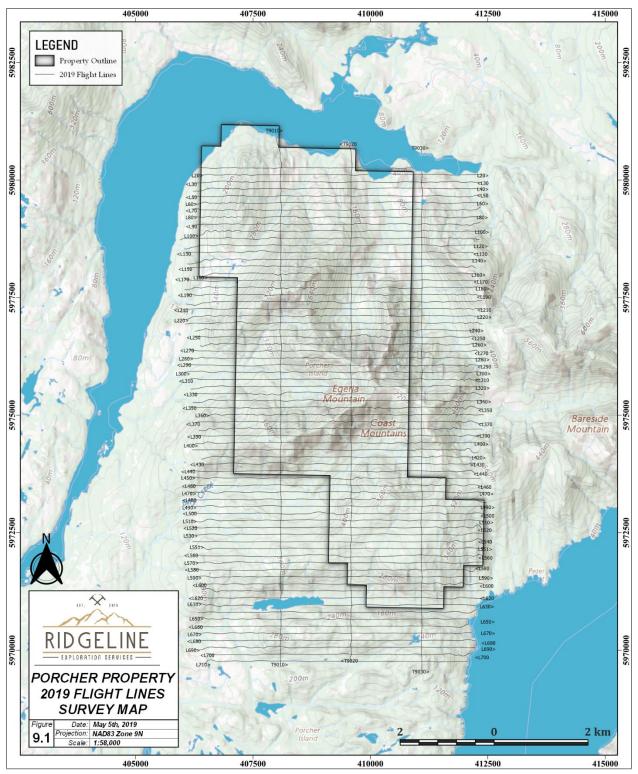


Figure 6: 2019 airborne geophysical survey flight lines (Friesen, 2019).

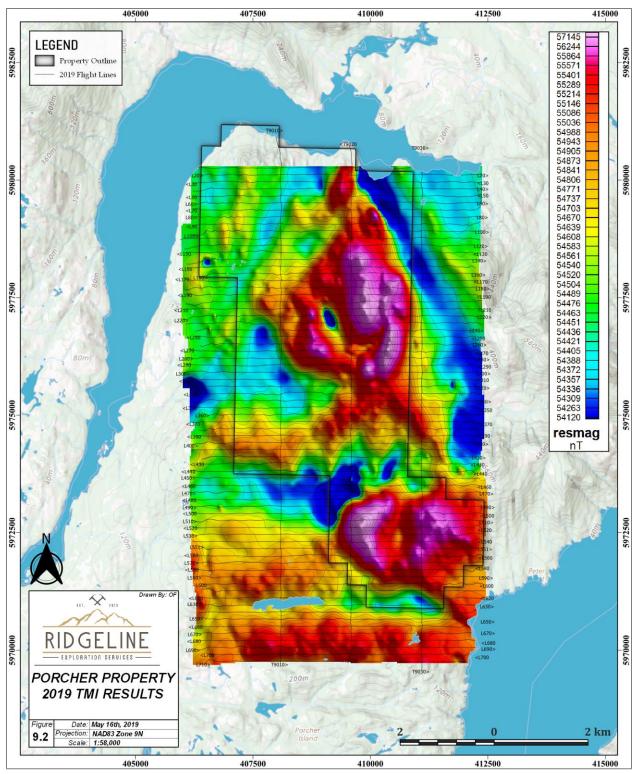


Figure 7: Total Magnetic Intensity ("TMI") (Friesen, 2019).

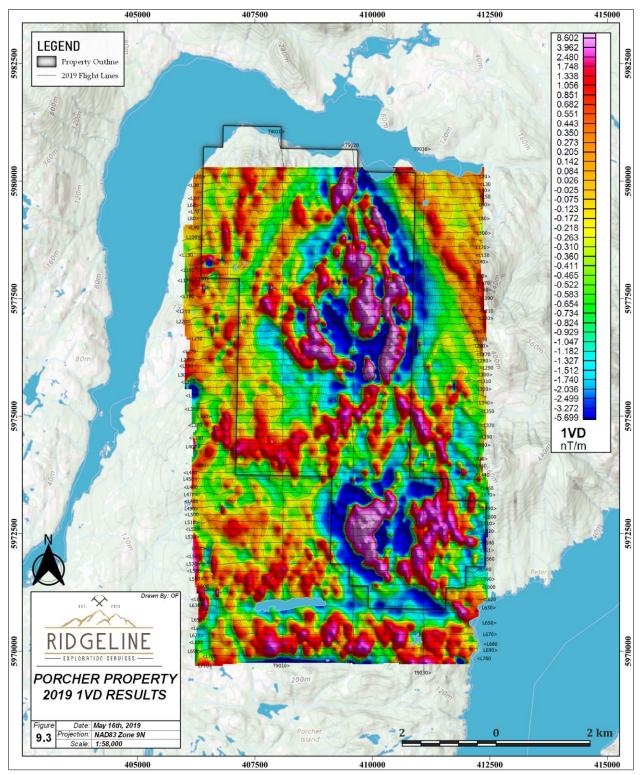


Figure 8: First vertical derivative ("1VD") (Friesen, 2019).

9.3 Rock Sampling and Prospecting Program

The following information is based on the prospecting program completed on the Property between April 16th and 25th, 2019, by Ridgeline Exploration (Friesen, 2019). A total of 61 select rock grab samples were collected during the program. Figure 9 is a sample location map, where results for iron, titanium, and vanadium are presented Figure 10, Figure 11, and Figure 12, respectively. All sample descriptions and assays are listed in Appendix A and Appendix B, respectively.

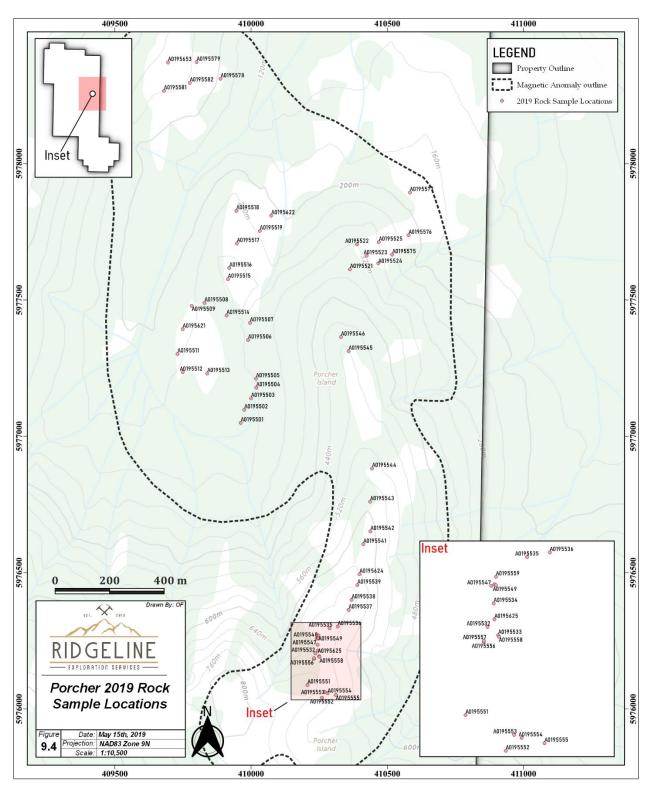


Figure 9: 2019 Rock Sample Locations (Friesen, 2019).

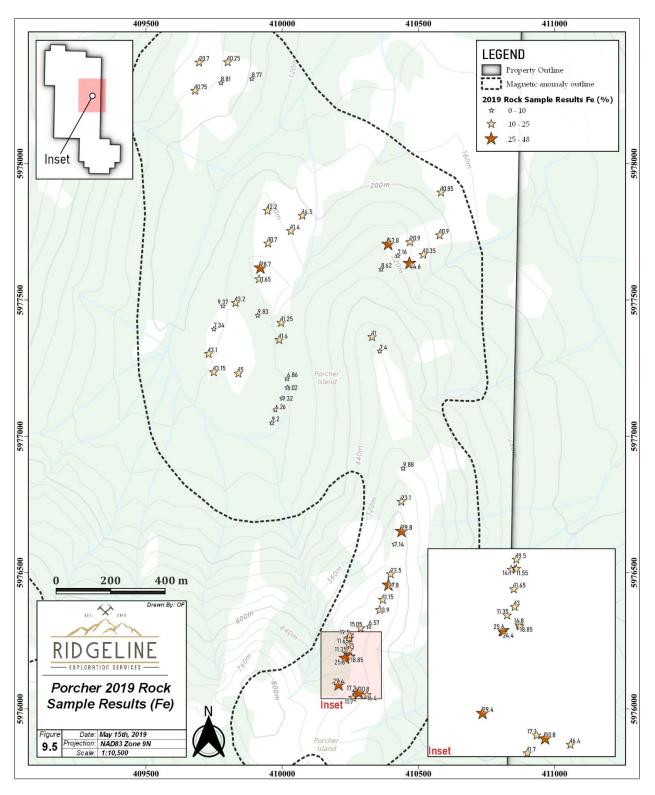


Figure 10: 2019 select rock grabs by iron (Friesen, 2019).

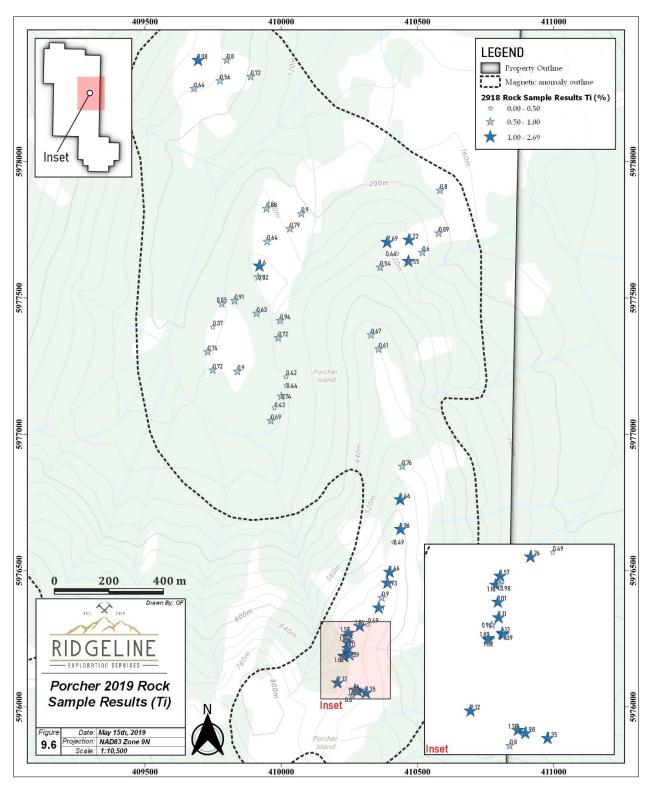


Figure 11: 2019 select rock grabs by titanium (Friesen, 2019).

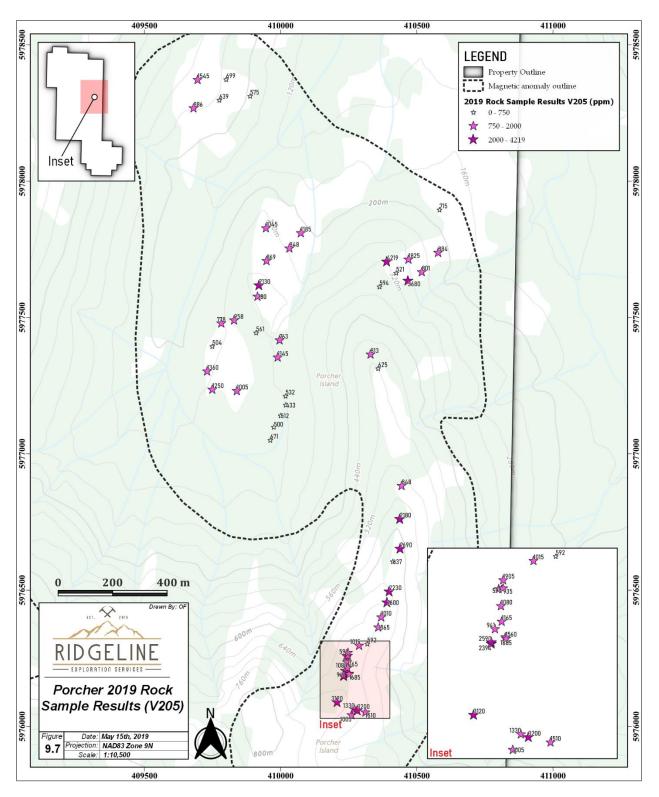


Figure 12: 2019 select rock grabs by vanadium (Friesen, 2019).

10.0 Drilling

There is no documented drilling on the Property.

11.0 Sample Preparation, Analyses and Security

For the April 2019, field program, the samples were placed in standard polybags and locations marked in the field with labelled pink flagging tape by Ridgeline Exploration Services Inc. personnel. Sample notes for each sample were recorded using field-ready smartphone and GPS locations were recorded using handheld Garmin devices. Limiting the chain of custody, the samples were dropped off at the Kamloops preparation facility by Ridgeline Exploration Services Inc. field staff. Samples were prepared in Kamloops by crushing the entire sample to 70% passing -2mm, riffle splitting off 1kg and pulverizing the split to better than 85% passing 75 microns. After preparation in Kamloops, the prepared pulps were shipped to ALS Global's analytical laboratory in North Vancouver, British Columbia. All analytes were determined using ME-ICP61 four acid ICP-AES. The analytical results are verified with the application of industry standard Quality Control and Quality Assurance (QA-QC) procedures.

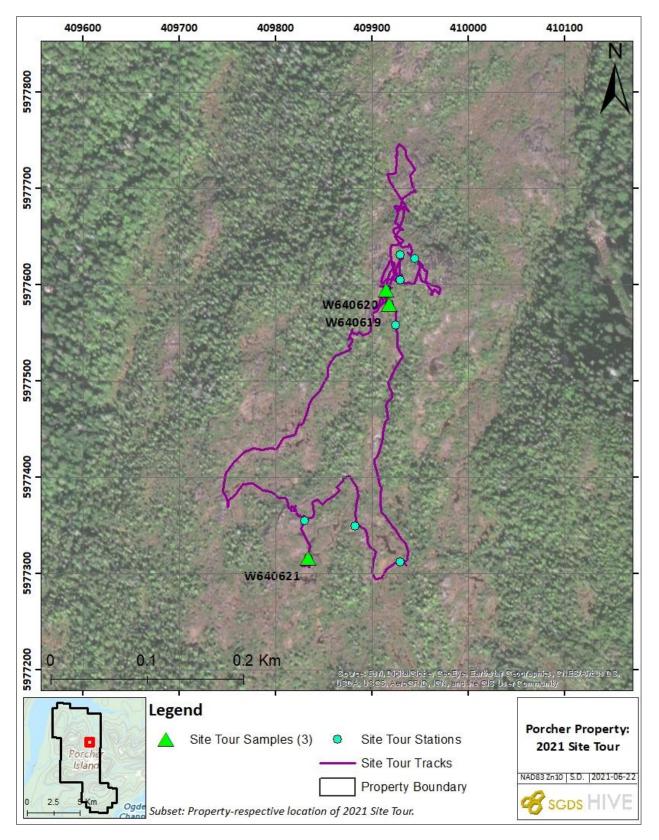
It is the opinion of the author that the methodologies described by Friesen (2019) satisfy industry standard requirements and should be considered adequate.

12.0 Data Verification

An in-depth review was completed for all presented data. Review included reading all available reports on the Property and digitizing appropriate information, checking through all respective databases, and comparing assays to original laboratory certificates. Software used for the quality assurance, data verification review was Adobe Acrobat DC, ESRI ArcGIS 10.7.1 and Microsoft 365 Excel. It is the opinion of the author that all historical and recent data presented in this Report have been appropriately verified and should be considered acceptable.

The select grab sample retrieved during the May 24th, 2021, site tour ("Site Tour") was chosen based off observable textures, mineralization, and respective location to a known occurrence. Wearing the proper protective person equipment, the sample was broken using a standard rock hammer. The sample was then photographed with sample tag visible and cataloged. The sample was placed in a medium-sized polyurethane bag and sealed with a one-way tie strap. Sample information was later recorded into a sample shipment and an SGS laboratory-issued submission form. Scott Dorion (P.Geo) oversaw the Chain of Custody from sampling to transportation, and personally dropped the sample off at SGS Laboratories ("SGS") located at 3260 Production Way, Burnaby, British Columbia. The appropriate lab method was determined by the author to be a lithium borate fusion and WD XRF analysis (GO_XRF72FE1). To complete the respective assay method, the samples were shipped to SGS's laboratory located in Lakefield, Ontario. Further information regarding the methodology and reported analytes is available in SGS Canada Inc.'s Analytical Guide (SGS, 2020). The sample was released from SGS on June 9th, 2021.

Due to only three samples retrieved during the site visit, no field based QAQC controls were added, relying on internal lab protocols.


The Site Tour was limited to PBR's discovered mineral occurrence on the Property. Figure 13 displays the site tour's tracks and stations.

Samples W640619, W640620, and W640621 were all retrieved from magnetite mineralized outcrops located in the eastern section of the Property. Given the early-stage exploration status of the Property, it is the opinion of the author that the adequacy of the sample preparation, security, and analytical procedures in respects to the Site Tour data presented is sufficient and that the select grab samples retrieved during the 2020 site visit are adequate and satisfy the requirements for data verification.

Further information on samples (W640619, W640620, W640621 and assay certificate are included in Appendix C and Appendix D, respectively.

Sample ID	Weight (g)	Fe (%)	TiO₂ (%)	V2O5 (%)
W640619	713	30.5	3.25	0.21
W640620	711	12.0	1.18	0.08
W640621	636	39.2	3.89	0.29

Table 8: 2021 Site Tour sample assays

Figure 13: October 28th, 2020, site tour stations and tracks.

13.0 Mineral Processing and Metallurgical Testing

The Property, as it stands, is an early-stage exploratory project and GRM has completed no mineral process or metallurgical testing to date.

14.0 Mineral Resource Estimates

The Property, as it stands, is an early-stage exploratory project and GRM has completed no mineral resource estimates to date. There is no historical mineral resource estimate on the Property.

ITEMS 15.0 – 22.0 NOT APPLICABLE

Items 15.0 through 22.0 are not addressed in this Technical Report as the Property is an early-stage exploration property.

23.0 Adjacent Properties

There are no significant mineral deposits adjacent to the Property.

24.0 Other Relevant Data and Information

The Property, as it stands and knowledge of the author, has no other relevant data or information requiring to be disclosed.

25.0 Interpretation and Conclusions

Exploration on the Property has been dormant since the first and only documented work programs by an unknown operator in 1973 which was published in the *Geology of Vanadium and Vanadiferous occurrences of Canada*. 2018 and 2019 staking by Christopher Paul and Oliver Friesen and a subsequent 2019 work program have generated two large concentric magnetic targets on the Property which are prospective for VTM mineralization.

The Property is of interest due to the vanadiferous magnetite mineralization associated with two large concentric magnetic highs centered within the Property boundary. The airborne magnetic survey was an extremely useful exploration tool, and the results should guide future exploration on the Property. As the primary target on the property is vanadiferous-iron associated with disseminated to semi-massive magnetite mineralization, the entire extent of the two magnetic highs outline areas for further exploration.

26.0 Recommendations

The Property warrants further exploration. This exploration should be focused on both roughly concentric magnetic high features identified by the 2019 survey. These occurrences occur near tidewater.

Exploration should be focused on expanding on the exploration success of the various magnetite-rich zones identified within the concentric magnetic high features. Detailed geological mapping is warranted with the goal of identifying the magnetite rich layers within the mafic intrusive units. Due to the lack of vegetation present over most of the magnetic features, systematic rock sampling should be completed to determine the most prospective areas within the magnetic features. A ground-based magnetometer survey is recommended. The focus of the survey should be in identifying the highest magnitude TMI zones within the larger concentric features, as these areas are likely associated with increased vanadiferous magnetite content. Mapping should determine if there is crude layering of magnetite-rich horizons within the larger intrusive units, and the ground-based magnetic survey orientation should be perpendicular to the dominant layering direction.

Due to the size of the two magnetic high features identified by the 2019 airborne magnetic survey and coincident iron-titanium-vanadium grades shown in samples collected during follow-up reconnaissance, additional work is recommended to assess the exploration potential of the Property.

A two-phase contingent program is recommended on the Property with the focus of exploration on further expanding on the exploration successes of the 2019 program, as well as preliminary follow up of additional magnetic high features identified in the 2019 survey.

Phase 1:

- Detailed geological mapping is warranted and should be focussed on identifying all magnetite rich outcrops within the two concentric magnetic high anomalies.
- Ground-based high-resolution magnetometer survey, with a focus on identifying the highest magnitude readings within the concentric anomalies, which would likely be associated with the highest magnetite concentrations.
- Trenching and channel sampling over the most favourable targets identified during the Phase 1 work program.
- Budget of \$75,000.00 as displayed in Table 9.

Description	Price
Prospecting/Mapping (20-day program)	
40-man days @ \$600/day	\$24,000
Consumable and analytical costs	\$20,000
Ground Geophysical Survey	
220 line-kilometres @ \$50/line-kilometres	\$11,000
Consumables and processing costs	\$20,000
Total Budget	\$75,000

Table 9: Budget summary of Phase 1 recommendation

Phase 2:

- Contingent on the results of Phase 1.
 - Phase 1 returns expands on 2019 results by further highlighting surface and subsurface structures of prospective magnetite-rich zones and delineates controls on specific targets.
 - Fe-Ti-V assays generally returning above values >% Fe, >####ppm Ti, >###ppm V over ## metres from respective channel sampling or trenching.
- Diamond drilling
 - Time and budget allocated for social licensing and permit approvals.
 - 6x drillholes designed to test the most convincing target generated from Phase 1.
 - 6 oriented holes (150m/hole) targeting the most prospective part of geophysical anomaly for a total of 900m.
- Budget of \$755,000.00

Table 10: Bud	lget summary	/ of Phase 🛙	2 recommendation

Description	Price
Channel Sampling/Trenching (8-day program)	
16-man days @ \$750/day	\$12,000
Excavator Rental & Transport	\$23,000
Helicopter-supported diamond drilling	
900 metres @ \$800 all-in/metre	\$720,000
Total Budget	\$755,000

References

- Bartsch, K., Pilcher, B., Longridge, L., Vargas, A. M., Versezan, A., & Doundarov, G. (2020). NI 43-101 Technical Report Preliminary Economic Assessment (PEA) of the Mont Sorcier Project, Province of Quebec, Canada. Vanadium One Iron Corp.; CSA Global.
- BCSC. (2016, 5 9). 43-101 Standards of Disclosure for Mineral Projects [NI]. Retrieved from British Columbia Securities Commission (BCSC): https://www.bcsc.bc.ca/
- Canada, G. o. (2021). *Canadian Climate Normals 1981-2010 Station Data: STEWART A.* Ottawa, ON: Government of Canada.
- Canada, N. R. (2011, May). Certificate of Analysis: CCU-1d. Ottawa, Ontario, Canada.
- Canada, S. (2016). Census Profile, 2016 Census. Prince Rupert, B.C.; Ottawa, ON: Statistics Canada.
- Cochrane, D. R. (1976). [Assessment Report #6,195] Short Report on the Surf Point / Edye Pass Gold Mines. Skeena Mining Division, B.C.: Carolin Mines Ltd.; Porcher Island Gold Mines Ltd.
- CSE. (2018). Policy 2: Qualifications for Listing. Toronto, ON: Canadian Security Exchange.
- Friesen, O. (2019). 2019 Prospecting, Geological and Airborne Geophysical Report on the Porcher Property. Kelowna, B.C.: Ridgeline Exploration Services.
- Gehrels, G. E., & Saleeby, J. B. (1987). *Geologic Framework, Tecontic Evolution and Displacement History of the Alexander Terrane.* Tectonics (Volume 6, p.151-174).
- Gehrels, G. E., Butler, R. F., & Bazard, D. R. (1996). *Detrital zircon geochronology of the Alexander terrane, southeastern Alaska.* Geological Society of America Bulletin (Volume 108, pg. 722-734).
- Gross, G. A. (1996). *Mafic intrusion-hosted titanium-iron.* Geology of Canadian Mineral Deposit Types No 8 pg.573-582 (Eckstrand, O.R., Sinclair, W.D., and Thrope, R.I.(eds)); Geological Survey of Canada.
- Jackman, W., Lett, R., & Friske, P. (2000). *BC Regional Geochemical Survey: 2000 Field Programs, British Columbia.* BCGS Fieldwork 2000.
- Kelley, K. D., Scott, C. T., Polyak, D. E., & Kimball, B. E. (2017). *Professional Paper 1802-U: Vanadium*.
 Chapter U of Critical Mineral Resources of the U.S. Economic and Environmental Geology and Prospects for Future Supply; US Department of the Interior; US Geological Survey.
- Kiernan, W. K. (1956). Annual Report. Minister of Mines Province of British Columbia.
- McDougall, J. J. (1961). *Report on results of coast prospecting 1960 including property examinations and recommendations for 1961 field programs.* Falconbridge (Internal Report).
- Mehmet, T. F., Scott, E. T., & Gault, R. A. (1998). *Vanadium-bearing magneite from the Matagami and Chibougamau Mining Districts, Abitibi, Quebec, Canada*. Exploration and Mining Geology 7(4) pg.299-311.
- Nelson, J. L., Diakow, L. J., Mahoney, J. B., Gehrels, G. E., van Staal, C. R., Karl, S., . . . Angen, J. J. (2014). Geology of the North and Mid-Coast Regions, British Columbia. Ottawa, ON; Victoria, B.C.:

Natural Resources Canada / Geological Survey of Canada (Open File 7604); BC Ministry of Energy and Mines / British Columbia Geological Survey (Geoscience Map 2014-3).

- Nelson, J. L., Mahoney, J. B., Gehrels, G. E., Staal, C. v., & Potter, J. J. (2009). Geology and Mineral Potential of Porcher Island, Northern Grenville Channel and Vicnity, Northwestern British Columbia. Geological Fieldwork 2009, Paper 2010-1.
- Nowak, M., Johnson, M., Rowe, D., & Van der Heever, D. (2011). *Mineral Resources Estimation, Niblack Polymetallic Sulphide Project, Alaska, USA.* Heatherdale Resources Ltd.
- Roddick, J. A. (1970). Douglas Channel-Hecate Straight Map-Area, B.C. GSC, page 70-41.
- Rose, E. R. (1973). *Geology of Vanadium and Vanadiferous Occurences of Canada*. Ottawa, ON: Geological Survey of Canada; Department of Energy, Mines and Resources.
- SGS. (2020). "Analytical Guide" (Geochemistry Guide 2020: The Foundation of Project Success). SGS Canada Inc.
- Taner, M. F., Ercit, T. S., & Gault, R. A. (1998). Vanadium-bearing magnetite from the Matagami and Chibougamau mining districts, Abitibi, Quebec, Canada. Exploration and Mining Geology, v.7 no.4 pg. 299-311.
- Wheeler, J. O., & McFeely, P. (1991). *Tectonic assemblage map of the Canadian Cordillera and adjacent parts of the United States of America.* GSC Map 1712A.

Wiken, E. B. (1986). *Ecological Land Classification Series*. Ottawa, ON: Environment Canada; No.19.

Qualified Person Certificate

I, Scott Dorion (P.Geo), am employed by SGDS-HIVE Geological (Strata Geodata Services Ltd.) with an address at 330-470 Granville Street, Vancouver, British Columbia, V6C-1V4, Canada. A site tour was completed on May 24th of 2021. I, the author, was contracted through SGDS-HIVE Geological to complete the technical report titled 'National Instrument 43-101: Technical Report on the Porcher Property' and dated June 23, 2021 (the "Technical Report") by Great Republic Mining Corp. I consent to the public filing of the Technical Report.

I graduated from the University of Alberta with a Bachelor of Science, specializing in geology, in the fall of 2009. I have been working exclusively in the mineral exploration industry since 2007 and have been recognized as a Professional Geologist by the Engineers & Geoscientists of British Columbia since December 20th of 2018 (License No. 48329). I have worked as an exploration geologist on a range of commodity types in Canada, Australia and Peru. My experience as it pertains to GRM's Property includes a season spent at Baffin Island's Mary River iron mine. Although I do not have previous work experience on vanadiferous titano-magnetite (VTM) deposits, I understand the context adequately to be qualified for the purpose of completing a practical site visit and generating additional recommendations on the Porcher property as it stands from the work completed to date. I have read the definition of "qualified person" set out in National Instrument 43-101 (NI 43-101) and certify that, by reasons stated above, I fulfil the requirements to be a "qualified person" for the purpose of NI 43-101.

As defined by Section 1.5 of the NI 43-101, I am independent of Great Republic Mining Corp., Ridgeline Exploration Services Inc., and the Gravity Jack property. I, nor my family members or associates, have a business relationship with Great Republic Mining Corp. or Ridgeline Exploration Services Inc. In addition, I do not have any financial interest in the outcome of any transaction involving the Porcher property that is the subject of the Technical Report other than payment of professional fees for the work undertaken in preparation of this Technical Report.

I am responsible for all sections, Items 1.0 to 27.0, and certify that I have read and reviewed the Technical Report as of the effective date and, to the best of my knowledge, believe all sections of the report contain all scientific and technical information that is required to be disclosed to make the respective sections accurate, objective, and not misleading. Given my statement and qualifications, I believe this Technical Report should be considered current.

W. DOBIOI Scott Dorion, P.Geo EGBC: Licence #48

Member #213591

Signing Date: June 23, 2021

Appendix A: 2019 Select Grab Sample Information

Sample Latitude		Longitude	Description	Fe	V ₂ 0 ₅	Ti
ID				(%)	(ppm)	(%)
A0195501	53.934	-130.3715	Magnetite +/- py po hosted in cg gabbro	9.2	671	0.69
A0195502	53.9344	-130.3713	Magnetite bearing hbl diorite +/- cpy po py	6.26	500	0.43
A0195503	53.9348	-130.3709	Magnetite bearing hbl diorite +/- py po	9.32	512	0.74
A0195504	53.9352	-130.3706	Magnetite bearing hbl diorite +/- py po	6.02	433	0.44
A0195505	53.9355	-130.3707	Magnetite (10%) in cg hbl diorite. Very magnetic	6.86	532	0.42
A0195506	53.9367	-130.3712	V cg. Mag bearing hbl gabbro. Mag clots up to 3cm. Rock is very magnetic.	11.6	1145	0.72
A0195507	53.9373	-130.3711	V cg. Mag bearing hbl gabbro. Mag clots up to 3cm. Py + Po stringers. Rock is very magnetic.	11.25	763	0.94
A0195508	53.9379	-130.3736	V cg. Mag bearing hbl gabbro. Mag disseminations throughout up to 5mm. Est 10% mag.	13.2	958	0.91
A0195509	53.9378	-130.3743	As above, slightly less magnetite content	9.37	778	0.55
A0195511	53.9362	-130.3751	Silicified mag bearing diorite skarn.	13.1	1360	0.74
A0195512	53.9356	-130.3748	Mag bearing diorite, sheared silicified w/ py stringers	13.15	1250	0.72
A0195513	53.9356	-130.3734	Est. 25% magnetite in hbl gabbro. Sheared, magnetic seam exposed by fallen tree well	15	1005	0.9
A0195514	53.9375	-130.3724	Mag + py bearing hbl gabbro	9.83	561	0.63
A0195515	53.9387	-130.3723	Mag bearing hbl gabbro. Est. 10% magnetite. Very magnetic.	11.65	780	0.82
A0195516	53.9391	-130.3723	Est. 25% magnetite in 15cm clot. Hosted in hbl gabbro.	28.7	2130	1.6
A0195517	53.9399	-130.3719	Est. 10% mag in hbl gabbro. Very coarse grained, pegmatite?	10.7	869	0.64
A0195518	53.941	-130.372	Est. 5% magnetite in hbl diorite.	12.2	1045	0.88
A0195519	53.9403	-130.3706	As above, with accessory py stringers.	11.4	848	0.79
A0195521	53.9391	-130.3655	10% mag in cg hbl diorite	8.62	594	0.54
A0195522	53.94	-130.3652	Semi-massive magnetite in silicified hbl diorite. >50% magnetite.		4219	2.69
A0195523	53.9396	-130.3646	5% mag in leucocratic hbl diorite. Very CG.	7.16	521	0.44
A0195524	53.9393	-130.364	Mag bearing vcg. Hbl diorite 20% mag with semi- massive seams	44.6	3680	2.55

A0195525	53.94	-130.3639	Semi-massive magnetite in melanocratic hbl gabbro. Very massive ~40% magnetite	20.9	1825	1.22
A0195532	53.9265	-130.3671	Very coarse grain gabbro, 2-3cm hornblend, some blebs of magnetite 2-3% total, rare pyrite.	11.35	941	0.94
A0195533	53.9264	-130.3668	3m wide outcrop, subvertical zone with gabbro very coarse grain, couple concentration of 1-2cm of magnetite <1%.	16.8	1560	1.13
A0195534	53.9267	-130.3669	Very coarse grain (1-2cm) hb-gabbro, strong magnetic, 2-3% magnetite.	11.65	1080	1.01
A0195535	53.9273	-130.3663	very coarse grain 0.5-3cm hb dominant gabbro, blackish, magnetite comprise <2%.	15.05	1015	1.26
A0195536	53.9273	-130.3658	Dioritic 60-70% of plagio, medium to fine grain (0.2-1cm), little blebs of magnetite (0.5-1cm).	6.57	592	0.49
A0195537	53.9279	-130.3652	2m wide band of gabbroic very coarse grain, very strong magnetic, magnetite 3-5% disseminated, saussuritized/epidote?	13.9	1365	1.1
A0195538	53.9282	-130.3651	Coarse grain diorite ? Grey, magnetite disseminated <0.5%, limenite sparse	11.15	1010	0.9
A0195539	53.9287	-130.3648	Medium grain, gabbroic rock, >5 % of magnetite disseminated, pyrititization in blebs of 3-5cm, massive concentration of 40x30cm up to 10% of the rock	27.8	2600	1.93
A0195541	53.9301	-130.3645	Very coarse gabbro, blackish rock, magnetite slightly disseminated <1%, sometimes dm concentration.	7.14	637	0.49
A0195542	53.9305	-130.3641	Very coarse gabbro, blackish rock, magnetite slightly disseminated <1%, sometimes dm concentration.	29.8	2690	1.96
A0195543	53.9315	-130.3642	Coarse grain , dark gabbroic rock, more than 65% of hb, >5% of magnetite disseminated.	23.1	2180	1.46
A0195544	53.9326	-130.3641	Dioritic 65-70% of plagio, magnetite 1% disseminated.	9.88	848	0.76
A0195545	53.9364	-130.3655	Very coarse grain gabbroic rock, moderate magnetic with 1% of magnetite disseminated.	7.4	625	0.61
A0195546	53.9369	-130.366	Diorite lense aprox. 30m long, >1% disseminated magnetite.	11	813	0.67
A0195547	53.9269	-130.367	Coarse grained gabbro with ~5% blebby magnetite	14.1	1205	1.13
A0195548	53.927	-130.3669	Coarse grain gabbro, hb-dominant, blebs of magnetite, total disseminated around 5% of the rock	6.73	590	0.75

A0195549	53.927	-130.3669	Coarse grained gabbro with ~5% blebby magnetite	11.55	935	0.98
A0195551	53.9254	-130.3675	Pegmatitic Hb-gabbro 80:20 Hb/plagio, magnetite disseminated and dm concentration (10-30cm) showing 20-40% of blueish magnetite.	29.4	3120	2.12
A0195552	53.925	-130.3666	Pegmatitic Hb-gabbro, grains >2cm, disseminated and blebs of magnetite 2-3% total of the rock.	11.7	1005	0.8
A0195553	53.9252	-130.3665	Very coarse grain of Hb-gabbro 80:20, lots of concentrated and sort of linear cm-dm concentration of magnetite. Sample has 20-30% of magnetite	17.3	1330	1.38
A0195554	53.9252	-130.3663	Hb-gabbro, coarse grain 70:20 Hb/Plagio, magnetite comprise 2-5% of the 1x2m of the area and boulders subcrops with dm concentrations - up to 30% of magnetite	30.8	3200	1.98
A0195555	53.9251	-130.3659	Hb-gabbro, very coarse grain, 70:25, and about 5% og magnetite disseminated. Bands of 1.5-2.5 wide of "high grade" magnetite up to 25%.	16.4	1510	1.35
A0195556	53.9263	-130.3671	Pegmatitic Hb-gabrro 70:30 "high grade" zone with lots of cm-dm concentrated zones of magnetite in a 1x3m long, 20-40% of magnetite .	24.4	2394	1.82
A0195557	53.9263	-130.3671	Very coarse grain of Hb-gabbro 70:30, disseminated magnetite 5-20%, and in concentrations. Lots of blebs of magnetite size varying of 2-8cm. It seems to have subvertical NNW/SW (?).	25.6	2590	1.83
A0195558	53.9263	-130.3668	1m wide subvertical zone with huge hornblends up to 10cm, magnetite comprise about 5-20% of the 2x1.5m of the outcrop sampled.	18.85	1685	1.39
A0195559	53.927	-130.3669	Pegmatitic Hb-gabbro 70:30, full of magnetite, "wall" of the outcrop shows a very "high grade" zone. Magnetite comprise >15%.	19.5	1905	1.57
A0195575	53.9396	-130.3632	Semi-massive magnetite in melanocratic hbl gabbro. Very massive ~40% magetite. Very magnetic	10.35	801	0.6
A0195576	53.9403	-130.3623	Semi-massive magnetite hbl gabbro. Very magnetic.	10.9	884	0.89
A0195577	53.9417	-130.3623	20% mag hosted in hbl gabbro on northern edge of mineral zone.	10.85	715	0.8

A0195578	53.9453	-130.373	Sampling western mag anomaly across major drainage. Mag bearing hbl gabbro roughly 25% mag, very magnetic.	8.77	575	0.72
A0195579	53.9459	-130.3743	Mag bearing hbl gabbro. Moderately magnetic	10.25	699	0.8
A0195581	53.9449	-130.3761	Mag bearing hbl gabbro vcg. Hornblende laths, est. 10% mag	10.75	886	0.64
A0195582	53.9452	-130.3747	10% mag in cg hbl diorite. At helipad.	8.81	639	0.56
A0195621	53.9371	-130.3748	Silicified chloritized sheared diorite with silica veining, rare py + cpy + mag in vns.	7.34	504	0.37
A0195622	53.9409	-130.37	Silicified cg. Mag bearing hbl gabbro +/- py vnlts	14.5	1185	0.9
A0195624	53.9291	-130.3647	Coarse to very coarse grain gabbro 1-2cm, magnetite disseminated, and dm concentration.	23.5	2230	1.46
A0195625	53.9265	-130.3669	Coarse grained gabbro with ~5% blebby magnetite	13	1165	1.11
A0195653	53.9458	-130.3759	Semi-massive mag in hbl gabbro, roughly 25% mag in clots up to 1cm	20.7	1545	1.08

Appendix B: 2019 Assay Certificates

To: RIDGELINE EXPLORATION SERVICES INC. 206-3500 CARRINGTON ROAD WEST KELOWNA BC V4T 3C1

Page: 1 Total # Pages: 5 (A - C) Plus Appendix Pages Finalized Date: 8-MAY-2019 This copy reported on 23-MAY-2019 Account: RIDCOL

KL19099802

Project: Porcher

This report is for 154 Rock samples submitted to our lab in Kamloops, BC, Canada on 25-APR-2019.

The following have access to data associated with this certificate:

OLIVER FRIESEN

DEV RISHY-MAHARAJ

SAMPLE PREPARATION							
ALS CODE	DESCRIPTION						
WEI-21	Received Sample Weight						
LOG-21d	Sample logging - ClientBarCode Dup						
SPL-21d Split sample - duplicate							
PUL-31d Pulverize Split - duplicate							
LOG-21	Sample logging - ClientBarCode						
PUL-QC	Pulverizing QC Test						
CRU-QC	Crushing QC Test						
CRU-31	Fine crushing - 70% <2mm						
SPL-21	Split sample - riffle splitter						
PUL-31	Pulverize split to 85% <75 um						

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP61 MF-MS85	33 element four acid ICP-AES Lithium Borate Fusion - Select Elements	ICP-AES ICP-MS
IVIE-IVI303	Litinum bolate rusion - Select Elements	

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

To: RIDGELINE EXPLORATION SERVICES INC. 206-3500 CARRINGTON ROAD WEST KELOWNA BC V4T 3C1

Page: 2 - A Total # Pages: 5 (A - C) Plus Appendix Pages Finalized Date: 8-MAY-2019 Account: RIDCOL

Project: Porcher

-																
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	ME-MS85 V ppm 5	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10
A0195501 A0195502 A0195503		0.81 0.64 1.02 0.85	376 280 287 243	<0.5 <0.5 0.5 <0.5	9.53 10.15 9.72	<5 <5 <5 <5	60 90 80 190	<0.5 <0.5 <0.5 <0.5	<2 <2 6 <2	9.67 10.45 9.41 10.20	<0.5 <0.5 <0.5 <0.5	34 16 29 18	15 18 11 9	44 2 35 1	9.20 6.26 9.32 6.02	20 20 20 20
A0195504 A0195505		0.85 1.61	243 298	<0.5 <0.5	10.50 10.85	<5 <5	70	<0.5 <0.5	<2 <2	10.20	<0.5 <0.5	18	9 13	1	6.86	20 20
A0195506 A0195507 A0195508 A0195509		1.34 1.46 0.89 0.93	642 427 537 436	<0.5 <0.5 <0.5 <0.5	9.34 8.99 8.52 10.10	<5 <5 <5 <5	90 80 60 40	<0.5 <0.5 <0.5 <0.5	<2 5 <2 <2	9.37 8.47 9.38 10.55	<0.5 <0.5 <0.5 <0.5	31 40 45 30	31 4 4 6	21 69 10 2	11.60 11.25 13.20 9.37	20 20 20 20
A0195510 A0195511		0.84	13 762	<0.5	0.28	<5 <5	30 70	<0.5	<2 <2	32.5 9.67	<0.5 <0.5	<1 44	9	2	0.14	<10 20
A0195512 A0195513 A0195514 A0195515		1.05 1.42 1.04 1.07	702 700 562 314 437	<0.5 <0.5 <0.5 <0.5 <0.5	9.39 10.50 9.24 10.10 9.86	<5 <5 <5 <5 <5	90 100 50 50	<0.5 <0.5 <0.5 <0.5 <0.5	3 3 2 3	9.96 9.08 10.95 9.66	<0.5 <0.5 <0.5 <0.5 <0.5	31 46 25 37	18 4 4 5	24 70 31 27	13.10 13.15 15.00 9.83 11.65	20 20 20 20 20
A0195516 A0195517 A0195518 A0195519 A0195520		1.91 1.60 0.93 1.36 <0.02	1195 487 586 475 489	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	6.38 9.98 9.36 9.03 9.91	<5 <5 <5 <5 <5 <5	40 200 70 140 140	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	6 <2 <2 <2 <2 <2	4.05 10.30 9.40 8.85 9.12	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	71 34 38 50 51	2 5 16 3 3	7 18 10 98 100	28.7 10.70 12.20 11.40 11.70	30 20 20 20 20 20
A0195521 A0195523 A0195524 A0195526 A0195527		0.87 0.73 0.72 0.55 0.60	333 292 2060 360 356	<0.5 <0.5 0.5 <0.5 <0.5 0.5	10.30 9.58 3.86 8.68 8.46	<5 <5 <5 <5 <5 <5 <5	70 160 10 90 40	<0.5 0.6 <0.5 <0.5 <0.5 <0.5	<2 2 7 2 2 <2	10.70 9.72 2.96 3.33 6.28	<0.5 <0.5 0.7 <0.5 <0.5 <0.5	26 20 115 26 34	10 5 4 23 19	1 2 2 26 157	8.62 7.16 44.6 8.90 8.85	20 20 40 10 20
A0195528 A0195529 A0195530 A0195531 A0195532		1.00 0.64 0.95 0.57 0.36	416 236 16 444 527	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	9.28 7.83 0.45 7.85 9.26	<5 <5 <5 <5 <5 <5	90 80 40 610 130	<0.5 <0.5 <0.5 0.5 <0.5 <0.5	4 <2 <2 <2 <2 <2	5.69 5.49 33.1 4.44 8.98	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	39 19 <1 34 47	25 12 10 24 2	21 82 4 144 70	9.49 6.70 0.16 8.42 11.35	20 10 <10 20 20
A0195533 A0195534 A0195535 A0195536 A0195537		1.85 0.87 1.65 0.56 2.12	873 605 569 332 765	<0.5 <0.5 <0.5 <0.5 <0.5	9.68 4.89 7.74 10.45 7.56	<5 <5 <5 <5 <5	50 10 60 30 50	<0.5 <0.5 <0.5 <0.5 <0.5	<2 6 3 <2 <2	9.39 12.85 8.16 11.55 10.60	<0.5 <0.5 <0.5 <0.5 <0.5	54 42 52 21 49	8 4 2 3 2	80 14 56 10 4	16.80 11.65 15.05 6.57 13.90	20 20 20 20 20 20
A0195538 A0195539 A0195540 A0195541 A0195542		0.84 1.25 <0.02 0.65 0.90	565 1455 1540 357 1510	<0.5 <0.5 0.5 <0.5 <0.5	10.15 4.98 5.74 9.63 6.04	<5 <5 <5 <5 <5	20 10 10 30 90	<0.5 <0.5 <0.5 <0.5 <0.5	<2 4 9 <2 8	11.40 6.80 6.97 10.80 5.43	<0.5 0.7 <0.5 <0.5 0.5	37 87 86 22 90	3 2 3 3 3	3 4 1 3 1	11.15 27.8 27.6 7.14 29.8	20 30 30 20 30

To: RIDGELINE EXPLORATION SERVICES INC. 206-3500 CARRINGTON ROAD WEST KELOWNA BC V4T 3C1

Page: 2 - B Total # Pages: 5 (A - C) Plus Appendix Pages Finalized Date: 8-MAY-2019 Account: RIDCOL

Project: Porcher

	Method Analyte	ME-ICP61 K %	ME-ICP61 La	ME-ICP61 Mg	ME-ICP61 Mn	ME-ICP61 Mo	ME-ICP61 Na %	ME-ICP61 Ni	ME-ICP61 P	ME-ICP61 Pb	ME-ICP61 S %	ME-ICP61 Sb	ME-ICP61 Sc	ME-ICP61 Sr	ME-ICP61 Th	ME-ICP61 Ti
Sample Description	Units LOD	% 0.01	ppm 10	% 0.01	ppm 5	ppm 1	% 0.01	ppm 1	ppm 10	ppm 2	% 0.01	ppm 5	ppm 1	ppm 1	ppm 20	% 0.01
A0195501		0.12	<10	2.97	1160	<1	0.88	15	130	3	0.10	<5	21	1000	<20	0.69
A0195502		0.04	<10	0.73	543	<1	0.71	8	60	<2	<0.01	<5	5	1315	<20	0.43
A0195503		0.18	<10	2.86	1470	<1	1.16	8	1650	<2	0.15	<5	17	1260	<20	0.74
A0195504		0.27	<10	1.02	721	<1	1.06	5	1320	<2	< 0.01	<5	7	1380	<20	0.44
A0195505		0.05	<10	0.96	609	<1	0.77	7	1000	<2	0.01	<5	8	1260	<20	0.42
A0195506		0.05	<10	0.40	674	<1	0.58	28	30	<2	0.01	<5	2	1190	<20	0.72
A0195507		0.20	<10	3.53	1335	1	1.14	7	160	<2	0.23	<5	23	906	<20	0.94
A0195508 A0195509		0.17 0.03	<10 <10	4.06 1.62	1370 774	<1 <1	0.62 0.45	2 6	90 30	2 <2	<0.01 <0.01	<5 <5	25 12	736 1015	<20 <20	0.91 0.55
A0195510		0.03	<10 <10	1.02	35	1	0.45	9	30 90	<2 <2	0.01	<5	12	1015	<20 <20	0.55
			-			•		-				-			-	
A0195511		0.05 0.08	<10 <10	1.01 0.91	989 884	<1 <1	0.39 0.39	14 16	200 40	2 <2	0.01 0.05	5 <5	7 7	916 901	<20 <20	0.74 0.72
A0195512 A0195513		0.08	10	2.96	004 1550	<1	0.39	9	40 5050	2	0.05	<5 <5	22	901 761	<20 <20	0.72
A0195514		0.29	<10	2.89	1125	<1	0.75	2	1560	<2	0.40	<5	17	949	<20	0.63
A0195515		0.08	<10	2.32	1155	<1	0.70	2	70	<2	0.02	<5	14	1030	<20	0.82
A0195516		0.02	<10	0.53	1765	<1	0.35	<1	70	2	0.01	<5	1	781	<20	1.60
A0195517		0.12	<10	1.83	803	<1	0.38	5	30	<2	0.03	<5	13	988	<20	0.64
A0195518		0.14	10	2.96	1260	<1	0.83	13	240	<2	0.01	<5	21	985	<20	0.88
A0195519		0.31	<10	4.04	1175	<1	0.91	12	250	<2	0.19	<5	29	730	<20	0.79
A0195520		0.34	<10	4.28	1220	<1	0.93	10	240	<2	0.20	<5	35	756	<20	0.82
A0195521		0.13	10	2.52	1045	1	0.55	11	280	<2	<0.01	<5	22	1000	<20	0.54
A0195523		0.12	<10	1.57	1045	<1	1.32	11	170	<2	<0.01	<5	12	1200	<20	0.44
A0195524		0.01	<10	1.28	1920	<1	0.13	13	10	2	<0.01	6	6	270	<20	2.55
A0195526		0.20	10	1.23	1035	<1	4.67	9	360	3	<0.01	<5	41	450	<20	0.60
A0195527		0.14	10	2.91	1545	1	4.01	11	710	5	0.03	<5	34	170	<20	0.69
A0195528		0.22	<10	1.93	1625	<1	3.99	16	410	<2	<0.01	6	36	196	<20	0.67
A0195529		0.33	10	1.36	1725	<1	4.89	1	620	<2	< 0.01	<5	32	117	<20	0.53
A0195530 A0195531		0.32 2.03	<10	1.07	34	<1	0.05	14	140	<2	0.07	<5 <5	1 24	174 202	<20 <20	0.03
A0195532		2.03	<10 <10	1.79 3.72	1195 1020	<1 <1	3.38 0.98	15 4	430 40	4 <2	0.02 0.12	<5 <5	24 25	202 748	<20 <20	0.61 0.94
A0195533		0.11	<10	2.14	1170	<1	0.39	12	440	<2	0.07	<5	18	760	<20	1.13
A0195534		0.03	<10	5.85	1260	<1	0.39	12	60	<2	<0.07	<5	66	149	<20 <20	1.13
A0195535		0.17	<10	3.76	1315	<1	0.91	<1	40	<2	0.14	<5	17	627	<20	1.26
A0195536		0.01	<10	1.35	581	<1	0.40	8	20	<2	< 0.01	<5	13	956	<20	0.49
A0195537		0.11	<10	3.88	1150	<1	0.27	16	30	<2	<0.01	<5	38	434	<20	1.10
A0195538		0.05	<10	3.33	957	<1	0.43	10	40	<2	<0.01	<5	34	689	<20	0.90
A0195539		0.05	<10	3.24	1585	1	0.18	32	30	2	<0.01	9	23	248	<20	1.93
A0195540		0.05	<10	3.55	1590	1	0.18	30	30	<2	<0.01	<5	33	247	<20	1.97
A0195541		<0.01	<10	0.55	508	<1	0.39	3	30	<2	<0.01	5	4	1140	<20	0.49
A0195542		0.09	<10	1.79	1555	1	0.23	12	20	2	<0.01	<5	10	531	<20	1.96

To: RIDGELINE EXPLORATION SERVICES INC. 206-3500 CARRINGTON ROAD WEST KELOWNA BC V4T 3C1

Page: 2 - C Total # Pages: 5 (A - C) Plus Appendix Pages Finalized Date: 8-MAY-2019 Account: RIDCOL

Project: Porcher

	Mathed	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-MS85	
	Method Analyte	TI	U	V	W	Zn	V205	
Sample Description	Units	ppm	ppm	ppm	ppm	ppm	ppm	
Sample Description	LOD	10	10	1	10	2	9	
A0195501		<10	<10	311	<10	72	671	
A0195502		<10	<10	238	<10	55	500	
A0195503		<10	<10	245	<10	87	512	
A0195504		<10	10	209	<10	57	433	
A0195505		<10	10	256	<10	51	532	
A0195506		<10	<10	556	<10	96 70	1145	
A0195507		<10	<10	349	<10	79 07	763	
A0195508 A0195509		<10 <10	10 <10	422 380	<10 <10	97 64	958 778	
A0195510		<10 <10	<10 <10	380 10	<10 <10	64 18	24	
A0195511		<10	<10	668	<10	102	1360	-
A0195512		<10	<10	587	<10	90	1250	
A0195513		<10	<10	479	<10	122	1005	
A0195514		<10	<10	273	<10	70	561	
A0195515		<10	<10	386	<10	95	780	
A0195516		<10	<10	1005	<10	246	2130	
A0195517		<10	<10	416	<10	67	869	
A0195518		<10	<10	498	<10	103	1045	
A0195519		<10	<10	404	<10	88	848	
A0195520		<10	<10	419	<10	88	872	
A0195521		<10	<10	288	<10	82	594	
A0195523		<10	<10	257	<10	74	521	
A0195524		<10	<10	1705	<10	220	3680	
A0195526 A0195527		<10 <10	<10 <10	319 327	<10 <10	60 108	643 636	
A0195528		<10	10	376	<10	97	742	
A0195529		<10 <10	<10	202	<10 <10	97 68	421	
A0195530		<10	<10	12	<10	20	29	
A0195531		<10	<10	384	<10	110	793	
A0195532		<10	10	461	<10	69	941	
A0195533		<10	<10	757	<10	124	1560	
A0195534		<10	<10	503	<10	63	1080	
A0195535		<10	<10	473	<10	107	1015	
A0195536		<10	<10	297	<10	43	592	
A0195537		<10	<10	638	<10	89	1365	
A0195538		<10	<10	477	<10	72	1010	
A0195539		<10	<10	1335	<10	180	2600	
A0195540		<10	<10	1325	<10	177	2740	
A0195541		<10	<10	330	<10	56	637	
A0195542		<10	10	1285	<10	220	2690	

To: RIDGELINE EXPLORATION SERVICES INC. 206-3500 CARRINGTON ROAD WEST KELOWNA BC V4T 3C1

Page: 3 - A Total # Pages: 5 (A - C) Plus Appendix Pages Finalized Date: 8-MAY-2019 Account: RIDCOL

Project: Porcher

	Method	WEI-21	ME-MS85 V	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	Recvd Wt.		Ag	Al %	As	Ba	Be	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	Ga
Sample Description	Units LOD	kg 0.02	ppm 5	ррт 0.5	0.01	ppm 5	ppm 10	ppm 0.5	ppm 2	0.01	ppm 0.5	ppm 1	ppm 1	ppm 1	0.01	ppm 10
A0195543		1.38	1220	<0.5	8.50	<5	200	<0.5	<2	6.32	<0.5	70	3	22	23.1	30
A0195544		1.29	475	<0.5	9.62	<5	60	<0.5	3	9.72	<0.5	41	3	65	9.88	20
A0195545		0.77	350	< 0.5	9.15	<5	270	0.5	<2	8.79	< 0.5	27	45	<1	7.40	20
A0195546 A0195547		0.65 1.12	455 676	<0.5 <0.5	8.94 5.74	<5 <5	180 50	<0.5 <0.5	<2 10	9.07 10.85	<0.5 <0.5	34 48	11 2	1 3	11.00 14.10	20 20
A0195548		0.53	331	<0.5	4.79	<5	10	<0.5	2	14.15	<0.5	28	3	1	6.73	10
A0195549		1.76	524	<0.5	5.32	<5	20	<0.5	2	12.05	< 0.5	40	3	8	11.55	20
A0195550		0.96	12	<0.5	0.32	<5	50	<0.5	<2	33.1	<0.5	<1	10	1	0.16	<10
A0195551		0.30	1745	<0.5	5.13	<5	80	<0.5	12	5.02	<0.5	94	4	46	29.4	30
A0195552		0.78	562	<0.5	9.73	<5	30	<0.5	4	10.85	<0.5	41	7	42	11.70	20
A0195553		1.02	746	<0.5	7.40	<5	140	<0.5	8	7.24	<0.5	57	3	79	17.30	20
A0195554		0.55	1790	<0.5	3.94	<5	30	<0.5	12	5.68	<0.5	106	57	140	30.8	30
A0195555		0.53	846	<0.5	7.10	<5	80	<0.5	4	7.14	<0.5	75	64	64	16.40	20
A0195557		1.56	1450	<0.5	4.76	<5	20	<0.5	6	8.00	<0.5	79	6	16	25.6	20
A0195558		0.72	943	0.6	5.66	<5	50	<0.5	8	8.59	<0.5	65	6	112	18.85	20
A0195559		0.82	1065	<0.5	5.90	<5	60	<0.5	11	7.93	<0.5	69	4	23	19.50	20
A0195560		< 0.02	1025	< 0.5	5.84	<5	60	< 0.5	6	7.86	< 0.5	67	3	25	19.65	20
A0195561		5.01	140	< 0.5	2.16	<5	10	< 0.5	7 7	2.76	<0.5	91	11 4	49	49.3	10
A0195562 A0195564		1.03 1.51	129 568	<0.5 <0.5	1.19 0.70	<5 <5	10 10	<0.5 <0.5	11	0.76 0.71	<0.5 <0.5	116 69	4 9	2 1	>50 >50	10 10
		2.36	90	<0.5	0.65	<5	10	<0.5	11	1.19	<0.5	154	2	11	>50	10
A0195565 A0195566		2.30 0.78	90 285	<0.5 <0.5	0.65	<5 <5	10	<0.5 <0.5	8	0.71	<0.5 <0.5	154	2	3	>50 >50	10
A0195567		1.20	184	<0.5	0.61	<5	10	1.5	4	1.22	< 0.5	66	5	2	>50	<10
A0195568		2.49	207	<0.5	3.67	<5	10	0.5	2	6.49	<0.5	57	16	1	33.3	10
A0195569		0.81	540	<0.5	8.79	<5	70	<0.5	<2	8.27	<0.5	47	5	48	11.70	20
A0195570		0.95	12	<0.5	0.24	<5	30	<0.5	<2	32.9	<0.5	<1	8	1	0.20	<10
A0195571		1.67	488	<0.5	9.56	<5	150	<0.5	<2	8.46	<0.5	48	16	87	10.60	20
A0195572		1.43	596	0.5	7.45	<5	140	<0.5	3	7.66	<0.5	52	10	60	11.85	20
A0195573		1.33	356	<0.5	8.90	<5	80	<0.5	3	8.62	<0.5	37	40	61	10.15	20
A0195574		1.13	494	<0.5	8.16	<5	90	<0.5	3	8.62	<0.5	50	16	50	10.65	20
A0195575		0.86	448	< 0.5	9.95	<5	40	<0.5	3	11.05	<0.5	34	4	7	10.35	20
A0195576		0.98	495	< 0.5	8.88	<5	80 70	< 0.5	3 3	8.81	< 0.5	48	3 3	113	10.90	20
A0195577 A0195578		0.80	401	<0.5	9.56	<5 <5	70 120	<0.5	3 <2	9.60	<0.5 <0.5	40 34	3 12	49	10.85 8.77	20
A0195578 A0195579		1.53 0.73	322 392	<0.5 0.5	9.60 9.48	<5 <5	120	<0.5 <0.5	<2 <2	9.32 9.36	<0.5 <0.5	34 41	3	43 59	8.77 10.25	20 20
A0195580		<0.02	403	<0.5	8.73	<5	150	<0.5	<2	9.08	<0.5	40	2	59	9.92	20
A0195580 A0195581		<0.02 1.38	403 496	<0.5 <0.5	8.73 9.98	<5 <5	150 70	<0.5 <0.5	<2 <2	9.08 9.97	<0.5 <0.5	40 29	2	59 41	9.92 10.75	20 20
A0195581 A0195582		1.30	496 358	<0.5 <0.5	9.96	<5 <5	70 70	<0.5 <0.5	<2	9.97 10.70	<0.5 <0.5	29 21	4 5	41	8.81	20
A0195582 A0195584		0.70	432	<0.5 <0.5	8.21	<5	10	<0.5 0.9	<2	6.98	<0.5 <0.5	27	21	4 18	9.87	20
A0195585		0.73	242	<0.5	7.24	<5	20	0.5	<2	2.87	<0.5	25	14	40	7.44	20
			=			-			-							

To: RIDGELINE EXPLORATION SERVICES INC. 206-3500 CARRINGTON ROAD WEST KELOWNA BC V4T 3C1

Page: 3 - B Total # Pages: 5 (A - C) Plus Appendix Pages Finalized Date: 8-MAY-2019 Account: RIDCOL

Project: Porcher

Sample Description	Method Analyte Units LOD	ME-ICP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME-ICP61 Ti % 0.01
	LOD					•		-			0.01					
A0195543		0.32	<10	0.65	1115	<1	0.19	9	20	<2	0.01	<5	3	769	<20	1.46
A0195544		0.11	<10	2.70	826	<1	0.71	17	50	<2	0.01	<5	21	923	<20	0.76
A0195545		0.37	<10	2.11	940	<1	1.28	23	390	<2	<0.01	7	16	1150	<20	0.61
A0195546		0.34	<10	2.54	1080	<1	0.66	17	160	<2	<0.01	<5	19	975	<20	0.67
A0195547		0.11	<10	5.21	1310	1	0.38	18	50	<2	<0.01	<5	57	263	<20	1.13
A0195548		0.03	<10	6.15	1075	<1	0.28	10	30	<2	<0.01	5	70	143	<20	0.75
A0195549		0.05	<10	5.30	1280	<1	0.33	12	460	<2	<0.01	<5	57	242	<20	0.98
A0195550		0.23	<10	1.04	34	1	0.03	11	140	<2	0.05	<5	1	176	<20	0.02
A0195551		0.18	<10	3.65	1760	<1	0.65	17	40	<2	0.02	7	23	343	<20	2.12
A0195552		0.05	<10	2.80	1030	<1	0.51	16	50	<2	0.02	<5	23	757	<20	0.80
A0195553		0.39	<10	4.38	1360	1	0.80	6	80	<2	0.09	<5	23	573	<20	1.38
A0195554		0.05	<10	3.24	1815	<1	0.27	68	50	<2	0.02	7	21	183	<20	1.98
A0195555		0.28	<10	4.76	1160	1	0.96	56	50	<2	0.02	<5	28	531	<20	1.35
A0195557		0.05	<10	3.98	1715	<1	0.23	24	70	3	<0.01	<5	39	186	<20	1.83
A0195558		0.11	<10	4.81	1410	1	0.45	18	60	<2	<0.01	7	46	293	<20	1.39
A0195559		0.19	<10	4.59	1435	<1	0.62	23	40	2	0.01	5	35	362	<20	1.57
A0195560		0.19	<10	4.45	1435	1	0.62	22	30	<2	0.01	<5	32	369	<20	1.55
A0195561		0.02	10	0.89	1225	5	0.12	8	310	2	0.07	12	7	170	<20	0.13
A0195562		0.01	<10	0.51	984	2	0.03	4	30	<2	<0.01	8	4	63	<20	0.11
A0195564		0.01	<10	0.21	1185	1	0.16	24	10	<2	<0.01	14	1	60	<20	0.29
A0195565		0.01	10	0.51	931	2	0.04	40	1170	<2	<0.01	<5	1	51	<20	0.05
A0195566		0.01	10	0.23	972	2	0.01	42	110	<2	<0.01	<5	1	41	<20	0.12
A0195567		0.01	<10	0.53	2260	1	0.02	14	50	<2	<0.01	<5	1	34	<20	0.04
A0195568		0.01	<10	1.75	3840	19	0.05	8	360	2	<0.01	5	5	426	<20	0.15
A0195569		0.14	<10	4.06	918	<1	1.09	12	50	<2	0.11	<5	24	586	<20	0.80
A0195570		0.14	<10	1.07	37	1	0.03	9	90	<2	0.03	<5	1	179	<20	0.02
A0195571		0.33	<10	4.35	875	<1	1.38	19	130	<2	0.23	<5	33	776	<20	1.09
A0195572		0.27	<10	4.64	1045	1	1.36	24	60	<2	0.04	7	23	529	<20	0.89
A0195573		0.17	<10	3.81	993	<1	1.15	34	70	<2	0.13	8	23	641	<20	0.76
A0195574		0.19	<10	4.29	1245	<1	1.21	15	200	<2	0.20	<5	28	537	<20	0.80
A0195575		0.06	<10	2.03	862	1	0.44	8	60	<2	<0.01	<5	16	942	<20	0.60
A0195576		0.21	<10	3.45	917	<1	0.82	9	50	<2	0.05	5	23	788	<20	0.89
A0195577		0.16	<10	3.69	1125	<1	0.92	4	60	<2	0.11	<5	22	850	<20	0.80
A0195578		0.24	<10	3.42	1115	1	1.19	11	1230	<2	0.16	<5	21	974	<20	0.72
A0195579		0.32	<10	3.53	1200	<1	1.11	5	60	<2	0.17	<5	22	854	<20	0.80
A0195580		0.30	<10	3.27	1165	<1	1.11	8	70	<2	0.17	<5	16	841	<20	0.79
A0195581		0.07	<10	0.52	735	<1	0.46	1	50	<2	0.04	<5	3	1110	<20	0.64
A0195582		0.04	<10	1.57	898	1	0.49	4	70	<2	< 0.01	<5	12	1060	<20	0.56
A0195584		0.09	10	2.89	1820	<1	2.22	14	1100	9	0.06	<5	34	581	<20	0.82
A0195585		0.04	10	2.87	2070	1	3.11	4	560	6	< 0.01	<5	31	216	<20	0.51
		-	-	-	-					-	-	-		-	-	

To: RIDGELINE EXPLORATION SERVICES INC. 206-3500 CARRINGTON ROAD WEST KELOWNA BC V4T 3C1

Page: 3 - C Total # Pages: 5 (A - C) Plus Appendix Pages Finalized Date: 8-MAY-2019 Account: RIDCOL

Project: Porcher

Sample Description	Method Analyte Units LOD	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	ME-MS85 V2O5 ppm 9	
A0195543		<10	<10	1035	<10	175	2180	
A0195544		<10	<10	421	<10	70	848	
A0195545		<10	<10	324	<10	71	625	
A0195546		<10	10	448	<10	97	813	
A0195547		<10	<10	658	<10	85	1205	
A0195548		<10	<10	300	<10	33	590	
A0195549		<10	<10	505	<10	77	935	
A0195550		<10	<10	11	<10	25	22	
A0195551		<10	<10	1430	<10	212	3120	
A0195552		<10	<10	503	<10	85	1005	
A0195553		<10	<10	657	<10	111	1330	
A0195554		<10	<10	1465	<10	212	3200	
A0195555		<10	10	798	<10	109	1510	
A0195557		<10	<10	1240	<10	158	2590	
A0195558		<10	<10	847	<10	99	1685	
A0195559		<10	<10	946	<10	134	1905	
A0195560		<10	<10	943	<10	136	1825	
A0195561		<10	10	129	<10	66	250	
A0195562		<10	<10	113	<10	70	231	
A0195564		10	<10	524	<10	67	1015	
A0195565		10	10	79	<10	51	161	
A0195566		10	10	267	<10	40	509	
A0195567		10	10	163	<10	103	329	
A0195568		<10	10	181	<10	84	370	
A0195569		<10	<10	469	<10	88	964	
A0195570		<10	<10	10	<10	19	21	
A0195571		<10	10	485	<10	91	870	
A0195572		<10	10	578	<10	103	1065	
A0195573		<10	<10	344	<10	89	636	
A0195574		<10	<10	471	<10	106	882	
A0195575		<10	<10	433	<10	74	801	
A0195576		<10	<10	444	<10	73	884	
A0195577		<10	<10	340	<10	82	715	
A0195578		<10	10	292	<10	67	575	
A0195579		<10	<10	346	<10	75	699	
A0195580		<10	<10	337	<10	74	719	
A0195581		<10	<10	418	<10	85	886	
A0195582		<10	<10	302	<10	66	639	
A0195584		<10	<10	373	<10	98	772	
A0195585		<10	<10	216	<10	91	431	

To: RIDGELINE EXPLORATION SERVICES INC. 206-3500 CARRINGTON ROAD WEST KELOWNA BC V4T 3C1

Page: 4 - A Total # Pages: 5 (A - C) Plus Appendix Pages Finalized Date: 8-MAY-2019 Account: RIDCOL

Project: Porcher

Analyte Sample Description Nearly LOS Name (Ne) V Ag As As Bas Be Bi Ca Ca <thca< th=""> Ca Ca <thca< th="" th<=""><th></th><th>Method</th><th>WEI-21</th><th>ME-MS85</th><th>ME-ICP61</th><th>ME-ICP61</th><th>ME-ICP61</th><th>ME-ICP61</th><th>ME-ICP61</th><th>ME-ICP61</th><th>ME-ICP61</th><th>ME-ICP61</th><th>ME-ICP61</th><th>ME-ICP61</th><th>ME-ICP61</th><th>ME-ICP61</th><th>ME-ICP61</th></thca<></thca<>		Method	WEI-21	ME-MS85	ME-ICP61												
Sample Description Units UD0 6.0.2 5 0.5 0.0.1 5 0.0.5 2 0.0.1 0.5 2 0.0.1 1 1 1 0.0.1 A0195586 0.08 222 -0.5 7.28 <5 0.0 0.65 -2 2.61 0.5 3.2 17 1.00 8.20 A0195586 1.04 340 <0.5 7.63 <5 0.0 0.65 <2 2.63 <0.5 2.7 11 2.9 5.5 60 <0.5 <2 5.75 <0.5 2.7 11 0.9 9.55 5.6 7.70 <0.5 <2 4.27 <0.5 9 6 3.4 6.6 <0.5 <1.7 9 1 0.14 1.12 0.14 <0.5 <2 4.27 <0.5 9 6 3.4 6.6 <0.5 <2 4.53 2.00 5.5 <2 4.55 2.00 5.5 <2 6.65 0.15			Recvd Wt.	V	Ag	Al	As	Ва	Ве	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga
i LOD 0.03 3 10 0.3 2 0.01 0.03 1 1 1 1 0.01 AD1955867 1.01 114 -0.5 7.23 <5			kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
A0195587 1.01 114 40.5 7.23 <5 20 0.6 <2 2.66 <0.5 13 6 25 5.80 A0195589 1.23 130 <0.5	Sample Description	LOD	0.02	5	0.5	0.01	5	10	0.5	2	0.01	0.5	1	1	1	0.01	10
A019588 1.04 340 -0.5 75 -0.5 -27 11 29 9.55 A0195580 1.03 1.02 7.05 7.02 7.05 4.0 9.55 4.0 -2 7.13 -0.5 9 3 2 7.70 A0195590 1.08 1.2 -0.5 7.0 3.2 -0.5 +1 9 1 0.14 A0195591 0.67 1.08 +0.5 4.26 30 +0.5 -2 4.58 +0.5 1.2 17 1 1.23 4.68 A0195593 0.68 2.17 +0.5 9.44 +5 2.00 0.5 -2 6.62 +0.5 2.1 8 9 4.56 A0195596 0.68 2.16 +0.5 9.18 +5 2.00 0.5 +2 6.73 +0.5 2.2 10 11 7.11 A0195597 1.26 2.41 +0.5 9.18 +5 100																	20
AU195580 123 130																	20
A0195590 1.08 12 <0.5 0.29 <5 40 <0.5 <2 3.2 <0.5 <1 9 1 0.14 A0195591 0.67 108 <0.5																	20
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$														-			20
A0195592 1.10 108 <0.5 4.26 <0.5 <2 4.88 <0.5 12 17 1 12.30 A0195593 0.90 234 <0.5							-						-	-	•		<10
A0195593 0.90 224 ~0.5 9.64 ~5 20 0.6 ~2 6.69 ~0.5 21 7 7 7.24 A0195595 0.64 249 ~0.5 9.07 ~5 260 0.5 ~2 6.62 ~0.5 22 11 11 6.86 A0195596 0.64 249 ~0.5 9.18 ~5 200 0.5 ~2 6.73 ~0.5 22 10 11 7.17 6.86 A0195596 0.86 216 ~0.5 9.18 ~5 200 -0.5 ~2 7.37 ~0.5 22 10 11 7.17 A0.7 A0195598 0.81 224 ~0.5 9.53 ~5 130 ~0.5 ~2 7.61 ~0.5 27 12 9 7.84 A0195500 0.91 255 ~5 130 ~0.5 ~2 7.90 ~0.5 31 29 28 8.91 A0195604 0.99 262 ~0.5 9.91 ~5 ~5 70 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>10 10</td></td<>														-			10 10
A0195594 0.68 217 <0.5 9.44 <5 240 0.5 <22 6.66 <0.5 21 8 9 6.96 A0195595 0.64 249 <0.5																	20
A0195595 0.64 249 <0.5 9.07 <5 260 0.5 <2 6.62 <0.5 22 11 11 6.86 A0195596 0.86 216 <0.5																	20
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															-		20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																	
A0195508 0.81 292 <0.5 9.83 <5 160 <0.5 <2 8.24 <0.5 30 9 32 9.03 A0195509 0.91 252 <0.5																	20 20
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																	20
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														-			20
A0195601 0.82 275 <0.5 9.89 <5 160 <0.5 <2 7.90 <0.5 31 29 20 8.59 A0195602 0.95 158 <0.5 9.55 <5 140 0.7 <2 7.55 <0.5 17 5 38 8.25 A0195604 0.90 186 <0.5 9.18 <5 270 0.7 <2 6.76 <0.5 19 11 11 7.24 A0195605 0.65 1690 <0.5 5.53 <5 40 <0.5 9 5.60 0.5 77 29 113 30.4 A0195606 0.72 2430 <0.5 4.23 <5 30 <0.5 6 3.14 0.7 110 38 32 39.6 A0195607 0.51 812 <0.5 7.21 <5 70 <0.5 6 7.58 <0.5 55 8 59 12.70 A0195608 0.78 825 0.5 5.57 <5 50 <0.5 <2 7.88 <0.5 61 31 3 12.95 A0195610 0.94 15 <0.5 7.54 <5 70 <0.5 <2 8.73 <0.5 65 28 53 11.2 0.19 A0195612 1.36 980 <0.5 7.54 <5 70 <0.5 <2 8.73 <0.5 53 54 143 19.80 A0195615																	20
A0195602 0.95 158 <0.5 9.55 <5 140 0.7 <2 7.55 <0.5 17 5 38 8.25 A0195603 0.98 262 <0.5				275		9.89			<0.5		7 90	<0.5		29	20	8 59	20
A0195603 0.98 262 <0.5																	20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	20
A0195606 0.72 2430 <0.5 4.23 <5 30 <0.5 6 3.14 0.7 110 38 32 39.6 A0195607 0.51 812 <0.5 7.21 <5 70 <0.5 6 7.58 <0.5 55 8 59 12.70 A0195608 0.78 825 0.5 5.57 <5 50 <0.5 2 9.81 <0.5 61 31 3 12.95 A0195609 2.79 810 <0.5 9.01 <5 60 <0.5 <2 7.88 <0.5 60 4 69 12.95 A0195610 0.94 15 <0.5 0.32 <5 30 <0.5 <2 33.7 <0.5 <1 11 2 0.19 A0195611 1.02 730 <0.5 7.54 <5 70 <0.5 <2 8.73 <0.5 55 28 53 11.25 A0195612 1.36 980 <0.5 4.65 <5 60 <0.5 3 5.88 <0.5 63 54 143 19.80 A0195615 0.44 322 <0.5 8.55 <5 90 <0.5 <2 7.55 <0.5 41 35 382 8.12 A0195616 0.67 274 <0.5 8.79 <5 260 <0.5 <2 8.19 <0.5 48 8 211 16.20 A0195617 1.05														11			20
A01956070.51812<0.57.21<570<0.567.58<0.55585912.70A01956080.788250.55.57<5	A0195605		0.65	1690	<0.5	5.53	<5	40	<0.5	9	5.60	0.5	77	29	113	30.4	30
A01956080.788250.55.57<550<0.529.81<0.56131312.95A01956092.79810<0.5			0.72	2430	<0.5	4.23	<5	30	<0.5	6	3.14	0.7	110			39.6	40
A01956092.79810<0.59.01<560<0.5<27.88<0.56046912.95A01956100.9415<0.5																	20
A01956100.9415<0.50.32<530<0.5<233.7<0.5<11120.19A01956111.02730<0.5																	10
A0195611 1.02 730 <0.5 7.54 <5 70 <0.5 <2 8.73 <0.5 55 28 53 11.25 A0195612 1.36 980 <0.5																	20
A01956121.36980<0.54.65<560<0.535.88<0.5635414319.80A01956140.87339<0.5	A0195610		0.94	15	<0.5	0.32	<5	30	<0.5	<2	33.7	<0.5				0.19	<10
A01956140.87339<0.59.67<570<0.5<29.04<0.5351077.05A01956150.44322<0.5																	20
A0195615 A01956160.44322<0.58.55<590<0.5<27.55<0.541353828.12A01956160.67274<0.5																	20
A01956160.67274<0.58.79<5260<0.5<28.19<0.53318117.61A01956171.05649<0.5																	20
A01956171.05649<0.56.74<560<0.5<26.31<0.548821116.20A01956181.00397<0.5																	20 20
A01956181.00397<0.59.09<570<0.528.28<0.5482510410.60A01956190.67349<0.5																	20
A01956190.67349<0.510.05<5100<0.538.91<0.54181036.26A0195620<0.02																	20
A0195620<0.02330<0.59.95<5100<0.5<28.97<0.53971156.17A01956211.23282<0.5																	20
A01956211.23282<0.59.52<5200<0.5<29.60<0.5195667.34A01956222.05663<0.5																	20
														-			20
	A0195622			663	<0.5	8.32	<5	100	<0.5	<2	8.63	<0.5	48	4	37	14.50	20
AU195623 U.89 440 <0.5 7.63 <5 480 U.8 <2 2.96 1.4 41 9 267 11.25	A0195623		0.89	440	<0.5	7.63	<5	480	0.8	<2	2.96	1.4	41	9	267	11.25	20
A0195624 0.66 1250 <0.5 7.37 <5 20 <0.5 6 6.38 <0.5 72 2 <1 23.5													72	2			30
A0195625 1.04 653 0.7 7.83 <5 70 <0.5 4 9.35 <0.5 49 1 12 13.00			1.04	653		7.83	<5		<0.5	4	9.35	<0.5	49	1	12	13.00	20
A0195626 0.32 373 <0.5 7.47 <5 350 <0.5 <2 5.48 <0.5 29 27 152 8.67	A0195626		0.32	373	<0.5	7.47	<5	350	<0.5	<2	5.48	<0.5	29	27	152	8.67	10

To: RIDGELINE EXPLORATION SERVICES INC. 206-3500 CARRINGTON ROAD WEST KELOWNA BC V4T 3C1

Page: 4 - B Total # Pages: 5 (A - C) Plus Appendix Pages Finalized Date: 8-MAY-2019 Account: RIDCOL

Project: Porcher

Ample Description Name Na Na Na Na Na PPOP Sample Description Sample D																	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sample Description	Analyte Units	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Th ppm	ME-ICP61 Ti %
AD195587 D.07 10 1.88 1400 1 2.83 1 7.20 5 D.33 <5	Sample Description	LOD	0.01	10	0.01	5	1	0.01	1	10	2	0.01	5	1	1	20	0.01
AD195587 0.07 10 1.88 1040 1 2.83 1 720 5 0.33 <5 2.3 2.32 <20 0.0 AD19558 0.07 10 1.77 799 2 4.42 <560 6 0.01 <5 23 232 <20 0.0 AD195580 0.07 10 1.77 799 2 4.42 <510 <2 0.01 <5 23 232 <20 0.0 AD195591 0.06 10 118 989 1 3.46 <510 <2 0.01 <5 18 646 <20 0.0 AD195593 0.42 10 2.30 1345 <1 2.40 2 1080 3 4.01 3.05 <18 646 <20 0.0 AD195595 0.37 10 2.37 1370 <12.37 5 750 <2 0.01 <5 18 6466 <20 0.0	A0195586		0.03	10	3.50	2230	12	2.57	5	540	<2	0.03	<5	33	171	<20	0.53
AD195580 0.07 10 1.77 799 2 4.42 *1 850 *2 0.01 *5 27 112 *20 0.0 AD195590 0.19 0.06 10 118 899 1 3.48 *1 510 *2 0.01 *5 9 344 *20 0.0 AD195593 0.42 10 2.30 1430 *1 2.40 2 1080 2 0.01 *5 9 344 *20 0.0 AD195594 0.55 10 2.38 1345 *1 2.40 2 1080 2 0.01 *5 18 666 *20 0.0 AD195565 0.37 10 2.37 1335 *1 2.31 2 800 *2 0.01 *5 18 6621 *20 0.0 40195569 0.02 *5 19 708 *20 0.0 40195569 0.02 *5 19					1.88	1640			1	720		0.33	<5		232	<20	0.45
AD195589 0.07 10 1.77 799 2 4.42 *1 850 *2 C0.01 *5 27 112 *20 0.00 AD195590 0.19 0.19 0.11 110 <2 0.00 5 1 172 *20 0.0 AD195591 0.66 10 128 849 1 3.46 1 1300 3 -0.01 +5 20 224 +200 0.0 AD195593 0.42 10 2.30 1430 +1 2.40 2 1080 2 0.01 +5 18 646 +200 0.0 AD195593 0.37 10 2.37 1335 +1 2.31 2 800 -2 0.01 +5 18 646 +200 0.0 AD195593 0.37 10 2.37 1335 +1 2.31 2 800 -2 0.01 +5 19 638 20 0.0 <td>A0195588</td> <td></td> <td>0.05</td> <td><10</td> <td>3.19</td> <td>3510</td> <td><1</td> <td>2.71</td> <td>3</td> <td>660</td> <td>6</td> <td>0.01</td> <td><5</td> <td>29</td> <td>456</td> <td><20</td> <td>0.68</td>	A0195588		0.05	<10	3.19	3510	<1	2.71	3	660	6	0.01	<5	29	456	<20	0.68
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.07	10	1.77	799	2	4.42	<1	850	<2	<0.01	<5	27	112	<20	0.51
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.19		1.26			0.04	11	110	<2	0.06	<5	1	172	<20	0.02
A0195593 0.42 10 2.30 1430 <1	A0195591		0.05	10	1.18	989	1	3.48	<1	510	<2	<0.01	5	20	284	<20	0.41
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A0195592		0.06	10	1.22	841	4	0.31	1	300	3	<0.01	<5	9	384	<20	0.16
A0195595 0.37 10 2.37 1335 <1 2.31 2 800 <2 0.02 <5 18 621 <200 0.0 A0195596 0.37 10 2.37 1370 <1	A0195593		0.42	10	2.30	1430	<1	2.40	2	1080	2	0.01	<5	18	646	<20	0.58
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A0195594		0.55	10	2.38	1345	<1	2.20	5	910		0.05	<5	18	606	<20	0.53
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A0195595		0.37	10	2.37	1335	<1	2.31	2	800	<2	0.02	<5	18	621	<20	0.51
$\begin{array}{llllllllllllllllllllllllllllllllllll$	A0195596		0.37	10	2.37	1370	<1	2.29	4	750	<2	0.01	<5	17	672	<20	0.52
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A0195597		0.29	10	2.68	1450	<1	2.07	5	750	<2	<0.01	<5	19	698	<20	0.53
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A0195598		0.20	<10	2.93	1460	<1	1.58	4	830	<2	0.02	<5	19	736	<20	0.64
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A0195599		0.20	<10	2.87	1430	<1	1.84	8	600	<2	<0.01	<5	19	702	<20	0.48
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A0195600		0.20	<10	2.86	1450	<1	1.82	6	580	<2	<0.01	<5	19	698	<20	0.50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A0195601		0.22	10	3.29	1580	<1	1.82	11	610	<2	0.01	<5	23	715	<20	0.54
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A0195602		0.14	10	1.68	1385	1	2.25	<1	2190	<2	0.01	<5	11	871	<20	0.65
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A0195603		0.39	10	2.72	1355	1	2.20	4	740	<2	0.06	<5	21	554	<20	0.60
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A0195604		0.50	10	1.89	1635	<1	2.24	<1	1260	4	0.02	<5	14	657	<20	0.48
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A0195605		0.10	<10	3.94	2070	<1	0.62	8	50	2	0.04	<5	39	210	<20	2.38
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A0195606		0.07	<10	2.25	2240	<1	0.46	1	30		0.01		15			3.82
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A0195607																1.14
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																	1.10
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				<10	5.09									44			1.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A0195610		0.20	<10	1.01	35	<1	0.04	11	110	<2	0.05	<5	1	176	<20	0.03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A0195611		0.24	<10	6.68	1200	<1	1.29		60	<2	0.02			342	<20	1.04
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A0195612		0.20														1.49
A01956160.13<103.481200<11.671680<20.01519787<200.4A01956170.13<10												<0.01					0.69
A0195617 0.13 <10 4.60 1420 <1 1.32 24 90 <2 0.13 <5 20 427 <20 1.1 A0195618 0.14 <10												0.05					0.58
A01956180.14<104.361120<11.3519210<20.22<529683<200.3A01956190.23<10	A0195616		0.13	<10	3.48	1200	<1	1.67	16	80	<2	0.01	5	19	787	<20	0.48
A01956190.23<104.66876<11.513480<20.03<544660<200.7A01956200.23<10	A0195617																1.08
A0195620 0.23 <10 4.64 876 <1 1.50 34 80 <2 0.03 <5 44 661 <20 0.7 A0195621 0.46 <10			-														0.85
A01956210.46<100.9772610.842120<20.18<561145<200.1A01956220.19<10																	0.75
A0195622 0.19 <10 2.41 934 <1 0.39 4 30 <2 0.07 <5 13 715 <20 0.19 A0195623 2.50 10 2.90 1830 <1																	0.74
A01956232.50102.901830<11.9310660110.03<546116<200.0A01956240.02<10	A0195621		0.46	<10	0.97	726	1	0.84	2	120	<2	0.18	<5	6	1145	<20	0.37
A0195624 0.02 <10 1.17 1180 <1 0.14 16 10 <2 <0.01 <5 6 638 <20 1.4 A0195625 0.16 <10																	0.90
A0195625 0.16 <10 4.08 1155 <1 0.65 11 50 <2 <0.01 5 29 604 <20 1.																	0.83
																	1.46
																	1.11
A0195626 1.72 <10 1.30 1445 <1 4.02 13 510 <2 <0.01 <5 30 170 <20 0.4	A0195626		1.72	<10	1.30	1445	<1	4.02	13	510	<2	<0.01	<5	30	170	<20	0.41

To: RIDGELINE EXPLORATION SERVICES INC. 206-3500 CARRINGTON ROAD WEST KELOWNA BC V4T 3C1

Page: 4 - C Total # Pages: 5 (A - C) Plus Appendix Pages Finalized Date: 8-MAY-2019 Account: RIDCOL

Project: Porcher

Sample Description	Method Analyte Units LOD	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	ME-MS85 V2O5 ppm 9	
A0195586 A0195587 A0195588 A0195588 A0195589 A0195590		<10 <10 <10 <10 <10	10 <10 <10 <10 <10	229 95 282 121 9	<10 <10 <10 <10 <10	425 98 239 25 16	468 203 607 232 22	
A0195591 A0195592 A0195593 A0195594 A0195595		<10 <10 <10 <10 <10	<10 <10 <10 10 10	102 99 211 201 213	<10 20 <10 <10 <10	22 22 101 97 99	194 192 417 387 445	
A0195596 A0195597 A0195598 A0195599 A0195500		<10 <10 <10 <10 <10	10 10 10 10 <10	201 220 263 230 233	<10 <10 <10 <10 <10	95 103 108 98 99	386 441 521 450 429	
A0195601 A0195602 A0195603 A0195604 A0195605		<10 <10 <10 <10 <10	10 10 10 <10 <10	251 143 244 165 1380	<10 <10 <10 <10 <10	108 105 112 108 244	491 282 467 332 3010	
A0195606 A0195607 A0195608 A0195609 A0195610		<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	2000 707 773 733 12	<10 <10 <10 <10 <10	362 91 79 87 21	4340 1450 1470 1445 26	
A0195611 A0195612 A0195614 A0195615 A0195616		<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	637 816 304 287 262	<10 <10 <10 <10 <10	79 163 60 101 93	1305 1750 605 574 489	
A0195617 A0195618 A0195619 A0195620 A0195621		<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	606 361 321 323 264	<10 <10 <10 <10 <10	141 101 59 58 54	1160 709 623 590 504	
A0195622 A0195623 A0195624 A0195625 A0195626		<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	644 443 1080 599 346	<10 <10 <10 <10 <10	73 220 165 91 82	1185 785 2230 1165 667	

To: RIDGELINE EXPLORATION SERVICES INC. 206-3500 CARRINGTON ROAD WEST KELOWNA BC V4T 3C1

Page: 5 - A Total # Pages: 5 (A - C) Plus Appendix Pages Finalized Date: 8-MAY-2019 Account: RIDCOL

Project: Porcher

Sample Description	Method	WEI-21	ME-MS85	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	Recvd Wt.	V	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
	LOD	0.02	5	0.5	0.01	5	10	0.5	2	0.01	0.5	1	1	1	0.01	10
A0195627		0.57	434	<0.5	7.79	<5	70	<0.5	<2	2.99	<0.5	39	39	66	10.30	20
A0195628		0.87	117	<0.5	1.07	<5	10	0.5	2	2.16	<0.5	88	23	27	49.2	10
A0195629		1.20	99	<0.5	1.12	<5	10	0.6	5	2.48	<0.5	95	3	2	47.7	<10
A0195630		1.05	10	<0.5	0.22	<5	30	<0.5	<2	33.7	<0.5	<1	8	1	0.22	<10
A0195631		1.48	135	<0.5	2.29	<5	10	<0.5	<2	3.75	0.5	51	41	2	48.5	10
A0195632		0.72	1845	<0.5	3.08	<5	20	<0.5	15	3.26	0.8	49	68	94	39.5	40
A0195633		1.03	1885	0.6	2.93	<5	20	<0.5	13	4.08	1.0	41	66	68	37.2	30
A0195634		1.11	1130	<0.5	6.41	<5	70	<0.5	8	6.14	<0.5	70	25	57	19.80	30
A0195635		1.34	907	<0.5	4.22	<5	60	<0.5	3	6.29	<0.5	60	31	69	17.20	20
A0195636		2.43	744	<0.5	5.58	<5	70	<0.5	5	7.87	<0.5	57	15	30	13.40	20
A0195637		2.00	716	<0.5	6.31	<5	60	<0.5	<2	7.86	<0.5	55	21	31	11.25	20
A0195638		1.56	380	<0.5	4.29	<5	50	<0.5	<2	4.99	<0.5	101	81	2	12.05	10
A0195639		0.66	609	<0.5	7.88	<5	90	<0.5	<2	7.29	<0.5	47	1	75	13.85	20
A0195640		<0.02	612	<0.5	9.15	<5	90	<0.5	<2	7.41	<0.5	49	1	75	14.70	20
A0195641		0.40	2870	<0.5	1.93	<5	20	<0.5	20	1.28	0.8	36	130	92	>50	40
A0195642		0.53	1445	0.5	4.64	<5	70	<0.5	7	5.30	<0.5	72	15	89	26.7	30
A0195643		1.65	695	<0.5	5.58	<5	60	<0.5	4	7.88	<0.5	55	23	34	12.50	20
A0195644		1.17	731	<0.5	6.40	<5	90	<0.5	<2	7.19	<0.5	58	7	73	12.80	20
A0195645		0.47	679	0.6	8.60	<5	100	<0.5	<2	8.24	<0.5	53	10	77	13.20	20
A0195646		1.05	564	<0.5	8.14	<5	170	<0.5	3	7.41	<0.5	53	2	71	11.70	20
A0195647 A0195648 A0195649 A0195650 A0195651		0.61 1.14 1.48 0.91 2.37	504 443 309 15 159	<0.5 <0.5 <0.5 <0.5 <0.5	8.84 8.61 9.74 0.45 3.39	<5 <5 <5 <5 <5	60 70 90 60 10	<0.5 <0.5 <0.5 <0.5 0.5	<2 3 2 <2 3	9.15 8.84 9.69 31.5 4.51	<0.5 <0.5 <0.5 <0.5 <0.5	49 53 41 <1 62	4 6 9 14	57 60 83 2 3	10.95 11.10 6.34 0.20 39.7	20 20 20 <10 10
A0195652		0.70	895	<0.5	7.19	<5	100	<0.5	4	6.95	<0.5	67	2	71	16.70	30
A0195653		0.72	865	<0.5	8.54	<5	150	<0.5	<2	7.39	<0.5	46	5	6	20.7	30
A0195654		0.77	435	<0.5	7.31	<5	70	0.6	2	4.83	<0.5	30	6	12	8.96	20
A0195655		0.76	267	<0.5	9.85	<5	140	<0.5	<2	7.71	<0.5	26	9	13	7.35	20
A0195656		1.22	793	<0.5	9.33	<5	70	<0.5	3	7.85	<0.5	57	3	80	11.35	20
A0195657		0.64	381	<0.5	9.41	<5	80	<0.5	3	8.50	<0.5	42	21	11	6.30	20
A0195658		0.99	94	<0.5	1.15	<5	10	0.5	7	1.98	0.5	70	16	2	>50	<10
A0195659		1.33	804	<0.5	4.10	<5	50	<0.5	9	6.48	<0.5	70	21	34	18.25	20
A0195660		1.76	375	<0.5	9.46	<5	80	<0.5	<2	9.34	<0.5	32	25	27	8.18	20

To: RIDGELINE EXPLORATION SERVICES INC. 206-3500 CARRINGTON ROAD WEST KELOWNA BC V4T 3C1

Page: 5 - B Total # Pages: 5 (A - C) Plus Appendix Pages Finalized Date: 8-MAY-2019 Account: RIDCOL

Project: Porcher

Sample Description LOD 0.0 A0195627 0.3 A0195628 0.0 A0195628 0.0 A0195629 0.0 A0195630 0.1 A0195631 0.0 A0195631 0.0 A0195632 0.0 A0195632 0.0 A0195633 0.0 A0195635 0.1 A0195635 0.1 A0195636 0.2 A0195637 0.2 A0195637 0.2 A0195638 0.2 A0195638 0.2 A0195640 0.2 A0195641 0.0 A0195644 0.3 A0195645 0.2 A0195645 0.2 A0195645 0.2 A0195646 0.4	K La $\%$ ppm .01 10 .39 10 .02 <10 .01 <10 .02 <10 .03 <10 .05 <10 .05 <10 .21 <10 .22 <10 .23 <10 .21 <10 .23 <10 .21 <10 .23 <10 .21 <10 .23 <10 .21 <10 .23 <10	ME-ICP61 Mg % 0.01 3.41 1.57 1.76 0.93 1.57 2.62 3.61 4.67 4.95 7.13 5.70 12.75 3.59 3.97 1.76 4.02 5.56 5.09	ME-ICP61 Mn ppm 5 1530 3110 3600 45 3230 2220 2270 1490 1570 1655 1135 1340 1355 1380 2380 1770 1400	ME-ICP61 Mo ppm 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	ME-ICP61 Na % 0.01 3.37 0.10 0.07 0.03 0.11 0.40 0.40 1.13 1.11 1.26 1.25 1.00 1.22 0.25 0.76 1.11	ME-ICP61 Ni ppm 1 13 4 <1 11 11 11 9 1 3 19 5 12 56 2 <1 51 51 13 11	ME-ICP61 P ppm 10 580 120 50 80 220 50 30 60 60 60 70 50 40 130 160 30 60 60	ME-ICP61 Pb ppm 2 5 4 2 2 2 3 5 5 2 2 2 3 2 2 2 3 2 2 2 2 3 2 2 2 2	ME-ICP61 S % 0.01 <0.01 <0.01 <0.01 0.05 <0.01 0.02 0.02 0.01 0.04 0.03 <0.01 <0.01 <0.03 <0.01 <0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.01 0.02	ME-ICP61 Sb ppm 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <	ME-ICP61 Sc ppm 1 44 4 3 <1 7 22 40 31 22 83 31 58 21 34 14	ME-ICP61 Sr ppm 1 330 82 51 174 174 174 174 174 113 66 305 270 219 354 171 461 464 57	ME-ICP61 Th ppm 20 <20 <20 <20 <20 <20 <20 <20 <20 <20	ME-ICP61 Ti % 0.01 0.61 0.08 0.07 0.01 0.12 3.46 3.63 1.62 1.49 1.38 1.03 0.73 1.05 1.09 4.01
Sample Description Units LOD % A0195627 0.3 A0195628 0.0 A0195629 0.0 A0195630 0.1 A0195631 0.0 A0195632 0.0 A0195633 0.0 A0195634 0.2 A0195635 0.1 A0195636 0.2 A0195637 0.2 A0195638 0.2 A0195639 0.2 A0195640 0.2 A0195641 0.0 A0195644 0.3 A0195645 0.2 A0195645	% ppm .01 10 .39 10 .02 <10 .01 <10 .02 <10 .03 <10 .03 <10 .05 <10 .06 <10 .21 <10 .24 <10 .21 <10 .23 <10 .05 <10 .21 <10 .23 <10 .21 <10 .23 <10 .21 <10 .23 <10 .21 <10 .23 <10	% 0.01 3.41 1.57 1.76 0.93 1.57 2.62 3.61 4.67 4.95 7.13 5.70 12.75 3.59 3.97 1.76 4.02 5.56	ppm 5 1530 3110 3600 45 3230 2220 2270 1490 1570 1655 1135 1340 1355 1380 2380 1770 1400	ppm 1 <1 <1 <1 <1 <1 <1 <1 <1 <1	% 0.01 3.37 0.10 0.07 0.03 0.11 0.40 0.40 1.13 1.11 1.26 1.25 1.00 1.20 1.22 0.25 0.76	ppm 1 13 4 <1 11 11 9 1 13 19 5 12 56 2 <1 51 13 13	ppm 10 580 120 50 80 220 50 30 60 60 130 160 30 60 60	ppm 2 5 4 2 <2 3 5 <2 2 2 2 2 2 3 2 2 2 2 3 2 2 2 2 3 2 2 2 2 3 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 2 3 3 2 2 2 3 3 2 2 2 2 3 3 3 2 2 2 3 3 3 3 2 2 2 2 3 3 3 2 2 2 3 3 3 3 2 2 2 3	% 0.01 <0.01 <0.01 0.05 <0.01 0.02 0.02 0.01 0.04 0.03 <0.01 <0.01 <0.01 0.23 0.23 0.29	ppm 5 <5 <5 <5 <5 <5 <5 <5 <5 <5	ppm 1 44 4 3 <1 7 22 40 31 22 83 31 58 21 34 14	ppm 1 330 82 51 174 174 174 113 66 305 270 219 354 171 461 464 57	ppm 20 <20 <20 <20 <20 <20 <20 <20 <20 <20	% 0.01 0.61 0.08 0.07 0.01 0.12 3.46 3.63 1.62 1.49 1.38 1.03 0.73 1.05 1.09
Sample Description LOD 0.0 A0195627 0.3 A0195628 0.0 A0195628 0.0 A0195629 0.0 A0195630 0.1 A0195631 0.0 A0195631 0.0 A0195633 0.0 A0195632 0.0 A0195633 0.0 A0195634 0.2 A0195635 0.1 A0195635 0.1 A0195636 0.2 A0195636 0.2 A0195638 0.2 A0195637 0.2 A0195638 0.2 A0195640 0.2 A0195644 0.0 A0195644 0.3 A0195645 0.2 A0195645 0.2 A0195645 0.2 A0195645 0.2 A0195645 0.2 A0195645 0.2 A0195645 0.2 A0195645 0.2 A0195645 0.2 A0195647 0.1 A0195647 0.1	$\begin{array}{c cccc} 0.1 & 10 \\ \hline 0.39 & 10 \\ 0.02 & <10 \\ 0.01 & <10 \\ .16 & <10 \\ 0.03 & <10 \\ 0.05 & <10 \\ 0.06 & <10 \\ .21 & <10 \\ .24 & <10 \\ .24 & <10 \\ .21 & <10 \\ .23 & <10 \\ .05 & <10 \\ .21 & <10 \\ .23 & <10 \\ .05 & <10 \\ .21 & <10 \\ .23 & <10 \\ .33 & <10 \\ \end{array}$	0.01 3.41 1.57 1.76 0.93 1.57 2.62 3.61 4.67 4.95 7.13 5.70 12.75 3.59 3.97 1.76 4.02 5.56	5 1530 3110 3600 45 3230 2220 2270 1490 1570 1655 1135 1340 1355 1380 2380 1770 1400	1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	0.01 3.37 0.10 0.07 0.03 0.11 0.40 0.40 1.13 1.11 1.26 1.25 1.00 1.20 1.22 0.25 0.76	1 13 4 <1 11 11 9 1 13 19 5 12 56 2 <1 51 13 13	10 580 120 50 80 220 50 30 60 60 70 50 40 130 160 30 60	2 5 4 2 <2 3 5 <2 2 2 2 3 2 2 2 2 3 2 <2 2 2 3 2 <2 2 2 3 2 <2 2 3 3 2 <2 2 3 3 2 5 5 5 2 2 2 3 3 2 2 2 3 3 3 2 2 2 3 3 3 3	0.01 0.01 <0.01 0.05 <0.01 0.02 0.02 0.01 0.04 0.03 <0.01 <0.01 <0.01 0.23 0.23 0.29	5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <7 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	1 44 4 3 <1 7 22 40 31 22 83 31 58 21 34 14	1 330 82 51 174 174 174 113 66 305 270 219 354 171 461 464 57	20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <	0.01 0.61 0.08 0.07 0.01 0.12 3.46 3.63 1.62 1.49 1.38 1.03 0.73 1.05 1.09
A0195628 0.0 A0195629 0.0 A0195630 0.1 A0195631 0.0 A0195632 0.0 A0195633 0.0 A0195634 0.2 A0195635 0.1 A0195636 0.2 A0195637 0.2 A0195638 0.2 A0195639 0.2 A0195640 0.2 A0195641 0.0 A0195642 0.2 A0195643 0.2 A0195644 0.3 A0195645 0.2 A0195646 0.4 A0195647 0.1	$\begin{array}{c cccc} 02 & <10 \\ 01 & <10 \\ 16 & <10 \\ 03 & <10 \\ \hline \\ 05 & <10 \\ 06 & <10 \\ 21 & <10 \\ 24 & <10 \\ 22 & <10 \\ 22 & <10 \\ 22 & <10 \\ 23 & <10 \\ 05 & <10 \\ \hline \\ 21 & <10 \\ 23 & <10 \\ 05 & <10 \\ \hline \\ 21 & <10 \\ 23 & <10 \\ \hline \\ 33 & <10 \\ \hline \end{array}$	1.57 1.76 0.93 1.57 2.62 3.61 4.67 4.95 7.13 5.70 12.75 3.59 3.97 1.76 4.02 5.56	3110 3600 45 3230 2220 2270 1490 1570 1655 1350 1355 1340 1355 1380 2380 1770 1400	<1 <1 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	0.10 0.07 0.03 0.11 0.40 0.40 1.13 1.11 1.26 1.25 1.00 1.20 1.22 0.25 0.76	4 <1 11 11 9 1 13 19 5 12 56 2 <1 51 51 13	120 50 80 220 50 30 60 60 70 50 40 130 160 30 60	4 2 <2 3 5 <2 2 2 3 2 2 2 3 2 2 2 2 2 2 2 3 2 2 2 2	<0.01 <0.01 0.05 <0.01 0.02 0.02 0.01 0.04 0.03 <0.01 <0.01 0.23 0.23 0.29	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <	4 3 <1 7 22 40 31 22 83 31 58 21 34 14	82 51 174 174 113 66 305 270 219 354 171 461 464 57	<20 <20 <20 <20 <20 <20 <20 <20 <20 <20	0.08 0.07 0.01 0.12 3.46 3.63 1.62 1.49 1.38 1.03 0.73 1.05 1.09
A0195629 0.0 A0195630 0.1 A0195631 0.0 A0195632 0.0 A0195633 0.0 A0195634 0.2 A0195635 0.1 A0195636 0.2 A0195637 0.2 A0195638 0.2 A0195639 0.2 A0195641 0.0 A0195642 0.2 A0195643 0.2 A0195644 0.3 A0195645 0.2 A0195647 0.1	$\begin{array}{c cccc} 0.1 & <10 \\ .16 & <10 \\ .03 & <10 \\ \hline \\ 0.05 & <10 \\ .06 & <10 \\ .21 & <10 \\ .21 & <10 \\ .24 & <10 \\ .21 & <10 \\ .20 & <10 \\ .21 & <10 \\ .23 & <10 \\ .05 & <10 \\ \hline \\ .21 & <10 \\ .23 & <10 \\ .21 & <10 \\ .23 & <10 \\ .21 & <10 \\ .23 & <10 \\ .21 & <10 \\ .20 & <10 \\ .33 & <10 \\ \end{array}$	1.76 0.93 1.57 2.62 3.61 4.67 4.95 7.13 5.70 12.75 3.59 3.97 1.76 4.02 5.56	3600 45 3230 2220 2270 1490 1570 1655 1135 1340 1355 1380 2380 1770 1400	<pre><1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	0.07 0.03 0.11 0.40 0.40 1.13 1.11 1.26 1.25 1.00 1.20 1.22 0.25 0.76	<1 11 11 9 1 13 19 5 12 56 2 <1 51 13	50 80 220 50 30 60 60 70 50 40 130 160 30 60	2 <2 3 5 <2 2 2 3 2 2 3 2 <2 2 <2 <2 <2 8	<0.01 0.05 <0.01 0.02 0.01 0.04 0.03 <0.01 <0.01 0.23 0.23 0.29	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <	3 <1 7 22 40 31 22 83 31 58 21 34 14	51 174 174 113 66 305 270 219 354 171 461 464 57	<20 <20 <20 <20 <20 <20 <20 <20 <20 <20	0.07 0.01 0.12 3.46 3.63 1.62 1.49 1.38 1.03 0.73 1.05 1.09
A0195630 0.1 A0195631 0.0 A0195632 0.0 A0195633 0.0 A0195634 0.2 A0195635 0.1 A0195636 0.2 A0195637 0.2 A0195638 0.2 A0195639 0.2 A0195640 0.2 A0195641 0.0 A0195642 0.2 A0195643 0.2 A0195644 0.3 A0195645 0.2 A0195646 0.4 A0195647 0.1	$\begin{array}{c cccc} .16 & <10 \\ .03 & <10 \\ \hline 0.5 & <10 \\ .06 & <10 \\ .21 & <10 \\ .24 & <10 \\ .24 & <10 \\ .21 & <10 \\ .20 & <10 \\ .21 & <10 \\ .23 & <10 \\ .05 & <10 \\ \hline .21 & <10 \\ .20 & <10 \\ .21 & <10 \\ .20 & <10 \\ .33 & <10 \\ \end{array}$	0.93 1.57 2.62 3.61 4.67 4.95 7.13 5.70 12.75 3.59 3.97 1.76 4.02 5.56	45 3230 2220 2270 1490 1570 1655 1135 1340 1355 1380 2380 1770 1400	1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	0.03 0.11 0.40 0.40 1.13 1.11 1.26 1.25 1.00 1.20 1.22 0.25 0.76	11 11 9 1 13 19 5 12 56 2 <1 51 13	80 220 50 30 60 60 70 50 40 130 160 30 60	<2 3 5 <2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 8	0.05 <0.01 0.02 0.01 0.04 0.03 <0.01 <0.01 0.23 0.23 0.29	<5 <5 <5 <5 5 6 <5 7 <5 <5 <5 <5 <5 8	<1 7 22 40 31 22 83 31 58 21 34 14	174 174 113 66 305 270 219 354 171 461 464 57	<20 <20 <20 <20 <20 <20 <20 <20 <20 <20	0.01 0.12 3.46 3.63 1.62 1.49 1.38 1.03 0.73 1.05 1.09
A0195631 0.0 A0195632 0.0 A0195633 0.0 A0195634 0.2 A0195635 0.1 A0195636 0.2 A0195637 0.2 A0195638 0.2 A0195639 0.2 A0195640 0.2 A0195641 0.0 A0195642 0.2 A0195643 0.2 A0195644 0.3 A0195645 0.2 A0195645 0.2 A0195645 0.2 A0195645 0.2	$\begin{array}{c cccc} 0.03 & <10 \\ \hline 0.05 & <10 \\ 0.06 & <10 \\ 21 & <10 \\ 24 & <10 \\ \hline 24 & <10 \\ 21 & <10 \\ 22 & <10 \\ 23 & <10 \\ 0.5 & <10 \\ \hline 21 & <10 \\ 22 & <10 \\ 23 & <10 \\ 0.5 & <10 \\ \hline 21 & <10 \\ 20 & <10 \\ 33 & <10 \\ \hline \end{array}$	1.57 2.62 3.61 4.67 4.95 7.13 5.70 12.75 3.59 3.97 1.76 4.02 5.56	3230 2220 2270 1490 1570 1655 1135 1340 1355 1380 2380 1770 1400		0.11 0.40 0.40 1.13 1.11 1.26 1.25 1.00 1.20 1.22 0.25 0.76	11 9 1 13 19 5 12 56 2 <1 51 13	220 50 30 60 60 70 50 40 130 160 30 60	3 5 <2 2 2 3 2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<0.01 0.02 0.01 0.04 0.03 <	<5 <5 <5 6 <5 7 <5 <5 <5 <5 8	7 22 40 31 22 83 31 58 21 34 14	174 113 66 305 270 219 354 171 461 464 57	<20 <20 <20 <20 <20 <20 <20 <20 <20 <20	0.12 3.46 3.63 1.62 1.49 1.38 1.03 0.73 1.05 1.09
A0195632 0.0 A0195633 0.0 A0195634 0.2 A0195635 0.1 A0195636 0.2 A0195637 0.2 A0195638 0.2 A0195639 0.2 A0195640 0.2 A0195641 0.0 A0195642 0.2 A0195643 0.2 A0195644 0.3 A0195645 0.2 A0195646 0.4 A0195647 0.1	$\begin{array}{c cccc} 05 & <10 \\ 0.06 & <10 \\ 21 & <10 \\ 18 & <10 \\ 24 & <10 \\ 21 & <10 \\ 20 & <10 \\ 21 & <10 \\ 23 & <10 \\ .05 & <10 \\ 21 & <10 \\ 20 & <10 \\ .33 & <10 \\ \end{array}$	2.62 3.61 4.67 4.95 7.13 5.70 12.75 3.59 3.97 1.76 4.02 5.56	2220 2270 1490 1570 1655 1135 1340 1355 1380 2380 1770 1400	<pre><1 <1 <</pre>	0.40 0.40 1.13 1.11 1.26 1.25 1.00 1.20 1.22 0.25 0.76	9 1 13 19 5 12 56 2 <1 51 13	50 30 60 70 50 40 130 160 30 60	5 <2 2 2 3 2 <2 <2 <2 <2 <2 8	0.02 0.02 0.01 0.04 0.03 <0.01 <0.01 0.23 0.23 0.29	<5 <5 <5 6 <5 7 <5 <5 <5 <5 8	22 40 31 22 83 31 58 21 34 14	113 66 305 270 219 354 171 461 464 57	<20 <20 <20 <20 <20 <20 <20 <20 <20 <20	3.46 3.63 1.62 1.49 1.38 1.03 0.73 1.05 1.09
A0195633 0.0 A0195634 0.2 A0195635 0.1 A0195636 0.2 A0195637 0.2 A0195638 0.2 A0195639 0.2 A0195640 0.2 A0195641 0.0 A0195642 0.2 A0195643 0.2 A0195644 0.3 A0195645 0.2 A0195645 0.2 A0195646 0.4	$\begin{array}{c cccc} 0.06 & <10 \\ .21 & <10 \\ .18 & <10 \\ .24 & <10 \\ \hline \\ .21 & <10 \\ .20 & <10 \\ .21 & <10 \\ .23 & <10 \\ .05 & <10 \\ \hline \\ .21 & <10 \\ .20 & <10 \\ .33 & <10 \\ \end{array}$	3.61 4.67 4.95 7.13 5.70 12.75 3.59 3.97 1.76 4.02 5.56	2270 1490 1570 1655 1135 1340 1355 1380 2380 1770 1400	<pre></pre>	0.40 1.13 1.11 1.26 1.25 1.00 1.20 1.22 0.25 0.76	1 13 19 5 12 56 2 <1 51 13	30 60 70 50 40 130 160 30 60	<2 <2 2 3 2 <2 <2 <2 <2 <2 8	0.02 0.01 0.04 0.03 <0.01 <0.01 0.23 0.23 0.29	<5 <5 6 <5 7 <5 <5 <5 8	40 31 22 83 31 58 21 34 14	66 305 270 219 354 171 461 464 57	<20 <20 <20 <20 <20 <20 <20 <20 <20 <20	3.63 1.62 1.49 1.38 1.03 0.73 1.05 1.09
A0195634 0.2 A0195635 0.1 A0195636 0.2 A0195637 0.2 A0195638 0.2 A0195639 0.2 A0195640 0.2 A0195641 0.0 A0195642 0.2 A0195643 0.2 A0195644 0.3 A0195645 0.2 A0195646 0.4 A0195647 0.1	21 <10	4.67 4.95 7.13 5.70 12.75 3.59 3.97 1.76 4.02 5.56	1490 1570 1655 1135 1340 1355 1380 2380 1770 1400	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	1.13 1.11 1.26 1.25 1.00 1.20 1.22 0.25 0.76	13 19 5 12 56 2 <1 51 13	60 60 70 50 40 130 160 30 60	<2 2 3 2 <2 <2 <2 <2 8	0.01 0.04 0.03 <0.01 <0.01 0.23 0.23 0.29	<5 6 <5 7 <5 <5 <5 8	31 22 83 31 58 21 34 14	305 270 219 354 171 461 464 57	<20 <20 <20 <20 <20 <20 <20 <20	1.62 1.49 1.38 1.03 0.73 1.05 1.09
A0195635 0.1 A0195636 0.2 A0195637 0.2 A0195638 0.2 A0195639 0.2 A0195640 0.2 A0195641 0.0 A0195642 0.2 A0195643 0.2 A0195644 0.3 A0195645 0.2 A0195645 0.2 A0195646 0.4	.18 <10	4.95 7.13 5.70 12.75 3.59 3.97 1.76 4.02 5.56	1570 1655 1135 1340 1355 1380 2380 1770 1400	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	1.11 1.26 1.25 1.00 1.20 1.22 0.25 0.76	19 5 12 56 2 <1 51 13	60 70 50 40 130 160 30 60	2 3 <2 <2 <2 <2 8	0.04 0.03 <0.01 0.23 0.23 0.29	6 <5 7 <5 <5 <5 8	22 83 31 58 21 34 14	270 219 354 171 461 464 57	<20 <20 <20 <20 <20 <20 <20	1.49 1.38 1.03 0.73 1.05 1.09
A0195636 0.2 A0195637 0.2 A0195638 0.2 A0195639 0.2 A0195640 0.2 A0195641 0.0 A0195643 0.2 A0195644 0.3 A0195645 0.2 A0195646 0.4	24 <10	7.13 5.70 12.75 3.59 3.97 1.76 4.02 5.56	1655 1135 1340 1355 1380 2380 1770 1400	<1 <1 <1 <1 <1 <1 <1 <1	1.26 1.25 1.00 1.20 1.22 0.25 0.76	5 12 56 2 <1 51 13	70 50 40 130 160 30 60	3 2 <2 <2 <2 <2 8	0.03 <0.01 <0.01 0.23 0.23 0.29	<5 7 <5 <5 <5 8	83 31 58 21 34 14	219 354 171 461 464 57	<20 <20 <20 <20 <20	1.38 1.03 0.73 1.05 1.09
A0195637 0.2 A0195638 0.2 A0195639 0.2 A0195640 0.2 A0195641 0.0 A0195642 0.2 A0195643 0.2 A0195644 0.3 A0195645 0.2 A0195646 0.4	21 <10	5.70 12.75 3.59 3.97 1.76 4.02 5.56	1135 1340 1355 1380 2380 1770 1400	<1 <1 <1 <1 <1 <1 <1	1.25 1.00 1.20 1.22 0.25 0.76	12 56 2 <1 51 13	50 40 130 160 30 60	2 <2 <2 <2 <2 8	<0.01 <0.01 0.23 0.23 0.29	7 <5 <5 <5 8	31 58 21 34 14	354 171 461 464 57	<20 <20 <20 <20	1.03 0.73 1.05 1.09
A0195638 0.2 A0195639 0.2 A0195640 0.2 A0195641 0.0 A0195642 0.2 A0195643 0.2 A0195644 0.3 A0195645 0.2 A0195646 0.4 A0195645 0.2 A0195646 0.4	20 <10	12.75 3.59 3.97 1.76 4.02 5.56	1340 1355 1380 2380 1770 1400	<1 <1 <1 <1 <1 <1 <1	1.00 1.20 1.22 0.25 0.76	56 2 <1 51 13	40 130 160 30 60	<2 <2 <2 8	<0.01 0.23 0.23 0.29	<5 <5 <5 8	58 21 34 14	171 461 464 57	<20 <20 <20	0.73 1.05 1.09
A0195639 0.2 A0195640 0.2 A0195641 0.0 A0195642 0.2 A0195643 0.2 A0195644 0.3 A0195645 0.2 A0195646 0.4	21 <10	3.59 3.97 1.76 4.02 5.56	1355 1380 2380 1770 1400	<1 <1 <1 <1 <1 <1	1.20 1.22 0.25 0.76	2 <1 51 13	130 160 30 60	<2 <2 8	0.23 0.23 0.29	<5 <5 8	21 34 14	461 464 57	<20 <20	1.05 1.09
A0195640 0.2 A0195641 0.0 A0195642 0.2 A0195643 0.2 A0195644 0.3 A0195645 0.2 A0195646 0.4 A0195647 0.1	23 <10	3.97 1.76 4.02 5.56	1380 2380 1770 1400	<1 <1 <1 <1	1.22 0.25 0.76	<1 51 13	160 30 60	<2 8	0.23 0.29	<5 8	34 14	464 57	<20	1.09
A0195641 0.0 A0195642 0.2 A0195643 0.2 A0195644 0.3 A0195645 0.2 A0195646 0.4 A0195647 0.1	.05 <10	1.76 4.02 5.56	2380 1770 1400	<1 <1 <1	0.25	51 13	30 60	8	0.29	8	14	57		
A0195642 0.2 A0195643 0.2 A0195644 0.3 A0195645 0.2 A0195646 0.4 A0195647 0.1	21 <10 20 <10 .33 <10	4.02 5.56	1770 1400	<1 <1	0.76	13	60					-	<20	4.01
A0195643 0.2 A0195644 0.3 A0195645 0.2 A0195646 0.4 A0195647 0.1	.20 <10 .33 <10	5.56	1400	<1				5	0.01					
A0195644 0.3 A0195645 0.2 A0195646 0.4 A0195647 0.1	.33 <10				1.11	11		-	0.01	<5	29	216	<20	1.93
A0195645 0.2 A0195646 0.4 A0195647 0.1		5.09	4005				60	<2	0.03	<5	27	324	<20	1.11
A0195646 0.4 A0195647 0.1	25 <10		1025	<1	1.33	13	50	2	0.10	<5	19	410	<20	1.01
A0195647 0.1	-20 10	3.65	843	<1	0.98	20	30	2	0.04	<5	23	605	<20	0.85
	.41 <10	4.56	954	<1	1.44	9	60	<2	0.08	<5	26	516	<20	0.89
A010E649 01	.11 <10	4.14	919	1	1.12	4	40	2	0.16	<5	22	585	<20	0.73
AU193046 0.1	.15 <10	4.94	1215	<1	1.30	8	60	<2	0.09	<5	29	575	<20	0.82
A0195649 0.1		3.52	699	<1	1.25	16	90	<2	0.05	<5	24	812	<20	0.54
A0195650 0.3		1.03	32	1	0.04	10	100	<2	0.07	<5	1	170	<20	0.03
A0195651 0.0	.03 10	1.22	1435	1	0.16	14	180	3	<0.01	7	11	322	<20	0.18
A0195652 0.2	.22 <10	3.75	988	1	0.96	15	50	<2	0.14	<5	19	471	<20	0.93
A0195653 0.1	.13 <10	1.30	1550	1	0.45	4	50	<2	0.02	8	7	853	<20	1.08
A0195654 0.2		2.83	1280	<1	2.59	7	530	2	<0.01	<5	40	293	<20	0.64
A0195655 0.1		2.75	1365	<1	1.84	8	650	<2	<0.01	<5	19	734	<20	0.49
A0195656 0.2	.24 <10	5.32	929	<1	1.25	15	40	<2	0.05	<5	61	428	<20	1.02
A0195657 0.1	.17 <10	5.28	916	<1	1.50	37	90	<2	<0.01	<5	48	664	<20	0.96
A0195658 0.0	.02 <10	1.31	2410	2	0.08	3	20	<2	<0.01	<5	4	98	<20	0.07
A0195659 0.1	.13 <10	7.67	2210	<1	0.72	21	60	<2	0.03	<5	39	184	<20	1.32
A0195660 0.1	.12 <10	3.28	796	<1	1.13	29	70	<2	0.02	<5	18	800	<20	0.62

To: RIDGELINE EXPLORATION SERVICES INC. 206-3500 CARRINGTON ROAD WEST KELOWNA BC V4T 3C1

Page: 5 - C Total # Pages: 5 (A - C) Plus Appendix Pages Finalized Date: 8-MAY-2019 Account: RIDCOL

Project: Porcher

Sample Description	Method Analyte Units LOD	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	ME-MS85 V2O5 ppm 9	
A0195627 A0195628 A0195629 A0195630 A0195631		<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	414 115 90 8 126	<10 <10 <10 <10 <10	118 110 129 18 101	774 208 176 17 242	
A0195632 A0195633 A0195634 A0195635 A0195635 A0195636		<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	1690 1700 1020 805 694	<10 <10 <10 <10 <10	251 221 144 135 110	3290 3370 2020 1620 1325	
A0195637 A0195638 A0195639 A0195640 A0195641		<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	694 366 575 595 2560	<10 <10 <10 <10 <10	81 84 144 151 384	1280 679 1085 1090 5130	
A0195642 A0195643 A0195644 A0195645 A0195646		<10 <10 <10 <10 <10	<10 <10 <10 <10 10	1385 667 659 644 571	<10 <10 <10 <10 <10	202 103 97 120 93	2580 1240 1305 1210 1010	
A0195647 A0195648 A0195649 A0195650 A0195651		<10 <10 <10 <10 <10	<10 <10 <10 <10 10	492 447 303 13 133	<10 <10 <10 <10 <10	77 96 50 24 71	900 791 552 27 284	
A0195652 A0195653 A0195654 A0195655 A0195655 A0195656		<10 <10 <10 <10 <10 <10	10 10 <10 <10 <10	747 709 370 230 692	<10 <10 <10 <10 <10	136 160 43 96 79	1600 1545 776 476 1415	
A0195657 A0195658 A0195659 A0195660		<10 10 <10 <10	<10 10 <10 10	347 81 732 343	<10 <10 <10 <10	59 79 168 69	681 168 1435 670	

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: RIDGELINE EXPLORATION SERVICES INC. 206-3500 CARRINGTON ROAD WEST KELOWNA BC V4T 3C1

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 8-MAY-2019 Account: RIDCOL

Project: Porcher

		CERTIFICATE CO	MMENTS	
		LABOF	ATORY ADDRESSES	
Applies to Method:	Processed at ALS Kamloop CRU-31 PUL-31 SPL-21d	os located at 2953 Shuswap Drive, K CRU-QC PUL-31d WEI-21	amloops, BC, Canada. LOG-21 PUL-QC	LOG-21d SPL-21
Applies to Method:	Processed at ALS Vancouv ME-ICP61	er located at 2103 Dollarton Hwy, N ME-MS85	orth Vancouver, BC, Canada.	

Appendix C: 2021 Site Tour Sample Descriptions

Sample Description: W640619

Station ID:	2021_GRM_Porcher2_SD	Date:	May 24 th , 2021				
Sample #:	W640619	Datum:	NAD 83 Zone 9				
Sample Type:	Select Rock Grab; Outcrop	Location:	409918 / 5977579				
Sampled By:	Scott Dorion	Elevation:	283m				
Field notes:							
Massive, 20cm-wide magnetite vein with minor (2%), disseminated chlorite alteration.							
Diorite(?)-hosted.							

Sample Description: W640620

Sampled By:	Scott Dorion	Elevation:	285m					
Sample Type:	Select Rock Grab; Outcrop	Location:	409915 / 5977594					
Sample #:	W640620	Datum:	NAD 83 Zone 9					
Station ID:	2021_GRM_Porcher3_SD	Date:	May 24 th , 2021					

Field notes:

Representative sample of 'full rock' material where magnetite nodules weathered on surface (vein-style dissemination, 2-10%) are properly represented within host lithology. Host rock(?): hornblende(green)-diorite/gabbro, purple-grey, chlorite alteration, minor sericite, disseminated magnetite, massive.

Sample Description: W640621

Station ID:	2021_GRM_Porcher1_SDDate:May 24th, 2021							
Sample #:	W640621	Datum:	NAD 83 Zone 9					
Sample Type:	Select Rock Grab; Outcrop	Location:	409834 / 5977315					
Sampled By:	Scott Dorion	Elevation:	245m					
Field notes:								
Massive pods of magnetite mineralization exposed along surface of weathered host rock. Minor shear textures and faulting between/connecting pods. Diorite(?) hosted.								

Appendix D: 2021 Site Tour Assay Certificates

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

Walk In Minerals BC

Attn : Scott Dorion

330-470 Granville St Vancouver BC V6C 1V4 scott@sgds-hive.com 09-June-2021

 Date Rec. :
 03 June 2021

 LR Report :
 CA02125-JUN21

 Client Ref :
 21-PCH-QP

CERTIFICATE OF ANALYSIS

Final Report

Sample ID	SiO2	AI2O3	Fe	MgO	CaO	Na2O	K2O	TiO2	Р	Mn	Cr2O3	V
	%	%	%	%	%	%	%	%	%	%	%	%
2: W640619	21.4	19.2	30.5	1.84	8.63	0.33	0.05	3.25	< 0.01	0.18	< 0.01	0.12
3: W640620	37.3	23.1	12.0	3.34	15.8	0.65	0.06	1.18	< 0.01	0.12	< 0.01	0.04
4: W640621	16.1	14.4	39.2	1.42	6.99	0.24	0.07	3.89	< 0.01	0.25	< 0.01	0.16
Sample ID	Ва	CI	Со	Ni	Sn	Sr	Zr	LOI	S	Sum	V2O5	Weight
Sample ID	Ба %	%	%	1NI %	311 %	31 %	21 %	LOI %	3 %	Sum %	v205 %	g
2: W640619	< 0.01	< 0.01	0.01	< 0.01	< 0.01	0.09	< 0.01	1.21	< 0.01	100.0	0.21	713
3: W640620	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.09	< 0.01	1.07	< 0.01	100.1	0.08	711
4: W640621	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.06	< 0.01	0.27	< 0.01	100.1	0.29	636

Control Quality Analysis - not suitable for commercial exchange

Shamim Tootoonchi Project Coordinator, Minerals Services, Analytical

0002523327

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the 'Findings') relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's definitions. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The Findings report on the sample sprovided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Test method information available upon request.