AMENDED NI 43-101 Technical Report for the Ashley Project, Ontario, Canada

Prepared for

ASHLEY GOLD CORP.

1130 W. Pender St. (Suite 820) Vancouver, British Columbia Canada, V6E-4A4

Project Location Latitude 48°00'22" North and Longitude 80°54'48" 506,646m East and 5,316,983m North (UTM NAD83 Zone 17) Province of Ontario, Canada

Prepared by: Shannon Baird, P.Geo, M.Sc. PrometheX Ltd. Sudbury (Ontario)

(Original signed and sealed)

Signed at Sudbury on March 30, 2022

Shannon Baird, P.Geo., M.Sc. PrometheX Ltd. Sudbury (Ontario)

> Effective Date: March 30, 2022 Signature Date: March 30, 2022

CERTIFICATE OF AUTHOR – Shannon Baird

- I, Shannon Baird, P.Geo., M.Sc.., (PGO No. 1953, EGBC No. 35744), do hereby certify that:
 - 1. I am President and Principal Geologist at PrometheX Ltd., located at 116 Fourth Avenue, Sudbury, Ontario, Canada, P3B-3R8
 - This certificate applies to the report entitled "NI 43-101 Technical Report for the Ashley Project, Ontario, Canada" (the "Technical Report") with an effective date of March 30, 2022 and a signature date of March 30, 2022. The Technical Report was prepared for Ashley Gold Corp. (the "issuer").
 - 3. I am a member in good standing of the Association of Professional Geoscientists of Ontario (PGO license No. 1953), and the Association of Professional Engineers and Geoscientists of British Columbia (EGBC license No. 35744). I obtained a Bachelor of Science (Geology) degree and a Master of Science (Applied Economic Geology) degree from Laurentian University (Sudbury, Ontario) in 2007 and 2011, respectively.
 - 4. I have practiced my profession continuously as a geologist for a total of fifteen (15) years since 2005. I acquired my expertise in mineral exploration with Inco Ltd. (VALE) and Wallbridge Mining in Ontario, and as Exploration Manager of Carube Copper Corp since 2010 in Jamaica, Peru, United States, British Columbia, Nova Scotia, Ontario, and Quebec and numerous project and company evaluations across the globe. I have been President and Principal Geologist of PrometheX Ltd. since October 2020.
 - 5. I have read the definition of a qualified person ("QP") set out in Regulation 43-101/National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a QP for the purposes of NI 43-101.
 - 6. I visited the property one (1) time for due diligence from October 04, 2020 to October 05, 2020.
 - 7. I am the author of this Technical Report and responsible for items held within.
 - 8. I am independent of the issuer applying all of the tests in section 1.5 of NI 43-101.
 - 9. I have not had prior involvement with the Project that is the subject of the Technical Report.
 - 10. I have read NI 43-101, and the items of the Technical Report have been prepared in compliance with that instrument.
 - 11. As of the effective date of the Technical Report, to the best of my knowledge, information, and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Signed this 30th day of March, 2022, in Sudbury, Ontario, Canada.

(Original signed and sealed)

Shannon Baird, P.Geo., M.Sc. Shannon.Baird@PrometheX.com

TABLE OF CONTENTS

CER	RTIFI	CATE OF AUTHOR	II
ТАВ	BLE C	OF CONTENTS	
LIST	r of	TABLES	v
LIST	ΓOF	FIGURES	v
1	ડા	UMMARY	7
1	1.1	INTRODUCTION AND TERMS OF REFERENCE	7
	1.2	PROPERTY DESCRIPTION, LOCATION, AND OWNERSHIP	
1	1.3	Access and Infrastructure	
1	1.4	GEOLOGY AND MINERALIZATION	9
1	1.5	DEPOSIT TYPES	9
1	1.6	EXPLORATION	9
1	1.7	Drilling	10
1	1.8	MINERAL RESERVES AND RESOURCES	10
1	1.9	DATA VERIFICATION	10
1	1.10	INTERPRETATION AND CONCLUSIONS	11
1	1.11	Recommendations	11
2	IN	NTRODUCTION	12
2	2.1	TERMS OF REFERENCE AND CURRENCY	12
2	2.2	Source of Information	14
3	RI	ELIANCE ON OTHER EXPERTS	15
3 4			
4	PI	ROPERTY DESCRIPTION AND LOCATION	15
4	Pi 4.1	ROPERTY DESCRIPTION AND LOCATION	15 15
4	Pi 4.1 4.2	ROPERTY DESCRIPTION AND LOCATION PROPERTY DESCRIPTION PROPERTY LOCATION	15 15 20
4	Pi 4.1 4.2 4.3	ROPERTY DESCRIPTION AND LOCATION Property Description Property Location Ashley Option Agreement	15 15 20 20
4	Pf 4.1 4.2 4.3 4.4	ROPERTY DESCRIPTION AND LOCATION PROPERTY DESCRIPTION PROPERTY LOCATION Ashley Option Agreement Royalties	15
4	P 4.1 4.2 4.3 4.4 4.5	ROPERTY DESCRIPTION AND LOCATION PROPERTY DESCRIPTION PROPERTY LOCATION Ashley Option Agreement Royalties Permits	15
4	Pf 4.1 4.2 4.3 4.4 4.5 4.6	ROPERTY DESCRIPTION AND LOCATION	15
4	PI 4.1 4.2 4.3 4.4 4.5 4.6 4.7	ROPERTY DESCRIPTION AND LOCATION PROPERTY DESCRIPTION PROPERTY LOCATION Ashley Option Agreement Royalties Permits	15
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Pf 4.1 4.2 4.3 4.4 4.5 4.6 4.7 A	ROPERTY DESCRIPTION AND LOCATION PROPERTY DESCRIPTION PROPERTY LOCATION PROPERTY LOCATION Ashley Option Agreement ROYALTIES PERMITS PERMITS ENVIRONMENTAL LIABILITIES AND SIGNIFICANT RISKS COMMUNICATION AND CONSULTATION WITH THE COMMUNITY CCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY	
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Pf 4.1 4.2 4.3 4.4 4.5 4.6 4.7 A(5.1	ROPERTY DESCRIPTION AND LOCATION PROPERTY DESCRIPTION PROPERTY LOCATION ASHLEY OPTION AGREEMENT ASHLEY OPTION AGREEMENT ROYALTIES PERMITS. ENVIRONMENTAL LIABILITIES AND SIGNIFICANT RISKS. COMMUNICATION AND CONSULTATION WITH THE COMMUNITY CCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY ACCESSIBILITY	
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5	Pf 4.1 4.2 4.3 4.4 4.5 4.6 4.7 A (5.1 5.2	ROPERTY DESCRIPTION AND LOCATION	15
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Pf 4.1 4.2 4.3 4.4 4.5 4.6 4.7 A 5.1 5.2 5.3	ROPERTY DESCRIPTION AND LOCATION	15
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Pf 4.1 4.2 4.3 4.4 4.5 4.6 4.7 6.1 5.2 5.3 5.4	ROPERTY DESCRIPTION AND LOCATION PROPERTY DESCRIPTION PROPERTY LOCATION ASHLEY OPTION AGREEMENT ROYALTIES PERMITS ENVIRONMENTAL LIABILITIES AND SIGNIFICANT RISKS. COMMUNICATION AND CONSULTATION WITH THE COMMUNITY CCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY Accessibility LOCAL RESOURCES. INFRASTRUCTURE PHYSIOGRAPHY AND CLIMATE	15
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Pf 4.1 4.2 4.3 4.4 4.5 4.6 4.7 6.1 5.2 5.3 5.4 H	ROPERTY DESCRIPTION AND LOCATION PROPERTY DESCRIPTION PROPERTY LOCATION ASHLEY OPTION AGREEMENT ROYALTIES PERMITS. ENVIRONMENTAL LIABILITIES AND SIGNIFICANT RISKS. COMMUNICATION AND CONSULTATION WITH THE COMMUNITY. CCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY Accessibility. LOCAL RESOURCES. INFRASTRUCTURE PHYSIOGRAPHY AND CLIMATE.	15
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Pf 4.1 4.2 4.3 4.4 4.5 4.6 4.7 A (5.1 5.2 5.3 5.4 H 5.1	ROPERTY DESCRIPTION AND LOCATION	15
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Pf 4.1 4.2 4.3 4.4 4.5 4.6 4.7 6.1 5.2 5.3 5.4 HI 5.1 5.1 5.1 5.2	ROPERTY DESCRIPTION AND LOCATION PROPERTY DESCRIPTION PROPERTY LOCATION ASHLEY OPTION AGREEMENT ROYALTIES PERMITS ENVIRONMENTAL LIABILITIES AND SIGNIFICANT RISKS. COMMUNICATION AND CONSULTATION WITH THE COMMUNITY CCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY ACCESSIBILITY LOCAL RESOURCES. INFRASTRUCTURE PHYSIOGRAPHY AND CLIMATE. ISTORY WORK PERFORMED RESULTS.	15
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PI 4.1 4.2 4.3 4.4 4.5 4.6 4.7 6.1 5.2 5.3 5.4 HI 5.2 6.1 5.2 6.	ROPERTY DESCRIPTION AND LOCATION	15

7	C	GEOLOG	SICAL SETTINGS AND MINERALIZATION	57
	7.1	Regio	NAL GEOLOGY	.57
	7.2	Prope	RTY GEOLOGY	.60
	7	7.2.1	Lithological Descriptions	62
	7.3	Struc	TURE	.64
	7.4	MINE	RALIZATION	
	7	7.4.1	Ashley Vein	
	-	7.4.2	No. 1 Vein	
	-	7.4.3	Garvey Vein	
	-	7.4.4	Garvey South	
	-	7.4.5	Garvey East	
	, 7.5	7.4.6	Ashley West / Kiernicki	
8	_		T TYPES	
	8.1	SVENIT	TE-HOSTED GOLD DEPOSITS	69
	8.2		EAN LODE GOLD DEPOSITS	
	-			
9	E	XPLOR	ATION	72
10	0	ORILLIN	G	72
11	S	SAMPLE	PREPARATION, ANALYSIS AND SECURITY	72
	11.1	ا م	MPLING METHODS	72
	11.2		MPLE ANALYSIS	
	11.3		JALITY ASSURANCE AND QUALITY CONTROL PROGRAM	
12			ERIFICATION	
13			L PROCESSING AND METALLURGICAL TESTING	
14	r	MINFRA	L RESOURCES ESTIMATES	78
15			L RESERVE ESTIMATES	
-				
16			METHODS	
17			RY METHODS	_
18	F	PROJECT	r INFRASTRUCTURE	79
19	r	MARKET	T STUDIES AND CONTRACTS	79
20	E	NVIRO	NMENTAL STUDIES, PERMITTING, SOCIAL/COMMUNITY IMPACT	79
21	C	CAPITAL	AND OPERATING COSTS	79
22	E	CONOR	MIC ANALYSIS	79
23	A	DJACE	NT PROPERTIES	79
24	C	OTHER F	RELEVANT DATA AND INFORMATION	81
25	I	NTERPF	REATION AND CONCLUSION	81

26	RECOMMENDATIONS	83
27	REFERENCES	86

LIST OF TABLES

Table 1. List of terms and units used in this report	12
Table 2. List of abbreviated terms and acronyms used in this report	13
Table 3. Ashley Project Active Claims Status.	16
Table 4. Ashley Gold Option Terms Summary (for 100% interest)	21
Table 5. Summary of Historic Exploration Work Carried Out on the Project to Date	29
Table 6. Summary of Historical Prospecting/Exploration and Geophysical Surveys	30
Table 7. Petromet 1981 Garvey Occurrence Rock Sampling Results	40
Table 8. Petromet 1982 Gold Assay Results for the No. 1 vein	41
Table 9. 2002 and 2009 Au Rock Sample Assay Results Taken from Garvey Occurrences	42
Table 10. 2015 McLellan Rock Sample Gold Results	
Table 11. 2015 McLellan Soil Sample Gold Assay Results	47
Table 12. Historic Drilling Carried Out by Previous Operators on Ashley Project	51
Table 13. Ashley Project Historical DDHs Highlight Gold Assays.	54
Table 14. Phoenix Matachewan 2004 Highlight Drilling Results *(PR July 26, 2004)	56
Table 15. Geological assemblages/formations of the western Abitibi Greenstone Belt	57
Table 16. Lithological description of different rock units within Ashley Project	63
Table 17. QP's 2020 Due Diligence Surface Rock Sampling Results Summary	78
Table 18. Perceived Risks for the Ashley Project	82
Table 19. Perceived Opportunities for the Ashley Project	83
Table 20. Estimated Phase 1 & 2 Exploration Budget for the Ashley Project	85

LIST OF FIGURES

Figure 1. The Ashley Project Optioned Claims Map	16
Figure 2. The Ashley Project Location Map Within Ontario.	20
Figure 3. Potential High-Priority Historic Exploration Targets	26
Figure 4. Historical Exploration Work Outlines from 1954 Onward over the Ashley Project	28
Figure 5. Historical Geophysical Work Outlines from 1973 Onward Over the Ashley Project	29
Figure 6. McLellan (2015) Surface Grab Sample Locations (McLellan, 2015)	46
Figure 7. Prosper Gold's 2016 Gold-in-Soil Sample Locations Heat Map	48
Figure 8. Drill Hole Locations by Different Operators from 1954 to 2015 in OGS Database	49
Figure 9. Prosper Gold's Approximate 2016/2017 Drill Hole Locations on CVG Mag*	50
Figure 10. Abitibi Greenstone Belt Geology with Major Cu, Au, and Ni-Cu (PGE) Mines	59
Figure 11. Local Regional Geology Including Major Producers and Project Location	60
Figure 12. Ashley Project Local Geology and Gold Showings	62

Figure 13. Structures on the Ashley Project.	65
Figure 14. Ashley Project Prospect Sampling and Vein Locations.	68
Figure 15. Formation Setting of Archean Lode and Syenite-hosted Gold Deposits	70
Figure 16. Illustration of Gold-Bearing Veins Related to Host Rock Deformation	71
Figure 17. QP's (2020) Surface Due Diligence Grab Sample Locations	76
Figure 18. Sample Photos of Vein No.1 and Altered Basalt Host	77
Figure 19. Sample Photos of the Garvey and Garvey South Veins	77
Figure 20. Adjacent Properties and Deposits to the Ashley Project	80

1 SUMMARY

1.1 Introduction and Terms of Reference

The Ashley Project (the Project or the Property) covers 17.35km² in northeastern Ontario within the western Abitibi Greenstone Belt (AGB) and is located 24km west of Matachewan, Ontario. The Project has been subject to exploration since 1931 when the former Ashley Gold mine was discovered and brought into operation, producing 50,123 oz of gold and 7,344 oz of silver at a grade of 0.32 oz Au/t ore between 1932 and 1936.

The Project was initially prospected and surveyed by several operators since 1932 by means of geophysics, soil sampling, rock sampling and drilling. Several operator's activities have been focused on small areas considering specific prospects/occurrences within the Project boundary and a few operators' (e.g. Petromet Resources Ltd and Prosper Gold Corp.) scope of exploration work covered large areas of the Project.

Ashley Gold Corp. ("Ashley Gold" or the "issuer") retained the author to perform due diligence and prepare a Technical Report (the "Technical Report") utilizing the Ashley Project in support of the listing requirement in the Company's "Going-Public" Transaction with the Canadian Securities Exchange (CSE). The Technical Report was prepared utilizing the historical exploration work on the Project and follows the requirements and guidance of National Instrument 43-101 and Form 43-101F1. The mandate was assigned by Ashley Gold Corp management.

The Project is still considered to be at an early stage of exploration and underexplored. The Project's strong gold potential is supported by historical exploration drilling, surface sampling, and shallow underground development.

Ashley Gold is a privately held, Canadian resource investment company based out of Vancouver, British Columbia.

This Technical Report was prepared by Shannon Baird (P.Geo., M.Sc.), President and Principal Geologist of PrometheX; as an independent qualified person ("QP") as defined by NI 43-101.

The quality of information and conclusions contained herein is consistent with the level of effort involved in the consultants' services, based on:

- Information available on the Ashley Project within the Ashley Mineral Database Inventory (MDI), particularly exploration work carried out by Petromet (1981 – 1983) and Prosper Gold Corp (2016 – 2017),
- II. Data supplied by outside sources, and

III. Assumptions, conditions, and qualification set forth in this report.

This report is intended for use by Ashley Gold to file as a Technical Report with Canadian Securities Regulatory Authorities pursuant to the Canadian Securities Administrators' National Instrument 43-101 standards of disclosure for Mineral Projects, form 43-101F1. Except for the purposes legislated under provincial securities law, any other uses of this report by any third party is at that party's sole risk. The responsibility of this disclosure remains with Ashley Gold. The user of this document should ensure that this is the most recent Technical Report for the Project as it is not valid if a new Technical Report has been issued.

1.2 Property Description, Location, and Ownership

The Project is located in northeastern Ontario within the Larder Lake Mining Division, approximately 26km west of Matachewan, Ontario, within the western Abitibi Greenstone Belt. The approximate centroid of the Project is 48°00'22"N and 80°54'48"W and (UTM coordinates 506464E and 5316983N, NAD83 Zone 17N). The Project lies in the townships of Argyle, Bannockburn, Montrose, and Hincks on NTS map sheets 41P/15 and 42A/02.

The Project consists of 115 mineral claims totaling 1,735ha within three, non-contiguous, but proximal blocks of claims and are jointly and equally owned by David Lefort, Jacques Robert, 9640355 Canada Corp., and Randall Salo.

1.3 Access and Infrastructure

Access to the Ashley Project can be easily achieved by first entering the town of Matachewan, Ontario by several paved highway routes from the surrounding cities of Kirkland Lake (60km, ~45 minutes), Temiskaming Shores (100km, ~1 hour), or Timmins (170km, ~2 hours) via highways 66, 65, and 11, respectively. From Matachewan, the Project is accessed by heading west approximately 26 kilometers (33 minutes) along Highway 566, past the Young-Davidson Gold Mine (Alamos Gold) on an all-weather, paved, and packed gravel road. The old mine access road branches off southwest and leads directly to the historic Ashley Mine site approximately 1 kilometer from the highway.

High tension power is available up to Alamos Gold's Young-Davidson mine located approximately 22 kilometers southeast and residential power lines are located up to 13 kilometers east of the Project along Highway 566 and could easily be extended to the Ashley Project site. The Project is situated near sources of water that could be utilized for future exploration and development. An approximate 8,000 tonne/day mill is located at Alamos Gold's Young-Davidson mine which is calibrated to process ore similar to that found at the Ashley Project and is not currently at full capacity.

1.4 Geology and Mineralization

From south to north the geology of the Ashley Project area includes Archean north-dipping, lower mafic, calc-alkalic volcanic flows (Lower Tisdale), overlain by tholeiitic basalt (Upper Tisdale) with pebble metaconglomerate, metasiltstone, and metasandstone (Timiskaming) along their contact. Strata trend WNW, dip steeply NNE and the sequence generally faces north. Intrusive rocks include peridotite, pyroxenite, syenite, diorite, and diabase. Metamorphism in the Archean bedrock ranges from sub-greenschist to lower amphibolite facies.

The quartz veins containing gold on the Project are indicated to occupy late N-S and ENE-WSW fractures. N-S trending veins dip 30 to 50° west and WSW veins are indicated to dip 20 - 50° NW. The quartz veins generally range from 3cm to 60cm wide and are characterized by the presence of visible gold, tellurides, and variable, quantities of pyrite, chalcopyrite, galena, and sphalerite.

1.5 Deposit Types

Despite being explored and locally mined, the overall Ashley Project is still considered to be an early stage project in need of systematic exploration using modern techniques. The Project has been explored for syenite-hosted and Archean lode gold deposits. Considering the regional geological settings in conjunction with associated structures, there exists high potential for discovery of syenite-hosted and Archean lode gold deposits on the property. The presence of a multitude of intrusive dikes of varying phases and compositions suggest that extensional structures and associated hydrothermal activity is relatively widespread on the Project which can be considered good signatures for discovery of both syenite-hosted and Archean lode gold deposits.

1.6 Exploration

The Project has been subject to numerous prospecting and exploration activities in the past. In general, the historical exploration activities can be clustered in four potential areas (namely the Ashley Mine Area, Garvey Veins, Galahad deformation zone, and Komatiite Flow zone for Ni-Cu-Co). In total, 223 exploration reports and maps exist within the provided Ashley MDI that represent the summarized results of historical exploration activities since 1932. Historic exploration work to date identified five (5) target areas within the Ashley Project based on geophysics, geochemistry, drilling, and presence of alteration and mineralization. Most of the exploration work to date has been focused on the Ashley Mine proper and Garvey Targets.

The followings are the summary results of a few major exploration activities conducted by previous operators:

- During the period of 1980–1983, Petromet Resources Limited carried out geological, geophysical, trenching, sampling, and diamond drilling while exploring and aiming to develop the Ashley Gold Mine.
- In 1998, Patrician Gold Mines completed a geological mapping and sampling program from on or near the various Garvey veins.
- Between 2002 and 2004 Phoenix Matachewan Resources prospected the entire property. Approximately 115 line-km of IP and magnetometer surveys were completed. 14 DDHs were completed in 2004 testing the Garvey occurrence.
- Six (6) airborne geophysical surveys have been conducted by different operators over the years encompassing at least a portion of the Project area. The most recent and significant of these was a helicopter-borne multi-parameter geophysical survey conducted by Mustang Mineral Corp. in 2004.
- The most significant modern exploration on the Project includes airborne magneticsgravimetric-conductance-radiometrics, grid soil sampling, and drilling conducted by Prosper Gold Corp. between 2016 and 2017. A 4,538 sample B-horizon soil program was completed. Within the Project bounds, thirty-two (32) drill holes totaling 11,225m were completed mainly targeting the down-dip extensions of the quartz-vein systems.

1.7 Drilling

There are records of thirteen (13) operators that have carried out diamond drilling programs within the Project boundary. The result of each drilling program is recorded and extracted from numerous specific historic reports; however, few report the assay results of each interval even though core sampling for assaying was performed.

According to historic reports, a total of at least 16,357m was drilled by the thirteen known drill operators over 80 DDHs ranging from 24m to 1000m total depth. Results for individual holes from historic reports is beyond the scope of this Technical Report but the author believes, further interpretations and assaying for some of available historic drill core are required to gain a modern exploration perspective.

1.8 Mineral Reserves and Resources

There are no current resource or reserve estimates related to this project.

1.9 Data Verification

Historical data pertaining to the Ashley Mine workings and geology were apparently lost in a fire at the mine site in the past, and therefore cannot be independently verified. The author, however, was provided a comprehensive historical geological database for the Project starting in 1954 for

the purpose of reviewing the exploration/prospecting work by previous operators and developing this Technical Report.

The author reviewed technical information and data provided for any potential tampering or discrepancies that may exist in the previous operator's work and did not encounter any obvious discrepancies or tampering. The author crosschecked all available assay results provided within the historical reports against available laboratory certificates and no discrepancies were observed. The author believes the data provided in this Technical Report is adequately reliable.

On October 4th and 5th, 2020, the Qualified Person conducted a 2-day due diligence site visit covering the major occurrences. During the visit, nine (9) surface grab rock samples were collected for analysis as a check against historical results. The gold assay results fall in line with most past reported results and the author feels they validate historic database files.

1.10 Interpretation and Conclusions

The main objective of QP's mandate was to prepare a Technical Report on the historical work and current exploration status for the Ashley Project.

Despite being sporadically worked on for the last 90 years, most of the Ashley Project is still at a relatively early stage of exploration and there exists potential for both syenite-hosted and Archean lode-gold deposits on the Project. The multitude of intrusive dikes suggests that extensional structures and associated hydrothermal activity is relatively widespread on the Project.

The Ashley Project's strong gold potential is supported by exploration drilling and waste dump bulk testing. Drill intersections suggest a potential exists for expansion on known intercepts along strike and down-dip that suggest a "stacked" or sheeted vein system.

After conducting a detailed review of all pertinent information, the author concludes that:

- The historical database is adequately complete and valid, however, there is a significant amount of data that can still be extracted and digitized into a GIS system;
- There exists economic potential to reprocess the historic waste rock and tailings piles;
- Additional exploration drilling could likely confirm and expand the known zones;
- The Property is underexplored outside the known mineralized zones, especially at depth.

1.11 Recommendations

Due to the Project's strong gold potential, the QP recommends additional exploration work to gain a better overall understanding of the risks and opportunities for the Project, including outcrop stripping, washing, mapping, and channel sampling, geological interpretation with modeling, , exploration drilling, and follow-up deeper or step-out drilling.

The QP has prepared a cost estimate for the recommended work program to serve as a guideline for the Project. The budget estimate for the proposed program is presented in Table 20. The estimated Phase 1 exploration budget is **C\$250,000** and a Phase 2 budget of **C\$450,000** for a total "all-in" budget of **C\$750,000** (including contingencies).

2 INTRODUCTION

In October 2020, Ashley Gold Corp. ("Ashley Gold" or the "issuer") retained the author to perform due diligence and prepare a Technical Report (the "Technical Report") utilizing the Ashley Project in support of the listing requirement in the Company's "Going-Public" Transaction with the Canadian Securities Exchange (CSE). The Technical Report was prepared utilizing the historical exploration work on the Project and follows the requirements and guidance of National Instrument 43-101 and Form 43-101F1. The mandate was assigned by Ashley Gold Corp management.

On the 4th and 5th of October 2020, a two-day site visit to the Ashley Project was carried out by the author accompanied by the property owners and Ashley Gold representatives Derek Wood, Darcy Christian, and Habib Mirkhail.

2.1 Terms of Reference and Currency

The abbreviations, acronyms and units used in this Technical Report are provided in Table 1 and Table 2. Unless otherwise specified, all dollar amounts are expressed in Canadian Dollars ("CDN"). Assay and analytical results for trace elements and precious metals are stated in metric units, as per standard Canadian and international practice, including metric tons (tonnes, t) and kilograms (kg) for weight, kilometers (km) or meters (m) for distance, hectares (ha) for area, percentage (%) for copper and nickel grades, and gram per metric ton (g/t) for precious metal grades. Gold ("Au") and silver ("Ag") are quoted in grams per metric tonne ("g/t"), parts per million ("ppm"), or parts per billion ("ppb"). 1 g/t is the equivalent of 1 ppm and 1000 ppb. Unless otherwise specified, all coordinates are presented in UTM NAD83 within zone 17N.

Measurement Type	Unit	Abbreviation	SI Conversion
Area	acre	acre	4,046.86 m ²
Area	hectare	ha	10,000 m ²

Table 1. List of terms and units used in this report.

Area	square kilometer	km ²	(100 ha)
Area	square mile	mi ²	259.00 ha
Concentration	grams per metric ton	g/t	1 part per million
Concentration	troy ounces per short ton	oz/ton	34.2855 g/t
Length	foot	ft	0.3048 m
Length	meter	m	SI base unit
Length	kilometer	km	SI base unit
Length	centimeter	cm	SI base unit
Length	mile	mi	1,609.34 km
Mass	gram	g	SI base unit
Mass	kilogram	kg	SI base unit
Mass	troy ounce	OZ	31.10348 g
Mass	metric ton	T, tonne	1000 kg
Time	million years	Ma	Million Years
Temperature	degrees Celsius	°C	Degrees Celsius
Temperature	degrees Fahrenheit	°F	°F=°C x 9/5 +32

Table 2. List of abbreviated terms and acronyms used in this report

Acronym	Name
Ag	Silver
Approx.	Approximately
Au	Gold
cm	centimeter
Corp.	Corporation
DDH	Diamond Drillhole
Е	East
EM	Electromagnetic
g/t	Grams per tonne; 31.1035 grams = 1 troy ounce
Ga	Billion Years
ICP-MS	Inductively coupled plasma mass spectrometry
Inc.	Incorporation
IP	Induced Polarization
kg	Kilogram = 2.205 pounds
km	Kilometer = 0.6214 mile
lb	pound; 11b = 0.453kg
Ltd.	Limited
m	Meter = 3.2808 feet
Ma	Million years old
Mag	Magnetics

MDI	Mineral Database Inventory
mm	Millimeter
N	North
Ni	Nickel
NSR	Net Smelter Royalty
NTS	National Topographic System
oz	Troy ounce (12 oz to 1 pound)
Pb	Lead
PGM	Platinum Group Metals
ppb	Parts per billion
ppm	Parts per million
qtz	Quartz
S	South
UTM	Universal Transverse Mercator
VLF	Very Low Frequency
W	West
CSE	Canadian Securities Exchange

2.2 Source of Information

The historic material and data available to be used in this Technical Report was provided to Ashley Gold and the author as a database by Andrew McLellan (Property Owner). The historic data consist of exploration/prospecting reports, assay results, ArcGIS Geodatabases, geophysical reports, drilling data, and reconnaissance reports by previous operators since 1932. Most of the background information for this report was extracted from Tremblay (1981 and 1982), Hedalen et al. (2019), and Tempelman-Kluit (2017), containing Petromet and Prosper Gold's exploration activities on the Project. The Ashley mineral database inventory provided by the Property Owner consists of approximately 223 historical technical reports and maps that illustrate exploration and prospecting works since 1954. All these reports and maps were reviewed for the purpose of this report. All documentation reviewed and included as sources of information are listed in Section 27 (References) at the end of this Technical Report.

The authors assessment of the Project was based on published material in addition to the data, professional opinions and unpublished material submitted by the issuer and Property Owners. The author has reviewed all relevant data provided by the issuer and/or by its agents.

The author has also consulted other information sources, mainly the Government of Ontario's online claim management and assessment work databases (MLAS and OAFD, respectively), other provincial government online sources for the physiographic information, as well as technical reports and press releases published by previous explorers on SEDAR (www.sedar.com).

The authors reviewed and appraised the information used to prepare this Technical Report, including the conclusions and recommendations, and believe that such information is valid and appropriate considering the status of the project and the purpose for which this Technical Report was prepared. The author has thoroughly researched and documented the conclusions and recommendations herein.

Most cited historic work in this report pre-dates NI 43-101 reporting requirements. The author has carried out sufficient review and crosschecks and has no reason to believe that significant errors in the data exist and all data checks to verify assay results were completed. Except for the purposes legislated under provincial securities laws, any use of this report by any third party is at that party's sole risk.

3 RELIANCE ON OTHER EXPERTS

While the QP did not directly rely on other experts during the preparation of this Technical Report, the information, conclusions, and opinions, contained in this report were verified as best as possible and are based on data, reports, and other information provided by Ashley Gold and other third-party sources such as the Property Owners and government files, as well as assumptions, conditions and qualifications as set forth in this report.

The author performed a general review regarding the online status of the mining titles and consulted the information provided by the issuer as well as public sources of relevant technical information provided to identify any potential obvious errors and omissions. However, the QP is not qualified to express any legal opinion with respect to property titles, current ownership, or possible litigation; therefore, the author is not responsible for any errors or omissions relating to the legal status of claims described in this report.

4 PROPERTY DESCRIPTION AND LOCATION

4.1 **Property Description**

The Ashley Project is comprised of 115 claims contained within three, non-contiguous, but proximal blocks of claims (including 65 single cell mining and 50 boundary cell mining claims) or approximately 1,735 ha (Figure 1). The property is jointly and equally held by David Lefort, Jacques Robert, 9640355 Canada Corp., and Randall Salo. Table 3 provides a description of the current mining claims covered by this Technical Report.

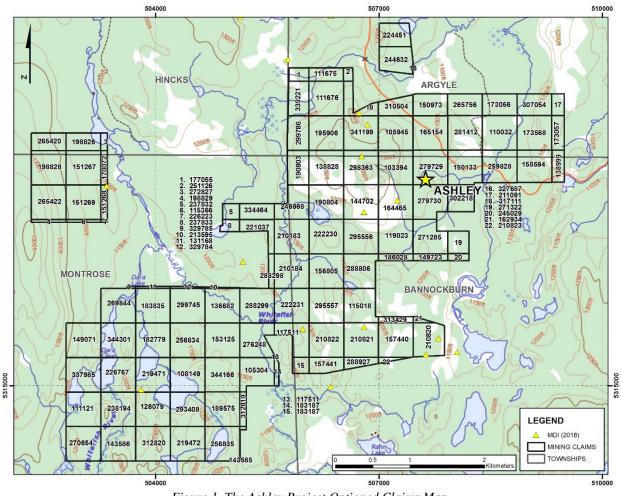


Figure 1. The Ashley Project Optioned Claims Map.

Tenure ID	Township / Area	NTS	Area (Hectares)	Tenure Type	Anniversary Date	Ownership
103394	ARGYLE, BANNOCKBURN	41P/15	21.60	Single Cell Mining Claim	2022-04-30	Each claim cell is equally owned
105304	MONTROSE	41P/15	18.46	Boundary Cell Mining Claim	2026-07-27	by four owners [i.e. JACOUES
105945	ARGYLE	42A/02	21.60	Single Cell Mining Claim	2026-04-30	ROBERT (25%), DAVID
108149	MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-07-27	LEFORT (25%),
110032	ARGYLE	42A/02	21.60	Single Cell Mining Claim	2026-04-11	RANDALL SALO (25%),
111121	MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-10-20	9640355 CANADA
111675	ARGYLE	42A/02	8.39	Boundary Cell Mining Claim	2026-04-11	CORP. (25%)]
111676	ARGYLE	42A/02	21.60	Single Cell Mining Claim	2026-04-11	
115018	BANNOCKBURN	41P/15	20.03	Boundary Cell Mining Claim	2026-07-27	

Table 3. Ashley Project Active Claims Status.

115366	MONTROSE	41P/15	1.78	Single Cell Mining Claim	2026-07-24
117511	BANNOCKBURN, MONTROSE	41P/15	14.38	Boundary Cell Mining Claim	2026-07-27
119023	BANNOCKBURN	41P/15	21.61	Single Cell Mining Claim	2026-06-08
126079	MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-07-27
131168	MONTROSE	41P/15	1.33	Boundary Cell Mining Claim	2026-07-27
136682	MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-07-27
138828	ARGYLE, BANNOCKBURN	41P/15	21.60	Single Cell Mining Claim	2026-04-11
138999	ARGYLE, BANNOCKBURN	41P/15	7.29	Boundary Cell Mining Claim	2026-04-11
143585	MONTROSE	41P/15	0.46	Boundary Cell Mining Claim	2026-07-27
143586	MONTROSE	41P/15	21.62	Single Cell Mining Claim	2026-10-20
144702	BANNOCKBURN	41P/15	21.60	Single Cell Mining Claim	2026-07-27
149071	MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-10-20
149723	BANNOCKBURN	41P/15	4.27	Boundary Cell Mining Claim	2026-04-11
150133	ARGYLE, BANNOCKBURN	41P/15	21.31	Boundary Cell Mining Claim	2026-04-30
150973	ARGYLE	42A/02	13.60	Boundary Cell Mining Claim	2026-04-09
151267	HINCKS, MONTROSE	41P/15	21.60	Single Cell Mining Claim	2026-07-24
151268	MONTROSE	41P/15	4.22	Boundary Cell Mining Claim	2026-07-24
151269	MONTROSE	41P/15	21.60	Single Cell Mining Claim	2026-07-24
153125	MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-07-27
156805	BANNOCKBURN	41P/15	21.61	Single Cell Mining Claim	2026-07-27
157440	BANNOCKBURN	41P/15	21.60	Boundary Cell Mining Claim	2026-07-27
157441	BANNOCKBURN	41P/15	9.40	Boundary Cell Mining Claim	2026-07-27
158594	ARGYLE, BANNOCKBURN	42A/02	20.24	Boundary Cell Mining Claim	2026-04-11
162934	BANNOCKBURN	41P/15	1.30	Boundary Cell Mining Claim	2026-07-27
164465	BANNOCKBURN	41P/15	21.60	Single Cell Mining Claim	2022-06-08
165154	ARGYLE	42A/02	21.60	Single Cell Mining Claim	2026-04-30
170072	HINCKS, MONTROSE	42A/02	4.23	Boundary Cell Mining Claim	2026-07-24
173056	ARGYLE	42A/02	13.56	Boundary Cell Mining Claim	2026-04-11
173057	ARGYLE	42A/02	7.83	Boundary Cell Mining Claim	2026-04-11
173568	ARGYLE	42A/02	21.60	Single Cell Mining Claim	2026-04-11
177055	ARGYLE, HINCKS	42A/02	4.83	Boundary Cell Mining Claim	2026-04-11
182779	MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-07-27
183187	BANNOCKBURN, MONTROSE	41P/15	6.90	Boundary Cell Mining Claim	2026-07-27
183835	MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-07-27
186028	BANNOCKBURN	41P/15	4.24	Boundary Cell Mining Claim	2026-03-30
189575	MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-07-27

190803	ARGYLE, BANNOCKBURN, HINCKS, MONTROSE	42A/02	13.36	Boundary Cell Mining Claim	2026-04-11
190804	BANNOCKBURN	41P/15	21.60	Single Cell Mining Claim	2026-04-08
195906	ARGYLE	42A/02	21.60	Single Cell Mining Claim	2026-04-11
198826	HINCKS	42A/02	10.99	Single Cell Mining Claim	2026-07-24
198828	HINCKS, MONTROSE	42A/02	21.60	Single Cell Mining Claim	2026-07-24
198829	MONTROSE	41P/15	1.77	Single Cell Mining Claim	2026-07-24
210183	BANNOCKBURN, MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-07-27
210184	BANNOCKBURN, MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-07-27
210820	BANNOCKBURN	41P/15	18.55	Boundary Cell Mining Claim	2026-07-27
210821	BANNOCKBURN	41P/15	21.61	Single Cell Mining Claim	2026-07-27
210822	BANNOCKBURN	41P/15	21.61	Single Cell Mining Claim	2026-07-27
210823	BANNOCKBURN	41P/15	1.73	Boundary Cell Mining Claim	2026-07-27
211091	ARGYLE	42A/02	4.91	Boundary Cell Mining Claim	2026-04-11
213595	MONTROSE	41P/15	0.73	Single Cell Mining Claim	2026-07-27
219471	MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-07-27
219472	MONTROSE	41P/15	21.62	Single Cell Mining Claim	2026-07-27
221037	MONTROSE	41P/15	9.92	Single Cell Mining Claim	2026-07-14
222230	BANNOCKBURN	41P/15	21.61	Single Cell Mining Claim	2026-07-27
222231	BANNOCKBURN, MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-07-27
224451	ARGYLE	42A/02	13.13	Boundary Cell Mining Claim	2026-05-29
226223	MONTROSE	41P/15	0.35	Boundary Cell Mining Claim	2026-07-24
226767	MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-10-20
237832	MONTROSE	41P/15	4.78	Boundary Cell Mining Claim	2026-04-11
237833	MONTROSE	41P/15	4.01	Single Cell Mining Claim	2026-04-11
238194	MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-10-20
244632	ARGYLE	42A/02	15.22	Boundary Cell Mining Claim	2026-05-29
245029	BANNOCKBURN	41P/15	2.60	Boundary Cell Mining Claim	2026-04-11
246968	BANNOCKBURN, MONTROSE	41P/15	17.11	Boundary Cell Mining Claim	2026-04-11
251126	ARGYLE	42A/02	2.24	Boundary Cell Mining Claim	2026-04-11
256834	MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-07-27
256835	MONTROSE	41P/15	21.62	Single Cell Mining Claim	2026-07-27
259828	ARGYLE, BANNOCKBURN	42A/02	20.31	Boundary Cell Mining Claim	2026-04-11
265420	HINCKS	42A/02	11.00	Single Cell Mining Claim	2026-07-24
265422	MONTROSE	41P/15	21.60	Single Cell Mining Claim	2026-07-24
265756	ARGYLE	42A/02	13.59	Boundary Cell Mining Claim	2026-04-11
269844	MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-07-27

		Total (ha)	1735.02		
344301	MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-10-20
344166	MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-07-27
341199	ARGYLE	42A/02	21.60	Single Cell Mining Claim	2026-04-30
339221	ARGYLE, HINCKS	42A/02	12.79	Boundary Cell Mining Claim	2026-04-11
337985	MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-10-20
334464	MONTROSE	41P/15	9.83	Boundary Cell Mining Claim	2026-04-11
329785	MONTROSE	41P/15	0.33	Boundary Cell Mining Claim	2026-07-27
329784	MONTROSE	41P/15	1.21	Boundary Cell Mining Claim	2026-07-27
327687	ARGYLE	42A/02	0.03	Boundary Cell Mining Claim	2026-05-29
317111	ARGYLE	42A/02	10.05	Single Cell Mining Claim	2026-04-11
313429	BANNOCKBURN	41P/15	3.85	Boundary Cell Mining Claim	2026-07-27
312820	MONTROSE	41P/15	21.62	Single Cell Mining Claim	2026-07-27
312819	MONTROSE	41P/15	4.13	Boundary Cell Mining Claim	2026-07-27
310504	ARGYLE	42A/02	10.97	Single Cell Mining Claim	2026-04-09
307054	ARGYLE	42A/02	13.53	Boundary Cell Mining Claim	2026-04-11
302218	BANNOCKBURN	41P/15	12.90	Boundary Cell Mining Claim	2026-04-30
299786	ARGYLE, HINCKS	42A/02	13.29	Boundary Cell Mining Claim	2026-04-11
299745	MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-07-27
298363	ARGYLE, BANNOCKBURN	42A/02	21.60	Single Cell Mining Claim	2026-04-30
295557	BANNOCKBURN	41P/15	21.61	Single Cell Mining Claim	2026-07-27
295556	BANNOCKBURN	41P/15	21.61	Single Cell Mining Claim	2026-07-27
293408	MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-07-27
288927	BANNOCKBURN	41P/15	5.74	Boundary Cell Mining Claim	2026-07-27
288806	BANNOCKBURN	41P/15	20.08	Boundary Cell Mining Claim	2026-07-27
288299	MONTROSE	41P/15	21.61	Single Cell Mining Claim	2026-07-27
288298	MONTROSE	41P/15	3.84	Single Cell Mining Claim	2026-07-27
281412	ARGYLE	42A/02	21.60	Single Cell Mining Claim	2026-04-11
279730	BANNOCKBURN	41P/15	20.08	Boundary Cell Mining Claim	2022-06-08
279729	ARGYLE, BANNOCKBURN	42A/02	21.60	Single Cell Mining Claim	2022-04-30
276248	MONTROSE	41P/15	19.67	Single Cell Mining Claim	2026-07-27
272827	HINCKS	42A/02	2.16	Boundary Cell Mining Claim	2026-07-24
271322	BANNOCKBURN	41P/15	8.58	Boundary Cell Mining Claim	2026-04-11
271285	BANNOCKBURN	41P/15	19.21	Boundary Cell Mining Claim	2026-06-08
				Single Cell Mining Claim	

4.2 Property Location

The Project is located in northeastern Ontario (Figure 2) approximately 65km west-southwest of Kirkland Lake and 60km southeast (as the crow flies) of Timmins, Ontario within the Timiskaming District of the Larder Lake Mining Division, approximately 26km west of Matachewan, Ontario, within the western Abitibi Greenstone belt. The approximate centroid of the Project is 48°00'22"N and 80°54'48"W (UTM coordinates 506464E and 5316983N, NAD 83, Zone 17). The Project lies in the townships of Argyle, Bannockburn, Montrose, and Hincks on topographic maps National Topography System NTS map sheets 41P/15 and 42A/02.

Figure 2. The Ashley Project Location Map Within Ontario.

4.3 Ashley Option Agreement

On July 22nd, 2020, the Ashley Project owners (i.e. David Lefort, Jacques Robert, 9640355 Canada Corp., and Randall Salo) signed an option agreement (the "Agreement") with Ashley Gold Corp (Ashley Gold) of Vancouver, British Columbia that provides Ashley Gold the right to earn 100% of the Ashley Project as part of Ashley Gold Corp's "going-public" listing event transaction on

the Canadian Stock Exchange (CSE) via spin-out from Pan Pacific Resource Investments Ltd. (Pan Pacific) of Vancouver, British Columbia.

In consideration of the grant of the option, Ashley Gold has right to earn 100% interest of the Project by spending a total of \$630,000 (CDN) on exploration, issuing the property owners 1,150,000 common shares of Ashley Gold Corp, 250,000 shares of Pan Pacific Resource Investments Ltd. (Pan Pacific), and \$740,000 (CDN) cash within 36 months of the completion of the "going-public" listing event. The option agreement increases progressively in staged anniversary dates and milestones (Table 4).

A more comprehensive breakdown of the option agreement includes a cash payment of \$40,000 (CDN) and issuance of 250,000 Pan Pacific shares to the property owners within 30 days of executing the agreement as well as \$100,000 (CDN) of exploration expenditures within 12 months of agreement execution. Upon completion of the "going-public" listing event, Ashley Gold shall issue to the property owners, based on the pro-rata ownership interest in the Property, 300,000 common shares of Ashley Gold Corp and \$100,000 (CDN) cash. The remainder of the option agreement will increase progressively on each anniversary date after completion of the "going-public" listing event including: 200,000 shares of Ashley Gold, and \$100,000 (CDN) cash after 12 months, \$200,000 (CDN) in exploration expenditures, 250,000 shares of Ashley Gold, and \$200,000 (CDN) cash after 24 months, and \$330,000 (CDN) in exploration expenditures, 400,000 shares of Ashley Gold, and \$300,000 (CDN) cash after 36 months.

Date – Effective as of the 22 nd July, 2020	Exploration Expenditures (CDN)	Share Issuance to the Property Owners	Cash Issuance to the Property Owners (CDN)
Within 30 days of agreement execution		250,000 – Pan Pacific Shares	40,000
1 st Anniversary – 12 months after agreement execution	100,000		
Upon completion of the "Going- Public" listing event		300,000 – Ashley Gold Shares	100,000
Within 12 months of completion of the "Going-Public" listing event		200,000 – Ashley Gold Shares	100,000
Within 24 months of completion of the "Going-Public" listing event	200,000	250,000 – Ashley Gold Shares	200,000
Within 36 months of completion of the "Going-Public" listing event	330,000	400,000 – Ashley Gold Shares	300,000
Total	630,000	1,400,000	740,000

Table 4. Ashley Gold Option Terms Summary (for 100% interest).

4.4 Royalties

Adhering to the option agreement, the Project is subject to a 2% NSR royalty payable from production on the Project to the Property Owners. 1% can be purchased back by Ashley Gold Corp from the Property Owners for \$1,000,000 (CDN).

In addition, the Property Owners shall receive any applicable royalties from all tailings, residues, waste rock, spoiled leach materials, and other materials mined or extracted and processed or reprocessed resulting from Ashley Gold's operations and activities on the Project, including without limitations, the processing and/or sale of any historic ore "waste" rock or tailings that may currently be situated on surface within the Project boundary.

4.5 Permits

The last exploration permit (PR-15-10739) granted (September 15, 2015) by the Ontario Ministry of Northern Development and Mines encompassing the Ashley Project area was applied for and granted to Andrew McLellan (Property Owner) and utilized by Prosper Gold Corp during their 2016/2017 work program.

The permit covered mechanized drilling (assembled weight >150kg), mechanized stripping (>100m² in 200m radius), pitting and trenching (>3m³ in 200m radius), and line cutting (>1.5m width) The permit was on a 3-year term and has since expired.

There are no current exploration plans or permits submitted or approved for the Ashley Project, however, it is recommended that a similar permit be applied for as soon as possible.

4.6 Environmental Liabilities and Significant Risks

To the authors knowledge, there are no known environmental liabilities associated with the historic tailings present but review and caution should still be applied before attempting and disturbance. No significant factors or risks associated with the Project that may affect access, title, or the ability to perform work are known to the author, however, several actionable items should be followed to assure a smooth process moving forward. Refer to the QP's Table 18 for further discussion.

4.7 Communication and Consultation with the Community

During the application process for exploration permit (PR-15-10739), Andrew McLellan notified, consulted, and negotiated with the relevant First Nations bands in the area. These bands include the Temagami FN, which was deemed to not have traditional lands covering the Project area and the Matachewan FN, which was deemed to have traditional lands near the Project area.

A comprehensive Memorandum of Understanding (MOU) was drafted between the Project Owners and the Matachewan FN on September 4th, 2015 regarding exploration work on the Ashley Project and compensation/training/employment/education of their band members. This MOU is still valid; however, it requires updates and modifications since several claim conversion details have changed. It should be either updated or a new one negotiated and drafted as soon as possible to keep an open dialogue with the Matachewan FN.

Ashley Gold will follow-up and conduct consultation activities with the appropriate First Nations through meetings, site visits, and monthly bulletins. Consultation activities with the First Nations may include:

- Meetings and traditional knowledge workshops;
- Meetings with the First Nation leaders;
- Participating in mining workshops and community gatherings;
- Project update bulletins;
- Site visits; and
- Assisting local band members by providing assistance when needed.

Ashley Gold's hiring and contracting policy is to hire and train First Nation and local community members or service providers when possible.

5 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

5.1 Accessibility

Access to the Ashley Project can be easily achieved by first entering the town of Matachewan, Ontario by several paved highway routes from the surrounding cities of Kirkland Lake (60km, ~45 minutes), Temiskaming Shores (100km, ~1 hour), and Timmins (170km, ~2 hours) via highways 66, 65, and 11 respectively. From Matachewan, the Project is accessed by heading west approximately 26 kilometers (33 minutes) along Highway 566, past the Young-Davidson Gold Mine (Alamos Gold) on an all-weather, paved, and packed gravel logging road. A packed gravel logging and mine access road branches off southwest and leads directly to the old Ashley Gold Mine site approximately 1 kilometer from the highway and is easily accessible by truck or SUV during most of the year. Alternatively, access to the property could also be achieved via a network of maintained logging roads directly from Timmins, Ontario, via "Pine St. and Hwy 566, however, a 4x4 vehicle and satellite communication is recommended if this route is utilized and should only be used during summer months.

5.2 Local Resources

Matachewan, Ontario, a small growing community can be utilized for lodging, fuel, core logging, and limited food supplies, and Kirkland Lake, an established town of 8,248 is resource based and home to numerous mining contractors and businesses. Matachewan being the first point of contact for Alamos Gold's Matachewan Young-Davidson Mine operations and Kirkland Lake being host to the mining developments of Kirkland Lake Gold.

The Project area is also well serviced by mining and milling industries. The closest hospitals and airports/heli-bases are located in Timmins and Kirkland Lake, while the nearest CN Rail station depot is located in Matheson, Ontario approximately 70km northeast of the Project area.

Qualified personnel can be found easily throughout the Abitibi and Sudbury regions as they have rich histories of forestry, mineral exploration, and production.

5.3 Infrastructure

High tension power is available up to Alamos Gold's Young-Davidson mine located approximately 22 kilometers southeast and residential power lines are located up to 13 kilometers east of the Project along Highway 566 and could easily be extended to the Ashley Project site. The project is situated near sources of water that could be utilized for future exploration and development. An up to 8,000 tpd mill is located at Alamos Gold's Young-Davidson mine which is calibrated to process ore similar to that found on the Ashley Project and is not at full capacity.

A nearby, multi-cabin hunting and fishing lodge can be rented and utilized for accommodation of drillers and workers.

No usable infrastructure currently exists within the Project boundaries, nor is planned for the Project's current stage. The author is not qualified to assess on-site suitability for infrastructure development, however, there potentially exists sufficient surface area within the current claims to utilize in potential future tailings, waste disposal, heap leach pad areas, and processing plants.

5.4 Physiography and Climate

The Ashley Project is within a typical boreal forest environment that has been burned by forest fires and logged repeatedly. Topography, for the most part, is low relief with generally poor bedrock exposure in low-lying outcrops and isolated ridges, and gently rolling sand plains related to past glacial activity. Elevations range from 350m to 370m above mean sea level. Limited bedrock exposures have been trenched in the past, but most of the property is covered with a sandy, boulder till. Overburden depths are generally less than 10m as judged from past drilling. The thin cover supports growths of pine and birch vegetation, with lesser spruce, fir and poplar depending

on the soil type and drainage. Low-lying areas in the northeast and southwest parts of the property are characterized by cedar and cedar-alder swamps, with variations of alder, cedar, and cattail swamps along the Whitefish River system at the western fringes of the claims. The climate is northern temperate with warm summers and cold winters. Temperatures range from +30 degrees Celsius in the summer to -40 degrees Celsius in the winter. The ground is usually covered with snow between mid-November and mid-April making it inaccessible for general geological ground work. However, thanks to the abundance of continually maintained roads and trails and proximity to large water sources, the Project has a year round operating season for activities such as drilling and ground geophysics.

6 HISTORY

Gold was discovered at the Ashley Gold Mine in 1931. Historic reports show that between 1932 and 1936, approximately 50,123 ounces of gold and 7,344 ounces of silver was mined and recovered from the Ashley Gold Mine at an average grade of 0.32oz (~11g) Au/t ore. It is postulated that a severe depression of gold prices led to the mine shutting down. Soon after, several gold showings, including the Garvey, Sunisloe, Ezra, McGill, and Montrose were discovered in the vicinity.

Some historic regional exploration work (e.g. geophysical and geochemical surveys) have more recently been carried out on large portions of the Ashley Project, however, the majority of historical work within the Ashley Project and immediate vicinity is diverse but scattered, focusing on several prospects and potential areas within the Project's region since the former Ashley Mine was discovered and developed. Each company carried out site-specific prospecting and/or exploration work on isolated claim groups or survey blocks within the Project area based on the "patchwork" and ever-changing ownerships since 1930 without an amalgamated regional view and approach for systematic exploration.

Historic exploration work to date identified five (5) main target areas within the Ashley Project based on geophysics, geochemistry, drilling, and presence of alteration and mineralization (Figure 3). Most of the exploration and prospecting work to date has been focused on the Ashley Mine proper and Garvey Targets.

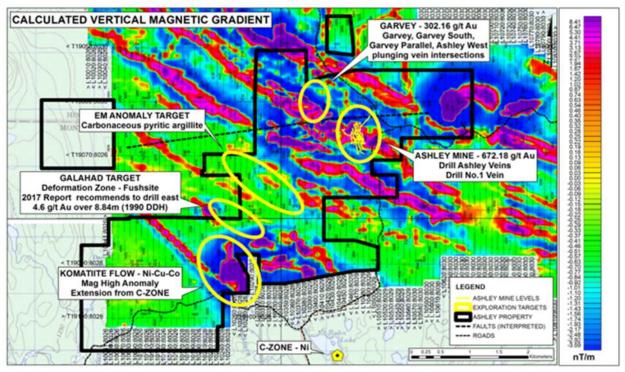


Figure 3. Potential High-Priority Historic Exploration Targets.

6.1 Work Performed

A summary of all historic exploration work conducted on the Project is presented in Table 6.

It is evident that the Project area has been subject to numerous boundary modifications based on ownerships in the past years that resulted in a very narrow-focused exploration mindset isolated to a few specific zones at any given time and hindered the systematic exploration approach that is really required to properly investigate the Ashley Project. A few companies (e.g., Petromet in 1982; Homestake in 1990; Kiernicki in 1990; Mhakari in 2009; and Prosper in 2016/2017) did, however carry out relatively systematic work over specific areas, but in general the historical work can be classified as individual prospecting for each potential prospect and area. See Figure 4 and Figure 5 for spatial coverage maps of historical works relative to the Project bounds. Table 5 provides a summary of exploration work carried out by different operators since 1954.

The following are summaries of a few significant works conducted by previous operators:

During the period of 1980 to 1983, Petromet Resources Limited acquired the Ashley Gold Mine property and carried out geological, geophysical, trenching, sampling, and diamond drilling while exploring and aiming to develop the Ashley Gold Mine. The work included prospecting, mapping, and geophysics on the Garvey and Garvey South occurrences as well.

In 1998, Patrician Gold Mines completed grid mapping and reconnaissance geochemical sampling of the Garvey veins and a four (4) kilometer grid for geological mapping and collected 98 samples from on or near the various Garvey vein occurrences.

A significant amount of exploration was carried out on the Project area by Phoenix Matachewan Resources between 2002 and 2004. The entire property was prospected with approximately 213 samples being collected and assayed for gold. Some 43 of those samples were also analyzed for multi-elements by ICP-MS. Approximately 115 line-km were cut in preparation for IP and magnetometer surveys that were completed along the cut grid. A 16-hole drill program (news release dated July 21, 2009) was also apparently completed in 2004 testing for high grade, near surface mineralization at the Garvey occurrence. They reported intersections that range from 0.7 g/t Au across 0.5 meters up to 24 g/t Au across 0.6 meters. however, no record of this drilling was filed for assessment and no other records exist; therefore, the author cannot comment further.

Six (6) airborne geophysical surveys have been conducted by various operators over the years encompassing at least a portion of the Project area. The most recent and significant of these was a helicopter-borne multi-parameter geophysical survey conducted by Mustang Mineral Corp. in 2004, however, the electromagnetic (EM) survey was targeting Ni-Co-PGM mineralization, but the acquired data could be re-processed to potentially outline gold-bearing anomalies as well.

In 2015, an approximate 47 line-km prospecting mission was carried out by four prospectors (current Property Owners) within the Ashley Project. In total, 74 grab samples and 14 soil samples from different localities were collected, catalogued, and sent for assay including the five (5) main occurrences. The grab sample assay results returned with promising gold values ranging from below detection (<0.02 g/t Au) up to 672 g/t Au with five of the samples having values greater than 100 g/t Au.

The most significant modern exploration on the Project area was carried out by Prosper Gold Corp between 2016 and 2017. In 2016, the entire Project and surrounding area was flown with airborne magnetics, gravimetric, conductance, and radiometrics in conjunction with a large B-horizon soil survey over two grids covering approximately 2,628ha resulted in the collection and analysis of 4,538 soil samples. A 23-hole diamond drill (NQ) program was completed, totaling approximately 8,591 meters mainly within the Ashley Mine to Garvey corridor, however, all the 2016 drill data including locations, downhole logging, sampling, and physical properties was apparently lost and not filed for assessment. The issuer currently has no data record pertaining to the 2016 Prosper Gold drilling program, so data cannot currently be verified by the author. The author however, found a single map with collar, azimuth, dip, and total depths within an old corporate presentation and Prosper Gold Corp press release from their website dated January 24, 2017

(<u>https://www.prospergoldcorp.com/news/prosper-gold-corp-drilling-update/</u>). In 2017, Prosper Gold completed a 24-hole diamond drill (NQ) program, totaling 8,911.7 meters throughout the area, however, only nine (9) of the holes totaling approximately 2,634 meters were within the current Project bounds and relevant to the scope of this Technical Report.

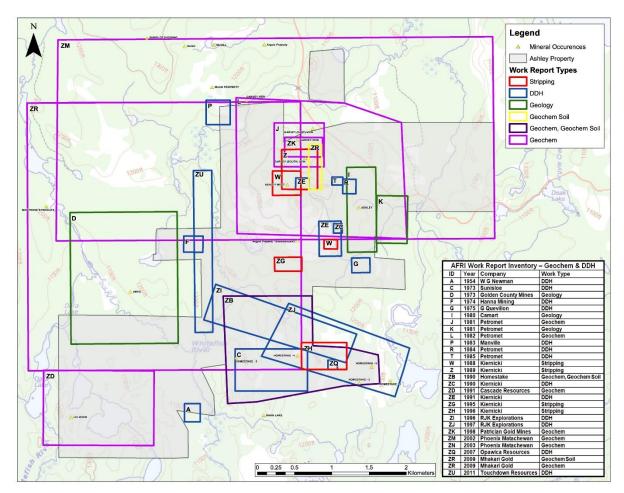


Figure 4. Historical Exploration Work Outlines from 1954 Onward over the Ashley Project.

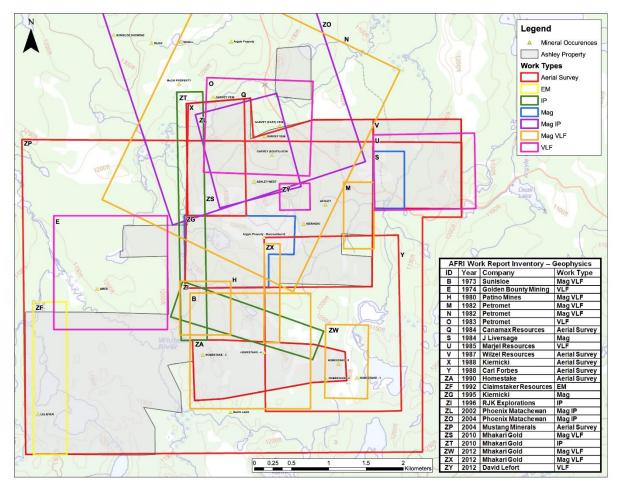


Figure 5. Historical Geophysical Work Outlines from 1973 Onward Over the Ashley Project.

Table 5. Summary of Historic Exploration Work Carried Out on the Project to Date.

*Note: the quantity represents the number of exploration programs and does not indicate quantities for units.

Exploration Activities	# of Surveys	Type of Work	Remarks
Airborne Geophysics	7	Magnetic, electromagnetic, radiometric	The Prosper surveys cover all of Project.
Ground Geophysics	18	Mag, VLF, EM, IP	Carried out on specific targets.
Soil Sampling	1	Grid-sampling	Grid sampling covers almost all Project.
Geological Mapping	3	Trenching, mapping	Some of the mapping program also includes sampling programs.
Rock Sampling	2	Grab sampling, chip sampling	Focused on specific areas.

Prospecting	6	Traversing and sampling	Prospecting programs focused on specific area and do not cover the whole property.
Stripping and Trenching	4	Bed rock stripping	Focused on specific areas in the Project.

Table 6. Summary of Historical Prospecting/Exploration and Geophysical Surveys.

Year	Operator	Work Type	Scale of Work	Results
1954	W.G. Newman	DDH	Two holes drilled (A- 1 and A-2) in claim 105304 south of Project	Shallow drilling of 93m, no gold vein intercepts, the lithological logs mainly consist of asbestos and green serpentine with different textures. No assay results submitted.
1973	Sunisloe	DDH	Three holes drilled (1, 2, 4). in claims 210821 and 210822 south of the Project.	Total of 444m of drilling, mainly lithological logs consisting of serpentine with textures that contain thin calcite veins, magnetite contents and asbestos fiber. Peridotites and Rhyolites present. No gold vein intercepts were recorded.
1973	Golden Country Mines	Geology	Geological mapping covering Montrose township, and some portions of boundary claims 334464, 221037, 269844, 183835, 299745 136682 and 288299 at Ashley Project.	The geological mapping conducted over 40 acres of 15 claims and indicates the favorable rock formations are highly altered and decomposed at surface there is ample indications of folding, shearing, silicification and sulfide mineralization. Dimond drilling program is recommended.
1973	Sunisloe	Mag VLF	~ 17.7 line-km surveyed over 10 contiguous claims located in the north western part of Bannockburn Township.	The result of both Magnetometer and Electromagnetic Surveys reported unsuccessful due to conductive overburden, weak conductor, and limited amount of surveying.
1974	Hanna Mining	DDH	Two drill holes (B-1 & B-2) spotted within the claims 334464 and 221037 of the Project.	Shallow drilling, in total 93m drilled. The lithological logs mainly consist of graywacke, argillite and basalt. Disseminated pyrite, carbonaceous pyrite is recorded in core logs.

Year	Operator	Work Type	Scale of Work	Results
1974	Golden Boundary Mining Company Limited	Geonics EM-16	Electromagnetic survey over a group of 15 mining claims located in Montrose Township and slightly cover a few boundary claims of Ashley Project.	A total of 26.5 line-km was cut and chained and 26km were covered by the electromagnetic survey. The electromagnetic survey indicated a strong conductor that appears to conform with E-W shearing on the property consistent with ground observation. Drilling was recommended.
1975	G Quenillon	DDH	Three drill holes (1DDH@35 dip; 2DDH@40 dip; 3DDH@45 dip) located in the claim 71285 approx. 1km S of Ashley Mine.	Shallow drilling, in total 156m drilled. Lithologies such as diabase and Feldspar Porphyry recorded. Carbonate fractures, joint fillings, epidotized fillings, carbonate vein fillings and quartz fracture fillings are recorded on lithological logs. Disseminated pyrite and crystalline pyrite mineralization is recorded.
1980	Camart Mines Limited	Pre- development Review	Pre-development Review of former Ashley Mine for a potential reopening.	Camart conducted a technical review of former Ashley Mine and in consideration of ground conditions developed a mining plan for reopening of Ashley mine, for the extraction of potential shallow dip vein on the footwall.
1980	Patino Mines	Mag VLF	5.6 line-km ground magnetic survey conducted within 4 claims in Montrose Township.	Through both magnetometer and electromagnetic surveys, the magnetic intensities were recorded. Several anomalies and one drilling target were identified.
1981	Petromet Resources Limited	Rock Sampling	Rock Sampling and Assay of Garvey Veins	12 chip channel samples of Garvey veins that include trench excavations were collected and assayed. Assays consist of 0.93 oz Au/t for Garvey South and 0.294 oz Au/t for Garvey.
1981	Petromet Resources Limited	Geology	Geological mapping Program covered two unpatented mining claims L-512482 and L-512483 to the east of Ashley Mine.	The mapping program outlined volcanic lithologies similar to those occurring at the Ashley Gold Mine.
1982	Petromet Resources Limited	Geology	Comprehensive geological mapping and sampling of Ashley Project.	The report includes geological mapping, trenching, sampling, and assay result with both grab and bulk sample results of the No. 1 Vein. and Garvey Veins. Two surface bulk samples taken of the No. 1 Vein consisted of 10.93 tons at 1.405 oz Au/t and 3.3 tons at 2.87 oz Au/t.

Year	Operator	Work Type	Scale of Work	Results
1982	Petromet Resources Limited	Mag VLF	A 4.8 line-km ground magnetic survey was completed over the Ashley Mine area.	VLF-EM Electromagnetic Method was used. Using VLF-EM, two anomalies were determined. The magnetic survey outlined a strong central magnetic anomaly interpreted to be caused by magnetite-rich Archean basalt.
1982	Petromet Resources Limited	Mag VLF	75 line-km VLF-EM and magnetic survey conducted within the Ashley Project.	The result of the survey substantiates the general NW to WNW lithological trends indicated in geological mapping and identified N-S and N-E trending structural zones. N-S trending diabase dykes are interpreted by the magnetics readings.
1983	Canamax Resources Inc.	Geology	Comprehensive geological mapping of the four isolated west claims (661897 to 661900) on the Ashley Project.	Suggested that any additional effort should be concentrated along the sedimentary units and that geochemical surveys may be useful in outlining areas of interest.
1983	Canamax Resources Inc.	Mag	11.6 line-km cut line and magnetometer survey of the four isolated west claims on the Ashley Project.	Magnetics survey using an Exploranium Geometrics G-816 magnetometer with points taken every 12.5m along lines. Three anomalous areas were partially outlined by the survey, all which trend parallel to the baseline (~NW-SE).
1983	Manville Inc.	DDH	Three drill holes (H- 83-1, H-83-2 & H- 83-3) in vicinity of claim 339221 on Ashley Project.	Shallow drilling. 99m drilled in three spots. Core logging conducted and samples taken from core logs, but no assay results are given.
1983	Petromet Resources Limited	VLF	Magnetic-VLF geophysical survey was carried out on north part of the Ashley Project. The VLF-EM survey was conducted on a picket line grid covering 8 claims encompassing the Garvey veins area.	Three anomalies were outlined in the survey which correlate with anomalies previously identified by Tremblay (1982). The anomalies are all indicated to trend NW parallel to stratigraphy and probably reflect conductive shear zones or conductive stratigraphic units such as pyritic or graphitic tuffs.
1984	Fred Kiernicki	Trenching	Trenching and power stripping program on claims L737301-302	140' of trenching and power stripping over 3 trenches located ~175-200' ESE of the Ashley Mine shaft. No details or results documented.

Year	Operator	Work Type	Scale of Work	Results
1984	Canamax Resources Inc.	Airborne Mag-EM	Heli-borne magnetic and electromagnetic survey conducted over 165 claims. A total of 483 line-km was flown in the area with ~264 line-km directly over the 165 claims that comprise the Ashley Project.	Photo map bases at a 1:15,000 scale was prepared. Electromagnetic profile maps were produced to record EM data. A major NS fault, parallel to the Whitefish River before it adopts an EW course, is interpreted from aeromagnetic data. Several zones based on EM conductors were identified over the survey area, probably reflecting dominant sequence of repetitive mafic flows and diabase dykes.
1984	John Liversage	Mag	A 4.1 line-km magnetometer survey over three claims east of Ashley Mine.	The magnetic survey outlines a general NW-SE magnetic trend parallel to the trends of underlying volcanic units. A 1:2,500 scale magnetic field map was developed.
1984	Petromet Resources Limited	DDH	Three drill holes (A- 84-1, A-84-2, and A- 84-3) at -90, -90, and -50 dip, respectively, approx. 250m west of Ashley Mine.	Shallow drilling, totaling 254.2m drilled in three holes. Lithologies mainly consist of massive basalt, and feldspar quartz porphyry. Fracture fillings and quartz veins are recorded. A-84-1 returned 3m (30.5-33.5m) @ 0.03 oz/t Au. A- 84-2 was entirely within unmineralized feldspar porphyry. A-84-3 returned 1.5m @ 0.04 oz/t Au. Core stored in MNR core library.
1985	Canamax Resources Inc.	DDH	Five DDH (035-15-1 to 035-15-5) drilled within the four isolated west claims of the Ashley Project.	Five DDHs with a total combined length of 1,004.23m. Holes mainly intersected graphic shale, chert, greywacke, conglomerate, metavolcanics, and quartz veins. Green fuchsitic carbonate units were also intercepted. Samples appear to have been taken for assay, but results have been masked in the report.
1985	Petromet Resources Limited	DDH	Two drill holes (A- 85-1 and A-85-2) east at -45 dip, ~100m north of Ashley Mine.	Shallow drilling, totaling 104.2m drilled in two holes. Lithologies mainly consist of massive basalt, and feldspar quartz porphyry. Fracture fillings and quartz veins are recorded. A-85-1 abandoned in overburden and A-85-2 returned 0.6m @ 0.82 g/t Au and 1.3m @ 0.78 g/t Au. Core stored in Swastika MNR core library.
1985	Marjel Resources Inc.	VLF	The Electromagnetic survey was conducted over 9 claims on the far northeast portion of the Ashley Project.	Five conductors used to identify fault zones, other structural features such as a cross cutting fault zone which may contain sulfide mineralization. As follow up, soil sampling was recommended over conductive regions, testing the B-Horizon for possible gold anomalies.

Year	Operator	Work Type	Scale of Work	Results
1987	Wilzel Resources Ltd.	Airborne Mag-VLF	A 534 line-km airborne magnetics and VLF survey was flown with DIGHEM-3 over a large NW-SE trend survey block.	The survey only touches a small portion on the eastern edge of the Ashley Project. The Magnetic properties of the rock units underlying the survey area were identified. Strikes of NW/SE are inferred from magnetic data. Several magnetic dike-like features with approximate NNW/SSE strikes are identified within the survey area. A magnetic contour map and preliminary VLF contour maps are produced. Strong VLF trends with NW/SE orientations.
1988	Fred Kiernicki	Stripping	Stripping and prospecting conducted in the Ashley West area to find extension of the Ashley Vein.	The report is very summarized and does not give details about the stripping program. It only indicates that the program was successful in locating mineralized zones like the Ashley Mine underground workings which is interesting.
1988	Fred Kiernicki	Airborne Mag-VLF	A 58 line-km airborne magnetics and VLF survey was flown in a NS orientation over Fred Kiernicki Property which includes Hincks, Argyle and Bannockburn Townships.	This Survey covers a large portion of the current Ashley Project. The underlying rock strike was determined as W to NW dipping south. Two distinctive high magnetic zones are spotted on the Project based on magnetic data and thought to be underlain by mafic or ultramafic metavolcanics due to their high magnetic susceptibility. The areas with relatively low magnetic susceptibility are referred to be underlain by felsic or mafic metavolcanics. Two conductive zones are identified based on the VLF electromagnetic data.
1988	Carl Forbes	Airborne Mag-VLF	A 93 line-km airborne magnetics and VLF survey was flown in a NS orientation over the Carl Forbes Property covering a few claims in southern edge of current Ashley Project.	The magnetic survey provided information that help to define underlying geological structures and identifies any potential economic concentrations which may contain variations in accessory magnetic minerals. The VLF electromagnetic survey outlined conductive zones which may represent shear zones or metallic sulfide deposits containing gold mineralization.
1989	Fred Kiernicki	Stripping and Sampling	Stripping and channel sampling near Ashley West.	The report very summarized and only provides sampling and assay results but no locations.

Year	Operator	Work Type	Scale of Work	Results
1990	Homestake Mineral Development Company	Airborne Mag-VLF	Approximately 78 line-km of combined EM/magnetic/VLF data were obtained over 47 claims in Bannockburn Township.	The EM survey detected only a few anomalies of probable bedrock origin. The general strike in the survey area inferred from magnetic data is ~ESE/WNW. Two general categories of EM anomalies are distinguished which may attributed to conductive sulfide or graphite. Three conductors within the Ashley Project have been attributed to possible bedrock sources.
1990	Homestake Mineral Development Company	Geology and Prospecting	Prospecting over 26 claims in Bannockburn Township that includes 15 claims (210184, 156805 157444, 288927) on the south end of Ashley Project.	The prospecting surveys were completed by means of a 42,265 line-km grid. The results were plotted at a scale of 1:2,500. Weakly metamorphosed (greenschist or lower metamorphic facies) were identified with bedrock. Three potential gold hosting environments were identified. 167 bedrock and boulder samples were collected and analyzed for gold. Best assay recorded 651 ppb gold; 12 samples averaged more than 100 ppb Au.
1990	Fred Kiernicki	DDH	One drill hole (K-1- 90) ~270m SW of the former Ashley Mine.	Total of 104m drilled at -90 dip. The lithologies consist of pillowed basalt, hematized quartz- feldspar porphyry dyke, basalt, and olivine diabase. Calcite veinlets, fractures containing pyrite and chalcopyrite, hematization, quartz- calcite-epidote veins with traces of pyrite are recorded in the core.
1991	Cascade Pacific Exploration Ltd.	Geology and Prospecting	The prospecting area covered the SW part of the Ashley Project over approx. 9 claims (337985, 219471 270654, 312820).	The program consisted of geological mapping, rock sampling, and line cutting. Geological mapping at scale of 1:2,000 was carried out. ~250 outcrops were mapped for mineralization, structure, lithology, and alteration minerals. Three potential prospects (McIntyre-Leliever, Road showing, and other occurrences) were studied in some details.
1991	Fred Kiernicki	DDH	Three drill holes (K1-91; K2-91; K3- 91) ~1km SW of the former Ashley Mine.	DDH K1-91 drilled only 26m and abandoned because of large boulders in overburden. DDH K2-91 drilled 239m to intersect the extension of Ashley vein at a depth of 213m. DDH K3-91 was drilled to 74m testing hematized fractures. The Ashley vein did not appear in the drill core. Assays ranged from 0.002 to 0.021 oz Au/t.

Year	Operator	Work Type	Scale of Work	Results
1992	Claimstaker Resources Ltd.	EM	Horizontal Loop EM survey was carried out on Montrose Township. Covered a small portion on the SW part of Ashley Project. A total of 10.24 line-km was cut and surveyed.	17 lines were cut, 120m apart on E-W orientation and surveyed. Several high positive in-phase readings found particularly on the west side of the Project.
1995	Fred Kiernicki	Stripping and Mag	Stripping located 1.4km SW of Ashley Mine. 11 line-km surveyed using magnetic and VLF - electromagnetic methods.	The purpose of stripping was to establish a line for the magnetic survey. ~11 line-km were cut in June 1995. Magnetic results indicated high magnetic relief over topographically high areas. VLF - EM outlined a total of nine conductors.
1996	Kasner Group	IP	11.9 line-km of IP ground survey conducted on the Montrose Property on the south end of the Ashley Project.	11.9 line-km of IP data collected; 7 viable IP anomalies caused by metallic material in the bedrock were identified. The IP survey used as base for RJK 1996 drilling program.
1996	RJK Explorations	DDH	Four DDHs (KL96-1 at -45 dip; KL96-2 at -45 dip; KL96-3 at - 45 dip; and KL96-4 at -56 dip) drilled in southern claims of the Ashley Project.	Four DDH with a total combined length of 1,146m. KL96-1 (198m) mainly intersected graphitic shale; no significant gold mineralization. KL96-2 (269m) intersected two fuchsitic carbonate units (upper and lower); the lower unit have more potential for gold mineralization than the upper, the best assay at lower unit indicated 848 ppb Au.
1996	Fred Kiernicki	Stripping	The stripping area is located ~3km south of the Ashley Mine.	Four trenches in four different localities were excavated to extend green carbonate bedrock exposure discovered by RJK earlier in the year. A few samples were taken for gold assays and only reported as "very low".

Year	Operator	Work Type	Scale of Work	Results
1997	RJK Explorations	DDH	Four DDH (KL97-5 - KL97-8) at -45 dip drilled as follow-up to the 1996 RJK drilling program within the southern claims of the Ashley Project.	Four DDH with a total combined length of 727m. KL97-5 (203.1m) intersected "Green Carbonate" units with weak quartz veining; the best assay was 383 ppb Au over 1m from 193m. KL97-6 (140.2m) intersected alternating sequences of graphitic shales, greywackes, and ultramafic volcanics; the best assay was 30 ppb Au. KL97-7 (261m) intersected "Green Carbonate" units; the best assays returned from this hole were below 157m (2.8m @ 1.2g/t Au, and 3.0m @ 46g/t Au). KL97-8 (122.6m) intersected mafic volcanics; no significant mineralization was recorded.
1998	Patrician Gold Mines Ltd.	Mapping and Prospecting Program	Reconnaissance sampling and grid mapping; mainly NW of the Ashley Mine over the Garvey veins.	Whole rock geochemistry determined tholeiitic and Calc Alkaline compositions.
2002	Phoenix Matachewan Mines Inc.	Mapping and Prospecting	Conducted over a large area covering the north half of the Ashley Project.	Traversing, mapping, and prospecting were completed. 159 rock samples were collected on traverse lines and analyzed for gold content and whole rock geochemistry to determine major lithologies. The highest gold values came from quartz veins at 2.13, 3.7, 5.5, and 8.7 g/t Au.
2002	Phoenix Matachewan Mines Inc.	Mag and IP	~15.6 line-km were cut and surveyed with Mag/IP over the Garvey and Ashley West Occurrences of the Ashley Project.	~14.6 line-km of magnetic and IP data was gathered. Magnetic and IP 1:5,000 scale survey maps were produced.
2003	Phoenix Matachewan Mines Inc.	Mapping and Prospecting	Conducted over a large area of 21 contiguous claims covering the northern half of the current Ashley Project.	Continuation of the 2002 program. A genetic relationship of narrow-gold veins with syenite porphyry dykes and stocks were identified and mapped. New exposures of bedrock produced; Resampling at several points along the Garvey and Garvey extension Veins returned values between 0.2 and 1.2 g/t Au. 80 rock samples were collected and analyzed for Au. Major rock types encountered during mapping were described. The program found significantly more area underlain by felsic intrusions than was previously thought in the region to the north of the Ashley and Garvey vein systems.

Year	Operator	Work Type	Scale of Work	Results
2004	Phoenix Matachewan Mines Inc.	Mag and IP	Second phase of geophysical surveys. A total of ~106.5 line-km were cut and surveyed to the NW and covering the northern portion of the Ashley Project.	~105.6 line-km of magnetic and 93.7 line-km of IP data was collected. The ground geophysics survey identified several features which may have significant relevance in defining favorable environments for Au depositions.
2004	Mustang Minerals Corp.	Mag and EM	Helicopter-borne magnetic and electromagnetic geophysical survey covering the entire Ashley Project.	A total of 2,038.8 line-km was flown. The survey was conducted in search for Ni-Cu-PGM mineralization within ultramafic formations. Anomalies were defined and drilling targets suggested.
2007	Opawica Resources Inc.	DDH	One drill hole (BAN- 07-001) at 507267E, 5315674N at 200 azimuth and -45 dip within the southern area of the current Ashley Project.	One NQ (BAN-07-001) @ 201m was drilled to test two IP chargeability anomalies. Zones of graphitic argillite and disseminated pyrite mineralization were penetrated. 59 core samples were assayed for Au and Ag. Assays for Au and Ag were low up to 0.06 g/t Au and 0.20 ppm Ag, respectively.
2009	Mhakari Resources Inc.	Geology and Prospecting	Covered a large area (Argyle, Montrose, and Bannockburn Townships covering over 40,000 acres.	The project was divided into two geological structure areas; North and South (Garvey, Garvey East, and Garvey South) occurrences included focused and in-depth studies.
2010	Mhakari Resources Inc.	Mag VLF	A22.9 line-km magnetic-VLF survey covering the western portion of the main block of the Ashley Project.	Very brief report - Some intense magnetic Reponses was recorded within survey area.
2010	Mhakari Resources Inc.	IP	A 22.9 line-km IP survey over the western portion of the main block of the Ashley Project.	Very brief report - Six (6) chargeability zones were identified that has potential for further exploration. Two large high resistivity zones were also defined that are worth modeling.
2011	Touchdown Resources Inc.	DDH	Five DDHs (T-11- 1,2,3,4,5) on Claims 3013816 and 4225032 in Montrose Township testing 2010 Mhakari IP and Mag anomalies.	A total of 1,027m completed of NQ sized. Holes T-11-1 to 3 at -48 dip and intersected numerous sections of anomalous gold values ranging from 25 to 100ppb Au. The anomalous values were not confined to any one rock type but appear to be an overall secondary enrichment. Hole #'s T- 11-4 to 5 were drilled at -58 dip and presented the most promising results with the best assay from a fault contact between sediments and volcanics yielding 0.568g/t Au over 1.5m.

Year	Operator	Work Type	Scale of Work	Results
2012	Mhakari Gold Corp.	Mag VLF	3.1 line-km magnetic and VLF-EM survey in the south portion of Ashley Project.	Very brief report - variable magnetic and VLF EM signatures identified within survey area.
2012	Mhakari Gold Corp.	Mag VLF	3.2 line-km magnetic and VLF-EM survey in the south portion of Ashley Project.	Very brief report - a few zones with magnetic signatures were identified and a further survey to the north is recommended.
2012	David Lefort	VLF	2.2 line-km VLF-EM survey carried out on claim 4248634 ~300- 600m NW of the Ashley Mine.	Very brief report - A total of 2.2km of survey lines carried out with 80 readings taken. Three anomalies were identified.
2016	Prosper Gold Corp.	Airborne Mag- Gravity- Radiometrics	2,725 line-km over the Ashley/Wydee Claims which encompassed the Ashley Project.	Magnetic, gravimetric, radiometric data, and conductive properties of the survey area was collected. Several anomalies were defined.
2016	Prosper Gold Corp.	Soil Sampling	Two B-horizon grids with 4,538 soil samples covering 2,628 ha were collected covering the north portion of the Ashley Project.	Soil sampling and data acquisition was completed. Numerous anomalies and two targets for drilling were defined.
2016	Prosper Gold Corp.	DDH	23 DDHs totaling 8,591m within the Ashley Project.	No data available. Assessment work cannot be found or verified. Press release dated Jan 24, 2017 stating highlight gold assays in drill intercepts on the Ashley Project ranged from 0.95 g/t Au over 6m in hole A021 up to 43.3 g/t Au over 1.0m in hole A011.
2017	Prosper Gold Corp.	DDH	24 DDHs, NQ size, totaling 8911.7m. 9 of those DDHs totaling 2,634m were located within the current Ashley Project bounds.	Drilling was completed in four target areas and gold were encountered in all four areas. Host lithologies and associated alteration recognized as highly variable between the four target areas. Of the 9 holed drilled A030-A035 and B043- B045) within the Project bounds gold was encountered within all with the best intercept reported as 0.33 g/t Au over 4.0m (33-37m) in hole A030 and 0.46 g/t Au over 7.5m (99- 106.5m) in hole A033.

6.2 Results

Exploration and prospecting work to date has identified five (5) main target areas for discovery of potential syenite-hosted and Archean lode gold deposits as well as Ni-Cu-Co-PGE mineralization

(Figure 3). Most of the work by previous operators focused on the Ashley Mine (e.g. No. 1 vein) and surrounding area (eg. Garvey and Ashley West occurrences).

The quality of historical data and reports differ greatly. Some reports, in particular geophysical survey reports are very summarized and lack in-depth interpretation. The author has performed to best review and compilation standards of data available but cannot guarantee validity of said data or sources. The author believes, the historic data/results require further compilation, modeling, and analysis using modern exploration techniques and interpretation.

6.2.1 Surface Sampling

6.2.1.1 Surface Rock Sampling

To date, up to 400 grab and chip channel samples have been collected and assayed for gold within the Ashley Project boundary by various operators. Some of these samples returned highly elevated gold values that warrant the continued systematic exploration for a currently unknown gold "feeder" zone. The following are the relevant summarized publicly available results of surface rock sampling by different modern operators since 1981 with coordinates listed where available.

Petromet Resources Limited 1981/1982 Mapping, Trenching, and Sampling Program

In 1981, Petromet Resources Limited completed a trenching and sampling program covering the Garvey occurrence with a total of twelve chip, channel, and grab samples being collected from the quartz veins and related altered basaltic volcanic host rocks. The samples were analyzed at Swastika Laboratories for gold and silver. Most of the sampling took place on the Garvey and Garvey South veins. The results of these samples ranged from 0.11 g/t to 26.36 g/t Au and 0.20ppm to 22.3ppm Ag (Table 7).

Sample #	Vein	Vein Description		Ag (ppm)
GAS-1	Garvey South	Chip Channel 30.5cm, QTZ Vein	26.36	2.1
GAS-2	Garvey South	Chip Channel 30.5cm, Basalt and QTZ Vein	0.34	0.2
GAS-3	Garvey South	Basalt	0.11	nil
G-1	Garvey East	QTZ Vein and Altered Basalt	3.37	2.1
G-2	Garvey	Grab QTZ Vein	4.11	22.3
G-3	Garvey	QTZ Vein, Chip Channel 40.6cm	8.33	16.5
G-4	Garvey	QTZ Vein, 2.5cm wide 30.5cm Below G-3	6.07	13.2
G-5	Garvey South	QTZ Vein, Grab Sample	0.77	0.9
G-6	Garvey South	QTZ Vein, Chip Channel 35.5cm	1.02	0.7

Table 7. Petromet 1981 Garvey Occurrence Rock Sampling Results *(after Tremblay, 1981).

G-7	Garvey East	QTZ Vein, Chip Channel 40.6cm	5.53	1.1
G-8	Garvey	QTZ Vein, 2.5cm wide 45.7cm Below G-3	0.85	0.7
G-9	Garvey	QTZ Veinlet Below G-3	0.17	nil

In 1982, Petromet Resources Limited conducted an extensive geological mapping program (Tremblay, 1982) throughout the northern half of the current Ashley Project covering two target zones, including the No. 1 vein and Garvey veins. A total of twenty (20) samples were collected along an approximate 110m strike length along the No. 1 vein. The samples comprised of both quartz vein material and basaltic host wall rock. Table 8 indicates the relative sample/vein widths and reported gold assay values with average grades ranging from 0.85 g/t Au over 0.63m to 280.37 g/t Au over 0.19m. The samples were analyzed by Swastika Laboratories Ltd.

Table 8. Petromet 1982 Gold Assay Results for the No. 1 vein

*(After Tremblay,	1982). Note:	Each cut is a	representative	portion of a	completed	pulverized	sample.
(injust inclusion,	1/02). 110/01	Buch cut is a	representative	pornon oj a	compicica	purveruceu	sempre.

Sample #	Vein Thickness (cm)	Sample Width (cm)	Cut 1 (Au g/t)	Cut 2 (Au g/t)	Cut 3 (Au g/t)	Complete Pulverization (Au g/t)	Average Grade (Au g/t)
5601 - A	8	17	24.10	24.95			24.66
1981 - B		30					55.00
5602 - C	10	23	11.91	10.49			11.34
5603 - D	5	16	9.36	14.46	11.34		11.62
5604 - E	11	25	71.44	73.14			72.29
5605 - F	10	20	16.73	21.26	29.77		22.68
5606 - G	7	15	227.93	209.22			218.57
5607 - H	11	19	77.11	78.53			77.96
5608 - I	8	17	1.70	2.27			1.98
5609 - J	21	32	30.90	2.18	27.78		26.93
5610 - K	8	14	2.27	3.40			2.83
5611 - L	6	16	4.25	3.12			3.69
5612 - M	18	25	5.10	4.25			4.82
5613 - N	10	21	1.70	3.40	7.09	6.24	6.24
5614 - O	18	33	28.63	30.33			29.48
5615 - P	12	19	293.98	266.76			280.37
5616 - Q	25	30	14.46	24.66	7.65	12.47	12.47
5617 - R	15	23	3.40	6.80	4.54		4.82
5618 - S	9	17	1.98	1.98			1.98
5619 - T	44	63	0.57	0.85			0.85

2002 and 2009 Sampling by Phoenix and Mhakari

Phoenix Matachewan Mines Inc. in 2002 and Mhakari Resources Inc. in 2009 carried out prospecting and mapping programs over their Argyle Property southern claims that coincidently covered the Garvey occurrences located within the northern portion of the current Ashley Project. These operators collected 32 grab samples from the Garvey occurrences which were sent to Swastika Laboratories and Activation Laboratories for gold assay analysis. The Phoenix samples ranged from below detection (<0.1 g/t Au) up to 8.78 g/t Au while the Mhakari samples ranged from below detection (<0.01 g/t Au) up to 45.0 g/t Au (Table 9).

Sample #	Sampling Date	Easting N83Z17	Northing N83Z17	Rock Type	Au (g/t)
6817	20-Jul-02	506834.37	5318102.81	Boulder	1.01
6818	20-Jul-02	506838.37	5318109.37	Quartz Vein	0.07
6834	24-Jul-02	506799.29	5317324.68	Boulder	0.01
6835	24-Jul-02	506801.29	5317329.45	Boulder	0.88
6836	24-Jul-02	506800.49	5317326.47	Boulder	0.88
6837	24-Jul-02	506803.29	5317328.26	Boulder	0.33
6838	24-Jul-02	507072.31	5317520.57	Pillowed Basalt	0.13
6839	24-Jul-02	507013.79	5317611.73	Boulder	< 0.01
6840	24-Jul-02	507212.54	5317362.15	Pillowed Basalt	0.05
6841	24-Jul-02	507254.44	5317443.89	Basalt	0.12
6842	24-Jul-02	507677.08	5317329.96	Boulder	0.36
6880	24-Jul-02	507016.1	5319647.87	Basalt	0.01
54401	16-Jun-02	506811.64	5318718.69	Quartz Vein	5.55
54402	17-Jun-02	506811.64	5318718.69	Quartz Vein	2.33
54403	18-Jun-02	506811.64	5318718.69	Quartz Vein	1.78
54404	19-Jun-02	506803.66	5318703.18	Quartz Vein	0.13
54405	20-Jun-02	506637.5	5318496.69	Quartz Vein	3.98
54406	17-Jun-02	506637.5	5318496.69	Quartz Vein	0.49
54407	18-Jun-02	506637.5	5318496.69	Quartz Vein	1.13
54408	16-Jun-02	506690.7	5318494.96	Quartz Vein	8.78
54414	18-Jun-02	506619.83	5319249.71	Syenite	0.28
54434	22-Jun-02	506807.11	5318489.14	Basalt	0.11
54435	22-Jun-02	506805.09	5318510	Basalt	< 0.01
54437	22-Jun-02	506843.1	5318499.31	Basalt	0.01
JW-09-02	n/a	503526	5315788	Altered Felsic Metavolcanics	< 0.1

Table 9. 2002 and 2009 Au Rock Sample Assay Results Taken from Garvey Occurrences *(After Jones and Wagg, 2002; and Walker, 2009).

JW-09-04	n/a	506738	5318094	Garvey South Quartz Vein	3.7
JW-09-05	n/a	506770	5318077	Metavolcanics	OA
JW-09-06	n/a	506770	5318095	Intermediate Metavolcanics	0.3
JW-09-07	n/a	506703	5318077	Quartz Vein	0.5
JW-09-08	n/a	506733	5318559	Quartz Vein	45
JW-09-09	n/a	506733	5318657	Deformed Silicified Host Rock	<0.1
JW-09-10	n/a	506733	5318655	Garvey Quartz Vein	26.1

2015 Prospecting and Sampling Program

Between July and October 2015, a prospecting and sampling program covering five (5) known prospective zones (Ashley Mine, Garvey, Ashley West, Homestake, and Kiernicki) within the Ashley Project (Figure 6) was completed by prospectors (current Claim Owners) including Andrew McLellan and three others. A total of seventy-four (74) rock grab samples and fourteen (14) soil samples were collected from various localities within the Project, mainly focusing on five (5) of the known prospective zones (McLellan, 2015).

The grab samples were mainly taken from quartz veins and several from basaltic host rocks and analyzed for gold as well as six samples for multi-elements using ICP-MS (Figure 6). The assay results returned interesting and sometimes, high grade gold with values ranging from 0.02 g/t Au up to 672.18 g/t Au (Table 10). Six (6) of the rock samples returned greater than 100 g/t Au.

Sample #	Sampling Date	Easting N83Z17	Northing N83Z17	Rock Type	Au (g/t)
1401	6-Jul-15	507661	5317738	Quartz Vein	672.18
1402	6-Jul-15	507629	5317821	Quartz Vein	11.52
1403	6-Jul-15	507629	5317821	Quartz Vein	564.44
1404	6-Jul-15	507629	5317821	Quartz Vein	499.73
1405	8-Jul-15	506971	5317989	Diabase	2.18
1406	8-Jul-15	506971	5317989	Diabase	1.8
1407	8-Jul-15	506931	5317910	Diabase	0.59
1408	8-Jul-15	506773	5318078	Quartz Vein	1.37
1409	8-Jul-15	506773	5318078	Quartz Vein	1.29
1410	8-Jul-15	506769	5318076	Quartz Vein	4.52
1411	8-Jul-15	506742	5318091	Quartz Vein	4.43
1412	8-Jul-15	506742	5318091	Quartz Vein	1.25

Table 10. 2015 McLellan Rock Sample Gold Results*(after McLellan, 2015).

Sample #	Sampling Date	Easting N83Z17	Northing N83Z17	Rock Type	Au (g/t)
1413	8-Jul-15	506701	5318090	Quartz Vein	1.53
1414	8-Jul-15	506701	5318090	Basalt	0.84
1423	9-Jul-15	506790	5318676	Quartz/Basalt	2.54
1424	9-Jul-15	506790	5318676	Quartz/Basalt	75.94
1425	9-Jul-15	506790	5318676	Quartz/Basalt	8.05
1426	9-Jul-15	506734	5318661	Quartz Vein	271.1
1427	9-Jul-15	506734	5318661	Quartz Vein	302.16
1428	9-Jul-15	506739	5318660	Quartz Vein	5.55
1429	9-Jul-15	506733	5318658	Quartz Vein	15.61
1430	9-Jul-15	506741	5318589	Quartz Vein	0.31
1431	9-Jul-15	506741	5318589	Quartz Vein	3.77
1432	9-Jul-15	506728	5318569	Quartz Vein	49.21
1433	9-Jul-15	506734	5318560	Quartz Vein	63.91
1434	9-Jul-15	506803	5318480	Quartz Vein	1.17
1435	9-Jul-15	506867	5318481	Quartz Vein	69.49
1436	9-Jul-15	507644	5317758	Quartz Vein	153.14
1437	9-Jul-15	507644	5317758	Quartz Vein	41.33
1438	9-Jul-15	507644	5317758	Quartz Vein	85.3
1439	3-Aug-15	506802	5317324	Quartz Breccia	0.9
1440	3-Aug-15	506125	5317408	Basalt	0.03
1441	3-Aug-15	506077	5317272	Quartz Vein	0.06
1442	3-Aug-15	506160	5317236	Basalt	0.11
1443	3-Aug-15	506197	5317128	Basalt	0.1
1444	3-Aug-15	506380	5317048	Quartz Vein	0.09
1445	3-Aug-15	506380	5317048	Quartz Vein	0.05
15001	5-Aug-15	507546	5315630	Cobalt Conglomerate	0.1
15002	5-Aug-15	507546	5315630	Quartz Feldspar Porphyry	0.09
15003	5-Aug-15	507534	5315617	Cobalt Conglomerate	0.06
15004	5-Aug-15	507509	5315642	Cobalt Conglomerate	0.03
15005	5-Aug-15	507414	5315756	Quartz Vein	0.06
15006	5-Aug-15	507414	5315756	Chert	0.02
15007	5-Aug-15	506999	5315748	Quartz Vein	0.04
15008	5-Aug-15	506885	5315823	Quartz Matrix	0.02
15009	5-Aug-15	506885	5315823	Quartz Matrix	0.02
15010	5-Aug-15	506508	5318223	Basalt	0.02
15011	4-Aug-15	507748	5317785	Quartz Vein	2.43

Sample #	Sampling Date	Easting N83Z17	Northing N83Z17	Rock Type	Au (g/t)
15018	2-Sep-15	508168	5318244	Basalt	0.016
15019	9-Oct-15	506699	5318486	Quartz Vein	1.59
15020	9-Oct-15	506641	5318493	Quartz Vein	2.74
15021	13-Aug-15	507508	5318161	Quartz Vein	0.02
J1015A1	10-Jul-15	506741	5318589	Quartz Vein	0.65
J1015A2	10-Jul-15	506741	5318589	Quartz Vein	0.57
J1015A3	10-Jul-15	506741	5318589	Quartz Vein	0.49
J1015A4	10-Jul-15	506741	5318589	Quartz Vein	1.23
J1015A5	10-Jul-15	506741	5318589	Quartz Vein	0.55
J1015A6	10-Jul-15	506741	5318589	Quartz Vein	3.88
RA	21-Jun-15	507672	5317699	Basalt	4.25
RB	21-Jun-15	507672	5317699	Basalt	8.71
RC	21-Jun-15	507672	5317699	Basalt	0.21
SA	21-Jun-15	507636	5317791	Basalt	0.66
SB	21-Jun-15	507636	5317791	Basalt	1.16
SC	21-Jun-15	507636	5317791	Basalt	0.9
SD	21-Jun-15	507636	5317791	Basalt	2.47
SE	21-Jun-15	507636	5317791	Basalt	1.32
SF	21-Jun-15	507636	5317791	Basalt	1.47
SG	21-Jun-15	507636	5317791	Basalt	5.87

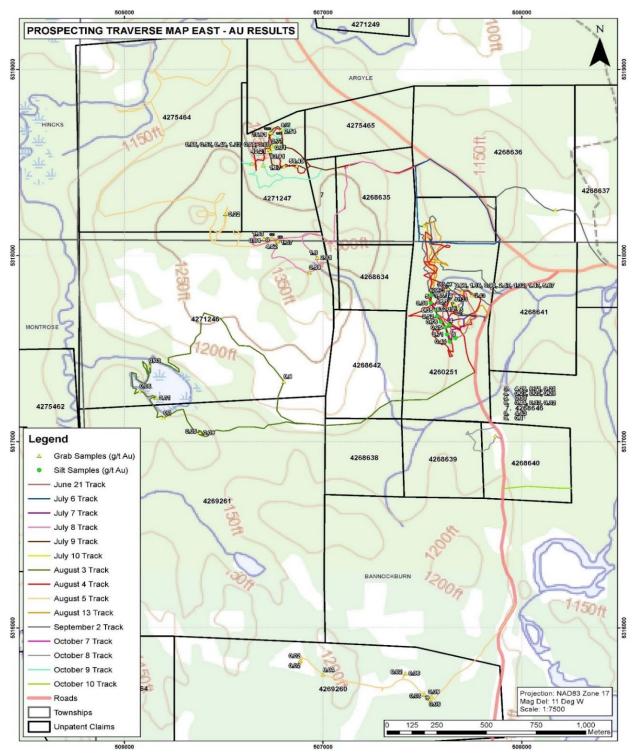


Figure 6. McLellan (2015) Surface Grab Sample Locations (McLellan, 2015).

6.2.1.2 Soil Sampling

2015 Prospecting and Sampling Program

Between July and October 2015, a prospecting and sampling program conducted within the Ashley Project was completed by prospectors (current Claim Owners) including Andrew McLellan and three others. Within this larger program, a total of fourteen (14) soil samples were collected from the tailings area surrounding the historic Ashley Gold mine (Figure 6).

Results from the 14 soil samples, unsurprisingly indicate elevated gold content with values ranging from 0.2 g/t Au up to 0.71 g/t Au (Table 11).

Sample #	Sampling Date	Easting N83Z17	Northing N83Z17	Au (g/t)
1415	7-Jul-15	507635	5317539	0.43
1416	7-Jul-15	507623	5317518	0.71
1417	7-Jul-15	507615	5317615	0.25
1418	7-Jul-15	507592	5317645	0.76
1419	7-Jul-15	507523	5317674	0.52
1420	7-Jul-15	507568	5317708	0.35
1421	7-Jul-15	507541	5317746	0.38
1422	7-Jul-15	507544	5317787	0.38
R1	21-Jun-15	507635	5317627	0.27
R2	21-Jun-15	507635	5317627	0.2
R3	21-Jun-15	507635	5317627	0.28
R4	21-Jun-15	507665	5317556	0.44
R5	21-Jun-15	507665	5317556	0.37
R6	21-Jun-15	507665	5317556	0.32

Table 11. 2015 McLellan Soil Sample Gold Assay Results*(after McLellan, 2015).

2016 Prosper Gold Corp Soil Sampling Program

Between June and July 2016, Prosper Gold Corp conducted a 5,769 B-Horizon soil sampling program over two separate grids, one relevant to this report covering the Ashley Mine - Garvey trend within the Ashley Project and further northwest, however, only the lower half of the grid is within the current Project boundary (Figure 7). The second grid covering the Powell Lake Syenite to the east is outside of the current Project boundary, thus, not relevant to this Technical Report. Original data of this survey is unavailable and cannot be verified or re-worked.

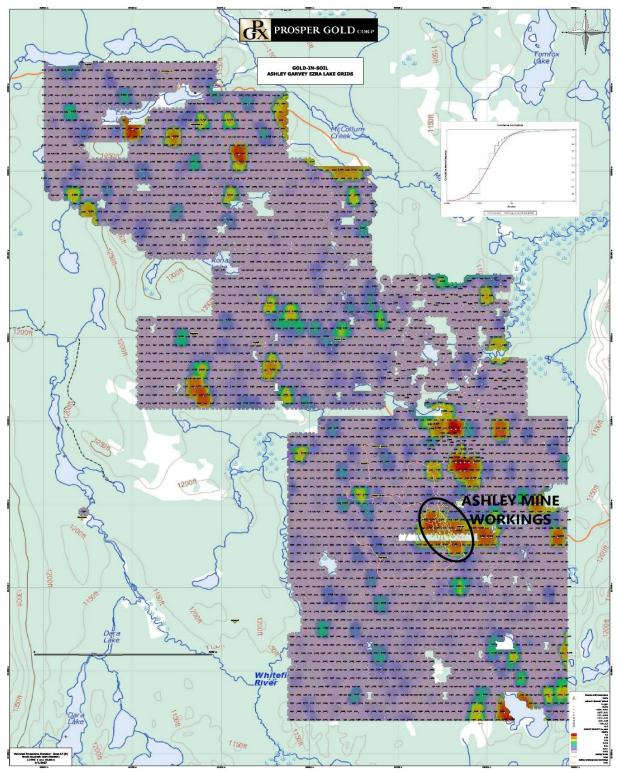


Figure 7. Prosper Gold's 2016 Gold-in-Soil Sample Locations Heat Map *(after Tempelman-Kluit, 2017).

6.2.2 Historic Drilling

There are records of thirteen (13) operators in the Ashley MDI that have carried out diamond drilling programs at various localities within the Project boundary (Figure 8). The result of each drilling program is recorded and extracted from numerous specific historic reports. Each report contains to varying degrees, core logging columns; however, few actually report the assay results of each interval even though core sampling for assaying was performed.

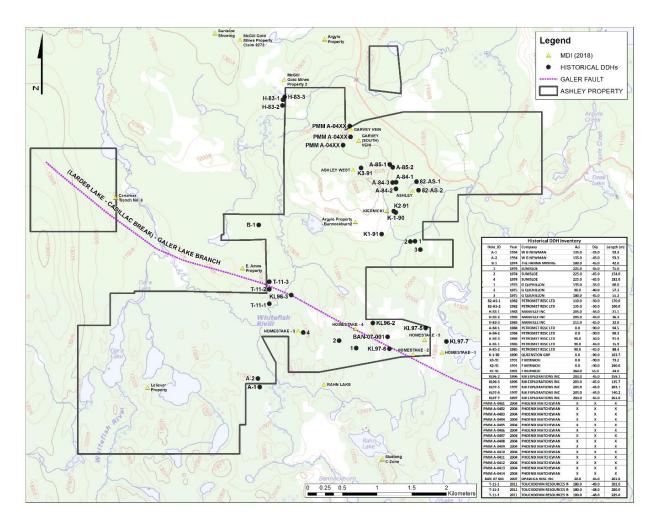


Figure 8. Drill Hole Locations by Different Operators from 1954 to 2015 in OGS Database.

According to historic reports, a total of at least 16,357m was drilled by the thirteen known drill operators over 80 DDHs ranging from a minimal 24m total depth hole by Fred Kiernicki in 1991 and a 1000m total depth hole drilled west of the Ashley Mine by Prosper Gold Corp in 2016 (Table 12). In 2004, Phoenix Matachewan carried out a sixteen (16) hole diamond drilling program on the Garvey veins, however, the results of this drilling were not reported and therefore, does not

exist in the Ashley MDI. The Phoenix Matachewan DDHs are included in the total hole count, however, since depths are not known, they cannot be added to the total meterage count drilled.

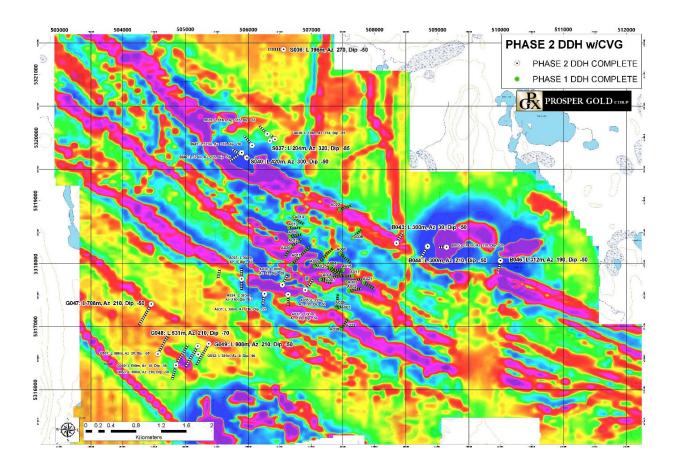


Figure 9. Prosper Gold's Approximate 2016/2017 Drill Hole Locations on CVG Mag*.

*Lost Data: Extracted from an internal Prosper Gold presentation memo found in the Ashley MDI files.

Similarly, all detailed records pertaining to Prosper Gold Corp's extensive 2016 drill program have apparently been lost and were thus never filed with the government for assessment. Unfortunately, only small tidbits of information about Prosper's 2016 drilling program exist within a single press release (Prosper Gold press release dated January 24, 2017) and an internal presentation showing drill traces (Figure 9), thus the author can add them to the drilling summary (Table 13) highlight, extract the map image, and mention the completion of work but not interpret or verify the validity of the data.

Year	BHID	Company	East	North	Length (m)	Dip	Azimuth
1954	A-1	W G NEWMAN	505423	5314949	135	-35	93
1954	A-2	W G NEWMAN	505396	5315072	135	-45	93
1974	B-1	THE HANNA MINING CO.	505409	5317285	180	-45	42
1974	1	GEORGE SUNISLOE	506814	5315512	225	-45	75
1974	2	GEORGE SUNISLOE	506567	5315618	225	-45	154
1974	4	GEORGE SUNISLOE	506051	5315737	225	-45	182
1975	1	G QUENILLON	507663	5317051	135	-35	68
1975	2	G QUENILLON	507596	5317045	90	-40	57
1975	3	G QUENILLON	507739	5316930	180	-45	55
1982	82-AS-1	PETROMET RESOURCES LTD	507683	5317910	110	-50	170
1982	82-AS-2	PETROMET RESOURCES LTD	507713	5317784	135	-50	100
1983	H-83-1	MANVILLE INC	505759	5319089	205	-45	31
1983	H-83-2	MANVILLE INC	505752	5319008	205	-45	36
1983	H-83-3	MANVILLE INC	505781	5319129	215	-45	32
1984	A-84-1	PETROMET RESOURCES LTD	507510	5318105	95	-90	95
1984	A-84-2	PETROMET RESOURCES LTD	507536	5318000	68	-90	68
1984	A-84-3	PETROMET RESOURCES LTD	507480	5318101	91	-50	91
1985	A-85-1	PETROMET RESOURCES LTD	507297	5318158	90	-45	16
1985	A-85-2	PETROMET RESOURCES LTD	507342	5318117	90	-45	88
1990	K-1-90	QUEENSTON GROUP	507384	5317464	104	-90	104
1991	K3-91	FRED KIERNICKI	506884	5318107	74	-90	73
1991	K2-91	FRED KIERNICKI	507356	5317484	340	-90	240
1991	K1-91	FRED KIERNICKI	507181	5317154	24	55	24
1996	KL96-2	RJK EXPLORATIONS INC	507054	5315873	203	-45	259
1996	KL96-3	RJK EXPLORATIONS INC	505877	5316275	203	-45	136
1997	KL97-5	RJK EXPLORATIONS INC	507815	5315799	203	-45	203
1997	KL97-6	RJK EXPLORATIONS INC	507293	5315502	203	-45	140
1997	KL97-7	RJK EXPLORATIONS INC	508115	5315606	203	-45	261
2004	A-0401	PHOENIX MATCHEWAN MINES				•	•
2004	A-0402	PHOENIX MATCHEWAN MINES					
2004	A-0403	PHOENIX MATCHEWAN MINES]				
2004	A-0404	PHOENIX MATCHEWAN MINES		Details of D	rillholes l	Jnknown	
2004	A-0405	PHOENIX MATCHEWAN MINES]				
2004	A-0406	PHOENIX MATCHEWAN MINES					
2004	A-0407	PHOENIX MATCHEWAN MINES					

Table 12. Historic Drilling Carried Out by Previous Operators on Ashley Project.

2004	A-0408	PHOENIX MATCHEWAN MINES					
2004	A-0409	PHOENIX MATCHEWAN MINES					
2004	A-0410	PHOENIX MATCHEWAN MINES					
2004	A-0411	PHOENIX MATCHEWAN MINES					
2004	A-0412	PHOENIX MATCHEWAN MINES					
2004	A-0413	PHOENIX MATCHEWAN MINES					
2004	A-0414	PHOENIX MATCHEWAN MINES					
2004	A-0415	PHOENIX MATCHEWAN MINES					
2004	A-0416	PHOENIX MATCHEWAN MINES					
2007	BAN- 07-001	OPAWICA RESOURCES INC	507267	5315674	201	-45	201
2011	T-11-1	TOUCHDOWN RESOURCES INC.	505562	5316150	180	-49	202
2011	T-11-2	TOUCHDOWN RESOURCES INC.	505562	5316359	180	-48	200
2011	T-11-3	TOUCHDOWN RESOURCES INC.	505562	5316466	180	-48	225
2016	A001	PROSPER GOLD CORP.	507406	5317303	297	-50	80
2016	A002	PROSPER GOLD CORP.	507600	5317570	333	-50	80
2016	A003	PROSPER GOLD CORP.	507566	5317716	373	-50	80
2016	A004	PROSPER GOLD CORP.	507316	5317940	300	-50	123
2016	A005	PROSPER GOLD CORP.	507461	5318158	321	-50	132
2016	A006	PROSPER GOLD CORP.	507151	5317748	566	-50	80
2016	A007	PROSPER GOLD CORP.	507151	5317746	268	-50	110
2016	A008	PROSPER GOLD CORP.	507663	5318410	300	-50	45
2016	A009	PROSPER GOLD CORP.	507056	5317960	600	-50	45
2016	A011	PROSPER GOLD CORP.	506700	5318000	675	-50	45
2016	A012	PROSPER GOLD CORP.	506676	5318278	300	-50	55
2016	A013	PROSPER GOLD CORP.	506647	5318578	300	-50	93
2016	A014	PROSPER GOLD CORP.	506713	5318725	300	-50	122
2016	A016	PROSPER GOLD CORP.	507497	5317898	203	-50	268
2016	A017	PROSPER GOLD CORP.	507649	5317806	300	-45	270
2016	A018	PROSPER GOLD CORP.	506657	5318432	300	-50	80
2016	A021	PROSPER GOLD CORP.	507818	5317710	300	-50	120
2016	A022	PROSPER GOLD CORP.	507457	5318859	300	-50	70
2016	A023	PROSPER GOLD CORP.	507472	5316970	300	-50	270
2016	A025	PROSPER GOLD CORP.	507156	5317999	1000	-73	123
2016	A026	PROSPER GOLD CORP.	506680	5318275	300	-50	210
2016	A028	PROSPER GOLD CORP.	507472	5316970	300	-50	35
2016	A029	PROSPER GOLD CORP.	507400	5317300	355	-50	5
2017	A030	PROSPER GOLD CORP.	506540	5317665	300	-55	25
2017	A031	PROSPER GOLD CORP.	506256	5317523	300	-55	190

80 Drill Holes Total 16,357						Meters	
2017	B045	PROSPER GOLD CORP.	509146	5318262	207	-50	270
2017	B044	PROSPER GOLD CORP.	508871	5318261	300	-50	210
2017	B043	PROSPER GOLD CORP.	508350	5318325	300	-50	30
2017	A035	PROSPER GOLD CORP.	506902	5317583	333	-50	135
2017	A034	PROSPER GOLD CORP.	505891	5317759	303	-55	180
2017	A033	PROSPER GOLD CORP.	505891	5317759	300	-55	0
2017	A032	PROSPER GOLD CORP.	506630	5317510	291	-50	180

6.2.2.1 Drilling Results

Review of individual holes from historic reports is beyond the scope of this Technical Report. The historic drilling programs were carried out based on different objectives and focused on specific prospects within the Project in regards to optional agreements and property ownerships in the past that in turn reduced the interpretation quality for potential targets that may exist in the Project. The author believes further interpretations and assaying for some of available historic drill core are required based on modern exploration perspective.

A summary of available gold assay results in the historic reports is presented in Table 13. Despite the fact, that there are no government assessment file records in the Ashley MDI for Phoenix Matachewan Inc's 2004 drilling program, Walker (2009) reported for Mhakari Resources Inc. that drilling at the Garvey vein in 2004 by Phoenix Matachewan Inc., completed approximately 14 drill holes (press release dated July 26, 2004) to test the potential for a high grade, low tonnage, near surface deposit. They reported intersections that ranged from 0.7 g/t Au across 0.5m up to 29.8 g/t Au across 0.4m. Table 14 presents the highlight gold assay results of Phoenix Matachewan's drilling program (from press release July 26, 2004), however, no geographical location data is available, and data cannot be verified by the author.

The most notable gold intercepts identified in the 2017 reports were 4.0m grading 0.33 g/t Au, from 33.0 to 37.0m in hole A030, and 7.5m grading 0.46 g/t Au, from 99.0 to 106.5m in hole A033.

As previously stated, the issuer currently has no data record pertaining to the 2016 Prosper Gold drilling program, so data cannot currently be verified by the author. The author however, found a a Prosper Gold Corp press release from their website dated January 24, 2017 stating that within the 23 holes drilled in 2016, the highlight gold assays in drill intercepts on the Ashley Project ranged from 0.95 g/t Au over 6m in hole A021 up to 43.3 g/t Au over 1.0m in hole A011. (https://www.prospergoldcorp.com/news/prosper-gold-corp-drilling-update/).

In 2017, Prosper Gold completed a 24-hole diamond drill (NQ) program, totaling 8,911.7 meters throughout the area, however, only nine (9) of the holes totaling approximately 2,634 meters were within the current Project bounds and relevant to the scope of this Technical Report. The 2017 drilling appears to have targeted more outlier areas and zones between the known showings, looking for syenite intrusions like that found at Alamos Gold's Young-Davidson mine. The most notable gold intercepts identified in 2017 drilling (Hedalen 2019) were 4.0m grading 0.33 g/t Au from 33.0 to 37.0m in hole A030, and 7.5m grading 0.46 g/t Au from 99.0 to 106.5m in hole A033.

BHID	Company	FROM (m)	TO (m)	LENGTH (m)	Au (g/t)	Remarks
A001	PROSPER GOLD	()	()	(111)		No assays reported.
A002	PROSPER GOLD					No assays reported.
A003	PROSPER GOLD	54.00	55.00	1.00	5.51	
A004	PROSPER GOLD	183.75	189.00	5.25	1.81	
A005	PROSPER GOLD	44.00	46.00	2.00	2.73	
"	PROSPER GOLD	147.00	148.00	1.00	7.34	
A006	PROSPER GOLD	183.00	185.00	2.00	2.71	
A007	PROSPER GOLD					No assays reported.
A008	PROSPER GOLD					No assays reported.
A009	PROSPER GOLD	113.00	114.00	1.00	9.46	
"	PROSPER GOLD	316.50	317.50	1.00	2.35	
"	PROSPER GOLD	343.00	344.00	1.00	10.80	
A011	PROSPER GOLD	72.00	73.00	1.00	3.44	
"	PROSPER GOLD	128.00	129.00	1.00	43.30	
"	PROSPER GOLD	244.50	246.50	2.00	2.24	
"	PROSPER GOLD	252.00	255.00	3.00	2.29	
A012	PROSPER GOLD	128.00	129.00	1.00	3.59	
A013	PROSPER GOLD	44.00	45.00	1.00	4.62	
A014	PROSPER GOLD	32.00	35.00	3.00	1.40	
"	PROSPER GOLD	53.00	54.00	1.00	2.50	
"	PROSPER GOLD	264.00	265.00	1.00	1.85	
A016	PROSPER GOLD					No assays reported.
A017	PROSPER GOLD					No assays reported.
A018	PROSPER GOLD					No assays reported.
A021	PROSPER GOLD	267.00	273.00	6.00	0.95	
A022	PROSPER GOLD					No assays reported.
A023	PROSPER GOLD					No assays reported.
A025	PROSPER GOLD	27.00	28.00	1.00	24.40	
A026	PROSPER GOLD	225.00	226.00	1.00	3.79	
A028	PROSPER GOLD					No assays reported.
A029	PROSPER GOLD	230.00	238.00	8.00	1.61	
A030	PROSPER GOLD	33.00	37.00	4.00	0.30	
A031	PROSPER GOLD					No assays reported.

Table 13. Ashley Project Historical DDHs Highlight Gold Assays.

BHID	Company	FROM	ТО	LENGTH	Au	Remarks
		(m)	(m)	(m)	(g/t)	
A032	PROSPER GOLD					No assays reported.
A033	PROSPER GOLD	99.00	106.50	7.50	0.46	
A034	PROSPER GOLD					No assays reported.
A035	PROSPER GOLD					No assays reported.
B043	PROSPER GOLD					No assays reported.
B044	PROSPER GOLD					No assays reported.
B045	PROSPER GOLD					No assays reported.
A-1	W G NEWMAN					No assays reported.
A-2	W G NEWMAN					No assays reported.
B-1	HANNA MINING					No assays reported.
B-2	HANNA MINING					No assays reported.
1	SUNISLOE					No assays reported.
2	SUNISLOE					No assays reported.
4	SUNISLOE					No assays reported.
1	G QUENILLON					No assays reported.
2	G QUENILLON					No assays reported.
3	G QUENILLON					No assays reported.
82-AS-1	PETROMET RESOURCES					No assays reported.
82-AS-2	PETROMET RESOURCES					No assays reported.
H-83-1	MANVILLE INC					No assays reported.
H-83-2	MANVILLE INC					No assays reported.
H-83-3	MANVILLE INC					No assays reported.
A-84-1	PETROMET RESOURCES	30.50	33.50	3.00	1.20	
A-84-2	PETROMET RESOURCES					No significant Au assays
A-84-3	PETROMET RESOURCES	62.60	64.50	1.90	1.28	
A-85-1	PETROMET RESOURCES					Hole lost in overburden
A-85-2	PETROMET RESOURCES	80.50	83.85	3.35	0.58	
K-1-90	F KIERNICKI					No assays reported.
K1-91	F KIERNICKI					Hole lost in overburden
K2-91	F KIERNICKI					0.75g/t Au reported but no sample info
K3-91	F KIERNICKI					0.15g/t Au reported but no sample info
KL96-2	RJK EXPLORATIONS	123.90	142.71	18.81	0.20	*
"	RJK EXPLORATIONS	139.75	142.71	2.96	0.51	Including
"	RJK EXPLORATIONS	141.33	142.23	0.90	0.85	and Including
KL96-3	RJK EXPLORATIONS					No significant Au assays
KL97-5	RJK EXPLORATIONS	193.00	194.00	1.00	0.38	······································
KL97-6	RJK EXPLORATIONS					No significant Au assays
KL97-7	RJK EXPLORATIONS	157.50	160.30	2.80	1.23	

BHID	Company	FROM (m)	TO (m)	LENGTH (m)	Au (g/t)	Remarks
BAN-07-001	OPAWICA RESOURCES					No significant Au assays
T-11-1	TOUCHDOWN RESOURCES					No significant Au assays
T-11-2	TOUCHDOWN RESOURCES	67.00	70.00	3.00	0.13	
T-11-3	TOUCHDOWN RESOURCES	62.00	63.50	1.50	0.11	

Table 14. Phoenix Matachewan 2004 Highlight Drilling Results *(PR July 26, 2004).

DDH No.	Company	From (m)	To (m)	Width (m)	Au (g/t)
PMM A-0401	PHOENIX MATCHEWAN	29.00	29.20	0.20	4.00
PMM A-0402	PHOENIX MATCHEWAN	26.20	26.60	0.40	29.80
PMM A-0403	PHOENIX MATCHEWAN	30.50	31.10	0.60	1.30
"	PHOENIX MATCHEWAN	31.10	31.60	0.50	2.40
"	PHOENIX MATCHEWAN	31.60	32.10	0.50	0.70
PMM A-0404	PHOENIX MATCHEWAN	31.00	31.35	0.35	1.20
PMM A-0405	PHOENIX MATCHEWAN	N	o Significant A	u Assays Repor	rted
PMM A-0406	PHOENIX MATCHEWAN	N	o Significant A	u Assays Repor	rted
PMM A-0407	PHOENIX MATCHEWAN	16.20	16.70	0.50	1.10
PMM A-0408	PHOENIX MATCHEWAN	14.60	15.20	0.60	1.40
"		17.42	17.53	0.11	1.40
"		20.70	20.80	0.10	13.10
PMM A-0409	PHOENIX MATCHEWAN	N	o Significant A	u Assays Repor	ted
PMM A-0410	PHOENIX MATCHEWAN	N	o Significant A	u Assays Repor	ted
PMM A-0411	PHOENIX MATCHEWAN	29.00	29.20	0.20	2.70
PMM A-0412	PHOENIX MATCHEWAN	N	o Significant A	u Assays Repor	rted
PMM A-0413	PHOENIX MATCHEWAN	33.20	33.80	0.60	4.60
"		45.10	45.50	0.40	6.90
PMM A-0414	PHOENIX MATCHEWAN	30.80	31.40	0.60	3.20
PMM A-0415	PHOENIX MATCHEWAN	13.30	13.90	0.60	24.00
PMM A-0416	PHOENIX MATCHEWAN	59.40	59.60	0.20	1.30

7 GEOLOGICAL SETTINGS AND MINERALIZATION

7.1 Regional Geology

The Ashley Project is located within the western Abitibi Greenstone Belt, which is the largest preserved Archean greenstone belt in the world and one of the most continuous units of the Superior Geologic Province and is underlain by Archean greenstone deposited approximately 2.7 Ga (Figure 10). The Abitibi Greenstone Belt extends for 750km from the Grenville Province in the east to the Kapuskasing Gneiss Belt in the west, and for over 170km from the Opatica Gneissic belt in the north to the Proterozoic Huronian sediments in the south. The belt contains abundant orogenic gold deposits, volcanogenic massive sulfide, and copper-nickel (PGE) deposits (Card and Poulsen 1998) (Figure 10). Mafic to felsic volcano-sedimentary strata predominate throughout the belt, but ultramafic volcanic and alkali-intrusive rocks are common. Sedimentary rocks consist of both chemical and clastic varieties and occur as both intravolcanic sequences and as unconformably overlying sequences and generally metamorphosed to greenschist facies. A wide spectrum of mafic to felsic, pre-tectonic, syn-tectonic, and post-tectonic intrusive rocks are present. All lithologies are cut by late, generally northeast-trending Proterozoic diabase dykes.

Sub-horizontal sedimentary rocks of the Proterozoic Cobalt Group unconformably overlies the Archean rocks south of the Ashley Project area. They consist primarily of sandstone, arkose, conglomerate, wacke, argillite, and siltstone classified as Gowganda Formation. Huronian Cobalt Group metasedimentary rocks are found at the southwest side and southeast corner of the Ashley Project area.

The western Abitibi Greenstone Belt is separated into eight volcano-sedimentary assemblages based on lithology and stratigraphic relations (Table 15). These Assemblages are intruded by four suites of plutonic rocks differentiated by lithology and timing relationships (Ayer et al., 2005).

Table 15.	Geological	assemblages/formations	of the western A	Abitibi Greenstone Belt
-----------	------------	------------------------	------------------	-------------------------

*(after Hedalen et al., (2019).

Assemblage	Age (Ma)	Thickness (km)	Dominant Rock Types
Timiskaming	2677 - 2670	<3	Polymictic conglomerate and sandstone in subaerial alluvial fan,
8			fluvial and deltaic settings; local alkaline volcanic rocks
Porcupine	2690 - 2685	<3	Local calc-alkaline felsic pyroclastic rocks overlain by turbiditic
rorcupine	2070 - 2005	< 3	argillite to wacke
Blake River	2704 - 2695	~11-17	Minor metaclastic rocks and high Mg and Fe tholeiite, overlain by
Diake Kivei	2704 - 2093	~11-17	mafic to felsic tholeiitic to calc-alkaline volcanic rocks

2710 - 2704	~10-15	Mafic volcanic rocks with ultramafic and intermediate to felsic volcanic rocks, iron formation; overlain by intermediate to felsic,
		calc-alkaline, amygdaloidal flows, heterolithic volcaniclastic rocks
		Intermediate to felsic calc-alkaline volcanic rocks, overlain by
2719 - 2711	~10	mafic volcanic rocks with local ultramafic and felsic volcanic
		rocks and graphitic metasedimentary rocks
2722 2720	<12	Tholeiitic basalts with komatiites and local felsic volcanic rocks
2123 - 2120	<12	Tholentic basards with komatnes and local feisic volcame focks
2734 2724		Mafic to felsic calc-alkaline volcanic rocks with local tholeiitic
2734-2724	~5	mafic volcanic rocks capped by iron formation
2750 2725	5	Ultramafic, mafic, and felsic volcanic rocks with minor iron
2130 - 2135	~5	formation
> 2750	5	Intermediate to felsic, calc-alkaline pyroclastic rocks capped by
>2750	~3	iron formation
		2719 - 2711 ~10 2723 - 2720 <12

The Abitibi Greenstone Belt rocks have undergone a complex sequence of deformation events ranging from early folding and faulting through later upright folding, faulting, and ductile shearing resulting in the development of two large, dominantly east-west trending, steeply dipping crustal-scale deformation corridors of branching, high strain zones ("breaks") that form lozenge-like patterns. The Destor-Porcupine system on the north and the regional Larder Lake-Cadillac Fault Zone (LLCFZ) (Figure 11) that is believed to cut across the Ashley Project within a direct splay known as the Galer Fault. The LLCFZ has a sub-vertical dip, and generally strikes east-west. The LLCFZ is characterized by chlorite-talc-carbonate schist, and the deformation zone can be followed for over 300km from west of Kirkland Lake, Ontario and the Ashley Project eastward to Val d'Or, Quebec. It is believed that early, dominantly extensional deformation of the LLCFZ may be related to extrusion of the Timiskaming alkaline metavolcanic and metasedimentary rocks significant to economic mineral deposits.

Gold deposits in the Abitibi Greenstone Belt are spatially related to the two fault systems and follow them along the entirety of known strike length and splays for some 300km. Canada's largest producing gold camps are along these two fracture systems. Intense ductile deformation followed Timiskaming timing and resulted in the Larder Lake-Cadillac Fault Zone, the southern structural corridor. This event is also thought to have produced D2 structures with reverse-dextral movement. Following the D2 event, deformation changed to dominantly NW-SE extension. This produced brittle-ductile northeast striking, steeply south dipping faults characteristic of the Kirkland Lake fault zone and referred to as D4 structures. Much of the gold in the Larder Lake deposits is associated with the D2 event, while Kirkland Lake deposits relate to D4 structures.

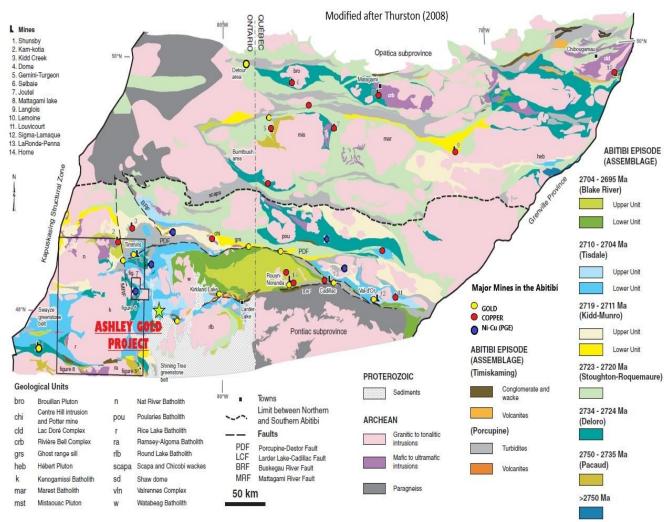


Figure 10. Abitibi Greenstone Belt Geology with Major Cu, Au, and Ni-Cu (PGE) Mines

North trending Matachewan diabase dykes, obvious from, and accurately defined by, total field magnetic surveys, intruded the Archean rocks in a concluding event. They are widespread and voluminous near Matachewan but less so on the Ashley Project area (Rainsford, 2005). Sudbury diabase and Olivine diabase dykes are also present throughout the region. Surficial deposits consist of glacial till with relatively little glaciofluvial and glaciolacustrine material. Grooves, striae, chattermarks, roches moutonnee, crag, tail features, and glacial flutings indicate that glacial ice flow was to the south-southeast (Bajc and Crabtree, 2001).



Figure 11. Local Regional Geology Including Major Producers and Project Location.

7.2 Property Geology

From south to north the geology of the Ashley Project area includes Archean, north-dipping, lower mafic, calc-alkalic volcanic flows (Lower Tisdale) (Prefontaine et al., 2019), overlain by tholeiitic basalt (Upper Tisdale) with pebble metaconglomerate, metasiltstone, and metasandstone (Timiskaming) along their contact. The Montrose formation (2714-2711 Ma) of the Kidd-Munro assemblage is overlain by the Geikie (circa 2704 Ma) and Little Night Hawk (2703-02 Ma) formations of the Tisdale assemblage. Strata trend toward WNW (Figure 12), dip steeply NNE and the sequence generally faces north. Intrusive rocks include peridotite, pyroxenite, syenite, diorite, and diabase. Metamorphism in the Archean bedrock ranges from sub-greenschist to lower amphibolite facies. A majority of the Project geology was extracted from Hedalen et al., (2019).

The Upper Tisdale Assemblage on the Ashley Project consists of calc-alkaline mafic to felsic metavolcanics readily distinguished by feldspar phenocrysts. Trachytoid-textured flows have been described in the Upper Tisdale close to syenite intrusions. The contact between the Lower and Upper Tisdale metavolcanics coincides with or parallels the Larder Lake-Cadillac Deformation

Zone. Thin sheets of syenite porphyry, metasiltstone, and metasandstone are found locally along the contact. Whether the contact is conformable or deformed is unknown.

Dykes and irregular shaped plugs of intermediate to felsic feldspar-quartz porphyry are found throughout the Project and are most common and volumetrically important in the center of the Project, close to the Upper-Lower Tisdale contact. Larger bodies of intermediate to felsic stocks, up to a kilometer across, are typically porphyritic, medium-grained, and grey to pink coloured. They tend to intrude the Upper Tisdale Assemblage. Smaller porphyries and syenite dykes on the scale of meters or tens of meters range in colour from pink to red. They are generally aligned with the foliation and Larder Lake-Cadillac trend. Syenite porphyries are also exposed as host to or associated with quartz veins. Hematitic and potassic alteration is common especially where fabric and/or quartz veining is well-developed.

Several north trending diabase dykes are known within the Project bounds. Regional metamorphic gradients within the western Abitibi sub province may be important to the localization of gold deposits (Thompson, 2005 and Ayer et al., 2005). Thompson (2005) identified a roughly circular metamorphic halo grading from lower greenschist to transitional greenschist amphibolite facies broadly centered on the Hincks-Argyle township boundary just north of the historic Ashley Mine. The halo may mark a buried alkalic intrusion, especially given that several small alkaline and porphyritic intrusive bodies are exposed within it.

The Larder Lake-Cadillac Fault Zone with its branch, the Galer Fault (Figure 13) dominates the structural geology of the Project area. The system, traced for 350km plus eastward from the Project, is a NE-SW trending, steep dipping, anastomosing zone of concentrated strain with strike slip and vertical components with the Galer splay trending off in a NW-SE orientation. The deformation zone incorporates slices of intrusive rocks, Timiskaming sedimentary rocks, and ultramafics along its length. The breaks appear to also track stratigraphic discontinuities. The northern structural break coincides with the Lower-Upper Tisdale transition. The southern break, the Galer fault, is marked by a zone of deformation containing slices of sedimentary and intrusive rocks. The two structural breaks transect the roughly circular metamorphic gradient.

The auriferous quartz veins on the Ashley Project are hosted by Geikie formation tholeiitic flows. Veins of the Ashley system appear to be within a minimum 1,500m by 500m, northwest-southeast trending corridor on the north-end of the Project mostly consisting of massive to pillowed mafic metavolcanics of the Geikie formation (Tremblay, 1982). The pillows are elongated in a northwest direction and face northeast illustrating that the stratigraphic units strike northwest and dip steeply with tops facing northeast (McLellan, 2019).

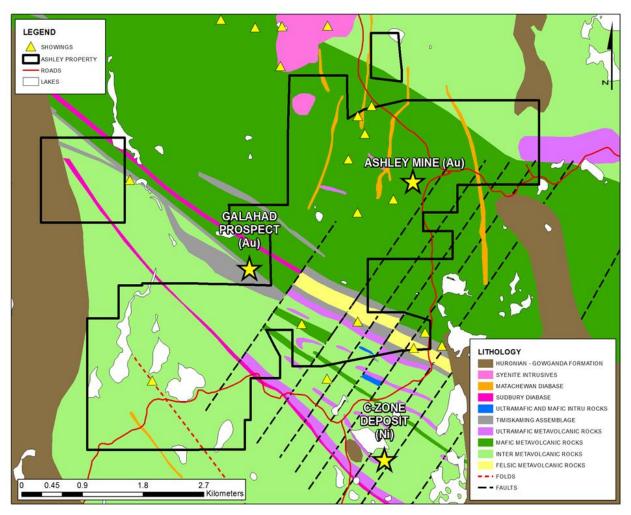


Figure 12. Ashley Project Local Geology and Gold Showings.

7.2.1 Lithological Descriptions

The lithologies found within the Ashley Project are best described by Tremblay (1982) and summarized in Table 16. Based on exposed outcrops on the Project, the metabasalts are the most common rocks and can be classified into three distinct facies (massive, pillowed, and variolitic/hyaloclastic). Table 16 provides a description summary of lithologies within the Project.

Table 16. Lithological description of different rock units within Ashley Project

*(summarized from Tremblay, 1982)

Lithology	Descriptions
	Matachewan diabase dykes - the youngest rocks exposed on the property. Strike N-S to
Diabase	NNW. The biggest dyke recorded to be 50-75m wide. Dykes are medium grained, dark
Dykes	grey in colour and contain equal proportions of feldspar and mafic minerals. They are
	generally magnetic and contain fine-grained disseminated magnetite.
Feldspar	The feldspar porphyry dykes are brick red on weathered and fresh surfaces. Phenocrysts
Porphyry	consist of euhedral tabular feldspar which are sometimes zoned and vary in size from 5mm
Dykes	to 1.2cm. Minor quartz phenocrysts up to 3mm are also noted. The groundmass is fine-
Dykes	grained crystalline consisting predominantly of pink feldspar with minor quartz.
Quartz	Has a pinkish buff weathered surface while the fresh surface is greenish. Phenocrysts are
Feldspar	prominent on the weathered surface and are comprised of 2-3mm anhedral quartz and
Porphyry	euhedral tabular plagioclase from 3-5mm in a fine-grained crystalline felsic groundmass.
	The quartz-feldspar porphyry body mapped on the W part of the property is interpreted to
Dombymy	be a stock. Contacts are interpreted as faults from the ground magnetic data. Contacts
Porphyry	between porphyries and volcanics are usually sharp and display only minor thermal
	metamorphism in the country rock. xenoliths are absent in the porphyries.
	Greenish-buff on weathered surface and grey-green on the fresh surface. Fragments are
Andesite	prominent on the weathered surface and occur as subrounded clasts ranging from 2 to
Pyroclastic	18cm. Most clasts consist of porphyritic andesites containing anhedral feldspar phenocrysts
	in a porphyritic andesite matrix. Greywacke fragments were noted.
Massive	Massive rhyolite has a characteristic bone-like weathered surface and a light grey-green
Rhyolite	fresh surface. Unit is fine-grained to very fine-grained, has a sugary texture and contains
Kilyönte	small (1mm) scattered subhedral to euhedral quartz phenocrysts.
	Felsic to intermediate flows and pyroclastics overlie metabasalts. On NE end of the
Intermediate-	Project, a NW trending massive rhyolite unit overlies the metabasalts. To the NW,
Felsic	metabasalts are overlain by an intermediate pyroclastic sequence. The sequence is
Metavolcanics	disrupted by faults and/or intrusions in the western part of the Project. The pyroclastic
	sequence is indicated to occupy synclinal basin whose axis is located north of the property.
Variolitic	Occur as round to oval, light-colored felsic blebs within a fine-grained black basaltic
Basalts	matrix. The varioles vary from 3mm to 3cm in diameter and may combine to form
Dasans	irregular felsic zones within the basalt. Most common within pillowed lavas.
	Two types are identified: 1) pillowed basalt with pillows usually less than 0.5m long and
Pillowed	with pillow rims usually less than 1cm wide; and 2) pillowed basalt with pillows
Basalts	approximately 1m long and characterized by thick 2cm+ pillow rims. The pillow basalts
	are generally fine-grained to aphanitic.
	Massive basalts vary from fine-grained, aphanitic to medium-grained, gabbroic rocks. The
Massive	fine-grained basalts are black in colour. Near quartz veins the basalts become silicified and
Basalts	epidotized containing sulfide (pyrite) disseminations. Medium-grained, massive basalts are
	greenish black, crystalline, and often contain fine disseminated magnetite.

7.3 Structure

Structures on the Ashley Project studied and described by Tremblay (1982) are the following:

The volcanic sequence is north-facing and trends from NNW on the southeastern part of the Project to northwest on the northern part of the Project (Figure 13). Most of the information on stratigraphic trends is provided by pillow lavas. A variolitic basalt unit mapped in the central part of the Project substantiates the trends indicated by pillow lavas. The mafic volcanic sequence is located on the south limb of a major synclinal basin whose core is occupied by the intermediate pyroclastics and minor rhyolite mapped on the northern part of the property. The axis of this fold was not mapped but regionally it is indicated to trend E-W. The change in trend from NNW to NW probably reflects a broad open fold with a N-S axis.

Several faults are interpreted on the Project (Figure 13). Two moderately dipping faults were reported in the Ashley Mine underground workings. One fault was reported as NE trending and the second fault was subparallel to the Ashley vein (north-south).

Three ENE trending faults and one NNE trending fault were interpreted from both ground magnetics data and geological mapping. The first fault trends ENE through Petromet's 1982 BL100N survey grid line at the approximate 115W survey line marker (Figure 13). A left lateral displacement of some 500 meters is indicated by both the interpreted displacement of a diabase dyke and the displacement of the basalt-andesite pyroclastic contact. A second ENE-trending fault passes through BL100N near line 122E. This fault is indicated to be the contact between volcanic lithologies to the east and the quartz feldspar porphyry stock to the west. A third ENE-trending fault-is interpreted to extend through BL100N survey grid line at the approximate 127W survey line marker. This fault is indicated to occur in the quartz feldspar porphyry stock. An NNE-trending fault is interpreted to extend through BL100N near the line 129W marker. This fault is at the contact between mafic volcanic lithologies to the west and the quartz feldspar porphyry stock. The sense of movement on the last three faults is not known but the two ENE faults could be interpreted as the faults bounding a horst block of quartz feldspar porphyry.

Three main fracture patterns and joint fracture sets were identified. The first joint set trends N-S to NNW and is generally steeply dipping (~90°). This set is related to the diabase dyke trend and probably reflects the fracture pattern controlling these dykes. The second joint set trends E-W to ENE and dips shallowly (20-40°) to the north. The Garvey and Garvey South veins are likely controlled by this fracture set. A third joint set (less prevalent than the above joint sets) trends NE to NNE and generally dips moderately (30-50°) NW or SE. The northeast trending vein explored for 200 meters on the second level of the Ashley Mine may be controlled by a fracture zone related to this joint set. The 10cm wide Garvey quartz veins exposed in the Petromet, 1982 trenching is also indicated to be controlled by this joint set.

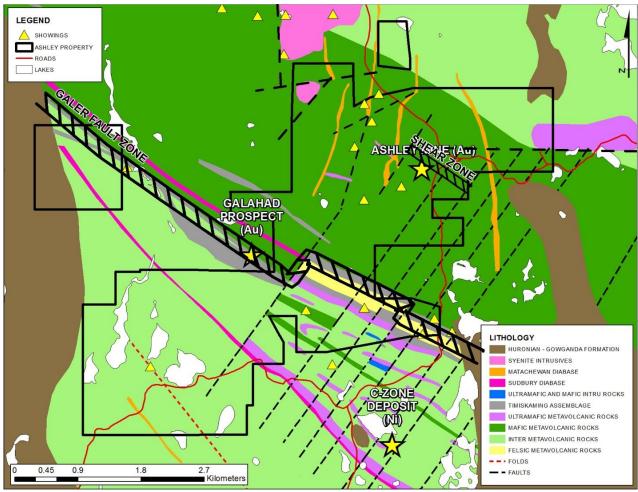


Figure 13. Structures on the Ashley Project.

7.4 Mineralization

Gold mineralization occurs in several quartz veins situated at varying localities and orientations throughout the Project (Figure 14). The veins are characteristically shallow dipping (between 30 and 55 degrees), vary from 1-2 feet (30-60cm) thick, and have associated pyritized, hematized, and epidotized basaltic host wall rocks. Wallrock alteration rarely extends more than a few centimeters beyond vein contacts and hydrofracturing. Native gold and gold tellurides are documented to occur within quartz and quartz-carbonate veins throughout the Project. Higher grade gold areas located within the Ashley Mine and Garvey surface exposures reportedly contained much visible gold and associated tellurides.

The following zones/occurrences have been explored by previous workers on the Ashley Project.

7.4.1 Ashley Vein

The Ashley quartz vein which has been subject to mining activities between 1932 and 1936 occurs predominantly in Archean basalt and is known to extend at least 610m. The vein strikes approximately 170° and has an average dip between 40° and 50° west. The vein is not exposed at surface and has been studied during underground workings at the former Ashley Mine by previous explorers (Rickaby 1932). Historical reports of ore minerals within the Ashley vein include pyrite, galena, sphalerite, chalcopyrite, altaite, native gold, and specularite which occur along fractures in the quartz. The course-grained pyrite was usually an indicator of high-grade ore. Fine-grained galena and altaite and course crystals of sphalerite are lesser constituents of the quartz vein. Native gold occurs as fine particles and small blebs associated with pyrite and altaite.

7.4.2 No. 1 Vein

The No. 1 vein surface expression is located 30m east of the Ashley Mine shaft. The vein strikes 155° and dips an average 30° west. The No. 1 vein is generally less than 30cm thick and consists of quartz containing variable quantities of sulfides, gold, and tellurides. Sulfides consist of blebs and aggregates of pyrite and minor chalcopyrite, galena, and sphalerite in the vein, and disseminations of pyrite in the adjoining iron carbonate altered basalts. Altered basalt around the quartz vein consists of variable degrees of silicification, carbonatization, epidotization, and hematization. The vein occupies a fracture zone in the basalt and there is generally no evidence of shearing in the vein or hosted basalt.

7.4.3 Garvey Vein

The Garvey occurrence is located 1.4km NW of the Ashley Mine, hosted between the massive and pillowed basalts of the Lower Tisdale Assemblage. Previous work has blasted and exposed the thicker part of the vein on the west bank of a narrow, deeply incised creek that appears to possibly be a significant north-south structure in the area. The Garvey quartz vein typically varies between 20cm and 50cm wide, strikes between 220° and 240°, and dips 20° to the north. The quartz is milky bull white and exhibits a sugary texture. Fine flaky visible gold has been described to occur within the quartz vein and is associated with pyrite, galena, and trace sphalerite and chalcopyrite. Three grab samples of the vein were collected by Walker, (2009), one of the host rocks and the two of the quartz veins approximately 100m apart along strike. Grab samples of the quartz vein assayed 45.0 g/t and 26.1 g/t Au, confirming the presence of high-grade gold within the vein and along its strike. The host rock reported an assay of 60 ppb Au. A bulk sample of 26 tons taken from the vein reported to have yielded 0.86 oz Au/t (Tremblay, 1982).

Drilling at the Garvey vein in 2004 by Phoenix Matachewan Inc., completed approximately 14 drill holes (press release dated July 26, 2004) to test the potential for a high grade, low tonnage, near surface deposit. They reported intersections ranging from 0.7 g/t Au across 0.5m up to 24 g/t Au across 0.6m. No assessment work was filed for this data and cannot be verified.

7.4.4 Garvey South

The Garvey South vein is located along the Argyle and Bannockburn Township boundary, approximately 500m south of the Garvey occurrence. Several trenches are present in the area, including two deep pits developed by previous explorers over and adjacent to the vein surface exposure. Gold is associated with a 100° striking quartz vein, dipping 20° to the south that has been traced for at least 135m and observed ranging from less than 1cm up to 30cm wide. Host rock alteration adjacent to the quartz vein is typically comprised of silicification, iron carbonate, and pyrite haloed up to 10cm away from the quartz vein. Reported historic grab samples from the Garvey South occurrence range from below detection (<0.01 g/t) up to 29 g/t Au. Drilling completed by Ashley Mining Corporation in 1938 reported "good" gold values from two drill holes on the east end of the vein and low gold values in the remaining five drill holes (Tremblay 1982) but these files were lost in a subsequent fire. Grab samples collected during prospecting completed by Walker, (2009), reported 3.7 g/t, 0.4 g/t, and 0.3 g/t Au from the Garvey South quartz veining and 0.5 g/t Au from the iron carbonate altered host rock basaltic metavolcanics.

7.4.5 Garvey East

The Garvey East occurrence, alternatively known as the Garvey Parallel occurrence is located approximately 50m to 60m northeast of the Garvey occurrence proper, striking approximately 240° and dipping 30° to the north. The Garvey East vein has not been detail studied by previous explorers and remains subject to further exploration work. Previous historic grab samples (Jones and Wagg, 2003) from the occurrence are reported as 0.35 oz/t, 0.03 oz/t, and 0.195 oz/t Au, equivalent to approximately 11.20 g/t, 0.96 g/t, and 6.24 g/t Au collected from a shallow dipping quartz vein and porphyry.

7.4.6 Ashley West / Kiernicki

The Ashley West occurrence was discovered during a stripping program by Fred Kiernicki in 1987 approximately 400m south-southwest of the Garvey South occurrence. It was characterized as a series of hematized breccias and fracture zones with quartz stringers, silicification, and pyrite. A single grab sample from the occurrence was reported to be 0.34 oz/t Au (10.88 g/t Au equivalent). A vertical 242-foot drill hole was completed in 1991 that intersected several quartz veins, however, the highest gold assay reported was only 0.004 oz Au/t. (Kiernicki, 1991).

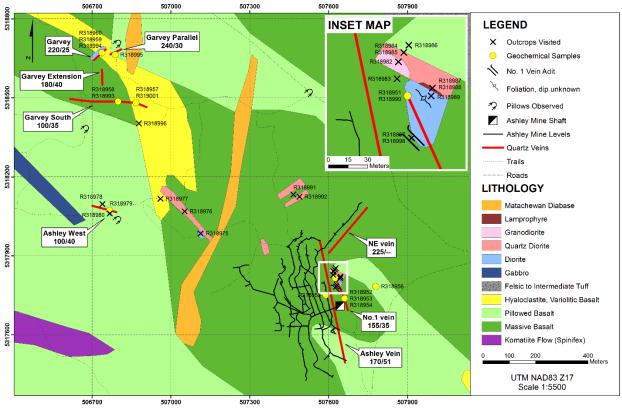


Figure 14. Ashley Project Prospect Sampling and Vein Locations.

7.5 Alteration

The alteration at different localities on the Project have been studied in depth during prospecting and drilling programs by previous explorers (e.g. Rickaby, 1932; Tremblay, 1982; Quenillon 1975; Bath, 1990; Kiernicki 1990; Carmichael, 1997; and Ludwig, 2011). The reported alteration mainly consists of silicification, carbonization, and pyritization. Carbonate fracture and joint/fracture fillings. Epidotized fillings, carbonate vein fillings, and quartz fracture fillings are identified and recorded in the historical reports. For the most part, alteration around veins appears to be limited to approximately a 10cm halo within both the footwall and hangingwall host rock material.

At the past producing Ashley Mine, the alteration was studied during early underground workings and excavations by Rickaby (1932) within the wall rock that marks the contact between the hangingwall and footwall within the two upper levels of underground workings (Levels 125 and 250). The footwall alteration is defined as silicification, carbonatization, and pyritization. Narrow stringers of quartz occupy fractures in the footwall in directions parallel to the main vein and dipping at low angles into it. The greenstones bordering the main Ashley vein and along the small quartz stringers have been replaced by iron carbonate (ankerite) and fine pyrite which is known to carry low grade values of gold. The hangingwall alteration is characterized by extreme brecciation and carbonization.

8 DEPOSIT TYPES

Despite being explored and locally mined, the overall Ashley Project is still considered to be an early stage project in need of systematic exploration using modern techniques. Considering the regional geological settings in conjunction with associated structures, there exists high potential for discovery of syenite-hosted and Archean lode gold deposits on the Project as suggested by Hedalen et al., (2019) and agreed with by the author.

8.1 Syenite-hosted gold deposits

The syenite-hosted gold deposits commonly associated with quartz-monzonite to syenite stocks and dikes are well represented in the Abitibi Greenstone Belt, particularly within the Porcupine and Kirkland Lake districts of northern Ontario.

According to Robert (2004), the syenite-hosted gold deposits occur mainly along major fault zones (Figure 15), in association with preserved alluvial-fluvial, Timiskaming-type, sedimentary rocks. Robert (2004) describes the gold mineralization in these deposits as being represented by disseminated sulfide replacement zones, with variably developed stockworks of quartz-carbonate-K-feldspar veinlets within zones of carbonate, albite, K-feldspar, and sericite alteration. Syenitic intrusions are broadly contemporaneous with deposition of Timiskaming sedimentary rocks and together with disseminated gold mineralization; they have been overprinted by subsequent regional folding and related penetrative cleavage.

Disseminated gold mineralization occurs within the composite syenitic stocks or along their margins, along satellite dikes and sills, and along faults and lithologic contacts away from intrusions. It has been interpreted that the mineralized bodies are proximal to distal components of large magmatic-hydrothermal systems centered on, and possibly genetically related to, the composite syenitic stocks (Robert, 2004).

The Young-Davidson deposit, also located in the Abitibi Greenstone Belt, just west of Matachewan, Ontario can be classified as an Archean, syenite-hosted gold deposit. The gold mineralization is primarily related to quartz veinlet stockworks and disseminated pyrite mineralization, mostly enclosed within the syenite intrusion boundaries, or very close to the contacts with the enclosing rocks, and is frequently associated with broader zones of potassic alteration (Volk, 2017). This type of mineralization is similar to the Yilgarn block (Kalgoorlie, Western Australia). However, in the Yilgarn block, the gold mineralization is related to the contacts of granitoid host rocks (Evans, 2007).

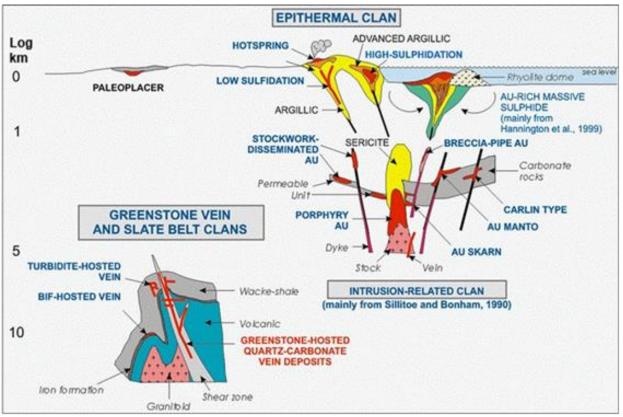


Figure 15. Formation Setting of Archean Lode and Syenite-hosted Gold Deposits.

8.2 Archean Lode gold deposits

Gold deposits along both the southern and northern limbs of the Abitibi sub-province are generally referred to as Archean lode gold deposits. Gold in these deposits is typically hosted in quartz and/or carbonate veins within structures that are related to regional scale deformation and alteration and several are considered to be world-class deposits. The zones of deformation and alteration represent long-lived structures that have controlled the development of the volcano-sedimentary terrain and its associated intrusives. The primary event responsible for the vast majority of gold in the deposits is typically related to post-peak alteration and deformation. Regionally, each area is characterized by multi-stage volcanic, sedimentary, and intrusive development with multiple phases of alteration and deformation. Individual gold deposits within a particular region often display common associations and controls (Colvine et al., 1984).

Gold deposits of the Larder Lake-Cadillac Deformation Zone within Ontario include the Kirkland Lake, Macassa, Kerr-Addison, Upper Beaver, Chesterville, McBean, Anoki, Cheminis, and Omega gold mines (Figure 11). The deposits are considered to be the result of a regional-scale hydrothermal system that corresponds to an approximately 20km long segment of the deformation zone (Ayer et al., 2005). Most of the gold mined was extracted from sulfide rich replacement ores

in tholeiitic mafic metavolcanics that are referred to as "flow ore". The second most common host rock is native gold-bearing quartz stockwork in carbonate-fuchsite altered meta-ultramafic rocks that are referred to as "green carbonate ore". At the Anoki and McBean gold deposits, gold also occurs associated with sulfidation and quartz veining of Timiskaming assemblage clastic rocks spatially associated with feldspar-phyric dykes and as quartz veins in cherty to graphitic exhalite horizons in basalts. Majority of the gold in these deposits is considered related to the D2 structures. The D2 structures of the Larder Lake-Cadillac Deformation Zone are considered equivalent to the D3 structures along the northern limb of the Abitibi sub-province, which is related to the vast majority of gold deposits in the Timmins gold camp (Ayer et al., 2005).

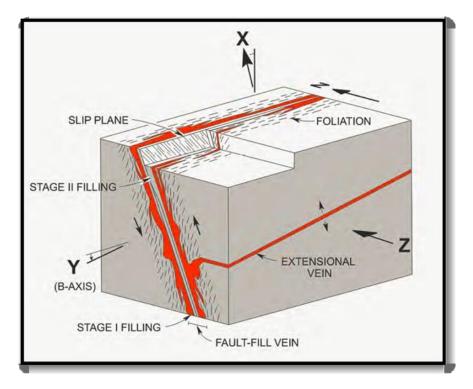


Figure 16. Illustration of Gold-Bearing Veins Related to Host Rock Deformation

*(Dube and Gosselin, 2009).

A simplified schematic of the structural characteristics of Archean lode-gold deposits is presented in Figure 16. The schematic illustrates the relationship of the veining and the stages of mineralization within the structures produced during deformation. Of key importance is the formation of shallow dipping extensional veins projecting outward from the primary vein. Some of the gold-bearing quartz veins (e.g. No. 1 vein) in the area around the historical Ashley Mine are shallow dipping veins and may represent extensional veins connected to a much larger goldbearing structure. Shallow dipping veins are more likely to outcrop than vertical veins, especially in areas with moderate topographic relief.

9 EXPLORATION

As of the "Effective Date" of this Technical Report, the issuer has not performed any exploration work on the Ashley Project, therefore, the author cannot comment further in this section. Please refer to Section 6 – History for details on historic exploration activities and results.

10 DRILLING

As of the "Effective Date" of this Technical Report, the issuer has not performed any drilling on the Ashley Project, therefore, the author cannot comment further in this section. Please refer to Section 6 - History for details on historic drilling activities and results.

11 SAMPLE PREPARATION, ANALYSIS AND SECURITY

The surface and core sampling procedures in this report were extracted from historic report summaries within the supplied Ashley MDI database and the QP's sample handling methods. A detailed description for sampling methods does not exist in most of the historic reports since a large number of them were "prospector" style reports and written before reporting compliance was enforced. The analytical methods for the determination of assays carried out by different laboratories for all historic exploration works by different operators do not exist in the reports and remains subject of inquiries with those laboratories. It is the author's opinion that there appears to be no outright evidence to dispute the adequacy of sample preparation, security, or analytical procedures, however, since most reports don't include these details, the reader should still use caution when applying the historic results exploration planning.

11.1 Sampling Methods

Petromet Resources Limited Sampling Procedures (Tremblay 1982)

Samples were collected along vein strike lengths of approximately 110m. The samples comprised both the actual quartz vein material and some wall rock. Most of the samples were collected utilizing a gasoline plugger to break out the sample material after the vein had been stripped off with a backhoe. Blasting was not necessary in that the brittle vein material and host basalts were effectively shattered during the backhoe excavation work such that the hammering action of the plugger steel was sufficient to break out ample sample material. Two of the samples were collected utilizing a gasoline-powered rock saw. Significantly large samples were collected at each site to obtain the most representative results as possible on a vein known to contain erratic visible gold. Samples generally varied from 8 to15lbs with an average in the 10lb range.

2010 Mhakari Soil Sampling Program – Sampling Procedure (Walker 2009)

No samples were collected at sample sites that were bedrock, water bodies or thick muskeg. An experienced crew of two collected each of the samples by removing the A-horizon, exposing a fresh uncontaminated B-horizon soil. An approximately fist size portion of the B-horizon was collected from the top 10 to 15 centimeters of the B-horizon. Each sample was placed into a kraft paper bag and then placed into a thin plastic bag to protect the samples from being cross contaminated. Each double-bagged sample was then placed into a large rice bag. The sample numbers included in the rice bag were written on the outside of the bag and the rice bags were kept secure with a tamper evident security seal placed on each bag and the bags were transported and delivered to the laboratory.

2020 Due Diligence Rock Grab Sampling Procedure

The author personally collected each of the samples by hammering and removing a fresh uncontaminated and in-situ rock grab sample. An approximately double fist size sample was collected from each site, careful to not mix lithologies and to have a representative of the veins without being biased. Each sample was accurately located via handheld GPS (~1.5m accuracy), the site photographed, and details written on the laboratory provided vinyl waterproof tags. The sample number and GPS location were then written on both sides of the thick woven cloth sample bag. Each sample was placed into its own sample bag, each tag is torn off with 2 perforated portions put in the sample bag and two left in the booklet. Each individual sample bag is placed collectively into a plastic polybag to protect the samples during transport back to the office.

At the office, each sample was carefully split in to two equal and near-identical portions, one to submit for analysis and the other kept as a representative sample in its own same numbered cloth sample bag with the word "REP" also written on it and GPS coordinates. Each sample was carefully arranged, labelled, and photographed (Figures 18 and 19) from multiple angles then placed back into a sample bag. The two torn off sample tags are then separated; one being placed in each bag and the bags are sealed. Each sample was then placed into a large rice bag. The company, batch number, bag number, total number of samples, and the sample numbers included in the rice bag were all written on the outside of the rice bag and kept secure with a zip tie placed on the bag then transported and delivered directly to the laboratory (AGAT Sudbury) by the author.

11.2 Sample Analysis

Petromet Resources Limited Assay Procedure (Tremblay 1982)

Entire samples were initially crushed to nominal minus 10 mesh size followed by thorough mixing. Two 400g cuts were then riffled out of each sample for independent assay on each cut. Each 400g cut was then completely pulverized and thoroughly mixed. One or two half assay-tons (approximately 15g) were then selected from each cut for standard fire assay. An "ounce finish" involving weighing of the gold bead was requested rather than a "ppm finish" in which the bead is

dissolved in aqua regia and gold content determined on an Atomic Absorption unit. All analytical work was carried out by Swastika Laboratories Ltd. at their facilities in Swastika, Ontario.

The results of the initial two independent assays on each sample are presented as "Cut 1" and "Cut 2" on Table 8. Cases where more than one half-assay ton were taken from a cut are indicated. An assay on a third independent 400g cut was called for in cases where there was a significant discrepancy between the Cut 1/Cut 2 results. This was required in only 5 samples indicating a relatively even distribution of, in general, relatively fine gold. Any coarser gold that was present appears to have crushed/pulverized well such that it was relatively evenly distributed through the sample. Two of the five "third cut" assays still did not correlate well with previous results being substantially too high in one case (sample 5613 - Table 8) and too low (sample 5616 – Table 8) in another. To resolve the problem, the assayer returned to the entire 10-15lb sample which was then totally pulverized. Two assays were then performed on sample 5613 and four on sample 5616. The averages of these "pulverized" values were taken as the final sample grade.

2020 Due Diligence Rock Sample Analysis Procedure

All rock samples submitted for analysis were weighed as received then underwent a dry (<5kg) crush to 75% passing 2mm, split to 250g and pulverized to 85% passing 75um. This crushed material is then exposed to a 4-acid digestion and analyzed for 48-multielement-ICP/MS. A 30g portion is then utilized for gold analysis by fire assay with an ICP-OES finish. If any of the samples return gold values greater than the limit of detection (>10 g/t Au), another 30g portion of the pulverized and homogenized sample is then analyzed by gravimetric analysis after it is prepared by fire assay. All analytical work was carried out by AGAT Laboratories Ltd. at their facilities in Sudbury and Mississauga, Ontario.

11.3 Quality Assurance and Quality Control Program

The Quality Assurance and Quality Control procedures implemented during exploration are not explained within any of the historical descriptive and assessment reports within the Ashley MDI database provided by the issuer. The information is not reflected and remains subject of inquiries to the field procedures, manuals, analytical methods, and data management used by each individual operator in the past; therefore, the author cannot comment further on this.

12 DATA VERIFICATION

Historical data pertaining to the Ashley Mine workings and geology were apparently lost in a fire at the mine site in the past, and therefore cannot be independently verified. The author, however, was provided a comprehensive historical geological database for the Project starting in 1954 for the purpose of reviewing the exploration/prospecting work by previous operators and developing

this Technical Report. The database includes numerous old historical assessment reports that have been scanned from paper copies, geophysical data map scans, ArcGIS geodatabase files of limited minimal digitized data, historical scans of maps, figures, assay data, assay certificates, and location data detailing the historical work carried out on the Project to date.

The author reviewed technical information and data provided for any potential tampering or discrepancies that may exist in the previous operator's work and did not encounter any obvious discrepancies or tampering. Also, the author compared data by different exploration/prospecting programs to determine if any discrepancies occurred between various years and operators and detected no obvious discrepancies.

The author crosschecked all available assay results provided within the historical reports against available laboratory certificates and no discrepancies were observed. The author is satisfied that the Ashley Project geological, sampling, and assay data has been diligently and properly collected, recorded, analyzed, and presented as accurately as possible in the historical reports and has no reason to doubt the accuracy and reliability of the geological database. The author believes the data provided in this Technical Report is adequately reliable for its purposes.

On October 4th and 5th, 2020, the Qualified Person conducted a 2-day due diligence site visit covering the major occurrences, including the waste rock pile, tailings, the Ashley Mine inclined shaft opening, the No. 1 vein adit portal, the No. 1 vein trench, the Garvey occurrences (Garvey, Garvey Parallel, and Garvey South veins), the Ashley West veins, and the old mill site. During the visit, nine (9) surface grab rock samples were collected (Table 17 and Figure 17) for analysis (2 from No. 1 vein shown in Figure 18, 3 from the various Garvey veins shown in Figure 19, 2 from the Ashley West vein, and 2 from and area ~250m SE of Ashley West). All samples were submitted to AGAT Laboratories in Sudbury, Ontario for gold by Fire Assay and Gravimetric (if over 10 g/t Au) and a 48-element ICP-MS analysis. The various vein samples ranged from 0.36 g/t Au to 177.0 g/t Au, 0.17ppm Ag to 4.71ppm Ag, and 0.7ppm Te to 129.0 ppm Te while the altered basalt host rock samples ranged from 0.06 g/t Au to 0.68 g/t Au, 0.23ppm Ag to 0.81ppm Ag, and 0.35ppm Te to 2.63 ppm Te. These results fall in line with most reported historic results and the author feels they validate historic results.



Figure 17. QP's (2020) Surface Due Diligence Grab Sample Locations

Figure 18. Sample Photos of Vein No.1 and Altered Basalt Host

Figure 19. Sample Photos of the Garvey and Garvey South Veins

Sample #	Sample Date	Easting (N83Z17)	Northing (N83Z17)	Rock Type	Au (g/t)	Ag (ppm)	Te (ppm)	Comments
X941188	4-Oct-20	507628	5317774	Quartz Vein	12.1	0.93	13.6	No. 1 Vein Adit
X941189	4-Oct-20	507650	5317776	Quartz Vein & Basalt Host	0.66	0.81	2.63	No. 1 Vein Trench
X941190	4-Oct-20	507735	5318658	Quartz Vein	150	4.71	129	Garvey Vein
X941191	4-Oct-20	507868	5318477	Quartz Vein	6.01	1.35	13.6	Garvey South Vein
X941192	4-Oct-20	507731	5318553	Quartz Vein	177	2.23	128	Garvey Extension Vein
X941193	5-Oct-20	507769	5318075	Quartz Vein	1.47	0.99	1.45	Ashley West Vein
X941194	5-Oct-20	506703	5318095	Basalt Host	0.679	0.33	1.07	Ashley West Vein Basalt Host Rock
X941195	5-Oct-20	506971	5317980	Quartz Vein	0.359	0.17	0.7	Quartz Vein 250m SE of Ashley West Vein
X941196	5-Oct-20	506972	5317981	Basalt Host	0.062	0.23	0.35	Basalt Host 250m SE of Ashley West Vein

Table 17. QP's 2020 Due Diligence Surface Rock Sampling Results Summary.

13 MINERAL PROCESSING AND METALLURGICAL TESTING

No known modern or documented mineral processing or metallurgical testing has been carried out on material collected from prospects within the Ashley Project.

14 MINERAL RESOURCES ESTIMATES

No mineral resource estimates have been prepared or reported by any previous explorers and the current available data is not sufficient for any estimations.

15 MINERAL RESERVE ESTIMATES

A total of 50,123 oz of gold and 7,344 oz of silver was produced from 157,655 tons of ore extracted between 1932 and 1936 from the Ashley Mine. There is no record of any historic or modern mineral reserve estimates for the former Ashley Mine or other prospects within the Project area.

16 MINING METHODS

Not applicable at the current Project stage.

17 RECOVERY METHODS

Not applicable at the current Project stage.

18 PROJECT INFRASTRUCTURE

Not applicable at the current Project stage.

19 MARKET STUDIES AND CONTRACTS

Not applicable at the current Project stage.

20 ENVIRONMENTAL STUDIES, PERMITTING, SOCIAL/COMMUNITY IMPACT

Not applicable at the current Project stage.

21 CAPITAL AND OPERATING COSTS

Not applicable at the current Project stage.

22 ECONOMIC ANALYSIS

Not applicable at the current Project stage.

23 ADJACENT PROPERTIES

The Ashley Project is located in the western Abitibi Greenstone Belt. There is sufficient regional technical data (i.e. geological data and geophysical data) available to be especially useful for any structural interpretation and geological modeling as well as defining an exploration model for prospects within the current Ashley Project boundary.

Publicly available datasets on other neighbouring properties in the region and throughout the Abitibi with similar geological settings and mineralization could also support a future exploration program on the Ashley Project.

All information on properties adjacent to the Project was obtained from the Ashley MDI database of publicly available data and has not been verified by the QP. The nearby occurrences are not necessarily indicative that the Project hosts similar types of mineralization.

Figure 20 shows the position of the adjacent properties with respect to the Project, along with the owners and location of nearby mineralized occurrences.

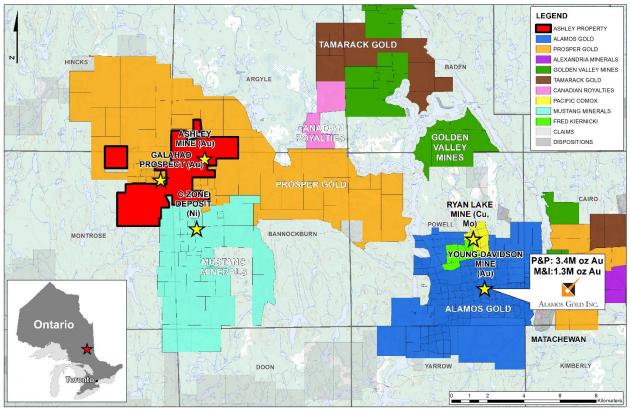


Figure 20. Adjacent Properties and Deposits to the Ashley Project

The most advanced deposit is the producing Young Davidson Mine (Alamos Gold) to the east of the Project. As of December 31, 2019, the Young Davidson Au deposit contained estimated Proven and Probable reserves of 3.2M oz Au and a Measured and Indicated resource of 1.2M oz Au (Alamos Website - https://www.alamosgold.com/operations/producing-mines/young-davidson-canada/default.aspx).

The other mineralized occurrences are at the exploration stage., however, two other occurrences are worth mentioning since they are proximal and occur in similar rock packages. They are:

- The C-Zone Ni-Cu-Pt komatiite-hosted occurrence southeast of the Ashley Project and;
- The Galahad gold prospect located west of the main Project block along the Galer Fault.

The C-Zone (Mustang Minerals / Grid Metals) was discovered by overburden stripping over an EM conductor in 2005. Diamond drilling intersected up to 8m of massive and disseminated to blebby sulfides over a strike length of about 225m and to a vertical depth of about 225m. Surface samples ranged up to 4.85% Ni and drill results up to 3.25% Ni. Most of the drill intersects were around 1.5 m in width (Taranovic et al. 2012).

The Galahad gold occurrence consists of the Main Zone area that straddles the northern felsic/mafic interface and consists of a 30-50m wide zone of silicification with associated carbonatization (Fuchsite bearing Green-Carbonate), chloritization, sericitization, and sulfidation cut by at least 2 generations of quartz stringers. According to the OGS Minfile Database, grab samples from a silicified breccia zone assayed from 4.5 to 6.5 g/t Au. Diamond drilling reportedly intersected 9.9 g/t Au over 3m in X-ray drill hole 4. DDH GB-1, drilled in 1973 by Golden Bounty, returned an assay of 7.89 g/t Au over 1.46 m. The best intersection from the Montrose Gold drilling returned 3.57 g/t Au over 2.74m in DDH 89-18. The best channel sample returned 3.8 g/t Au over 1.62m. Grab samples collected from the property by H. Lovell in 1989 returned assays of 0.83 g/t Au and 5.0 g/t Ag from a sericitic sediment and 0.14 g/t Au from a banded sediment.

24 OTHER RELEVANT DATA AND INFORMATION

To the best of the author's knowledge, there is no other relevant data and information necessary to make the Technical Report understandable and not misleading.

25 INTERPREATION AND CONCLUSION

The author's main mandate was to prepare a Technical Report on the historical work and current exploration status for the Ashley Project. The exploration/drilling summaries and results herein meet this objective to the best of the author's ability and historical data available.

Despite being sporadically worked on for the last 90 years, most of the Ashley Project is still at a relatively early stage of exploration. Given the geology and presence of high-strain fault and shear systems encountered historically, there exists potential for both syenite-hosted and Archean lode-gold deposits on the Project. The presence of a multitude of intrusive dikes of varying phases and composition suggests that extensional structures and associated hydrothermal activity is relatively widespread on the Project. Prosper Gold Corp's 2016-2017 diamond drilling program captured a significant amount of information and insight into the geology and localized deformational zones on the Project and can be used as a base to expand upon.

The Ashley Project's strong gold potential is supported by exploration, drilling, and historic waste dump testing. Drill intersections suggest a potential exists for expansion on known intercepts along strike and down-dip and that there are multiple gold intercepts within a large number of Prosper Gold's holes suggesting a "stacked" or sheeted vein system that can probably be used to vector towards a larger "feeder zone".

After conducting a detailed review of all pertinent information, the QP concludes that:

- The historical database is adequately complete, valid and up to date, however, there is a significant amount of data that can still be extracted and digitized into a GIS system;
- There exists economic potential to reprocess the historic waste rock and tailings piles;
- Additional exploration drilling would likely confirm and potentially expand the known zones, in particular the Ashley, Galahad, and Garvey occurrences;
- The Property is underexplored outside the known mineralized zones, especially at depth.

Table 18 identifies the significant internal risks, potential impacts, and possible risk mitigation measures that could affect the economic outcome of the Project. The list does not include the external risks that apply to all exploration projects (e.g., market fluctuations, changes in metal prices, exchange rates, availability of investment capital, change in government regulations, etc.).

Significant opportunities that could improve the project economics and advancement are presented in Table 19. Further information and study are required before these opportunities can be included in the project economics.

RISK	Potential Impact	Possible Risk Mitigation	
Geological model	Geological complexity: the mineralized system shows good continuity along vein strikes but less so between veins and occurrences. Shearing and faulting may decrease the continuity of mineralization.	Detailed structural mapping and modeling of all available data in 3D. Infill drilling to improve confidence in the continuity of mineralization along strike and down-dip.	
Social acceptability/Community support	Delay of the Project's social acceptance or acceptance by First Nations.	Continue a proactive and transparent strategy to identify all stakeholders and develop a communication plan, especially with First Nations interests. Develop and sign MOU agreements and employ locals when possible. Organize information sessions, provide information on the Project, and meet with host communities.	
Project has historical mine waste and tailings piles already on surface	Longer reviews by the ministry, and thus a delay in the permitting and exploration schedule. Environmental liabilities associated with current mine waste.	Early discussion with the ministry on possible mitigation measures which could include safe removal and reprocessing of waste and tailings followed by environmental rehabilitation.	

Table 18. Perceived Risks for the Ashley Project.

Table 19. Perceived Opportunities for the Ashley Project

OPPORTUNITY	Description	Potential Benefit	
Exploration potential	Potential for additional discoveries at depth and between the known occurrences by drilling	Potential to expand on the known zones and to discover new zones between and at depth, especially a larger "feeder zone". Demonstrating the continuity of the zones, the multiple gold-hosting styles, and the overall size of the system.	
Generate a 3D model	Integrate all geological, geophysical, and structural information into a 3D model. Try to obtain original raw data from past explorers or directly from contractors and labs.	trends or clusters of mineralization that currently remain hidden Better	
Bulk sampling and reprocessing of mine waste and tailings	Bulk sampling, engineering review, and environmental testing to determine the economic potential at current gold prices	economic viability and potential liabilities	

26 RECOMMENDATIONS

The author recommends additional exploration work to gain a better overall understanding of the risks and opportunities for the Project, including outcrop stripping/trenching/washing/channel sampling, exploration scout drilling. The issuer should also digitize and compile all existing data into a property-scale 3D geological interpretation model to generate new targets and understand existing ones better.

Drilling should be completed to test continuity between known mineralized zones in terms of lateral and down-plunge extensions, to potentially discover new occurrences and "feeder zones", and to expand the current mineralization and alteration footprint at the Project scale.

The historic diamond drilling programs on the Ashley Project have served, in apart, to outline areas that merit further drill testing. Specifically, further diamond drilling should focus on stepping out and deeper from the Ashley and Garvey veins to target potential "feeder zones", as well as stepping out eastward form the Galahad target area drilled by Prosper Gold in 2017. Additional recommended exploration in the future could include ground magnetometer, IP, and EM surveys, to further define pertinent magnetic lineaments and to outline zones of silicification especially

west of the Ashley Mine and east of the Galahad target area. These grids should overlap to an extent with the 2017 Prosper Gold drilling, to provide some context to the geophysical results. After the ground geophysical surveys, high priority targets outlined should be tested with approximately 3000-4000m of diamond drilling.

In summary, the QP recommends the following based on available historical data, field observations, and current deposit model understandings:

- An attempt should be made to acquire digital data sets (drilling, geophysics, assays etc.) either from past explorers or directly from contractors. The original data sets could be compiled and modeled in 3D for visualization instead of just draping on a surface plane.
- Digitization and data compilation some historical geological maps are still required to be digitized. The geophysical and soil sampling data should be compiled and geospatially analyzed using modern techniques to identify targets for initial drilling;
- The airborne geophysical data could be re-analyzed to spot structures on the Project;
- Outcrop and vein stripping, washing, mapping, and channel sampling should be completed over potential areas of interest near the historic mine and over the large syenite bodies to the north.;
- Existing available drill core should be re-evaluated and potentially re-assayed.
- An initial Phase 1 scout and due diligence drill program should be completed to test a few known targets, confirm historic intercepts, and vein orientations, and test the viability of newly modeled data interpretations.
- A Phase 2 drilling program could follow depending on Phase 1 results and interpretations
- An accurate measurement and review of the waste dump and tailings should be completed to assess any economic potential.

The QP has prepared a cost estimate for the recommended work program to serve as a guideline for the Project. The budget estimate for the proposed program is presented in Table 20. The estimated Phase 1 exploration budget is **C\$250,000** and a Phase 2 budget of **C\$450,000** for a total "all-in" budget of **C\$750,000** (including contingencies).

The author believes that the recommended work program and proposed expenditures are appropriate and well thought out, and that the proposed budget reasonably reflects the type and amount of the contemplated activities. Table 20. Estimated Phase 1 & 2 Exploration Budget for the Ashley Project

Work Program	Cost Estimate
PHASE 1	
Digitization and GIS Compilation of all Historical Data	\$15,000
Outcrop Vein Stripping/Washing/Channel Sampling	\$65,000
Compilation of all Available Data into a 3D Model	\$20,000
Phase 1 Scout Drilling of Known Targets (1,000m - All-in)	\$150,000
PHASE 1 - Exploration Subtotal	\$250,000
PHASE 2	
Phase 2 Drilling of New Targets (3,000m - All-in)	\$450,000
PHASE 2 - Exploration Subtotal	\$450,000
Contingency (10%)	\$50,000
EXPLORATION TOTAL	\$750,000

27 REFERENCES

Ayer, J. et. al (2005). Overview of Results from the Greenstone Architecture Project: Discover Abitibi Initiative; Ontario Geological Survey, Open File Report 6164. Ontario Geological Survey, Open File Report, 6154:146p.

Bajc, A.F., and Crabtree, D.C., (2001). Results of Regional Till Sampling for Kimberlite and Base Metal Indicator Minerals, Peterlong Lake-Radisson Lake Area, Northeastern Ontario; Ontario Geological Survey, Open File Report 6060, 65p.

Bath, A.C., (1990). The Result of Geological Mapping. Bannockburn Project (Forbes Option). Homestake Mineral Development Company. Ontario Geoscience Assessment File 41P15W0206.

Carmichael, S.J., (1997). Report on a Second Phase of Diamond Drilling on the Kiernicki Option. RJK Explorations Inc. Ontario Geoscience Assessment File 42A02SW0045, 71p.

Card, K.D., Poulsen, K.H., (1998): Geology and Mineral Deposits of the Superior Province of the Canadian Shield; Chapter 2 in Geology of the Precambrian Superior and Grenville Provinces and Precambrian Fossils in North America. (coord.) S.B. Lucas and M.R. St-Onge; Geology of Canada, no. 7; p.13-194.

Colvine, A.C., Andrews, A.J., Cherry, M.E., Durocher, M.E., Fyon, A. J., Lavigne, Jr., M.J., Macdonald, A.J., Marmont, S., Poulsen, K. H., Springer, J.S., and Troop, D.G., (1984). An Integrated Model for the Origin of Archean Lode Gold Deposits: Ontario Geological Survey, Open File Report 5524, 194p.

Dube, B., Gosselin, P., (2009). Mineral Deposits of Canada - Greenstone-hosted Quartz-Carbonate Vein Deposits: Natural Resources Canada. <u>http://gsc.nrcan.gc.ca/mindep/synth_dep/gold/greenstone/</u>index_e.php#abs.

Evans, L., (2007). Technical Report of the Lower Boundary Zone, Lucky Zone, and Lower YD zone Mineral Resources Estimates, Young-Davidson Property, Matachewan, Ontario. NI 43-101 Technical Report for Northgate Minerals Corporation, Sedar, 118p.

Hastie, E. C. G., Kontak, D. J., Lafrance, B., (2020). Gold Remobilization: Insights from Gold Deposits in the Archean Swayze Greenstone Belt, Abitibi Subprovince, Canada: Economic Geology, v. 115, no.2, p.241-277.

Hedalen, J., and Ritchie, R., (2019). Diamond Drilling Report on the Wydee Project. Prepared for Prosper Gold Corp. Ontario Geoscience Assessment File 20000017211, 633p.

Jones, P.L., and Wagg, C.A., (2003). Report on 2003 Summer Mapping-Prospecting Program, Argyle Property, Phoenix Matachewan Mines Inc., Ontario Geoscience Assessment File 42A02SW2011, 34p.

Jones, P.L., and Wagg, C. A., (2002). Report on 2002 Summer Mapping – Prospecting Program, Argyle Property. Ontario Geoscience Assessment File 42A02SW2010, 47p.

Kiernicki, F., (1990). Report on Diamond Drilling Program, Bannockburn. Ontario Geoscience Assessment File 42A02SW0334, 4p.

Kiernicki, F., (1991). Ashley West 1991 Drill Program, Bannockburn and Argyle Townships, Matachewan Area. Ontario Geoscience Assessment File 42A02SW0009, 25p.

Ludwig, E., (2011). Report on Diamond Drilling. Touchdown Resources Inc. Ontario Geoscience Assessment File 2.48608, 55p.

McLellan, A., (2015). 2015 Prospecting Report on the Ashley Property, 32p.

McLellan, A., (2020). Lithological, Trace Element Geochemistry, and Petrographic Study of the Auriferous Telluride-Bearing Veins of the Ashley Gold Mine Property, Ontario, Canada. Draft Version of Applied Master of Science Thesis, Laurentian University, Sudbury, Ontario, 37p.

Prefontaine, S., Houle, M.G., and Duguet, M., (2019). Geological Compilation of the Bartlett and Halliday Domes Area, Abitibi Greenstone Belt: Marginal Notes to Accompany OGS Preliminary Map P.3822: Ontario Geological Survey, OFR 6345.

Quenillon, G., (1975). Report on Diamond Drilling Program, Bannockburn. Ontario Geoscience Assessment File 42A12SW034, 11p.

Rainsford, D., (2005). Airborne magnetic survey shaded magnetic relief, Abitibi Greenstone Belt compilation. Assessment Report 81953, Ontario Geological Survey. Mhakari. Resources Limited. Ontario Geoscience Assessment File 42A02SW0080.

Rickaby, H. C., (1932). Forty First Annual Report of the Ontario Department of Mines. Bannockburn Gold Area. =Volume XLI, Part II, p.1-24.

Robert, F., (2004). Syenite-Associated Disseminated Gold Deposits in the Abitibi Greenstone Belt, Canada. Mineralium Deposita, 36p.

Tempelman-Kluit, D., (2017). 2016 Soil Sampling on the Ashley Project for Prosper Gold Corp. Ontario Geoscience Assessment File 2.57429, 1237p.

Thompson, P.H., (2005). A New Metamorphic Framework for Gold Exploration in the Timmins-Kirkland Lake Area, Western Abitibi Greenstone Belt: Discover Abitibi Initiative; Ontario Geological Survey, Open File Report 6162, 104p.

Tremblay, J.H., (1981). Geology Report on the Ashley Property. Petromet Resources Limited. Ontario Geoscience Assessment File 42A12SW0341, 17p.

Tremblay, J.H., (1981). Report on Trenching and Rock Sampling on the Petromet Ashley Mine Property. Petromet Resources Limited. Ontario Geoscience Assessment File 42A02SW0081, 25p.

Tremblay, J.H., (1982). Geology Report on the Ashley Mine Property 1982 for Petromet Resources Limited. Ontario Geoscience Assessment File 42A02SW0080, 69p.

Volk, J. and Bostwick, C., (2017). NI 43-101 Technical Report for the Young-Davidson Mine, Matachewan, Ontario. Alamos Gold Inc. 263p.

Walker, E.C., (2009). Argyle Project. 2009 Initial Prospecting, Geology, and Sampling Program. Mhakari Resources Inc. Geoscience Assessment File 2.42385, 76p.