

Core Assets Drills 5.64m of 254g/t Ag, 9.9% Pb+Zn, 0.11% Cu and 0.12g/t Au Including 424g/t Ag, 17.4% Pb+Zn, 0.20% Cu, and 0.14g/t Au Over 3.15m at the Blue Property

To view a video presentation based on today's news release by CEO Nick Rodway, Click HERE

Link: https://youtu.be/bCDOrTNa72k

Vancouver March 29, 2023 – Core Assets Corp., ("**Core Assets**" or the "**Company**") (CSE:CC) (FSE:5RJ) (OTC.QB:CCOOF) is pleased to announce assay results from the remaining diamond drill holes completed during the 2022 exploration program at the Silver Lime Porphyry-CRD Project (the "**Silver Lime Project**" or "**Silver Lime**") and the Laverdiere Skarn-Porphyry Project (the "**Laverdiere Project**" or "**Laverdiere**") at the Blue Property (the "**Blue Property**") located in the Atlin Mining District of NW British Columbia.

A total of 1,497 metres of diamond drilling were completed at the Grizzly CRD Target in 2022. First-pass diamond drilling at the Grizzly Target intersected significant near surface, high-grade carbonate replacement mineralization (Figures 1-2; Tables 1, 3).

Grizzly CRD Target Highlights

- SLM22-011 intersected 5.64m of 659g/t AgEq (254g/t Ag, 5.1% Pb, 4.8% Zn, 0.11% Cu and 0.12g/t Au) from 57.36m core depth including 3.15m of 1,132g/t AgEq (424g/t Ag, 9.1% Pb, 8.3% Zn, 0.20% Cu, and 0.14g/t Au), and extending the previously rushed carbonate replacement massive sulphide intercept which included 1.16m of 3,056g/t AgEq (1,145g/t Ag, 23.2% Pb, 23.5% Zn, 0.52% Cu, and 0.37g/t Ag) from 58.54m depth.
- SLM22-010 intersected 2m of 218g/t AgEq (99g/t Ag, 0.4% Pb, 1.8% Zn, and 0.5% Cu) from 276m depth, including 0.90m of 287g/t AgEq (141g/t Ag, 0.5% Pb, 2.5% Zn, and 0.14% Cu).
- SLM22-009 intersected 2.23m of 124g/t AgEq (63g/t Ag, 0.6% Pb, and 0.9% Zn) from 143m depth, including 0.73m of 375g/t AgEq (192g/t Ag, 1.9% Pb, and 2.6% Zn).
- All drill intercepts remain open in multiple directions and at depth (down-dip).

Core Assets' President & CEO Nick Rodway commented: "The first ever drill season at the Silver Lime and Laverdiere projects have yielded remarkable results – confirming the presence of large, well-mineralized porphyry-skarn and CRD systems. Data collected in 2022 will allow us to execute a targeted, fully funded-CRD focused drilling program which will begin in the next few months. As we begin to demonstrate continuity in our new discoveries, we plan to step out into thicker limestone sequences to the northwest of Silver Lime and test the additional >250 CRD occurrences that have been mapped at surface. We are confident that the 2023 exploration season will be transformational for the company and its shareholders."

Table 1: 2022 Assay Highlights from the Grizzly CRD Target											
Hole	From (m) To (m) Interval (m) Ag g/t Pb % Zn % Cu % Au g/t Ag E										
SLM22-011	57.36	63.00	5.64	254	5.1	4.8	0.11	0.12	659		
Including	57.36	60.51	3.15	424	9.1	8.3	0.20	0.14	1132		
and	58.54	59.70	1.16	1145	23.2	23.5	0.52	0.37	3056		
SLM22-010	134.04	135.22	1.18	50	0.7	0.9	0.05	-	120		
SLM22-010	276.00	278.00	2.00	99	0.4	1.8	0.18	-	217		
Including	277.10	278.00	0.90	141	0.5	2.5	0.14	-	287		
SLM22-009	124.16	125.75	1.59	33	1.2	0.6	-	-	101		
Including	124.66	125.75	1.09	50	1.9	0.9	-	-	153		
SLM22-009	143.00	145.23	2.23	63	0.6	0.9	-	-	123		
Including	144.50	145.23	0.73	192	1.9	2.6	-	-	372		

Assay results are presented as uncut weighted averages and assume 100% metal recovery. Interval widths represent drilled HQ core lengths and true width is unknown currently. * indicates partial drill hole assay results were previously released. Silver equivalent (AgEq) grades are calculated using metal prices of silver US\$21.25/oz., gold US\$1,850/oz, copper US\$4.00/lb, lead US\$1.00/lb and zinc US\$1.40/lb. Silver equivalent grade is calculated as AgEq (g/t) = Ag (g/t) + (Cu (%) * 129.08) + (Pb (%) * 32.27) + (Zn (%) * 45.18) + (Au (g/t) * 87.06).

Figure 1: Schematic cross-section looking north through the Grizzly CRD Target at the Silver Lime Project showing 2022 drilling assay highlights intercepts (AgEq) in relation to the inferred depth extent of mineralization targeted during the 2022 drilling program.

A total of 2,769 metres of diamond drilling were completed at the Sulphide City Porphyry-Skarn Target in 2022. First-pass diamond drilling intersected widespread and consistent porphyry Molybdenum (Mo) mineralization, local high grade porphyry Mo veining, and massive sulphide Zn-rich skarn mineralization.

Sulphide City Porphyry-Skarn Target Highlights

- SLM22-005 intersected 4.51m of 172g/t AgEq (50g/t Ag, 2.5% Zn, 0.3% Pb, and 0.1% Cu) from 32.70m depth, including 0.56m of 709g/t AgEq (148g/t Ag, 12.1% Zn, 0.4%, and 0.2% Cu).
- SLM22-006 returned 99.82m of 0.016% Mo from 322m depth, including 10.82m of 0.043% Mo and 0.63m of 0.385% Mo.
- SLM22-007 intersected 1.26m of 389g/t AgEq and 3.06% CuEq (91g/t Ag, 1.5% Zn, 1.5% Pb, and 1.4% Cu) from 56.91m depth, and 1.17m of 11.3% Zn, 9g/t Ag, and 0.1% Cu from 96.15m depth.
- SLM22-008 intersected 1m of 4.23% Zn, 7g/t Ag, and 0.2% Cu from 219.6m depth.
- SLM22-013 returned 0.53m of 9% Zn from 242.78m depth.
- SLM22-014 intersected 14.53m of 0.029% Mo from 266m depth, within **101.38m grading 0.013% Mo and** including **2m of 0.137% Mo from 277m depth.**
- SLM22-015 returned 147.45m of 0.012% Mo from 190.05m depth, within 350m grading 0.008% Mo and including 2m of 0.075% Mo from 216m depth.

Figure 2: Schematic plan view map of the Grizzly and Sulphide City targets at the Silver Lime Project showing 2022 drilling locations, Ag (g/t) in surface samples, downhole Mo % (Sulphide City) and Ag g/t (Grizzly – Red Star) assay highlights. **indicates steeply dipping drillhole.*

Table 2: 2022 Assay Highlights from the Sulphide City Porphyry-Skarn Target										
Hole	From (m)	To (m)	Interval (m)	Ag g/t	Cu %	Pb %	Zn %	Mo %	AgEq	CuEq
SLM22-005	32.70	37.21	4.51	50	-	0.3	2.5	0.002	172	
Including	35.52	37.21	1.69	111	-	0.5	5.0	-	355	
and	36.65	37.21	0.56	148	0.17	0.4	12.1	-	709	
SLM22-005	59.00	62.00	3.00	4	-	-	4.0	0.002		
Including	60.04	60.60	0.56	7	-	-	12.1	0.003		
Hole	From (m)	To (m)	Interval (m)	Ag g/t	Cu %	Pb %	Zn %	Mo %	AgEq	CuEq
SLM22-006	74.02	86.36	12.34	4	0.11	-	0.7	0.006		
Including	74.02	76.00	1.98	11	0.33	-	3.7	0.004		1.75
and	75.00	76.00	1.00	19	0.57	-	5.9	0.003		2.79
SLM22-006	277.00	470.00	193.00	2	-	-	-	0.012		
	322.00	421.82	99.82	0	-	-	-	0.016		
	411.00	421.82	10.82	2	-	-	0.1	0.043		
	417.00	420.50	3.50	1	-	-	-	0.100		
la alvedia a	418.82	419.45	0.63	0	-	-	-	0.385		
including	447.75	470.00	22.25	12	0.10	0.1	0.2	0.007		
	447.75	456.39	8.64	23	0.15	0.2	0.5	0.001	69	
	453.09	456.39	3.30	47	0.25	0.3	1.0	0.002	134	1.06
	453.09	455.00	1.91	61	0.25	0.6	1.5	-	180	1.40
and	453.09	453.76	0.67	117	0.37	1.3	2.6	-	322	2.50
Hole	From (m)	To (m)	Interval (m)	Ag g/t	Cu %	Pb %	Zn %	Mo %	AgEq	CuEq
Hole SLM22-007	From (m) 33.24	To (m) 34.45	Interval (m) 1.21	Ag g/t 6	Cu %	Pb % -	Zn % 6.8	Mo % -	AgEq	CuEq
Hole SLM22-007 SLM22-007	From (m) 33.24 44.14	To (m) 34.45 58.17	Interval (m) 1.21 14.03	Ag g/t 6 11	Cu % - 0.16	Pb % - 0.1	Zn % 6.8 1.1	Mo % - 0.005	AgEq	CuEq
Hole SLM22-007 SLM22-007	From (m) 33.24 44.14 50.89	To (m) 34.45 58.17 58.17	Interval (m) 1.21 14.03 7.28	Ag g/t 6 11 16	Cu % - 0.16 0.23	Pb % - 0.1 0.2	Zn % 6.8 1.1 1.5	Mo % - 0.005 0.007	AgEq	CuEq 0.99
Hole SLM22-007 SLM22-007 Including	From (m) 33.24 44.14 50.89 50.89	To (m) 34.45 58.17 58.17 55.00	Interval (m) 1.21 14.03 7.28 4.11	Ag g/t 6 11 16 6	Cu % - 0.16 0.23 -	Pb % - 0.1 0.2 -	Zn % 6.8 1.1 1.5 1.7	Mo % - 0.005 0.007 0.010	AgEq	CuEq 0.99
Hole SLM22-007 SLM22-007 Including and	From (m) 33.24 44.14 50.89 50.89 50.89	To (m) 34.45 58.17 58.17 55.00 58.17	Interval (m) 1.21 14.03 7.28 4.11 1.26	Ag g/t 6 11 16 6 91	Cu % - 0.16 0.23 - 1.39	Pb % - 0.1 0.2 - 1.5	Zn % 6.8 1.1 1.5 1.7 1.5	Mo % - 0.005 0.007 0.010 0.007	AgEq 389	CuEq 0.99 3.06
Hole SLM22-007 SLM22-007 Including and SLM22-007	From (m) 33.24 44.14 50.89 50.89 50.91 96.12	To (m) 34.45 58.17 58.17 55.00 58.17 110.63	Interval (m) 1.21 14.03 7.28 4.11 1.26 14.51	Ag g/t 6 11 16 6 91 3	Cu % - 0.16 0.23 - 1.39 -	Pb % - 0.1 0.2 - 1.5	Zn % 6.8 1.1 1.5 1.7 1.5 1.8	Mo % - 0.005 0.007 0.010 0.007 0.002	AgEq 389	CuEq 0.99 3.06
Hole SLM22-007 SLM22-007 Including and SLM22-007 Including	From (m) 33.24 44.14 50.89 50.89 56.91 96.12 96.12	To (m) 34.45 58.17 58.17 55.00 58.17 110.63 97.29	Interval (m) 1.21 14.03 7.28 4.11 1.26 14.51 1.17	Ag g/t 6 11 16 6 91 3 9	Cu % - 0.16 0.23 - 1.39 - 0.13	Pb % - 0.1 0.2 - 1.5	Zn % 6.8 1.1 1.5 1.7 1.5 1.8 11.3	Mo % - 0.005 0.007 0.010 0.007 0.002	AgEq 389	CuEq 0.99 3.06
Hole SLM22-007 SLM22-007 Including and SLM22-007 Including and and	From (m) 33.24 44.14 50.89 50.89 56.91 96.12 96.12 96.12	To (m) 34.45 58.17 58.17 55.00 58.17 110.63 97.29 98.25	Interval (m) 1.21 14.03 7.28 4.11 1.26 14.51 1.17 2.13	Ag g/t 6 11 16 6 91 3 9 9 6	Cu % - 0.16 0.23 - 1.39 - 0.13 0.10	Pb % - 0.1 0.2 - 1.5	Zn % 6.8 1.1 1.5 1.7 1.5 1.8 11.3 6.5	Mo % 0.005 0.007 0.010 0.007 0.002	AgEq 389	CuEq 0.99 3.06
Hole SLM22-007 SLM22-007 Including and SLM22-007 Including and SLM22-007	From (m) 33.24 44.14 50.89 50.89 56.91 96.12 96.12 96.12 96.12 297.00	To (m) 34.45 58.17 58.17 55.00 58.17 110.63 97.29 98.25 299.05	Interval (m) 1.21 14.03 7.28 4.11 1.26 14.51 1.17 2.13 2.05	Ag g/t 6 11 16 6 91 3 9 9 6 10	Cu % - 0.16 0.23 - 1.39 - 0.13 0.10 0.16	Pb % - 0.1 0.2 - 1.5	Zn % 6.8 1.1 1.5 1.7 1.5 1.8 11.3 6.5 1.3	Mo % - 0.005 0.007 0.010 0.007 0.002 0.008	AgEq 389	CuEq 0.99 3.06
Hole SLM22-007 SLM22-007 Including and SLM22-007 Including and SLM22-007 Including And SLM22-007 Hole	From (m) 33.24 44.14 50.89 50.89 96.12 96.12 96.12 96.12 97.00 From (m)	To (m) 34.45 58.17 58.17 55.00 58.17 110.63 97.29 98.25 299.05 To (m)	Interval (m) 1.21 14.03 7.28 4.11 1.26 14.51 1.17 2.13 2.05 Interval (m)	Ag g/t 6 11 6 91 3 9 6 10 Ag g/t	Cu % - 0.16 0.23 - 1.39 - 0.13 0.10 0.16 Cu %	Pb % 0.1 0.2 - 1.5 Pb %	Zn % 6.8 1.1 1.5 1.7 1.5 1.8 11.3 6.5 1.3 Zn %	Mo % 0.005 0.007 0.010 0.007 0.002 0.008 Mo %	AgEq 389	CuEq 0.99 3.06
Hole SLM22-007 SLM22-007 Including and SLM22-007 Including and SLM22-007 Hole SLM22-008	From (m) 33.24 44.14 50.89 50.81 96.12 96.12 96.12 96.12 96.12 96.12 96.12 96.12 96.12 96.12 96.12 96.12 96.12 96.13 96.14 96.15 96.15 96.12 96.12 96.13 96.14 96.15 96.15 96.12 96.12 96.13 96.14 96.15 96.15 96.15 96.15 96.15 96.15 96.16 97.00 From (m) 151.93	To (m) 34.45 58.17 58.17 55.00 58.17 110.63 97.29 98.25 299.05 To (m) 153.00	Interval (m) 1.21 14.03 7.28 4.11 1.26 14.51 1.17 2.13 2.05 Interval (m) 1.07	Ag g/t 6 11 6 9 1 3 9 6 10 4 g g/t 11	Cu % - 0.16 0.23 - 1.39 - 0.13 0.10 0.16 Cu % 0.24	Pb % - 0.1 0.2 - 1.5 Pb %	Zn % 6.8 1.1 1.5 1.7 1.5 1.8 11.3 6.5 1.3 Zn % 4.5	Mo % - 0.005 0.007 0.007 0.002 0.008 Mo % 0.007	AgEq 389 AgEq	CuEq 0.99 3.06 CuEq
Hole SLM22-007 SLM22-007 Including and SLM22-007 Including and SLM22-007 Including SLM22-007 Including SLM22-007 SLM22-007 SLM22-007 Hole SLM22-008	From (m) 33.24 44.14 50.89 50.691 96.12 96.12 96.12 97.00 From (m) 151.93 219.60	To (m) 34.45 58.17 58.17 55.00 58.17 110.63 97.29 98.25 299.05 To (m) 153.00 220.60	Interval (m) 1.21 14.03 7.28 4.11 1.26 14.51 1.17 2.13 2.05 Interval (m) 1.07 1.00	Ag g/t 6 11 6 91 3 9 6 10 Ag g/t 11 7	Cu % - 0.16 0.23 - 1.39 - 0.13 0.10 0.16 Cu % 0.24 0.18	Pb % 0.1 0.2 - 1.5 Pb %	Zn % 6.8 1.1 1.5 1.7 1.5 1.8 11.3 6.5 1.3 6.5 1.3 Zn % 4.5 4.2	Mo % 0.007 0.010 0.007 0.002 0.008 Mo % 0.007 0.001	AgEq 389 AgEq	CuEq 0.99 3.06
Hole SLM22-007 SLM22-007 Including and SLM22-007 Including and SLM22-007 Including SLM22-007 SLM22-007 SLM22-008 SLM22-008 SLM22-008	From (m) 33.24 44.14 50.89 50.81 96.12 96.12 96.12 96.12 151.93 219.60 280.32	To (m) 34.45 58.17 58.17 55.00 58.17 110.63 97.29 98.25 299.05 To (m) 153.00 220.60 281.45	Interval (m) 1.21 14.03 7.28 4.11 1.26 14.51 1.17 2.13 2.05 Interval (m) 1.07 1.00 1.13	Ag g/t 6 11 6 91 3 9 6 10 Ag g/t 11 7 9	Cu % - 0.16 0.23 - 1.39 - 0.13 0.10 0.16 Cu % 0.24 0.18 0.18	Pb % - 0.1 0.2 - 1.5 Pb % - 0.10	Zn % 6.8 1.1 1.5 1.7 1.5 1.8 11.3 6.5 1.3 Zn % 4.5 4.2 11.9	Mo % 0.005 0.007 0.010 0.002 0.008 Mo % 0.007 0.001	AgEq 389 AgEq	CuEq 0.99 3.06 CuEq
Hole SLM22-007 SLM22-007 Including and SLM22-007 Including and SLM22-007 Including and SLM22-007 Hole SLM22-008 SLM22-008 SLM22-008 SLM22-008	From (m) 33.24 44.14 50.89 50.81 96.12 96.12 96.12 96.12 297.00 From (m) 151.93 219.60 280.32 306.67	To (m) 34.45 58.17 58.17 55.00 58.17 110.63 97.29 98.25 299.05 To (m) 153.00 220.60 281.45 309.00	Interval (m) 1.21 14.03 7.28 4.11 1.26 14.51 1.17 2.13 2.05 Interval (m) 1.07 1.00 1.13 2.33	Ag g/t 6 111 6 91 3 9 6 10 Ag g/t 11 7 9 3	Cu % - 0.16 0.23 - 1.39 - 0.13 0.10 0.16 Cu % 0.24 0.18 0.18 0.18 -	Pb % 0.1 0.2 - 1.5 Pb % 0.10 0.10	Zn % 6.8 1.1 1.5 1.7 1.5 1.8 11.3 6.5 1.3 6.5 1.3 Zn % 4.5 4.2 11.9 5.3	Mo % 0.005 0.007 0.007 0.002 0.008 Mo % 0.007 0.001	AgEq 389 AgEq	CuEq 0.99 3.06
Hole SLM22-007 SLM22-007 Including and SLM22-007 Including and SLM22-007 Including and SLM22-007 Including and SLM22-007 Hole SLM22-008 SLM22-008 SLM22-008 SLM22-008 SLM22-008	From (m) 33.24 44.14 50.89 50.91 96.12 96.12 96.12 96.12 297.00 From (m) 151.93 219.60 280.32 306.67 From (m)	To (m) 34.45 58.17 58.17 55.00 58.17 110.63 97.29 98.25 299.05 To (m) 153.00 220.60 281.45 309.00 To (m)	Interval (m) 1.21 14.03 7.28 4.11 1.26 14.51 1.17 2.13 2.05 Interval (m) 1.07 1.00 1.13 2.33 Interval (m)	Ag g/t 6 11 6 91 3 9 6 10 Ag g/t 11 7 9 3 3 Ag g/t	Cu % - 0.16 0.23 - 1.39 - 0.13 0.10 0.16 Cu % 0.24 0.18 0.18 0.18 - Cu %	Pb % 0.1 0.2 - 1.5 Pb % - 0.10 - Pb % - Pb %	Zn % 6.8 1.1 1.5 1.7 1.5 1.8 11.3 6.5 1.3 Zn % 4.5 4.2 11.9 5.3 Zn %	Mo % 0.007 0.007 0.002 0.008 Mo % 0.007 0.001 Mo %	AgEq 389 AgEq	CuEq 0.99 3.06
Hole SLM22-007 SLM22-007 Including and SLM22-007 Including and SLM22-007 Including and SLM22-007 Hole SLM22-008 SLM22-008 SLM22-008 SLM22-008 SLM22-008 SLM22-008 SLM22-008 SLM22-008	From (m) 33.24 44.14 50.89 50.691 96.12 96.12 96.12 96.12 297.00 From (m) 151.93 219.60 280.32 306.67 From (m) 76.50	To (m) 34.45 58.17 58.17 55.00 58.17 110.63 97.29 98.25 299.05 To (m) 153.00 220.60 281.45 309.00 To (m) 77.50	Interval (m) 1.21 14.03 7.28 4.11 1.26 14.51 1.17 2.13 2.05 Interval (m) 1.07 1.00 1.13 2.33 Interval (m) 1.00	Ag g/t 6 111 6 91 3 9 6 10 Ag g/t 11 7 9 3 3 Ag g/t 10	Cu % - 0.16 0.23 - 1.39 - 0.13 0.10 0.16 Cu % 0.24 0.18 0.18 0.18 - Cu % 0.20	Pb % 0.1 0.2 - 1.5 Pb % - 0.10 - Pb % - Pb % 0.10 - Pb % Pb %	Zn % 6.8 1.1 1.5 1.7 1.5 1.8 11.3 6.5 1.3 Zn % 4.5 4.2 11.9 5.3 Zn %	Mo % - 0.005 0.007 0.010 0.002 - 0.002 0.002 0.002 0.002 0.002 0.002 - 0.008 Mo % 0.001 - 0.001 - 0.001 - 0.001	AgEq 389 389 AgEq	CuEq 0.99 3.06
Hole SLM22-007 SLM22-007 Including and SLM22-007 Including and SLM22-007 Including and SLM22-007 Hole SLM22-008 SLM22-013	From (m) 33.24 44.14 50.89 50.91 96.12 97.00 151.93 219.60 280.32 306.67 From (m) 76.50 171.13	To (m) 34.45 58.17 58.17 55.00 58.17 110.63 97.29 98.25 299.05 To (m) 153.00 220.60 281.45 309.00 To (m) 77.50 171.86	Interval (m) 1.21 14.03 7.28 4.11 1.26 14.51 1.17 2.13 2.05 Interval (m) 1.07 1.00 1.13 2.33 Interval (m) 1.00 0.73	Ag g/t 6 11 6 91 3 9 6 10 Ag g/t 11 7 9 3 Ag g/t 10 3 Ag g/t 10 40	Cu % - 0.16 0.23 - 1.39 - 0.13 0.10 0.16 Cu % 0.24 0.18 0.18 0.18 0.18 0.18 0.18 0.24 0.18 0.24 0.18	Pb % - 0.1 0.2 - 1.5	Zn % 6.8 1.1 1.5 1.7 1.5 1.8 11.3 6.5 1.3 Zn % 4.5 4.2 11.9 5.3 Zn % - 0.1	Mo % - 0.005 0.007 0.010 0.007 0.007 0.002 - 0.003 0.004 0.005 0.007 0.008 0.007 0.001 - 0.001 - Mo % 0.0014 0.002	AgEq 389 389 AgEq AgEq 277	CuEq 0.99 3.06
Hole SLM22-007 SLM22-007 Including and SLM22-007 Including and SLM22-007 Including and SLM22-007 Hole SLM22-008 SLM22-008 SLM22-008 SLM22-008 SLM22-008 SLM22-008 SLM22-008 SLM22-008 SLM22-013 SLM22-013 SLM22-013	From (m) 33.24 44.14 50.89 50.81 96.12 96.12 96.12 96.12 297.00 From (m) 151.93 219.60 280.32 306.67 From (m) 76.50 171.13 234.62	To (m) 34.45 58.17 58.17 55.00 58.17 110.63 97.29 98.25 299.05 To (m) 153.00 220.60 281.45 309.00 To (m) 77.50 171.86 235.80	Interval (m) 1.21 14.03 7.28 4.11 1.26 14.51 1.17 2.13 2.05 Interval (m) 1.07 1.00 1.13 2.33 Interval (m) 1.00 1.13 2.33	Ag g/t 6 111 6 91 3 9 6 10 Ag g/t 11 7 9 3 Ag g/t 10 40 40 12	Cu % - 0.16 0.23 - 1.39 - 0.13 0.10 0.16 Cu % 0.24 0.18 0.18 0.18 0.18 0.18 0.18 0.12 0.12 0.13 0.10 0.10 0.16 Cu % 0.24 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.10 0.18 0.18 0.10 0.18 0.18 0.10 0.18 0.18 0.10 0.18 0.18 0.18 0.10 0.18 0.18 0.10 0.18 0.10 0.18 0.19 0.18 0.10 0.18 0.10 0.18 0.10 0.18 0.10 0.18 0.10 0.18 0.10 0.10 0.18 0.18 0.10 0.10 0.18 0.10 0.10 0.18 0.10 0.10 0.18 0.10 0.10 0.18 0.10 0.10 0.18 0.10 0.10 0.18 0.10 0.10 0.18 0.10 0.10 0.18 0.10 0.10 0.18 0.10 0.10 0.10 0.18 0.10 0.10 0.10 0.18 0.10 0.10 0.10 0.18 0.10 0.10 0.10 0.10 0.18 0.10 0.10 0.10 0.10 0.18 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.16	Pb % 0.1 0.2 - 1.5 Pb % - 0.10 - Pb % - 0.10 - 0.1 0.1	Zn % 6.8 1.1 1.5 1.7 1.5 1.8 11.3 6.5 1.3 Zn % 4.5 4.2 11.9 5.3 Zn % - 0.1 1.1	Mo % - 0.005 0.007 0.007 0.002 - 0.008 Mo % 0.001 - 0.003 0.004 0.005 0.007 0.008 Mo % 0.001 - 0.001 - 0.001 - 0.001 - 0.0014 0.002 0.002	AgEq 389 389 AgEq AgEq 277	CuEq 0.99 3.06
Hole SLM22-007 SLM22-007 Including and SLM22-007 Including and SLM22-007 Including and SLM22-007 Hole SLM22-008 SLM22-008 SLM22-008 SLM22-008 SLM22-008 SLM22-008 SLM22-013 SLM22-013 SLM22-013 SLM22-013	From (m) 33.24 44.14 50.89 50.691 96.12 97.00 715.50 171.13 234.62 242.78	To (m) 34.45 58.17 58.17 55.00 58.17 110.63 97.29 98.25 299.05 To (m) 153.00 220.60 281.45 309.00 To (m) 77.50 171.86 235.80 243.31	Interval (m) 1.21 14.03 7.28 4.11 1.26 14.51 1.17 2.13 2.05 Interval (m) 1.00 1.13 2.33 Interval (m) 1.00 1.13 2.33 Interval (m) 1.00 0.73 1.18 0.53	Ag g/t 6 11 6 91 3 9 6 10 Ag g/t 11 7 9 3 Ag g/t 10 40 12 2	Cu % - 0.16 0.23 - 1.39 - 0.13 0.10 0.16 Cu % 0.24 0.18 0.18 0.18 - Cu % 0.20 1.77 0.16	Pb % - 0.1 0.2 - 1.5 - - - Pb % - 0.10 - Pb % - 0.11 0.1 0.1 0.1 - - - - - - - - -	Zn % 6.8 1.1 1.5 1.7 1.5 1.8 11.3 6.5 1.3 Zn % 4.5 4.2 11.9 5.3 Zn % - 0.1 1.1 9.0	Mo % 0.007 0.007 0.007 0.002 0.008 0.007 0.001 0.001 Mo % 0.001 0.001 Mo % 0.001 0.001 Mo % 0.001 0.002 0.002 0.002	AgEq 389 AgEq AgEq 277	CuEq 0.99 3.06

SLM22-014	188.00	289.38	101.38	0.3	-	-	-	0.013		
Including	268.00	280.53	12.53	1	-	-	-	0.029		
including	273.39	287.00	13.61	0.8	-	-	-	0.026		
and	277.00	279.00	2.00	0.5	-	-	-	0.137		
SLM22-014	401.00	406.05	5.05	0.3	-	-	-	0.031		
Including	405.00	406.05	1.05	0.3	-	-	-	0.102		
Hole	From (m)	To (m)	Interval (m)	Ag g/t	Cu %	Pb %	Zn %	Mo %	AgEq	CuEq
SLM22-015	51.50	57.00	5.50	5	0.09	0.1	0.2	-		
Including	53.00	55.00	2.00	13	0.19	0.2	0.4	-		
SLM22-015	121.00	471.00	350.00	0.2	-	-	-	0.008		
	190.05	337.50	147.45	0.1	-	-	-	0.012		
Including	216.00	218.00	2.00	0.2	-	-	-	0.075		
	259.72	279.00	19.28	0.1	-	-	-	0.020		
and	261.00	268.00	7.00	0.1	-	-	-	0.027		

Assay results are presented as uncut weighted averages and assume 100% metal recovery. Interval widths represent drilled HQ core lengths and true width is unknown currently. * indicates partial drill hole assay results were previously released. Silver equivalent (AgEq) and Copper equivalent (CuEq) grades are calculated using metal prices of silver US\$21.25/oz., gold US\$1,850/oz, copper US\$4.00/lb, lead US\$1.00/lb, molybdenum at US\$30.00/lb, and zinc US\$1.40/lb. Silver equivalent grade is calculated as AgEq (g/t) = Ag (g/t) + (Cu (%) * 129.08) + (Pb (%) * 32.27) + (Zn (%) * 45.18) + (Au (g/t) * 87.06). Copper equivalent grade is calculated as CuEq (%) = Cu (%) + Ag*0.0077) + (Pb (%) * 0.25) + (Zn (%) * 0.35) + (Au (g/t) * 0.674 + (Mo (%) * 7.5).

Table 3: 2022 Diamond Drilling Data - Sulphide City and Grizzly Targets											
DDH	Target Easting (m) Northing (m) Elevation (m)		Azimuth	Dip	DDH Depth						
SLM22-005	Sulphide City Target	536735	6558664	1645	0	-45	137				
SLM22-006	Sulphide City Target	536735	6558658	1645	0	-90	470				
SLM22-007	Sulphide City Target	536735	6558661	1645	0	-60	416				
SLM22-008	Sulphide City Target	536738	6558659	1645	60	-45	461				
SLM22-009	Grizzly Target	537176	6558673	1846	178	-50	387				
SLM22-010	Grizzly Target	537175	6558674	1846	240	-65	422				
SLM22-011	Grizzly Target	537175	6558674	1846	260	-65	338				
SLM22-012	Grizzly Target	537175	6558674	1846	300	-55	350				
SLM22-013	Sulphide City Target	536732	6558656	1645	225	-45	400				
SLM22-014	Sulphide City Target	536737	6558656	1645	150	-50	414				
SLM22-015	Sulphide City Target	536735	6558656	1645	185	-50	471				

A total of 1,806 metres of diamond drilling were completed at the Laverdiere Skarn-Porphyry Project in 2022. First-pass diamond drilling intersected significant near surface, high-grade Fe-Cu-Au-Mo skarn mineralization associated with a potassically altered porphyry intrusion containing widespread porphyry Cu-Mo-Au mineralization and veining (Figure 3; Tables 4-5).

Laverdiere Skarn-Porphyry Project Highlights

- LAV22-001 intersected 48.54m of 1.02% CuEq (0.90% Cu, 6g/t Ag, and 0.11g/t Ag) from 31.46m, including 0.60m of 5.51% CuEq (5% Cu, 33g/t Ag, and 0.36 g/t Au) from 42.15m depth.
- LAV22-001 also intersected 1.51m of 4.59g/t Au from 163.49m depth in the Llewellyn Fault Zone (LFZ)

- LAV22-002 returned 223m of 0.20% CuEq (0.11% Cu, 2g/t Ag, and 0.006% Mo) from 15.00m depth, including 79m of 0.26% CuEq, and 24.42m of 0.50% CuEq.
- LAV22-003 returned 30.49m of 0.22% CuEq (0.12% Cu, 2g/t Ag, 0.03 g/t Au, and 0.009% Mo) from 4.51m depth.
- LAV22-004 intersected 7.66m of 0.24% Cu, 0.014% Mo, 3.4g/t Ag, and 0.07g/t Au from 222m depth, including 2.46m of 0.37% Cu, 0.022% Mo, 6.6g/t Ag, and 0.21g/t Au from 227.2m depth.
- LAV22-005 returned 83.22m of 0.016% Mo, 0.12% Cu, 0.8g/t Ag, and 0.03g/t Au (0.27% CuEq) including 31.08m of 0.042% Mo, and 6.2m of 0.105% Mo from 6.9m depth.
- LAV22-006 intersected 348.65m of 0.010 % Mo from 3.35m depth, including 183m of 0.018% Mo, 11m of 0.092% Mo (0.13% Cu, 5g/t Ag (0.84% CuEq), and 5.5m of 0.11% Mo.
- LAV22-006 also returned 107.38m of 0.31 CuEq (0.11% Cu, 0.023% Mo, 0.9g/t Au, and 0.02g/t Au) from 144.62m depth, including 41m of 0.60% CuEq (0.27% Cu, 0.037% Mo, 2g/t Ag, and 0.05g/t Au), and 0.9m of 6.09% CuEq (5.08% Cu, 23g/t Ag, 1.25g/t Au) from 166.64m depth.

Table 4: 2022 Assay Highlights from the Laverdiere Skarn-Porphyry Project										
DDH	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Mo %	CuEq		
LAV22-001*	0.95	268.00	267.05	0.04	1	0.17		0.21		
LAV22-001*	0.95	96.00	95.05	0.06	3	0.47		0.54		
Including	31.46	80.00	48.54	0.11	6	0.90		1.02		
mcruumy	42.15	42.75	0.60	0.36	33	5.01		5.51		
and	78.00	78.70	0.70	0.25	13	2.24		2.51		
LAV22-001*	163.49	165.00	1.51	4.59	0.4	-				
DDH	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Mo %	CuEq		
LAV22-002*	2.98	402.30	399.32	0.03	1	0.07	0.003	0.12		
LAV22-002*	15.00	238.00	223.00	0.05	2	0.11	0.006	0.20		
LAV22-002*	20.35	21.85	1.50	0.34	22	1.08	0.007	1.52		
Including	20.35	20.92	0.57	0.20	53	2.74	0.000	3.28		
LAV22-002*	63.67	110.00	46.33	-	0.8	0.08	0.022	0.25		
Including	64.74	65.82	1.08	-	0.3	-	0.100			
mciuumy	82.53	83.32	0.79	0.02	0.3	-	0.316			
And	84.85	86.68	1.83	-	0.5	-	0.103			
LAV22-002*	102.00	110.00	8.00	0.05	3	0.43	-	0.49		
Including	102.00	106.00	4.00	0.09	5	0.80	-	0.90		
and	104.00	106.00	2.00	0.30	19	3.01	-	3.36		
LAV22-002*	159.00	238.00	79.00	0.10	3	0.16	0.002	0.26		
	159.00	177.24	18.24	0.16	3	0.19	0.001	0.33		
Including	159.00	159.70	0.70	1.15	11	0.68	-	1.54		
menuumy	173.00	227.00	54.00	0.12	3	0.19	0.002	0.31		
	173.00	175.00	2.00	1.66	11	0.75	0.020	2.10		

	207.23	231.65	24.42	0.16	4	0.32	0.005	0.50
	207.23	222.00	14.77	0.25	6	0.41	0.003	0.65
	207.23	209.00	1.77	2.05	24	1.13	0.001	2.71
	221.00	222.00	1.00	0.21	5	1.07	-	1.25
	224.00	227.00	3.00	0.04	2	0.40	0.011	0.53
	224.00	225.50	1.50	0.09	6	0.92	0.029	1.24
and	225.50	229.17	3.67	0.04	2	0.39	0.020	0.58
LAV22-002*	297.50	300.16	2.66	0.13	2	0.14	-	0.24
Includina	297.50	298.10	0.60	0.55	5	0.26	-	0.67
DDH	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Mo %	CuEa
LAV22-003	4.51	35.00	30.49	0.03	2	0.12	0.009	0.22
LAV22-003	53.23	62.00	8.77	-	1	0.10	0.006	0.16
LAV22-003	104.70	105.35	0.65	0.09	7	0.90	0.005	1.06
DDH	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Mo %	CuEq
LAV22-004	169.73	172.00	2.27	0.23	4	0.24	0.001	0.44
LAV22-004	222.00	229.66	7.66	0.07	3	0.18	0.014	0.37
Including	227.20	229.66	2.46	0.21	7	0.37	0.022	0.72
DDH	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Mo %	CuEq
LAV22-005	0.00	175.00	175.00	0.02	0.5	0.06	0.008	•
LAV22-005	6.90	90.12	83.22	0.03	0.8	0.12	0.016	0.27
Including	6.90	15.36	8.46	0.09	3	0.63	0.001	0.72
and	6.90	8.29	1.39	0.25	10	1.98	0.002	2.24
LAV22-005	12.00	90.12	78.12	0.03	0.7	0.10	0.018	0.25
	12.00	15.36	3.36	0.15	5	0.98	0.001	1.13
	14.00	15.36	1.36	0.16	5	1.24	0.001	1.40
	59.04	90.12	31.08	-	0.3	0.03	0.042	
including	50.34	57.00	6.66	0.09	2	0.34	0.001	0.42
	69.00	75.20	6.20	-	0.3	-	0.105	
	70.00	72.00	2.00	-	0.5	-	0.216	
and	86.00	88.00	2.00	-	0.5	-	0.255	
DDH	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Mo %	CuEq
LAV22-006	3.35	352.00	348.65	-	0.5	0.06	0.010	
LAV22-006	69.00	252.00	183.00	0.02	0.9	0.09	0.018	
	69.00	73.00	4.00	-	0.9	0.05	0.105	
	144.62	252.00	107.38	0.02	0.9	0.11	0.023	0.31
	152.00	193.00	41.00	0.05	2	0.27	0.037	0.60
	166.64	193.00	26.36	0.06	2	0.34	0.049	0.77
Including	166.64	167.54	0.90	1.25	23	5.08	-	6.09
	170.02	193.00	22.98	-	2	0.16	0.056	0.59
	170.02	170.92	0.90	0.06	7	1.87	-	1.97
	177.00	193.00	16.00	-	2	0.09	0.072	
	477.00	100.00		İ	_			

	177.00	178.00	1.00	-	0.1	-	0.301	
	184.00	188.00	4.00	0.02	3.2	0.21	0.146	1.34
	186.61	188.00	1.39	-	5	0.33	0.211	1.96
	191.80	193.00	1.20	-	0.2	-	0.108	
	246.50	252.00	5.50	-	0.3	-	0.110	
and	251.04	252.00	0.96	-	0.8	0.03	0.425	

Assay results are presented as uncut weighted averages and assume 100% metal recovery. Interval widths represent drilled HQ core lengths and true width is unknown currently. * indicates drill hole assay results were previously released. Copper equivalent (CuEq) grades are calculated using metal prices of silver US\$21.25/oz., gold US\$1,850/oz, copper US\$4.00/lb, and molybdenum at US\$30.00/lb. Copper equivalent grade is calculated as CuEq (%) = Cu (%) + Ag*0.0077) + (Pb (%) * 0.25) + (Zn (%) * 0.35) + (Au (g/t) * 0.674 + (Mo (%) * 7.5).

Table 5: 2022 Diamond Drilling Data - Laverdiere Skarn-Porphyry Project											
DDH	Target	Target Easting (m) Northing (m) Elevation (m) Azimuth Dip DDH Dep									
LAV22-001	Laverdiere	550182	6565256	728	90	-80	268				
LAV22-002	Laverdiere	550181	6565253	728	210	-50	402.3				
LAV22-003	Laverdiere	550296	6565057	717	210	-45	300				
LAV22-004	Laverdiere	550296	6565061	717	270	-60	309				
LAV22-005	Laverdiere	550295	6565061	717	270	-45	175				
LAV22-006	Laverdiere	550149	6565726	705	210	-50	352				

Figure 3: Schematic plan view map of the Laverdiere Skarn-Porphyry Project showing 2022 drilling locations, Cu (%) surficial sampling progress, and downhole Mo (%) assay highlights. Map elements plotted on TauSf resistivity map (Resistive = cold colours, Conductive = hot colours). The blue-green resistive zone correlates with the mapped location of the Laverdiere Mo-Cu±Au Porphyry.

Sampling Protocol, Quality Assurance & Quality Control

All recovered drill core was transported by helicopter to the core logging facility in Atlin, British Columbia for processing. Down hole surveys were conducted on all drill holes upon termination, using a Reflex Gyro Sprint downhole survey tool equipped with an azimuth positioning capability. Drill core was typically sampled over two-meter intervals and occasionally reduced in areas of higher visual sulphide mineralization. Core samples were cut in half with an electric core saw, bagged, labelled, sealed, and submitted to ALS Minerals preparation facility in Whitehorse, YT with the remaining core stored in Atlin, BC. Half core samples were finely crushed and sieved to <75 microns. Samples were then shipped to ALS Geochemistry in North Vancouver, British Columbia where they were analysed for gold by fire assay with an AA finish,

over limits for Ag, Pb Cu and Zn and additional elements were analysed using four acid digestion with an ICP-AES or ICP-MS finish.

Blank rock (siliceous river rock), duplicate, and certified reference materials were inserted into the sample stream for at least every 20 samples. Certified reference materials were acquired from OREAS North America Inc. of Sudbury, Ontario and CDN Resource Laboratories Ltd. of Langley, British Columbia for the 2022 diamond drill campaign.

About the Silver Lime Porphyry-CRD Project

5,565 metres of exploratory HQ-sized diamond drilling has been completed at the Silver Lime Porphyry-Skarn Project. 2022 drilling successfully confirmed the presence of high-grade carbonate replacement mineralization at depth, as well as widespread porphyry Mo mineralization and associated mineralized skarn. All surficial mineralized structures targeted during the 2022 drilling campaign are confirmed at depth.

The Silver Lime Project is predominantly hosted in carbonate rocks of the Florence Range Metamorphic Suite (ca. 1150Ma). Target limestone and marble host rocks are intercalated with upper amphibolite grade metapeltic rocks, quartzite, and amphibole-bearing gneiss. The protoliths to the metasedimentary units include continentally derived clastic strata and platform carbonate, whereas the amphibole-bearing gneiss is interpreted as probable basaltic flows, sills, dykes, and tuffaceous units related to early rifting of the ancestral North America continental margin (i.e., Mihalynuk, 1999). Younger felsic to intermediate intrusive rocks are also widespread within the project area and range from Triassic to Eocene in age. Widespread Eocene magmatic activity was associated with Cordillera-wide, brittle strike-slip faulting. Eocene volcano-plutonic centres in the western Cordillera are known to host porphyry, skarn, and epithermal-type mineralization extending from the Golden Triangle in NW British Columbia to the Tally-Ho Shear Zone in the Yukon (>100 kilometers).

Three well-defined target areas exist at the Silver Lime Project and include the Jackie, Sulphide City, and Grizzly targets. The Jackie Target represents a dyke proximal expression of Ag-Pb-Zn-Cu CRM that consists of numerous massive-to-semi massive sulphide occurrences measuring up to 30 metres long and 6 metres wide and comprise an approximate area of 400 metres by 380 metres. Many sulphide occurrences at Jackie are clustered and hosted within NE-SW trending faults and fault splays, proximal to undeformed felsic dykes oriented sub-parallel to faulting. These fault-hosted sulphide bodies are interpreted as "spokes" that typically broaden at depth and express continuity back towards a causative intrusion. The Sulphide City Porphyry-Skarn Target is characterized by multiple semi-massive to massive sulphide occurrences measuring up to 40 metres along strike and 8 metres wide. In 2022, detailed geological mapping and diamond drilling discovered a Mo-Cu-bearing and causative porphyry intrusion. The Sulphide City Target boasts an average surficial grade of 13.3g/t Ag, 0.34% Cu, and 3.9% Zn (83 rock samples) that remains open. The Grizzly Ag-Zn-Pb-Cu-Au CRD Target represents the largest, untested surficial exposure of CRM globally. Carbonate replacement manto, chimney, and dyke-contact skarn mineralization at Grizzly are observable at surface across open strike lengths of up to 1 kilometer, and at widths of over 5 meters. Average surficial grade at the Upper Grizzly CRD Target yields values of 164.7g/t Ag, 0.42% Cu, 3.8% Pb, and 7.1% Zn over 450m strike length, whereas the Lower Grizzly Manto has an average surficial grade of 70 g/t Ag, 0.36% Cu, 0.2% Pb, and 7.1% Zn over an inferred strike length of 1km.

About the Laverdiere Skarn-Porphyry Project

1,806 metres of exploratory HQ-sized diamond drilling has been completed at the Laverdiere Project in June. 2022 drilling successfully confirmed and extended high-grade Fe-Cu-Au skarn, Cu-Mo endoskarn, and associated Cu-Mo porphyry style mineralization for 850 metres along the western flank of Hoboe Creek, between the historic North and South Adits, and remains open at depth.

The Laverdiere Project is located proximal to the Llewellyn Fault Zone, coincident with Hoboe Creek in the eastern Blue Property. Laverdiere is characterized as a fine-to-coarse grained and locally massive Fe-Cu-Au rich skarn (magnetite and/or magnetite-chalcopyrite-dominant±bornite-tetrahedrite-molybdenite-pyrite-pyrrhotite) hosted in dolomitic limestone and marble of the Devonian Boundary Ranges Metamorphic Suite. Along the western side of Hoboe Creek, dolomitic limestone is overlain by thin-bedded calcareous siltstone, quartzite, and schist – all of which are locally folded, dip moderately to the west, and are intruded by an Early Cretaceous post-accretionary granodiorite intrusion of batholith size (Coast Plutonic Complex). The granodiorite is locally foliated, Cu-Mo-bearing, and exhibits potassic alteration in the form of secondary K-feldspar and shreddy biotite after hornblende along the Fe-Cu-Au skarn contact.

The highest-grade skarn occurrences observed at Laverdiere are hosted in dolomitic limestone, near the siltstone contact and along the margins of the granodiorite intrusion. Disseminated and quartz-vein/fracture-hosted chalcopyrite, molybdenite, magnetite, and malachite have been observed in granodiorite outcropping along the Lewellyn Fault Zone (LFZ/Hoboe Creek) for up to 3.9km south from the main skarn body.

National Instrument 43-101 Disclosure

Nicholas Rodway, P.Geo, (Licence# 46541) (Permit to Practice# 100359) is President, CEO and Director of the Company, and qualified person as defined by National Instrument 43-101- Standards of Disclosure for Mineral Projects. Mr. Rodway has reviewed and approved the technical content in this release.

About Core Assets Corp.

Core Assets Corp. is a Canadian mineral exploration company focused on the acquisition and development of mineral projects in British Columbia, Canada. The Company currently holds 100% ownership in the Blue Property, which covers a land area of 114,074 hectares (~1,140 km²). The project lies within the Atlin Mining District, a well-known gold mining camp located in the unceded territory of the Taku River Tlingit First Nation and the Carcross/Tagish First Nation. The Blue Property hosts a major structural feature known as The Llewellyn Fault Zone ("LFZ"). This structure is approximately 140 km in length and runs from the Tally-Ho Shear Zone in the Yukon, south through the Blue Property to the Alaskan Panhandle Juneau Ice Sheet in the United States. Core Assets believes that the south Atlin Lake area and the LFZ has been neglected since the last major exploration campaigns in the 1980's. The LFZ plays an important role in mineralization of near surface metal occurrences across the Blue Property. The past 50 years have seen substantial advancements in the understanding of porphyry, skarn, and carbonate replacement type deposits both globally and in British Columbia's Golden Triangle. The Company has leveraged this information at the Blue Property to tailor an already proven exploration model and believes this could facilitate a major discovery. Core Assets is excited to become one of Atlin Mining District's premier explorers where its team believes there are substantial opportunities for new discoveries and development in the area.

On Behalf of the Board of Directors **CORE ASSETS CORP.**

"Nicholas Rodway" President & CEO Tel: 604.681.1568

Neither the Canadian Securities Exchange nor its Regulation Services Provider (as that term is defined in the policies of the CSE) accepts responsibility for the adequacy or accuracy of this release.

FORWARD LOOKING STATEMENTS

Statements in this document which are not purely historical are forward-looking statements, including any statements regarding beliefs, plans, expectations, or intentions regarding the future. Forward looking statements in this news release include, but are not limited to, expectations regarding the pending core assays, including speculative inferences about potential copper, molybdenum, gold, silver, zinc, and lead grades based on preliminary visual observations from results of diamond drilling at the Silver Lime Project and the Laverdiere Project, as applicable; the Company's plans to further investigate the geometry and extent of the skarn and carbonate replacement type mineralization continuum at the Silver Lime Project through additional field work and diamond drilling and any planned or proposed program related thereto; and any other general statement regarding the Company's planned or future exploration efforts at the Blue Property. It is important to note that the Company's actual business outcomes and exploration results could differ materially from those in such forward-looking statements. Risks and uncertainties include that expectations regarding pending core assays based on preliminary visual observations from diamond drilling results at the Silver Lime Project and the Laverdiere Project, as applicable, may be found to be inaccurate; that results may indicate further exploration efforts at the Silver Lime Project and the Laverdiere Project, as applicable, as not warranted; that the Company may be unable to implement its plans to further explore at the Silver Lime Project and the Laverdiere Project, as applicable; that certain exploration methods, including the Company's proposed exploration model for the Blue Property, may be ineffective or inadequate in the circumstances; that economic, competitive, governmental, geopolitical, environmental and technological factors may affect the Company's operations, markets, products and prices; our specific plans and timing drilling, field work and other plans may change; that the Company may not have access to or be able to develop any minerals because of cost factors, type of terrain, or availability of equipment and technology; and we may also not raise sufficient funds to carry out or complete our plans. The ongoing COVID-19 pandemic, labour shortages, inflationary pressures, rising interest rates, the global financial climate and the conflict in Ukraine and surrounding regions are some additional factors that are affecting current economic conditions and increasing economic uncertainty, which may impact the Company's operating performance, financial position, and future prospects. Collectively, the potential impacts of this economic environment pose risks that are currently indescribable and immeasurable. No assurance can be given that any of the events anticipated by the forward-looking statements will occur or, if they do occur, what benefits the Company will obtain from them. Readers are cautioned that forward-looking statements are not guarantees of future performance or events and, accordingly, are cautioned not to put undue reliance on forwardlooking statements due to the inherent uncertainty of such statements. Additional risk factors are discussed in the section entitled "Risk Factors" in the Company's Management Discussion and Analysis for its recently completed fiscal period, which is available under the Company's SEDAR profile at www.sedar.com. Except as required by law, the Company will not update or revise these forward-looking statements after the date of this document or to revise them to reflect the occurrence of future unanticipated events.