TECHNICAL REPORT ON THE Golden Wonder Property South of New Hazelton, British Columbia, Canada

Prepared for Blue Lagoon Resources Inc. Report for NI 43-101

Author: Jeffrey J. Reeder, P.Geo

Effective Date: June 11, 2019

JEFFREY J. REEDER, P.GEO.

1240 Fleet Street, Mississauga, OntarioL5H 3P5, Canada Tel: +1 6473023290 | Jeffreyreeder@hotmail.com

TABLE OF CONTENTS

1	Sum	mary		6			
	1.1	Propert	ty Description	6			
	1.2	Minera	l Tenure	6			
	1.3	Geolog	y and Mineralization	6			
	1.4	Explora	tion	7			
	1.5	Develo	pment and Operations	7			
	1.6	Conclus	sions and Recommendations	7			
2	Intro	oduction	1				
3	Relia	ance on	Other Experts	9			
4	Prop	erty De	scription and Location	10			
	4.1	Locatio	n	11			
	4.2	Minera	l Tenure	11			
	4.3	Environ	mental Liabilities	15			
	4.4	Surface	Rights	15			
	4.5	Crown	Grants	15			
	4.6	Permits	5	16			
	4.7	Other S	ignificant Factors and Risks	16			
5	Acce	essibility	r, Climate, Local Resources, Infrastructure, and Physiography				
	5.1	Topogr	aphy, Elevation, and Vegetation	17			
	5.2	Infrastr	ucture and Local Resources	17			
	5.3	Climate		18			
6	Hist	ory					
	6.1	Previou	is Exploration and Development	19			
		6.1.1	Three Hills (Claim 1052710)	21			
		6.1.2	Golden Wonder (Claim 1047950)	21			
		6.1.3	West's Knoll (Claim 1047951)	24			
		6.1.4	Daley West (Claim 1047950)	24			
		6.1.5	Black Prince/Blue Lake/Silvertip Glacier (1047952)	24			
		6.1.6	Hecla/Bluebird (Claim 1047952)	25			
		6.1.7	Recent Exploration	28			
7	Geol	ogical S	etting and Mineralization	43			
	7.1	Regiona	al Geology	43			
	7.2	Property Geology& Mineralization4					
		7.2.1	Three Hills	45			

	7.2.2	Golden Wonder	
	7.2.3	West's Knoll	
	7.2.4	Daley West	
	7.2.5	Black Prince/Blue Lake/Silvertip Glacier	
	7.2.6	Hecla/Bluebird	
8	Deposit Type	2	
9	Exploration.		
10	DRILLING		
11	Sample Prep	aration, Analyses, and Security	
	11.1 Samplir	ng Method and Approach	
	11.1.1	Stream Pan Concentrate Samples	
	11.1.2	Rock Samples	
	11.1.3	Soil Samples	
	11.2 Laborat	ory Sample Preparation and Analysis	
	11.2.1	Code 8– 4 Acid ICP-OES and Code 8 – 4 Acid	ICP-MS 53
	11.2.2	Ultratrace 4: Near Total Digestion ICP/MS	
	11.2.3	1A2-ICP - (1A2-ICP-30 or 50) Au Fire Assay -	ICP 54
	11.3 Assay R	esults and Interpretation	54
12	Data Verifica	tion	
13	Mineral Proc	essing and Metallurgical Testing	56
14	Mineral Reso	ource Estimates	
15 T	0 22 – Not Ap	plicable (Early Stage Property)	
23	Adjacent Pro	perties	
24	Other Releva	nt Data and Information	61
25	Interpretatio	on and Conclusions	
26	Recommend	ations	
27	References		
28	Date and Sig	nature Page	
29	Certificate of	f Qualified Person	
Cons	sent of Qualifi	ed Person	. Error! Bookmark not defined.

LIST OF FIGURES

Figure 4-1.Location Map of the Golden Wonder Property	10
Figure 4-2.Golden Wonder Property mineral claims map	13
Figure 6-1. Historic exploration highlights for Golden Wonder Property and area	23
Figure 6-2. Total Magnetics: 2007 Fugro DIGHEM survey (fr. Burgoyne &Kikauka, 2007)	26
Figure 6-3. Resistivity (7200 Hz): 2007 Fugro DIGHEM survey (fr. Burgoyne &Kikauka, 2	-
Figure 6-4 Stream Pan Concentrate Sample Locations on the Property	31
Figure 6-5 Index Map for Rock and Soil Sample Locations	32
Figure 6-6 Golden Wonder Area Rock Samples - Au Results	33
Figure 6-7 Golden Wonder Area Rock Samples - Ag Results	34
Figure 6-8 Golden Wonder Area Rock Samples - Cu Results	35
Figure 6-9 Golden Wonder Area Rock Samples - Co Results	36
Figure 6-10 West Knoll Area Rock Samples Locations	37
Figure 6-11 Black Prince and Hecla Area Rock Sample Locations	37
Figure 6-12 Daley West Area Rock Sample Locations	38
Figure 6-13 2018 East and West Soil Grids and Sample Locations	38
Figure 6-14 2018 East Soil Grid - Au Results	39
Figure 6-15 2018 East Soil Grid - Au Results	40
Figure 6-16 2018 West Soil Grid - Au Results	41
Figure 6-17 2018 West Soil Grid - Ag Results	42
Figure 7-1. Regional geology of the Golden Wonder Property	44
Figure 7-2. Golden Wonder Property geology map	46
Figure 23-1. Adjacent Property Map	60

LIST OF TABLES

Table 4-1. Mineral Tenure Work Requirements in BC	11
Table4-2. Mineral Tenure Cash-in-Lieu in BC	11
Table 4-3. Details of the Golden Wonder Property Claims	12
Table 4-4.Title Overlap Report Summary	14
Table 4-5. Expired Crown Grants on the Golden Wonder Property	15

Table 6-1. Summary of Previous Exploration and Development	19
Table 6-2. Summary of Rock Samples Collected in 2017 and 2018	
Table 6-3. Rock samples with significant Au, Ag, Co, and Cu assay results	28
Table 12-1. Samples taken by the Author	55
Table 26-1. Phase 1 Estimated Budget for Detailed Ground Magnetic Survey and S Program	1
Table 26-2 Phase 2 Estimated Budget for 500 m Diamond Drill Program Error!	Bookmark

LIST OF APPENDICES

Appendix 1	Assay Certificates from Dahrouge Geological Samples	at end
Appendix 2	Assay Certificates from Authors' QP Samples	at end

Abbreviation	Definition	Abbreviation	Definition
μ	micron	kWh	kilowatt-hour
°C	degrees Celsius	L	liter
μγ	microgram	LREE	light rare earth elements
Α	ampere	LREO	light rare earth oxides
а	annum	m	metre
Ag	silver	Μ	mega (million)
Au	gold	m ²	square metre
C\$	Canadian dollars	m ³	cubic metre
cal	calorie	Ма	million years
cfm	cubic feet per minute	MASL	metres above sea level
cm	centimetre	min	minute
cm ²	square centimetre	mm	millimetre
Со	cobalt	mph	miles per hour
Cu	copper	MVA	megavolt-amperes
dia.	diameter	MW	megawatt
dmt	dry metric tonne	MWh	megawatt-hour
dwt	dead-weight ton	m³/h	cubic metres per hour
ft	foot	opt, oz/st	ounce per short ton
ft/s	foot per second	OZ	Troy ounce (31.1035g)
ft²	square foot	oz/dmt	ounce per dry metric tonne
ft ³	cubic foot	pop.	population
g	gram	ppb	part per billion
G	giga (billion)	ppm	part per million
Gal	Imperial gallon	QA	quality assurance
g/L	gram per litre	QC	quality control
g/t	gram per tonne	REE	rare earth elements
gr/ft ³	grain per cubic foot	S	second
gr/m ³	grain per cubic metre	st	short ton
hr	hour	stpa	short ton per year
ha	hectare	Stpd	short ton per day
hp	horsepower	Т	metric tonne
HREE	heavy rare earth	Th equiv.	equivalent; gamma counts
HREO	heavy rare earth	Тра	metric tonne per year
in	inch	Tpd	metric tonne per day
in ²	square inch	TREO	total rare earth element
J	joule	Тра	metric tonne per year
k	kilo (thousand)	Tpd	metric tonne per day
kcal	kilocalorie	US\$	United States dollar
kg	kilogram	USg	United States gallon
km km (h	kilometre	USgpm	US gallon per minute
km/h	kilometre per hour	V	volt
km ²	square kilometre	W	watt
kPa	kilopascal	Wmt	wet metric tonne
kVA	kilovolt-amperes	yd ³	cubic yard
kW	kilowatt	Yr	year

LIST OF ABBREVIATIONS

1 SUMMARY

Blue Lagoon Resources Inc. ("Blue Lagoon") has retained Jeff Reeder, P.Geo., to prepare an independent Technical Report on the Golden Wonder Property ("the Property"), located in British Columbia, Canada to comply with regulatory disclosure and reporting requirements outlined in Canadian National Instrument 43-101 ("NI 43-101"), companion policy NI 43-101CP, and Form 43-101F. The Property was previously called the RD Cobalt Property by Primary Energy Metals Inc., (formerly named Primary Cobalt Corp.)with a primary focus on cobalt. Jeff Reeder, P.Geo. was the author of a NI 43-101 technical report entitled "Technical Report on the RD Cobalt Property, British Columbia, Canada" with an effective date of November 18, 2017prepared for Primary Cobalt Corp.(the "2017 Report") and available under Primary Energy Metals Inc.'s SEDAR profile. The purpose of this report is to update the 2017 Report with results of the 2018 exploration work and the revised primary commodity.

1.1 PROPERTY DESCRIPTION

The Golden Wonder Property (previously called the RD Cobalt Property) is located in west central British Columbia, Canada, in the Hazelton area. The area lies at the north end of the Rocher Déboulé Range, near the junction of the Bulkley and Skeena Rivers. The geographic centre of the Property is at 55°11'N, 127°36'W.

The Property is approximately 1 km south of the Yellowhead Highway, a major interprovincial highway in western Canada. The west end of the Property (the Golden Wonder area) can be reached by a gravel road that links to highway southwest of Sealey Lake Provincial Park; ATV trails run east from this road, both north and south of Denys Lake. The northern section of the Property (West's Knoll, Daley West areas) is mostly accessible from the highway by ATV along trails or by foot. Access to the south-central area of the Property (Black Prince, Blue Lake, Silvertip Glacier, and Hecla areas) is limited to helicopter.

1.2 MINERAL TENURE

The Property comprises five contiguous mineral claims that cover an area of approximately 7,182.93 ha. The claims are currently held in trust by Jody Dahrouge for Primary Energy Metals Inc. Blue Lagoon recently signed a purchase agreement with Primary Energy Metals Inc. for the Property that is subject to the following conditions: 1) Cash - payment of \$15,000 to PEM upon execution of the agreement and \$10,000 to PEM within three days of the final receipt for Blue Lagoon's prospectus; and 2)Shares - 200,000 shares to be issued to the PEM within 10 business day after Blue Lagoon's share commence trading on the Canadian Stock Exchange.

1.3 GEOLOGY AND MINERALIZATION

The Golden Wonder Property is situated in the Intermontane tectonic province of the Canadian Cordillera and is underlain by rocks of the Late Paleozoic Stikine volcanic arc terrane. The Rocher Deboule area lies within the Skeena Arch, an east-northeast-trending belt of Jurassic and older, mostly volcanic rocks that straddle the Skeena Terrane, a volcanic arc complex. The

Rocher Déboulé Range is underlain by the upper two divisions of the Hazelton Group (Red Rose and Brian Boru formations) and is intruded by the Rocher Deboule stock, predominantly a porphyritic granodiorite and lesser quartz monzonite.

Most of the areas of interest on the Property are associated with mineralized vein fillings and shear zones near the margin of the Rocher Deboule intrusion into sedimentary and volcanic rocks. Heat from the intrusion of the Rocher Deboule stock created a hornfelsic aureole in the surrounding Hazelton rocks.

1.4 EXPLORATION

The Technical Report summarizes the historic exploration and presents the results of the most recent exploration in 2017 and 2018. Dahrouge Geological Consulting Ltd. conducted exploration on the Property on behalf of Primary Energy Metals Inc. (previously called Primary Cobalt Corp.). The work included rock sampling, soil sampling, stream pan concentrate sampling and geological mapping of targeted areas. At total of 180 rock samples and 287 soils samples were collected, with the main focus on the Golden Wonder showing.

1.5 DEVELOPMENT AND OPERATIONS

There is currently no mining infrastructure on the Golden Wonder Property. The Black Prince showing reportedly produced 120,338g silver and 619 kg lead from 19 tonnes in 1915.

1.6 CONCLUSIONS AND RECOMMENDATIONS

The 2018 exploration program focused on investigating the precious metal potential of the Property, by extensively and systemically sampling the Golden Wonder area and other target areas. The results of the exploration program indicate that the Golden Wonder Property exhibits favourable geologic characteristics and sufficient potential to warrant further exploration for gold, silver, copper and cobalt. The recommendation is based on a two-phase exploration program, with Phase 2 contingent on the positive results of Phase 1.

Phase 1 work includes a detailed ground magnetic survey to further determine the geophysical characteristics of the mineralization in the area of the Golden Wonder showing located at the west end of the Property. Also, the Golden Wonder area soil grid area should be expanded, and additional soil sampling should be conducted over the other showings on the Property. Phase 2 work should include a 500 m diamond drilling exploration program, using the targets identified in Phase 1.

2 INTRODUCTION

Jeff J. Reeder, P.Geo, has been retained by Blue Lagoon Resources Inc. ("Blue Lagoon") to prepare an independent Technical Report on the Golden Wonder Property ("the Property"). Historically, this Property was referred to as the RD Cobalt Property. Subsequent to Blue Lagoon entering into the purchase agreement to acquire the Property from Primary Energy Metals Inc. ("Primary Energy Metals"), the property name was changed to 'Golden Wonder'. The Property is located in west-central British Columbia, Canada (Figure 4-1). The Property is comprised of five contiguous mineral claims that cover an area of approximately 7,182.93 ha. Blue Lagoon will have a 100% interest in the Property subject to the terms outlined in the purchase agreement with Primary Energy Metals.

This report was commissioned by Blue Lagoon to comply with regulatory disclosure and reporting requirements outlined in Canadian National Instrument 43-101 ("NI 43-101"), companion policy NI 43-101CP, and Form 43-101F. The Qualified Person responsible for this report is Jeffrey J. Reeder, P.Geo, an independent consulting geologist with 31 years of experience working with precious and base metal mineralization deposits. Mr. Reeder has no prior involvement with the Property besides the writing of the 2017 Report and is responsible for all items in this report. The purpose of this report is to update the 2017 Report with results of the 2018 exploration work and the revised primary commodity.

Information, conclusions, and recommendations contained in this report are based on field observations as well as on published and unpublished data (Section 27: References).

Mr. Reeder visited the Property on May 22, 2017. During the visit, the author reviewed exposed outcrop, subcrop, and float, and collected seven rock samples from two historic showings: Golden Wonder and the Black Prince. While at the Property, the author reviewed and discussed sampling techniques with Dahrouge Geological personnel. The author has reviewed the work and data collected in 2018 by Dahrouge Geological. The author has worked with and supervised exploration programs in the past for Dahrouge Geological and is well aware of their mapping and sampling techniques. The author has not conducted a site visit to review the 2018 exploration program but is in the opinion that the work is of high quality and can be relied on. More specifically for section 6.1.7 the author is relying on the Assessment Report "2018 Geochemical Rock and Soil Sampling of the RD Cobalt Property, Rocher DéBoulé Range, Near New Hazelton British Columbia" dated April 23, 2019 prepared by C. Salame under direct supervision of Jody Dahrouge P. Geol of Dahrouge Geological.

3 RELIANCE ON OTHER EXPERTS

This report has been prepared by the Author for Blue Lagoon. The information, conclusions, and opinions herein are based on:

- Information available to the Author at the time of preparation of this report,
- Assumptions, conditions, and qualifications as set forth in this report, and
- Data, reports, and other information supplied by Blue Lagoon and Dahrouge Geological, and other third-party sources.

For the purpose of this report, the Author relied on ownership information provided by Blue Lagoon. The Author researched Property title and mineral rights for the Golden Wonder Project through the British Columbia Government Mineral Titles Online System at:

- https://www.mtonline.gov.bc.ca

While the title documents were reviewed for this report, it does not constitute, nor is it intended to represent, a legal, or any other opinion as to title.

4 PROPERTY DESCRIPTION AND LOCATION

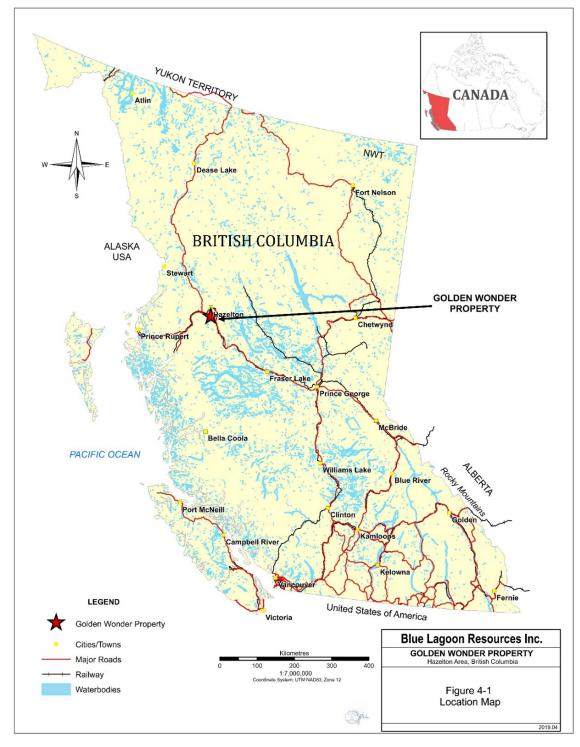


Figure 4-1.Location Map of the Golden Wonder Property

4.1 LOCATION

The Golden Wonder Property is located in west-central British Columbia, Canada, on NTS map sheet 093M03 (BCGS map sheets 093M012, 013, 022, and 023). The area lies at the north end of the Rocher Déboulé Range, near the junction of the Bulkley and Skeena rivers. The Property is 1 km south of the Municipality of New Hazelton and 65 km southeast of Smithers, BC.

The geographic centre of the Property is located at 55°11'N, 127°36'W(Figure 4-1).The Property comprises five contiguous mineral claims that cover an area of approximately 7,182.93 ha (Figure 4-2).

4.2 MINERAL TENURE

Mineral claims in British Columbia are subdivided into two major categories: placer and mineral claims. Mineral claims are acquired through the Government of British Columbia's interactive online mineral tenure system, Mineral Titles Online (MTO). A Free Miner Certificate (FMC) is required to acquire and maintain mineral claims; this is available to both individuals and corporations, and can be attained through MTO.

Once registered, a claim remains in good standing until the "Expiry Date" (Anniversary Date), one year from the date of registration. In order to maintain the mineral tenure for each subsequent year (anniversary year), exploration and development work must be carried out and registered, or a cash-in-lieu payment registered with MTO. The minimum value of the work per hectare required to maintain a mineral claim for one year is shown in Table 4-1and the amount of cash-in-lieu per hectare required to be paid, if work is not registered, is outlined in Table4-2.

Anniversary Year	Work Requirement		
1 and 2	\$5/hectare		
3 and 4	\$10/hectare		
5 and 6	\$15/hectare		
7 and subsequent	\$20/hectare		

 Table 4-1. Mineral Tenure Work Requirements in BC

Table4-2. Mineral Tenure Cash-in-Lieu in BC

Anniversary Year	Work Requirement
1 and 2	\$10/hectare
3 and 4	\$20/hectare
5 and 6	\$30/hectare
7 and subsequent	\$40/hectare

The Golden Wonder Property is comprised of five mineral claims that are registered under and subject to the Mineral Tenure Act (MTA) of the Province of British Columbia (Table 4-3).The title overlap report generated with the claim registration is summarized in Table 4-4.

All claims are currently in good standing. The mineral claims are currently held in trust by Jody Dahrouge (DG Resource Management Ltd.) for Primary Energy Metals Inc. ("PEM")(previously called Primary Cobalt Corp).On April 18, 2019, Blue Lagoon entered into a purchase agreement with PEM for the Property. The agreement will grant Blue Lagoon 100% interest in all claims and is subject to fulfillment of the following conditions:

- a) Cash: payment of \$15,000 to PEM upon execution of the agreement and \$10,000 to PEM within three days of the final receipt for Blue Lagoon's prospectus; and
- b) Shares: 200,000 shares to be issued to the PEM within 10 business day after Blue Lagoon's share commence trading on the Canadian Stock Exchange.

Also, as part of the purchase agreement, DG Resource Management Ltd., the original vendor, will retain a 2% net smelter royalty (NSR) of which 1% can be purchased by Blue Lagoon for \$1,000,000 at any time before commencement of Commercial Production. The NSR is only subject to the original 4 tenures with a Recorded Date of November 18, 2016 (excludes tenure 1061406). Tenure 1061406 was staked by Jody Dahrouge and held in trust directly for PEM; it was not subject to any other agreement and as such, is excluded from the NSR.

Tenure Number	Tenure Name	Holder	Area (ha)	NTS Sheet	Record Date	Anniversary Date
1047950	Chicago	Jody Dahrouge	1809.67	093M	2016/Nov/18	2021/Aug/25
1047951	Station	Jody Dahrouge	1826.87	093M	2016/Nov/18	2021/Aug/25
1047952	Mudflat	Jody Dahrouge	1846.82	093M	2016/Nov/18	2021/Aug/25
1047953	Bunker	Jody Dahrouge	369.17	093M	2016/Nov/18	2021/Aug/25
1061406	Three Hills	Jody Dahrouge	1330.40	093M	2018/Jun/24	2022/Aug/25

 Table 4-3. Details of the Golden Wonder Property Claims

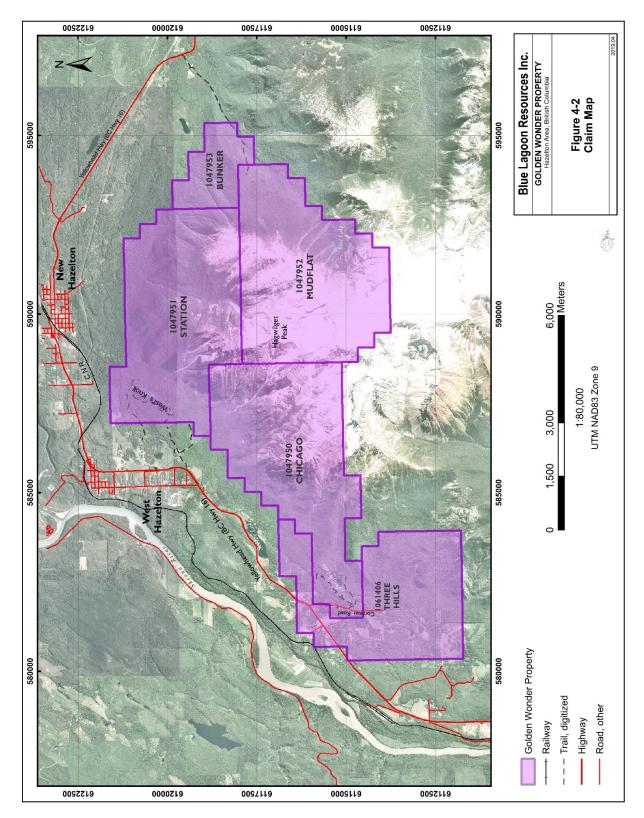


Figure 4-2.Golden Wonder Property mineral claims map

Table 4-4.Title Overlap Report Summary

	None	1047950	1047951	1047952	1047953	1061406
First Nations Interests						
• Indian Reserve	Х					
• First Nations Treaty Lands	Х					
Treaty Related Lands	Х					
• Consultative Areas: Gitxsan Hereditary Chiefs		Х	Х	Х	Х	Х
Legal and Administrative Inter	ests					I
• Permitting Region: Skeena Natural Resource Region		Х	Х	Х	Х	Х
Reserves:						
• 1002842 Uranium and Thorium Reserve, Mineral and Placer – No Staking)		Х	Х	Х	Х	Х
• 333110 (Post 1988 Crown Grants Reserve, Mineral and Placer – No Staking)		Х	Х	Х	Х	Х
• Federal Transfer of Administration and Control	Х					
Agricultural Land Reserve:						
• 1692539.0		Х				
• 1693387.0		Х	Х			
• 2210939.0						Х
• 2211787.0						Х
 Parks/Protected Areas 	Х					
 Municipality 	Х					
• Land Title District: Cassiar District		Х	Х	Х	Х	Х
• Forest District: Skeena Stikine Natural Resource District		Х	Х	Х	Х	Х
Strategic Land Resource Plan:						
•Kispiox Land and Resource Management Plan (LRMP)		Х	Х	Х	Х	Х
•Kispiox Sustainable Resource Management Plan (SRMP)		Х	Х	Х	Х	Х
•Atlin-Taku Strategic Land Resource Plan	Х					
Tenure Overlap			•	•		
Sub-surface (does not include cro	own grai	nts <u>):</u>				
• Mineral: None	Х					
• Placer: None	Х					
• Coal: None	Х					
• Surface (does not include crown grants) – Crown Land Leases	Х					
Other Resource Interests Over	lap					

• Ungulate Winter Range: u-6- 006		Х	Х	Х	Х
• Wildlife Habitat Area	Х				
• Wildlife Management Area	Х				

The author makes no further assertion regarding the legal status of the Property. The Property has not been legally surveyed to date and no requirement to do so has existed.

There are no other royalties or back-in rights to under take exploration on the Property.

4.3 Environmental Liabilities

There are no other known environmental liabilities associated with the Property.

4.4 SURFACE RIGHTS

Surface rights overlap the west and east ends of the Property. Surface rights are not included with mineral claims in British Columbia.

Notification must be provided before entering private land for any mining or exploration activity, including non-intrusive forms of mineral exploration such as mapping surface features and collecting rock, water, or soil samples. Notification may be hand delivered, mailed, emailed, or faxed to the owner shown on the British Columbia Assessment Authority records or the Land Title Office records. Mining activities cannot start sooner than eight days after notice has been served. Notice must include a description or map of where the work will be conducted and a description of what type of work will be done, when it will take place, and approximately how many people will be on the site.

4.5 CROWN GRANTS

Historic Crown Grants on the Property were researched using British Columbia's Mineral Title Online to determine their status. The results indicate that any Crown Grants for the claims have expired (Table 4-5).

District Lot Number	Claim Name
513	Chicago
514	Chalco
601	Summit
602	Crooked Fraction
606	Skeena
710	Islander
3307	Mammoth
3309	Homestake
3314	Mascot
3316	Cork Fraction

Table 4-5.	Expired Crown Grants on the Golden Wonder Property
rabie r or	Enpired drenn drands on the delater honder risperty

3322	Golden Wonder
4273	Mandon

4.6 **PERMITS**

Any work on a mineral claim in British Columbia that disturbs the surface requires a Notice of Work (NOW) permit under the Mines Act of British Columbia, which governs exploration and mining activities. The owner must receive written approval from a Provincial Mines Inspector prior to undertaking such work. Work requiring a NOW includes, but is not limited to drilling, access construction, trenching, excavating, blasting, camp construction/demolition, induced polarization surveys using exposed electrodes, and reclamation.

Exploration activities that do not require a NOW permit include prospecting with hand tools, geological/geochemical surveys, airborne geophysical surveys, ground geophysics without exposed electrodes, hand trenching, and the establishment of grids.

The Chief Inspector of Mines decides whether land access will be granted and authorizes the Ministry of Forests, Lands and Natural Resources (FLNRO) to issue a "Special Use Permit" that specifies terms and conditions under which the work can proceed. The FLNRO and the Ministry of Energy and Mines (MEM) collaborate to determine land access details such as the location, design, and maintenance provisions of approved access routes.

Notice must be provided to land owners before entering private land for any mining or exploration activity. This notice must describe where the work will be conducted and what type of work will be conducted; when the work will take place; and how many people will be on site.

The issuer does not hold any permits pertaining to exploration work on the Property.

4.7 OTHER SIGNIFICANT FACTORS AND RISKS

As determined from Table 4-4, the Property lies within the Gitxsan Hereditary Chiefs traditional territory, therefore, it is recommended that the First Nation should be addressed in open discussions with all parties involved moving forward. Following the decision made on the Tsilhqot'in Aboriginal Title Case, a risk factor is warranted. Given the Property lies on traditional territory, title and the right to perform work may be a factor if the Property area is subject to Aboriginal title. This title would grant the First Nation group(s) the right to control the land and its economic benefits, including resources. No such title case has been put forward as of the writing of this report.

The author is not aware of any additional significant factors or risks that may affect access, title, or the right or ability to perform work on the Golden Wonder Property.

5 Accessibility, Climate, Local Resources, Infrastructure, and Physiography

The Golden Wonder Property is located approximately 1 km south of the Yellowhead Highway, a major interprovincial highway in western Canada. The Yellowhead Highway (BC Highway 16) is part of the Trans-Canada Highway System, a transcontinental federal-provincial highway system that travels through all ten provinces of Canada from the west to east coast.

The west end of the Property(the Golden Wonder area) can be reached by Comeau Road, a gravel road that links to BC Highway 16 southwest of Sealey Lake Provincial Park. ATV trails run east from Comeau Road, north for ~1,400 m and south for ~1100 m of Denys Lake.

The northern section of the Property (West's Knoll and Daley West areas) is accessible from BC Highway 16 by ATV along trails or by foot. Access to the south-central area of the Property above the treeline (Black Prince, Blue Lake, Silvertip Glacier and Hecla areas) is limited by topography to helicopter.

5.1 TOPOGRAPHY, ELEVATION, AND VEGETATION

The Property is in rugged and glaciated mountainous terrain with deeply incised valleys. It includes Hagwilget Peak (1,879 m) and the north half of the Sawmill Glacier (1,927 m).

Elevations on the Property range from 300 m to 2200 m, with steep slopes, bare rock, and talus aprons, separated by bog and streams that flow into the Skeena and Bulkley rivers.

Vegetation is sparse above the tree line (\sim 1,100 m) consisting mainly of heather and fir in protected areas and depressions. Below the tree line, vegetation is predominantly pine, spruce, and fir, with Labrador tea, moss, and ferns. The Property lies within the BC Ministry of Environment's Nass Range: Cranberry Upland ecoregion classification. The ecoregion is described as having four main types of ecosystems:

- wet, Coastal Western Hemlock forest (valleys and lower slopes: west)
- wet transitional Mountain Hemlock subalpine and alpine forests (upper slopes: west)
- cold interior Cedar-Hemlock forest (valley bottoms lower slopes: east)
- cold Engelmann Spruce-Subalpine Fir forest (middle to upper slopes: east)

Deer, moose, and mountain goats inhabit the area, as well as carnivorous animals such as cougars, black bears, wolves, coyotes, and wolverines.

5.2 INFRASTRUCTURE AND LOCAL RESOURCES

The nearest population centre to the Property is the Hazelton area, which includes two municipalities (the Village of Hazelton and the District of New Hazelton), three unincorporated settlements, and four First Nations' villages (combined population of about 8,000). New Hazelton is located about 1 km north of the Property's north boundary.

The town of Smithers (population 10,607), about65 km southeast of the Property, has a branch of the Ministry of Energy and Mines and currently provides services for exploration and mining activities in the area, including helicopter, drilling, expediting, and heavy equipment operators.

Paved and gravel roads, rail, and power transmission lines run adjacent to the northern edge of Property.

The New Hazelton railway station, served by Via Rail's Jasper–Prince Rupert train, is on the Canadian National Railway mainline, which runs approximately 250 m north of the Property's boundary. BC Highway 16 runs within several kilometres of the north property boundary, through New Hazelton and South Hazelton.

The BC Hydro 138 kV supply line for the region passes through the Property, with a secured substation at New Hazelton.

The nearest airport to the Property is Smithers Regional Airport, where daily commercial flights area available to Vancouver.

5.3 CLIMATE

The Property experiences a mix of coastal and interior weather patterns owing to its location. The nearest active Environment Canada weather station is at the Smithers Regional Airport, approximately 45 m southeast of the Property at an elevation of 522 m. Elevations on the Property reach 2,200 m, and consequently, weather at the higher elevations will likely be more severe.

The lower elevations experience a humid continental climate: the driest month is March, and the wettest month is October.

Higher elevations often have heavy winter snow accumulations. In spring, snow melting can be rapid and result in heavy spring runoff. Although much of the Property is free of snow by July, some higher elevations have permanent snowfield.

Summers are hot and dry with intermittent storms. In the Hazelton area, the daytime temperature in summer can exceed 30°C, but be as low as -2° C; the average temperature range in July is 8°C to 20.9°C.

Winters are cold but can be moderated by Pacific air masses. In the Hazelton area, the average temperature in January is -6.9°C, but Arctic air masses can push the temperature below -33°C.

The Property's lower elevations can be explored from May through October, but exploration of the higher elevations should be restricted to summers between July and September.

6 HISTORY

The Property is in an area with an extensive history of mineral exploration, including production from the nearby CAP, Victoria (Hazelton View), RocheDeBoule, Red Rose, and Highland Boy mines in the early to middle 1900s.

Historic showings on the Property, listed on British Columbia's MINFILE database, include Golden Wonder, Daley West, Hecla, Black Prince, Blue Lake, and Silvertip Glacier (Figure 6-1). Another area of interest mentioned in historical reports is West's Knoll.

6.1 PREVIOUS EXPLORATION AND DEVELOPMENT

Exploration on the Property started in the early 1900s.Most of the showings previously belonged to other claim blocks and properties, and information can be difficult to delineate as names varied with ownership. Historical exploration and development for each showing are described below and summarized in Table 6-1. The information is predominantly derived from the British Columbia Geological Survey MINFILE reports and from British Columbia's Assessment Report Indexing Service (ARIS).

Year	Company/ Individual	Work	Results								
Three Hill	<u>Three Hills and Area (claim 1061406):</u>										
1951- 1955	Alfred LeToile, D.R. Willemar& E.H. Harbottle	 trenching; one shallow trench perpendicular to rock drumlin. 	•two chip samples: trace Au, 0.3% Ag, 0.058% Cu; and trace Au, trace Ag, 0.61% Cu; noted two major shear zones.								
1955- 1956	Silver Standard Mines Ltd.	 shallow drilling and stripping 	■no record of results								
Golden Wo	onder and Area (<u>claim 1047950):</u>									
1912	Messrs. Harris &Corneau	 sunk a 6 m shaft and excavated open cuts 									
1917- 1918	M.W. Sutherland & J.B. Tyrell	 sunk 3 more shafts, conducted trenching and excavated pits 	■deepest shaft was 30.4 m								
1959- 1960	G.L. Oates	 electromagnetic induction survey in Golden Wonder area 									
1970- 1971	Chapparal Mines Ltd.	• 32-line kilometres of IP and aeromagnetic surveys; soil sampling; mapping; trenching; and 1000 m diamond drilling and 314 m of percussion drilling on the Loudel claim.	•0.3 m drill hole intersection at 13% Cu								

Table 6-1. Summary of Previous Exploration and Development

1980	ASARCO Exploration Company Inc	 geological mapping, rock sampling and a ground magnetic survey on the Golden Wonder and Shamrock claims. 	•weighted average assay of 13 g/t Ag, 1.01% Cu, 0.016% Pb, 0.017% Zn, 0.09% Co, 0.08% W; Several narrow, mineralized shear zones were noted			
2006	Ranex Exploration Ltd.	 prospecting and rock sampling on the Golden Wonder claim. 	■20 g/t Au, 180 g/t Ag, 8% Cu, 0.1% Co, 0.6% W, 0.3% Zn			
2011	American Manganese Inc.	 soil sampling and rock sampling on the Golden Wonder claim. 	•soil sample results of interest at 40E 5800N: 1.585 g/t Au, 214 g/t Ag and 40E 5875N: 11.4 g/t Au. Rock samples of interest:0.2 m chip sample: 21.9 g/t Au, 104 g/t Ag, 3.1 % Cu, 1.21% Co; grab sample: 1.29 g/t Au, 6.69 g/t Ag, 0.234% Cu			
West's Kno	<u>ll (1047951):</u>					
2011	American Manganese Inc.	 soil sampling and rock sampling. 	■boulder with 61 g/t Au			
Daley West	t and Area (1047	<u>951):</u>				
1916	Spokane Rocher Deboule Mining and Copper Company	 sunk 2 adits (47 m and 72 m, now caved), excavated open cuts and collected rock samples 	 noted a silicified shear zone (up to 1.5 m wide) with vein quartz (0.15 to 1.0 m wide) over 100 m length; and a 38 cm channel sample: 1.4 g/t Au, 47 g/t Ag, 1.92% Cu 			
1981	A. L'Orsa	 rock sampling on the Judi claim 	• a grab sample with 2.14 g/t Au, 15.6 g/t Ag, 1.06% Cu, 0.1% Co, 0.66% W (15% ± arsenopyrite); second grab sample with 0.13 g/t Au, 0.5 g/t Ag, 0.59% Cu, 0.44% Co (15% ± arsenopyrite)			
2011	American Manganese Inc.	 rock sampling, soil sampling and stream sediment sampling on the Daley West claim 	 chip sample with 6.32 g/t Au, 215 g/t Ag, 7% Cu, anomalous Co, Bi and As. 			
Black Prince	<u>ce (1047952):</u>					
1915	unknown	 production 	 19 tonnes with 120,338 g Ag and 619 g Pb 			
1916	Black Diamond Exploration	 prospecting 	 no details available 			
1944- 1945 and 1951- 1953	Privateer Mining Company	 underground work 	 no details available 			
1954	Geological Survey of Canada	 rock sampling and mapping 	 7.6 m sample with 1.0 g/t Au, 2.37% WO3, 0.8% Sn and 0.33% equivalent U 			
1960	BC Department of Mines	 rock sampling 	 0.6 m sample with 6.9 g/t Au, 0.36% Cu, 0.82% WO₃ and 0.10% MoS2 			

1979	Group VIII Ventures	 rock sampling trenching 	and	 0.59 m sample with 3.4 g/t Ag, 1.15% Cu, 0.02% WO₃, 0.34% molybdenum
Blue Lake	<u>(1047952):</u>			
1954	Geological Survey of Canada	 rock sampling mapping 	and	•up to 0.25 m sample: up to 10% tetrahedrite and minor chalcopyrite; a grab sample with 0.85% Mo, 1.0% WO3 and 0.004% equivalent U; a grab sample with 2.74 g/t Au, 11.31% WO3, 0.06% Mo and 0.003% equivalent U; a grab sample with 0.7 g/t Au and 1,900 g/t Ag
Hecla/Blu	<u>ebird (104795)</u>	<u>2):</u>		
1954	unknown	 rock sampling 		• grab sample from a 2.7 m aplite dike with trace Au, 34.3 g/t Ag and 0.22% Cu; grab sample from a 1.8 m pegmatite dike with trace Au, 18.2 g/t Ag and 0.39% Cu

6.1.1 Three Hills (Claim 1052710)

Three Hills Property was originally staked in 1951 by Alfred LeToile; the property consisted of 6 claims. In 1955, D.R. Willemar and E.H. Harbottle re-staked the claims with LeToile. They conducted trenching across a drumlin; one chip sample returned values of 0.3% Ag and 0.058% Cu, and a second sample returned 0.61% Cu (Sutherland Brown, 1960).

In 1955 and 1956, Silver Standard Mines Ltd. optioned the property and conducted diamond drilling and some stripping (Sutherland Brown, 1960); no record of results available.

6.1.2 Golden Wonder (Claim 1047950)

Exploration in the area of the current Golden Wonder claim area (historic claims Loudel, Mandon and Shamrock) began in 1912 with investigations focused on the 'Golden Wonder' showing at the far west end of the current Property. Messrs, Harris and Comeau made several surface cuts and sank a 6 m shaft on the claim (Minister of Mines, B.C., MINFILE 093M 074).The initial targets of exploration were two shear zones, one occurring at the south end and the second occurring at the north end of a large drumlin (Sutherland Brown, 1960). The southern shear zone strikes 275° and dips 80°N, has been traced for over 150 m and is up to 1 m thick. Mineralization in the southern shear zone includes predominantly lenses of pyrrhotite with lesser chalcopyrite, arsenopyrite and pyrite. The northern shear zone strikes 290° and dips 75°S, is up to 1.2 m thick and is exposed in open cuts for over 60 m. Mineralization in the northern shear zone is dominantly lenses of pyrite and chalcopyrite. These shear zones were the focus of the early work, many shafts and surface cuts were made in these areas.

Between 1917 and 1918, M.W. Sutherland and J.B. Tyrell, optioned the claims and conducted work on the claims including excavation of pits and trenches and sinking of several shafts; the deepest shaft was 30.4 m and sunk into the south shear zone (Minister of Mines, B.C., MINFILE 093M 074).

In 1918, J.B. Tyrell acquired five claims including Golden Wonder, Golden Chief, Golden Potlatch, Cresent and Maple Leaf. (Minister of Mines, B.C., MINFILE 093M 074).

In 1951, National Exploration Company Ltd. acquired the Golden Wonder claim but did not report any work on the claim.

Between 1959 and 1960, G.L. Oates held the Golden Wonder and Mandon claims (both hosting the Golden Wonder showing) and reported an electromagnetic induction survey (Oates, 1960).

In 1970, the claim was acquired by Chapparal Mines Ltd. ("Chapparal") as part of a larger claim block. Chapparal carried out an IP and magnetometer survey, geochemical soil sampling, mapping, trenching and drilling. A total of 6 percussion, totalling 314 m, and 10 diamond drill holes totalling approximately 1,000 m were drilled on the Loudel claim near Denys Lake (Olson, 1980). One drill hole is reported to have intersected 0.3 m of 13% Cu (Ethier and Pinsent, 2011).

In 1980, ASARCO Exploration Company Inc. (ASARCO) acquired the Golden Wonder claim and optioned the Shamrock claims from R.H. Dieter. ASARCO conducted a ground magnetic survey, detailed geological mapping and rock sampling on the claims. Results identified three areas of significant sulfide copper mineralization: quartz-calcite with chalcopyrite and pyrrhotite veining; quartz-calcite veining with chalcopyrite, pyrrhotite, pyrite and arsenopyrite and quartz-calcite-tourmaline veins with chalcopyrite, pyrrhotite, pyrite and lesser arsenopyrite and sphalerite. All mineralization is associated with shear zones within and near to the feldspar porphyry dike. A weighted average of assays from one of the mineralized zones is13 g/t Ag, 1.5 g/tAu and 1.01% Cu (Olson, 1980).

In 2006, Ranex Exploration Ltd., carried out prospecting and mapping of the mineralization zones; they reported a rock sample with 20 g/t Au, 124 g/t Ag, 0.6% W, 0.3% Zn, up to 8% Cu (McInnis, 2006).

In 2011, American Manganese reported results from a soil survey and rock sampling program they undertook on the claim. They obtained samples from the south and north shear zones, and from another area of interest about 450 m from the main pit on the southwest side that showed similar characteristics to the other areas. Results for two of the geochemical soil survey samples indicated one sample with 1.585 g/t Au, 214 g/t Ag, and another sample with 11.4 g/t Au. A rock grab sample from the higher-grade main pit area assayed 21.9 g/t Au, 104 g/t Ag, 3.1%Cu, and 1.215%Co. A 0.2 m chip sample from other area of interest (450 m SW of the main pit) assayed 1.29 g/t Au, 6.69 g/t Ag, and 0.234% Cu (Ethier and Pinsent, 2011).

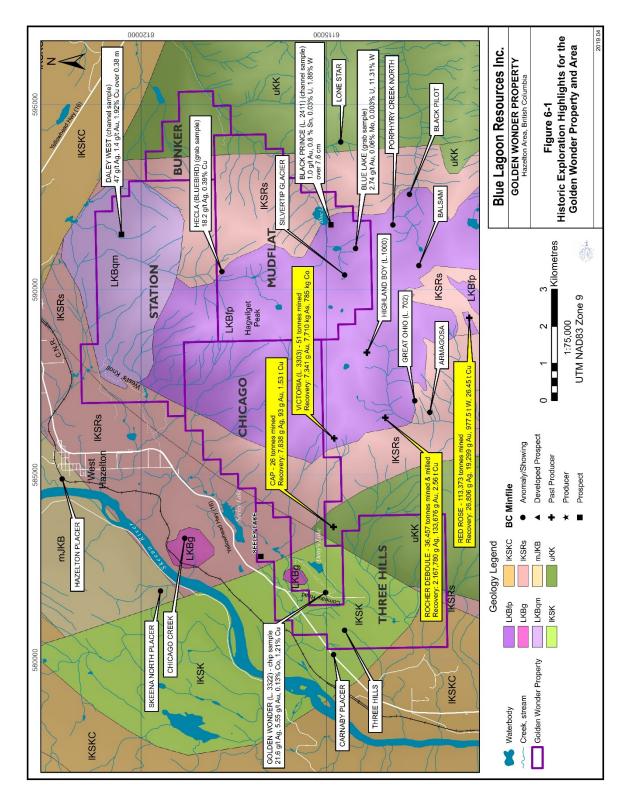


Figure 6-1. Historic exploration highlights for Golden Wonder Property and area

6.1.3 West's Knoll (Claim 1047951)

American Manganese's soil survey and rock sampling program in 2011 extended to West's Knoll, an area of interest west of the Daley West showing, where loose, rusty rocks containing arsenopyrite were found at the base of a cliff near a swamp. A grab sample indicated 61 g/t gold (Ethier and Pinsent, 2011).

6.1.4 Daley West (Claim 1047950)

In 1916, the Spokane Rocher Deboule Mining and Copper Company Ltd. developed two adits (subsequently caved)and open cuts that exposed a silicified shear zone. The shear zone strikes at 020° and dips 65°NW (Burgoyne and Kikgoldka, 2007), and contains small amounts of vein quartz and sulphides that reaches up to 1.5 m in width (Ethier and Pinsent, 2011). The vein was reported as containing pyrite, arsenopyrite, pyrrhotite, and chalcopyrite, with minor scheelite, sphalerite, galena, and calcite. It is exposed in several trenches for over 100 m, and reaches up to 1 m in several places, with an average thickness of 15 cm. A 38 cm channel sample assayed 1.4 g/t Au, 47 g/t Ag, and 1.92% Cu (Kindle, 1954).

In 1981, A.L'Orsa carried out prospecting and geological mapping on his Judi claims which covered part of the Daley West area, reporting two grab samples from the shear zone. The samples contained arsenopyrite, with lesser amounts of chalcopyrite, pyrite, pyrrhotite, scheelite, sphalerite, galena, tetrahedrite (?), quartz, and calcite. One sample assayed: 2.14 g/t Au, 15.6g/t Ag, 1.06% Cu, 0.66% tungsten, 0.10% Cot± 15% arsenopyrite; the other sample assayed 0.13 g/t Au, 0.5 g/t Ag, 0.59% Cu, 0.44% Co ± 80% arsenopyrite (L'Orsa, 1981).

In 2011, American Manganese Inc. conducted a soil survey and rock sampling program that included work at Daley West. They reported finding chalcopyrite and molybdenite in a porphyritic quartz monzonite within narrow quartz veins on the north, east, and west sides of the previous workings. Analysis of a chip sample from above the main adit produced results of 6.32 g/t Au, 215 g/t Ag, 7% Cu, and anomalous Co, Bi, and As (Ethier and Pinsent, 2011).

6.1.5 Black Prince/Blue Lake/Silvertip Glacier (1047952)

The Black Prince, Blue Lake, and Silvertip Glacier showings are in a cluster near the southeast boundary of the Property. The Black Prince showing is on the ridge between Mudflat and Porphyry creeks. The Blue Lake showing is immediately southwest of the Black Prince property and they were historically considered one property. The Silvertip Glacier showing is west of the other two showings.

Between 1911 and 1912, these showings were first located.

In 1915, the Black Prince showing reportedly produced 120,338 g Ag and 619 kg Pb from 19 tonnes(Minister of Mines, B.C., MINFILE 093M 057);however, the age of this information suggests this data should not be relied upon.

In 1916, Black Diamond Exploration conducted work in the area. No details were available.

Between 1944 and 1945, and again between 1951 and 1953, unground work was conducted by Privateer Mining Company in the area. This work was possibly the result of the wartime demand for tungsten (Meyers, 1980).

In 1954, the Geological Survey of Canada conducted work on the Black Prince and Blue Lake showings. At Black Prince they noted a quartz vein situated approximately 250 m east of the main zone contained areas of massive chalcopyrite and scheelite, and lesser pyrite, bornite, cassiterite, and uraninite. A sample taken over 7.6 cm assayed 1.0 g/t gold, 2.37% tungsten, 0.8% tin, and 0.033% equivalent uranium (Kindle, 1954). Previous work on the Blue Lake showing indicates four veins (Kindle, 1954). Samples from three of the veins assayed:

- 0.85% molybdenum, 1.0% tungsten, and 0.004% equivalent uranium
- 2.74 g/t gold, 11.31% WO $_3$, 0.06% molybdenum, and 0.003% equivalent uranium
- 0.7 g/t gold and 1,900 g/t silver

In 1960, the BC Department of Mines conducted sampling of the main fracture zone at the Black Prince showing and reported a0.6 m sample with 6.9 g/t Ag, 0.36% Cu, 0.82% tungsten and 0.10%molybdenum (Sutherland Brown, 1960).

In 1979, Group VIII Ventures staked all three showings as part of a larger group of claims (CRO claims) and completed work including trenching and drifting (~50 m), and limited sampling. A 59 cm sample from an intermediate vein indicated 3.4 g/t Ag, 1.15% Cu, 0.02% tungsten, and 0.34% molybdenum (Meyers, 1980).

No record of previous work on the Silvertip Glacier showing is available (Minister of Mines, B.C., MINFILE 093M 055).

6.1.6 Hecla/Bluebird (Claim 1047952)

The Hecla showing is a porphyritic granodiorite (Rocher Deboule stock) approximately half way between the Daley West and Silvertip Glacier showings, on the north edge of the Mudflat claim. The granodiorite is cut by a 2.7 m aplite dike and a 1.8 m pegmatite dike. A grab sample of a 1.2 m wide mineralized zone in the aplite dike contained quartz veins with small amounts of pyrite and chalcopyrite (assayed trace Au, 34.3g/t Ag, 0.22% Cu). Another grab sample from the mineralized pegmatite dike assayed trace Au, 18.2 g/t Ag, and 0.39% Cu (Sutherland Brown, 1960).

In 2007, Rocher Deboule Minerals Corp. contracted Fugro Airborne Survey Corp. to conduct a 1,089line-km DIGHEM geophysical survey (electromagnetic, magnetic, and radiometric survey) over the Roche Deboule property (Figure 6-2; Figure 6-3). This survey covered a significant part of the current Golden Wonder Property. Results indicated a strong positive anomaly over the central part of the Property.

There are no significant historical mineral resource or reserve estimates on the Golden Wonder Property.

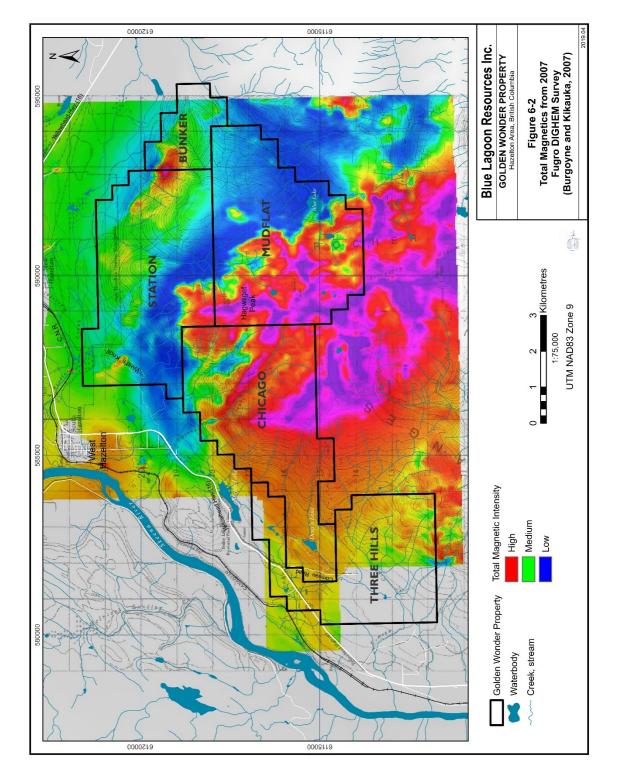


Figure 6-2.Total Magnetics: 2007 Fugro DIGHEM survey (fr. Burgoyne & Kikauka, 2007)

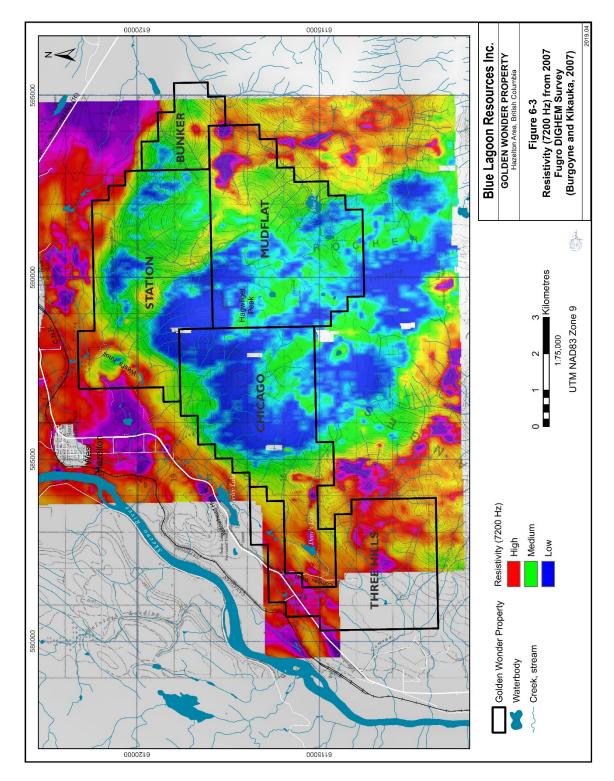


Figure 6-3.Resistivity (7200 Hz): 2007 Fugro DIGHEM survey (fr. Burgoyne &Kikauka, 2007)

6.1.7 Recent Exploration

Exploration on the Property was conducted in May 2017 and June 2018 by Dahrouge Geological Consulting Ltd. (Dahrouge), on behalf of PEM. The 2017 program focused on investigating historic showings and confirming assay results, identifying new targets, and determining field conditions. This program consisted of stream pan concentrate sampling and rock sampling. The 2018 program focused on further investigation of the Golden Wonder area as well as prospecting to delineate the source of five magnetic anomaliesidentified in the Natural Resources of Canada's aeromagnetic survey. This program consisted of rock and soil sampling, and geological mapping with focus on the Chicago claim.Section6.1.7 of the report summarizes the Assessment Report by Salame (2019) regarding the exploration completed by Dahrouge Geological regarding the 2018 exploration program. A helicopter was utilized to access high elevation areas of interest on the Property.

6.1.7.1 Stream Pan Concentrate Sampling

A total of 19 stream sediment samples were collected from the Property in 2017 (Figure 6-4). The collected samples produced no significant Au results.

6.1.7.2 Rock Sampling

A total of 180 rock samples were collected during the 2017 and 2018 field programs (Table 6-2;Figure 6-5 through Figure 6-12). Collected samples were primarily from outcrop and boulders and included 18 thickness representative samples at various favourable locations of shearing and veining. Rock samples with elevated Au, Ag, Coand Cu results are summarized in Table 6-3.

Year	Outcrop	Boulder	Float	Total			
2017	69	23	3	95			
2018	72	4	9	85			
	Total Collected:						

 Table 6-2.
 Summary of Rock Samples Collected in 2017 and 2018

One mineralized boulder sample (sample 128231) from one of the targeted areas with anomalous magnetic values returned 2% Cu on the assay; however, the boulder source has not been identified. No other samples from the magnetic anomaly areas, even though they were sulphide-bearing, produced significant analytical results.

Table 6-3. Rock samples with significant Au, Ag, Co, and Cu assay results

Sample ID	Year	Sample Type	Easting	Northing	Au (g/t)	Ag (g/t)	Co (%)	Cu (%)	Description
122364	2017	Chip	581843	6115199	6.39	2.79	0.38	0.15	10 cm wide vein with sulphides (~80%), Qtz, and mudstone.

122365	2017	Grab	581811	6115183	15.2	77.2	0.09	4.95	10 cm wide massive sulphide vein (Ccp, Py) with secondary Apy(?) on weathering surface.
122368	2017	Grab	582295	6115355	17.8	18.2	<.01	0.05	Mudstone o/c (1 m × 1 m) with minor sulphur-rich coating and rusty joints.
122426	2017	Grab	582134	6115247	0.3	32.5	0.01	0.81	Black siltstone/greywacke float with 2 mm-wide sulphide (Ccp, Py) veins, quartz coating, and rusty weathering.
122427	2017	Grab	582131	6115246	8.75	18.5	0.53	0.53	Dark grey siltstone/greywacke float brecciated by Apy and cut by Py/Ccp veins.
122428	2017	Chip	582135	6115236	1.69	45.6	0.05	0.99	Siltstone/greywacke o/c brecciated by sulphides; friable and rusty.
122430	2017	Chip	582075	6115220	2.14	3.42	0.05	0.02	Siltstone/greywacke o/c brecciated by Apy veins (up to 60% of rock).
128240	2018	Chip	581814	6115164	18.2	36.9	0.054	1.91	Up to 30 cm wide vein mainly Py, Cpy, Apy, bornite. Black and weathered on surface, hosted within andesite dyke.
128241	2018	Chip	581853	6115196	11	4.06	0.667	0.41	Flat 3 m tall vertical outcrop, 2 cm wide vein within black grey argillite.
128272	2018	Chip	581943	6115204	4.68	17.6	0.215	0.28	Mudstone/siltstone outcrop hosting vein- style mineralization consisting of Py, Cpy, Apy.
128278	2018	Chip	582130	6115245	18.7	>100	0.653	0.97	Highly oxidized mudstone with a 1.5 m breccia zone and local quartz flooding. Vein-style massive sulphide

									mineralization (Py, Cpy, Apy, possible Po)
128283	2018	Chip	582074	6115224	7.14	4.25	0.256	0.02	Argillite outcrop crosscut by a centimeter-scale, highly oxidized black vein with strong sulphide mineralization (Py, Apy).
128288	2018	Chip	582198	6115326	20	16.4	0.194	0.03	Highly oxidized breccia with massive sugary Apy veins up to 2 cm wide.

6.1.7.3 Soil Sampling

A total of 287 soil samples were collected from the Golden Wonder showing area in 2018. The grids were concentrated over two resistivity anomalies on the eastern and western side of Deny Lake (Figure 6-5; Figure 6-13 to Figure 6-17). The purpose of the soil sampling was to identify any potential trends (drill targets) in areas with poor outcrop exposure. Topographically low and wet areas on the eastern edge of Deny Lake prevented some grid samples from being collected.

The elevated Au results from the soil sampling further reinforce the approximately 500 m mineralized trend in the Golden Wonder showing area, as several samples located between mapped outcrops, reported values of up to 3.97 g/t and 5.89 g/t Au.

6.1.7.4 Geological Mapping

Geological mapping was carried out during the 2018 field program; it focused on collecting information in the Golden Wonder area, including the south shear zone between the Comeau Road to Deny Lake.

According to Dahrouge, it was concluded that structural features including joints, veins and shearing, generally strike to the west and dip between 70-90° to the north. Bedding is locally visible in the area and is generally striking north-south and has a sub-vertical dip. Bedrock geology of the area consists mainly of argillites, siltstone, greywackes, felsic to intermediate volcanics/dykes, as well as abundant feldspar-hornblende porphyriticvolcanic/intrusive units, including andesites, porphyritic andesites, quartz monzonites, and possibly granodiorites.

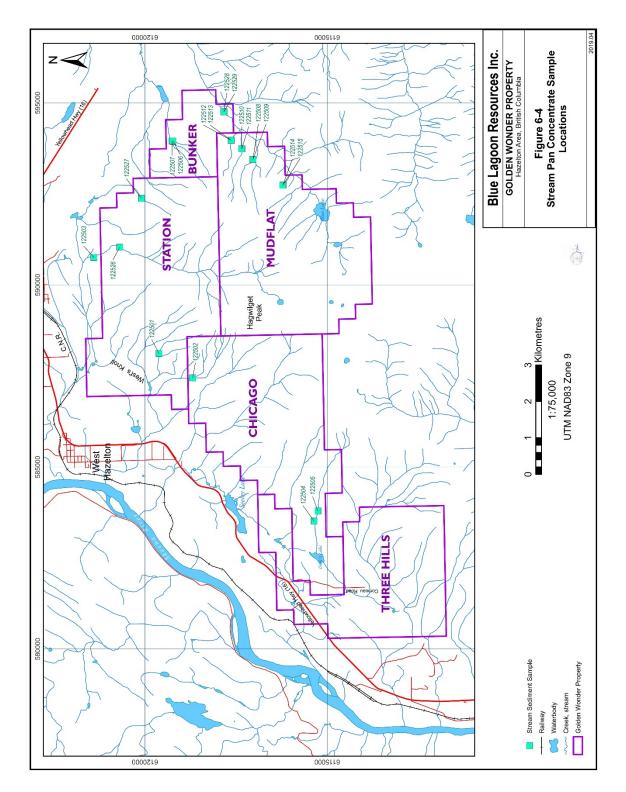


Figure 6-4. Stream Pan Concentrate Sample Locations on the Property

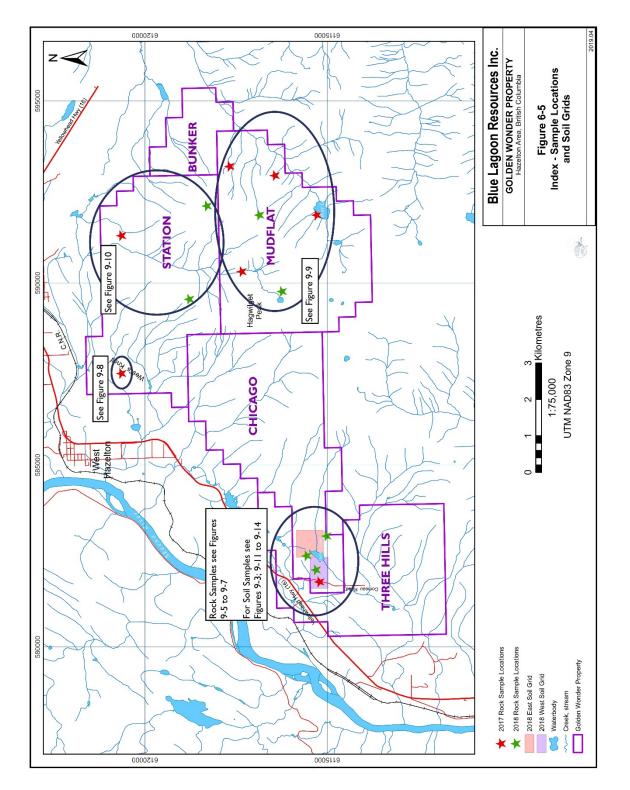


Figure 6-5. Index Map for Rock and Soil Sample Locations

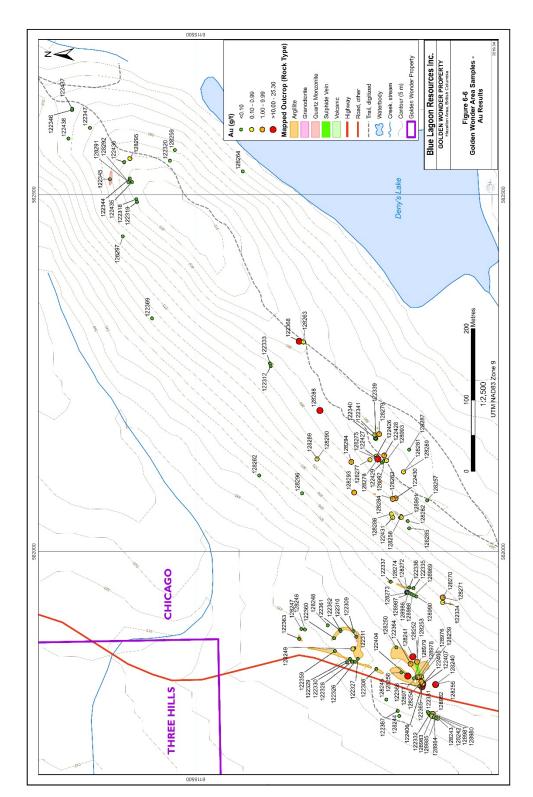


Figure 6-6. Golden Wonder Area Rock Samples - Au Results

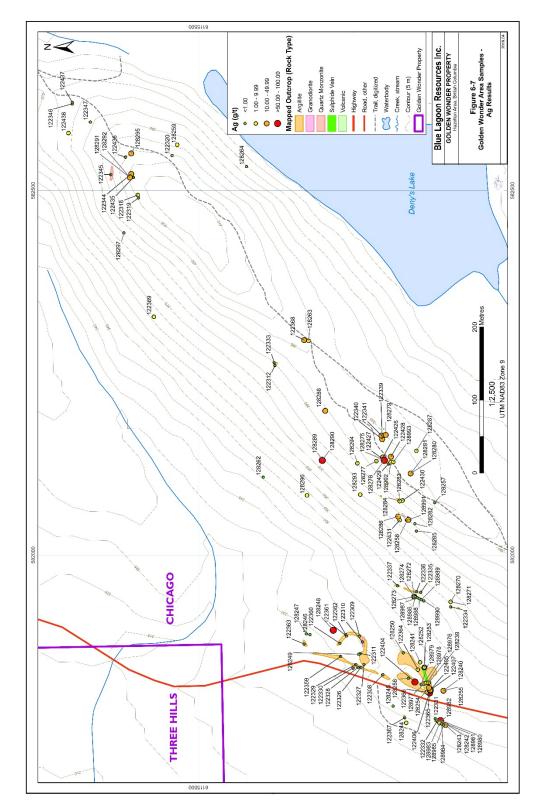


Figure 6-7. Golden Wonder Area Rock Samples - Ag Results

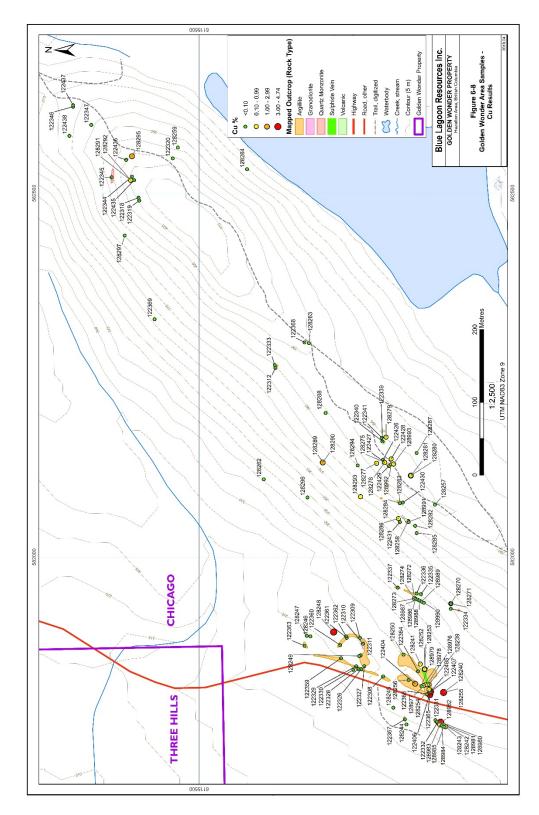


Figure 6-8. Golden Wonder Area Rock Samples - Cu Results

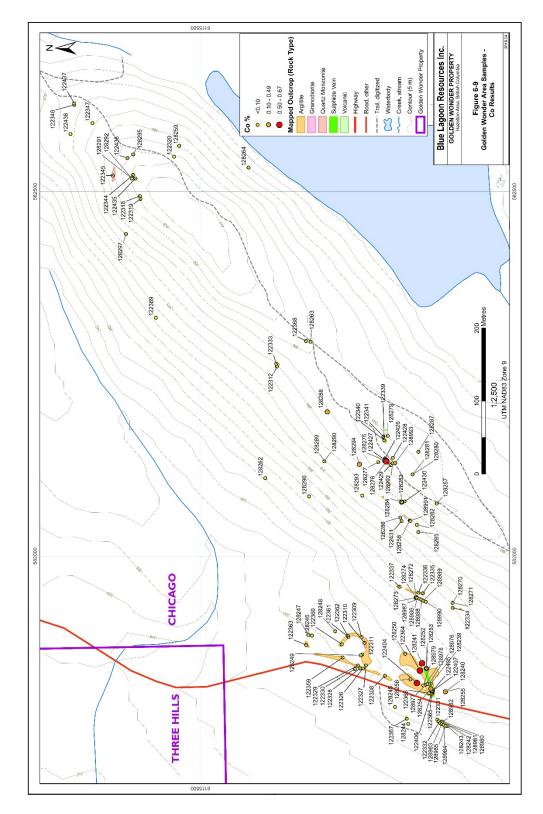


Figure 6-9. Golden Wonder Area Rock Samples - Co Results

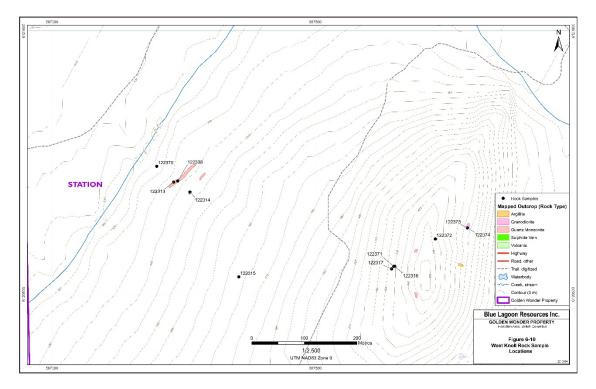


Figure 6-10. West Knoll Area Rock Samples Locations

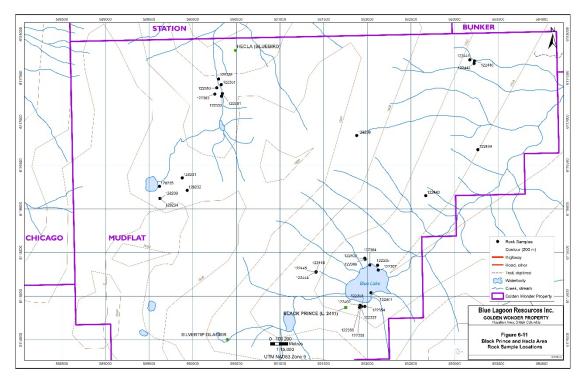


Figure 6-11. Black Prince and Hecla Area Rock Sample Locations

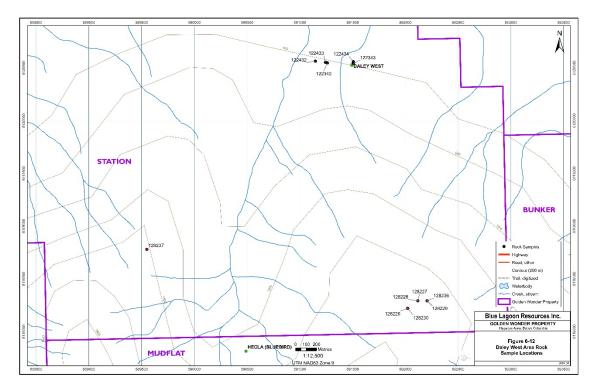


Figure 6-12. Daley West Area Rock Sample Locations



Figure 6-13. 2018 East and West Soil Grids and Sample Locations

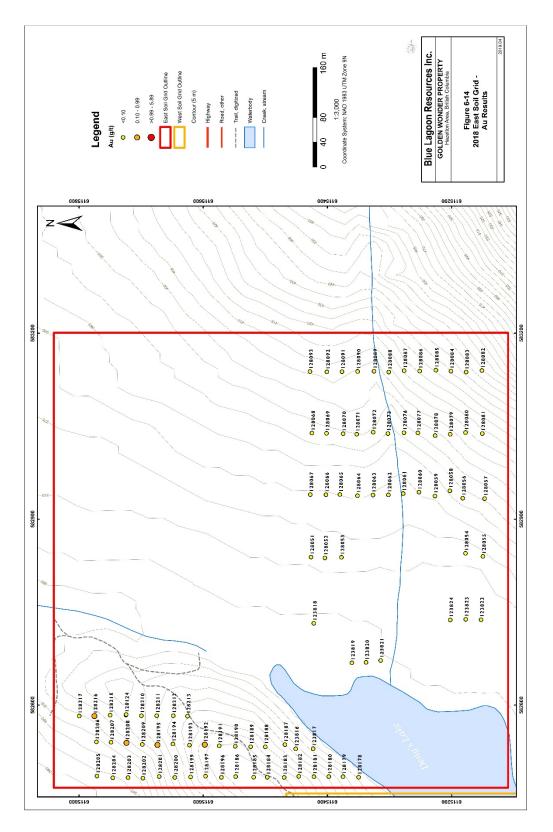


Figure 6-14. 2018 East Soil Grid - Au Results

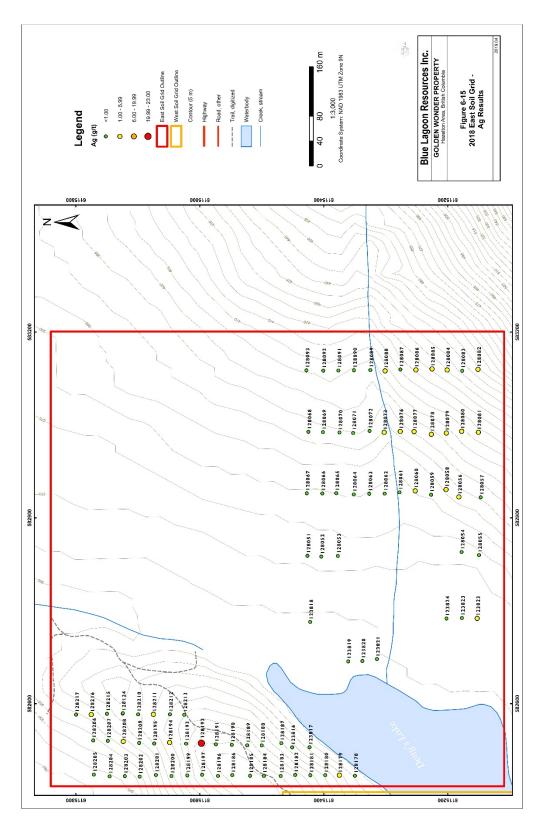


Figure 6-15. 2018 East Soil Grid - Au Results

Golden Wonder Property, British Columbia, Canada

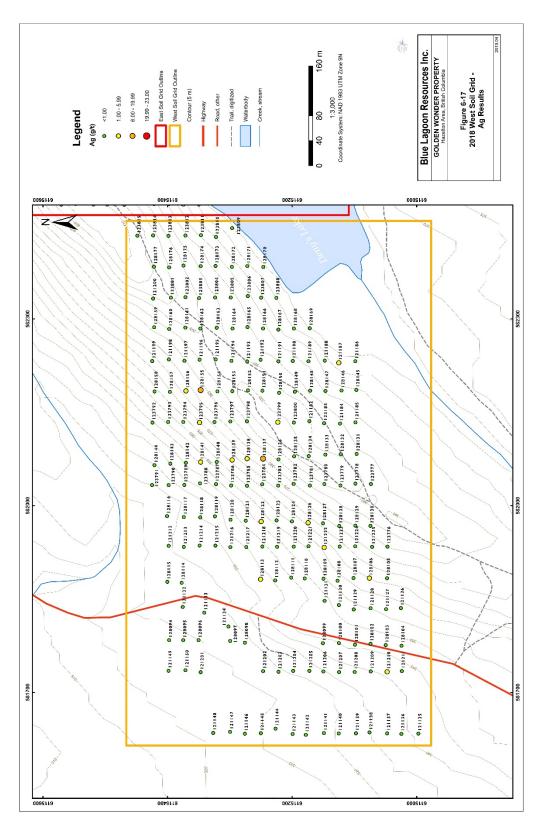


Figure 6-17. 2018 West Soil Grid - Ag Results

7 GEOLOGICAL SETTING AND MINERALIZATION

7.1 **REGIONAL GEOLOGY**

The Golden Wonder Property is situated in the Intermontane tectonic province of the Canadian Cordillera and is underlain by rocks of the Late Paleozoic Stikine volcanic arc terrane, the largest terrane in BC. The Stikine terrane was accreted to the Quesnel and Cache Creek terranes, and then to the North American margin in the Middle Jurassic before being intruded by coeval and younger plutonic rocks and overlain by younger volcanic and sedimentary units (Kyba, 2017; Figure 7-1).

The Rocher Deboule Range lies within the Skeena Arch, and east-northeast trending belt of Jurassic and older, mostly volcanic rocks. Uplift of the arch, thought to have been occurred in the Middle Jurassic, resulted in the separation of the Bowser and Nechako Basins (MacIntyre, 2006).Exposed rocks along the Skeena Arch represent a long-lived magmatic arc that has produced a range of geological settings and resulted in a diverse range of mineral deposits.

The Skeena Arch straddles the Skeena Terrane, a volcanic arc complex that formed offshore before accreting to the west coast of North America. The Skeena Terrane is made up of two cycles of volcanic and related intrusions, as well as overlying sedimentary rock on a metamorphosed volcanic rock and limestone basement (Kyba, 2017).

The Rocher Deboulé Range is underlain by the upper two divisions of the Hazelton group and intruded by the Rocher Deboule stock.

The upper two divisions of the Hazelton group (Jurassic to Cretaceous) are:

- 1. Red Rose Formation (2,300 to 2,400 m marine and non-marine sedimentary greywackes)
- 2. Brian Boru Formation (1,500 to 1,800 m porphyritic andesite breccias and massive flows with minor hornblende porphyry andesite flows and some pyroclastic rocks).

The Rocher Deboule stock, a member of the Late Cretaceous Bulkley Plutonic Suite, is predominantly a porphyritic granodiorite, but also includes what is thought to be a younger fine-grained quartz monzonite. The Roche Deboule stock is thought to have been emplaced after folding of the Hazelton group, between the mid-Lower and late Upper Cretaceous. Heat from the intrusion of the Rocher Deboule stock created a hornfelsic aureole in the surrounding Hazelton rocks (Sutherland Brown, 1960).

The adjacent valley contains late Jurassic to early Tertiary successor basin assemblages of the Bowser Lake, Skeena, and Sustut Groups.

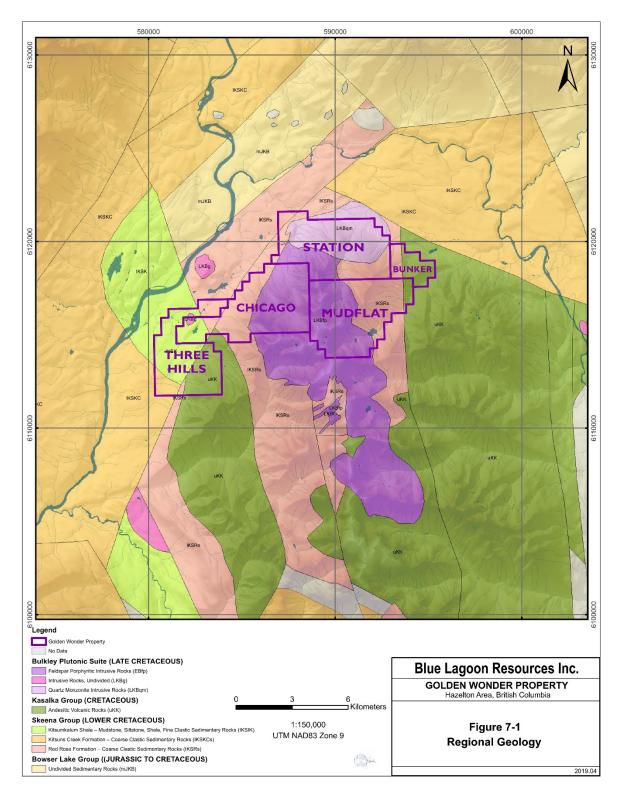


Figure 7-1.Regional geology of the Golden Wonder Property

7.2 PROPERTY GEOLOGY & MINERALIZATION

Mineralized showings on the Golden Wonder Property are associated with the contact between the Rocher Deboule stock and the surrounding Hazelton rocks. Several joint sets have been observed on the property: one parallel to the contact at 015°/65°W;one sub-horizontal crossjoint set at 085°/5°W; one radial, vertical and less well-developed at 060°/65°NW; and another less well-developed at 055°/55°SE (Sutherland Brown, 1960). According to Burgoyne and Kikauka (2007) the joint pattern may be indicative of orthogonal fracturing due to contraction on cooling. The radial fractures appear to host most of the vein mineralization, and they are thought to be responsible for introducing fluids into the rock, causing alteration, quartzhornblende pegmatite vein development, and mineralization. Details on the geology of the showings and workings on the Property are described below (Figure 7-2).

7.2.1 Three Hills

The Three Hills area is predominantly characterized by hornfelsic argillites (mudstone, siltstone, shale and fine clastic rocks) of the Kitsumkalum Shale and the andesitic volcanic rocks of the Kasalka Group. The southwest corner lies within the coarse, clastic sedimentary rocks of the Kitsuns Creek and Red Rose formations.

Mineralization occurs within a rock drumlin that is approximately 37 m wide by 111 m long and rises almost 8 m above the flat surrounding drift. This drumlinis along the same trend as mineralization at the Golden Wonder and West's Knoll area; it strikes 035° and dips 40° NW on the southeast side, and has an obscured dip elsewhere (Sutherland Brown, 1960). No details on the mineralization was available.

7.2.2 Golden Wonder

The Golden Wonder area lies approximately 5 km northwest of the historic Rocher Deboule mine site. The area is predominantly characterized by rocks of the Kitsumkalum Shale. Mineralization occurs at the contact between the porphyritic granodiorite and the pyritic hornfelsed argillites in a rock drumlin. This drumlin is presumed to be parallel to the Skeena Fault (Ethier and Pinsent, 2011) and is along trend with the Three Hills (to southwest) and West's Knoll area drumlins (to the northeast). Additionally, two shear zones approximately 300 m apart have been noted with mineralization in the area (Ethier and Pinsent, 2011). The first, referred to as the south shear zone, strikes 085° and dips 80°N, is up to ~1 m wide and has been traced for 150 m; semi-massive sulphide veins and crystals (chalcopyrite, pyrite, pyrrhotite, and some magnetite, goethite); and silicified fine quartz stringers occur within this shear zone. The second shear zone, referred to as the north shear zone, strikes 290° and dips 75°S, is up to 1.2 m wide and is exposed for a few hundred metres in open cuts at the north end of the drumlin. This north shear is occupied by a post-mineralization porphyry dyke with small quartz stringers and sulphide lenses (pyrite, chalcopyrite).

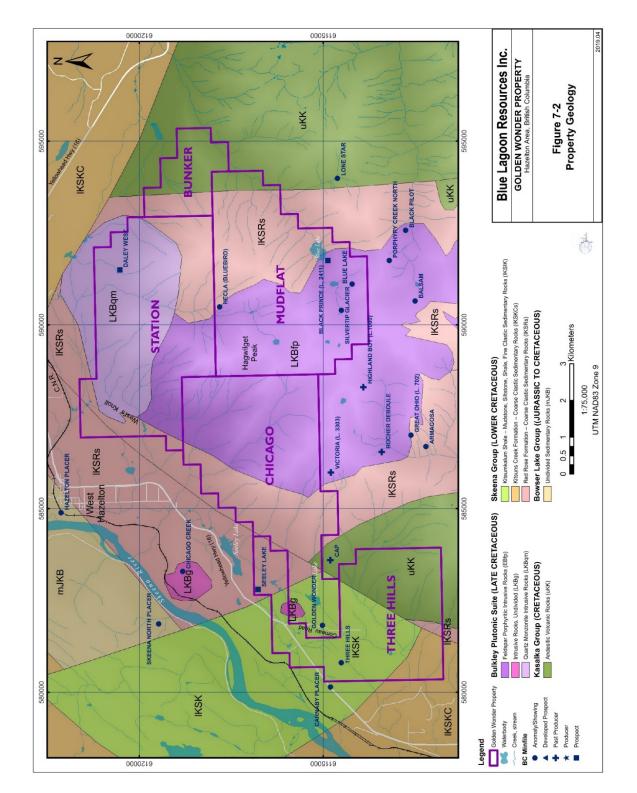


Figure 7-2.Golden Wonder Propertygeology map

7.2.3 West's Knoll

The West's Knoll area is near the approximate contact between the quartz monzonite rocks of the Bulkley Plutonic Suite and the coarse clastic sedimentary rocks of the Red Rose Formation. The area of interest consists of a rock drumlin that lies along the same trend as the Golden Wonder showing and the historic Three Hills showing. At the base of the drumlin, near a contact between the feldspar porphyry and quartz monzonite, arsenopyrite has been found in loose rocks (Ethier and Pinsent, 2011).

No significant mineralization has been found in the West's Knoll area. One fine-grained mudstone boulder sample showed minor disseminated sulphides and rusty weathering.

7.2.4 Daley West

The Daley West area is characterized by the fine-grained quartz monzonite phase of the Rocher Deboulestock. Mineralization was reported in a silicified shear zone trending020°/65°NW and containing small amounts of vein quartz. Masses of arsenopyrite and pyrrhotite, pyrite, and some chalcopyrite occur in the shear zone, as well as minor scheelite, sphalerite, galena, and calcite (Sutherland Brown, 1960). Molybdenite was reported in scattered narrow quartz veins near old workings (Ethier and Pinsent, 2011).

No significant mineralization has been found in the Daley West area.

7.2.5 Black Prince/Blue Lake/Silvertip Glacier

The Black Prince, Blue Lake, and Silvertip Glacier showings are clustered near the southeast boundary of the Property, in the feldspar porphyritic granodiorites of the Roche Deboule stock. The Black Prince showing occurs on the ridge between Mudflat and Porphyry creeks. The Blue Lake showing is approximately 1,600 m southwest of the Black Prince showing. The Silvertip Glacier showing is west of the Black Prince and Blue Lake showings. The Black Prince and Blue Lake showings both consist of parallel quartz veins in the intensely jointed Rocher Deboulestock (Ethier and Pinsent, 2011).

Historically, mineralization has been noted in the argillic rocks and parallel quartz veins in fracture zones at the Black Prince showing. The argillic rocks contain oxidized disseminated sulphides (mostly pyrite) interspersed with areas of non-sulphide-bearing host rock. The main fracture zone, trending 150°/65°SW, comprises quartz veins with scheelite, pyrite, chalcopyrite, molybdenite, wolframite, ferberite, and erythrite; thisfracture zone is up to 2.4 m wide and over 300 m long. A second fracture zone, approximately 250 m east of the main fracture zone, hosts a parallel quartz vein (trending 150°/65°SW)containing zones of massive chalcopyrite and scheelite, with lesser pyrite, bornite, cassiterite, and uraninite. A third fracture zone hosts an intermediate vein, 150 m east of the main fracture zone; this vein trends 160°/70°SW.

At the Blue Lake showing several mineralized veins have been reported (Sutherland Brown, 1960). Vein No. 1, occurs at the east end of the showing, trends 105°/65°NE and is up to 25 cm wide; it is a quartz vein with up to 10% tetrahedrite and minor chalcopyrite. Vein No. 2, 30 m west of Vein No.1, trends 155°/70°SW; it is a quartz vein with chalcopyrite, pyrite, molybdenite,

tetrahedrite, scheelite, and likely uraninite. Vein No. 3, approximately 600 m northwest of the other veins, trends 165°/75°W; it is a quartz vein with scheelite, molybdenite, chalcopyrite, and ferberite. Approximately, 90 m below vein No. 3, occurs a 23 m milky white quartz vein with tetrahedrite; the vein is up to 3 m wide.

Limited information is available on the Silvertip Glacier showing. According to MINEFILE 093M 055, the showing hosts Cu-Mo mineralization.

7.2.6 Hecla/Bluebird

The Hecla/Bluebird showing occurs on the east side of the Rocher Deboulestock, where it is in contact with the sedimentary rocks of the Red Rose Formation. The showing is at the head of Station Creekand mineralization is visible in both a silicified aplite and a pegmatite dike, that have been cut by quartz veinlets containing pyrite and chalcopyrite (Sutherland Brown, 1960). The aplite dike is 2.7 m wide and has a 1.2 m wide mineralized zone; a grab sample assayed 0.22% Cu, trace Au and 34.3 g/t Ag. Thepegmatite dike is 1.8 m wide; a grab sample assayed 0.39% Cu, trace Au, and 18.2 g/t Ag. Also noted are other areas with rusty oxidized surfaces and boulders with some visible sulphides.

8 **DEPOSIT TYPE**

The Skeena Arch is rich in metallic mineral deposits; over 800 occurrences are listed in the BC Geological Survey's MINFILE database, with the majority of the deposit types in the area related to plutonic suites (McIntyre, 2006) including:

- Polymetallic veins Ag-Pb-Zn-Au
- Subvolcanic Cu-Ag-Au (As-Sb)
- Porphyry Cu Mo Au
- Volcanic redbed Cu
- Porphyry Mo (low F- type)
- Intrusion-related Au pyrrhotite veins

Sutherland Brown (1960) described three phases of vein mineralization that appear to overlap in some spots, with precious metals present in a variety of minerals and dominated by iron-cobalt sulphides, tetrahedrite, and chalcopyrite.

Previous assessments of the Golden Wonder Property and surrounding area suggest an epithermal, high-sulphidation Au-Ag and base metals deposit, potentially a vein/replacement type Iron Oxide Copper Gold (IOCG) deposit and possibly part of a porphyry Cu-Au deposit at depth (Burgoyne and Kikauka, 2007).

A more likely deposit type for the Golden Wonder Propertyis a Besshi-type Gold rich Volcanogenic Massive Sulphide (VMS) deposits. VMS deposits form in submarine volcanic environments at or near the sea floor and typically occur as lenses of massive sulphide. Besshi-type Cu-Zn deposits are a subtype of VMS deposits that typically occur in clastic rocks in rifted basins and oceanic regimes (pelites and turbidites) associated with mafic volcanic and intrusive rocks. The mafic volcanic rocks and ore are usually enclosed within a thick sequence of continental clastic sediment.

Besshi-type deposits are tabular, stratiform sulphide bodies characterized by a wide spread of turbidites in ore-bearing strata, Co-rich Cu-Zn ores, subvolcanic sills, sheet-like ore bodies, and a lack of clear structural control. Examples of these deposits are the Besshi deposits in Japan and Windy Craggy, in British Columbia.

An alternative deposit classification is the Blackbird Sediment-hosted Cu-Cobalt model, similar to the Blackbird Mine in the Idaho cobalt area. These deposits are characterized by the presence of massive and disseminated pyrite, pyrrhotite, arsenopyrite, cobaltite, chalcopyrite, and magnetite found in strata boundlenses and/or stringers, or in breccia pipes (Earhart, 1986). Textures can include fine-grained, thinly bedded turbidite sequences and graded beds, indicative of a marine turbidite depositional environment. They are sometimes associated with Besshi-type massive sulphide deposits, and are enriched in iron, arsenic, boron, cobalt, copper, gold, silver, and manganese.

9 EXPLORATION

No exploration on the Property has been conducted by Blue Lagoon.

10 DRILLING

No drilling has been completed on the Property by Blue Lagoon.

11 SAMPLE PREPARATION, ANALYSES, AND SECURITY

11.1 SAMPLING METHOD AND APPROACH

Dahrouge staff collected and prepared the stream pan concentrates, soil samples and rock samples for analysis. Sampling methods were obtained from internal communications with Dahrouge staff and further reviewed and observed by the author in the field in May 2017when he visited the Property in connection with the 2017 Report. From personal communications with Dahrouge, the author has been advised that the same sampling procedures were applied to sampling during the 2018 exploration program.

11.1.1 Stream Pan Concentrate Samples

Stream pan concentrate samples were collected from accessible streams with sufficient alluvial sediment beds. All samples were described in situ, including stream flow, contents, and mineralogy. All sample locations were obtained using a handheld Garmin 60 series GPS.

For each sample, between $\frac{1}{2}$ and $\frac{2}{3}$ of a 5-gallon pail of stream silt was collected and passed through a $\frac{1}{4}$ " sieve followed by a $\frac{1}{12}$ " sieve. The fine faction was then processed pans to concentrate the heavy fraction, yielding some tens of grams per sample. For five of the samples, intermediate fractions were collected and analyzed to capture the arsenopyrite and lighter minerals. The heavy faction was then carefully transferred to pre-labeled sample bags with the corresponding sample book tag. Sample numbers were also written on flagging tape which was also inserted into the sample bag. The bags were sealed with zip ties or flagging tape and catalogued before being packaged in pails and transported to Dahrouge head office, where they were shipped to the Activation Laboratories Ltd. for analysis.

11.1.2 Rock Samples

Grab samples were selected from available outcrops; several pieces were chipped from the outcrop for each sample. Float samples and boulder samples were taken where outcrop was covered by overburden or talus. Every lithology or variation of lithology encountered was sampled; some lithologies were sampled on different locations to test for unobserved changes. Sample locations were obtained using a handheld Garmin 60 series GPS.

All samples were described in situ, including sample type (grab, chip, float, boulder), rock type, mineralogy, and structural measurements. Samples were bagged, in the field, in pre-labelled poly ore sample bags with the corresponding sample book tag. Sample numbers were also written on flagging tape that was also inserted into the sample bag. The bags were sealed with zip ties or flagging tape and catalogued before being packaged in pails and transported to Dahrouge head office, where they were shipped to the Activation Laboratories Ltd. for analysis.

A standard quartz blank was inserted into the rock samples during both field programs to test for contamination during the sample preparation process.

11.1.3 Soil Samples

Soil samples were collected from two grids, one on the east and another on the west side of Denys Lake. Soil lines were spaced 50 m apart and soil samples were space 25 m apart. Sample locations were obtained using a handheld Garmin 60 series GPS.

All soil samples were collected from the B-horizon; sample depths varied with vegetation and overburden thickness. Samples were placed in pre-labeled bags with the corresponding sample book tag number and a piece of flagging tape with same number. The bags were sealed with zip ties or flagging tape and catalogued before being packaged in pails and transported to Dahrouge head office, where they were shipped to the Activation Laboratories Ltd. for analysis.

11.2 LABORATORY SAMPLE PREPARATION AND ANALYSIS

Sample preparation and analyses were conducted by Activation Laboratories Ltd. (ActLabs) in Kamloops, British Columbia. Actlabs is a commercial laboratory and is completely independent of Blue Lagoon. The Actlabs Kamloops facility is ISO/IEC 17025 accredited.

Samples were analyzed for major and trace elements by inductively coupled plasma (ICP) and ICP-mass spectrography (MS). Rock samples also underwent fire assays.

11.2.1 Code 8- 4 Acid ICP-OES and Code 8 - 4 Acid ICP-MS

Assay packages for base metal using 4 acid digestion and ICP-OES or ICP-MS. A 0.5 g sample is digested using 4 acid digestion and diluted volumetrically to 100 mL. CANMET reference materials for the appropriate elements are digested the same way and are used as a verification standard(s). Samples are analyzed on a Varian Vista 735 ICP-OES.

11.2.2 Ultratrace 4: Near Total Digestion ICP/MS

A 0.25 g sample is digested with four acids beginning with hydrofluoric, followed by a mixture of nitric and perchloric acids, heated using precise programmer-controlled heating in several ramping and holding cycles, which takes the samples to dryness. After dryness is attained, samples are brought back into solution using hydrochloric and nitric acids. This digestion may not be completely total if resistate minerals are present. As, Sb, and Cr may be partially volatilized.

An in-lab standard (traceable to certified reference materials) or certified reference materials is used for quality control.

Digested samples are diluted and analyzed by Perkin Elmer Sciex ELAN 6000, 6100, or 9000 ICP/MS. One blank is run for every 40 samples. In-house control is run every 20 samples. Digested standards are run every 80 samples. After every 15 samples, a digestion duplicate is analyzed. The instrument is recalibrated every 80 samples.

11.2.3 1A2-ICP - (1A2-ICP-30 or 50) Au Fire Assay - ICP

Fire Assay

A 0.25 g sample is digested with four acids beginning with hydrofluoric, followed by a mixture of nitric and perchloric acids, heated using precise programmer-controlled heating in several ramping and holding cycles, which takes the samples to dryness. After dryness is attained, samples are brought back into solution using hydrochloric and nitric acids. This digestion may not be completely total if resistate minerals are present. As, Sb, and Cr may be partially volatilized. A sample size of 5 to 50 g can be used but the routine size is 30 g for rock pulps, soils or sediments (exploration samples). The sample is mixed with fire assay fluxes (borax, soda ash, silica, litharge) and with Ag added as a collector and the mixture is placed in a fire clay crucible, the mixture is preheated at 850°C, intermediate 950°C and finish 1060°C, the entire fusion process should last 60 minutes. The crucibles are then removed from the assay furnace and the molten slag (lighter material) is carefully poured from the crucible into a mould, leaving a lead button at the base of the mould. The lead button is then placed in a preheated cupel, which absorbs the lead when cupelled at 950°C to recover the Ag (doré bead) + Au.

ICP-OES

The Ag doré bead is digested in hot (95°C) HNO_3 + HCl. After cooling for 2 hours, the sample solution is analyzed for Au by ICP-OES using a Varian 735 ICP.

It is the author's opinion that the adequacy of sample preparation, security and analytical procedures are sufficient for this stage of exploration on the Golden Wonder Property.

11.3 Assay Results and Interpretation

The results of the assays from both the 2017 and 2018 programs indicate significantly elevated values for gold, silver, copper and cobalt for the samples collected on the Golden Wonder Property. These results are discussed in further detail in Section6.1.7, Recent Exploration.

12 DATA VERIFICATION

The author of this report, Mr. Jeff Reeder, visited the Property on May 22, 2017. During the visit, the author reviewed exposed outcrop, subcrop, and float, and collected seven rock samples from two historic showings: the Golden Wonder and the Black Prince. Samples 122401 to 122403 were collected on the Black Prince zone, whereas samples 122404 to 122407 were collected from the Golden Wonder zone (Table 12-1).

Sample ID	Easting	Northing	Au (ppb)	Ag (g/t)	Cobalt ppm	Cu ppm
122401	592043	6115038	4	0.08	174	463
122402	591917	6114894	118	0.72	134	58.1
122403	591971	6115434	<2	0.1	10.9	33.3
122404	581826	6115203	10300	53.9	3010	27100
122405	581815	6115182	1110	2.9	5	957
122406	581815	6115182	25300	65.7	1290	32900
122407	581815	6115182	112	12.9	119	7510

Table 12-1.	Samples taken	by the Author
	Sumpres taken	by the nutlion

Samples collected by Mr. Reeder in 2017 were packaged and prepared for shipment under his supervision.

A standard quartz blank was inserted into the samples to test for contamination during the sample preparation process. The quartz sample, #122375,was inserted between samples with relatively higher grades for Au, Ag, Co and Cu; results for the sample showed no indication of any significant or systemic cross contamination. The assay results for the blank sample were below the detection limit for both Au and Ag but were above the detection limit for Co (assayed 0.5 ppm, with a detection limit of 0.1 ppm) and Cu (assayed 3.2 ppm, with a detection limit of 0.2 ppm).

All assay certificates from 2017 and 2018 exploration programs and historic documents have been made available to the author. All sample locations were obtained using a handheld Garmin 60 series GPS for both 2017 and 2018 exploration programs.

It is the author's opinion that the data produced meets the standards required for the purposes of this technical report. The work conducted by Dahrouge Geological is considered professional and can be relied on.

13 MINERAL PROCESSING AND METALLURGICAL TESTING

No mineral processing or metallurgical testing has been completed on the Property.

14 MINERAL RESOURCE ESTIMATES

No mineral resource estimation has been completed on the Property.

15 TO 22 – NOT APPLICABLE (EARLY STAGE PROPERTY)

The Golden Wonder Property is an early-stage exploration project. Sections 15 through 22, as defined by NI 43-101, are not relevant to this report and have been omitted.

23 ADJACENT PROPERTIES

The information in this section was obtained from publicly available BC Mineral Assessment Reports.

The Rocher Deboule Property lies adjacent to the south of the Golden Wonder Property and consists of two mineral claims covering 997.76 ha of land, which are owned 100% by American Manganese Inc. Their property covers several historic past-producing mineral showings, including the Victoria, Rocher Deboule, Highland Boy, and Cap showings, in addition to several less advanced mineral showings. The Rocher Deboule Property has recorded occurrences of "gold-silver-copper-(zinc-lead-cobalt)" mineralization (Kikauka, 2016). Recent work done by American Manganese Inc. involved six diamond drill holes at the Highland Boy showing, an airborne geophysical survey, and several surface prospecting programs. In 2016, American Manganese Inc. sampled fissure vein mineralization near the Cap showing, highlighted by a sample with 9280 ppb Au, 40 ppm Ag, and 57026 ppm Cu (Kikauka, 2016).

The Porphyry Creek Property lies just south and adjacent to the Rocher Deboule Property and Golden Wonder Property. This property covers 5,568.82 ha, with ownership split three ways amongst Doug Warkentin (60%), Timothy Johnson (20%), and Kyler Hardy (20%) (Warkentin, 2017). Several historic mineral showings occur within the property's boundaries, including a past producer (Brunswick) and an early-stage prospect (Sultana). Commodities of interest include, but are not limited to, Cu, Mo, Ag, Au, Pb, and Zn. The most recent publicly disclosed work program consisted of prospecting and soil sampling in 2016 (Warkentin, 2017).

There are numerous other mineral tenures surrounding the Property that are registered to companies or individuals, and they are not described in this report. The author has been unable to verify the information on any of these adjacent properties and they are not necessarily indicative of the mineralization present of the Golden Wonder Property.

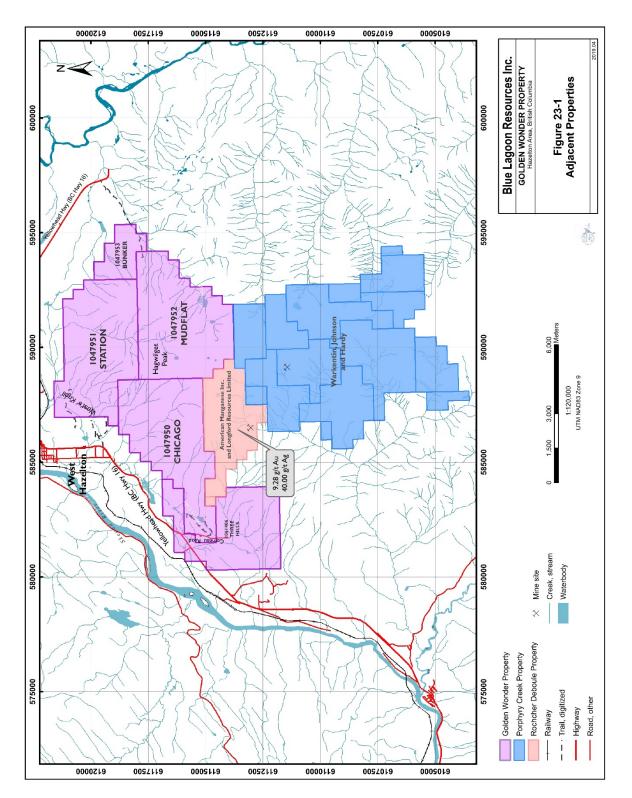


Figure 23-1.Adjacent Property Map

24 OTHER RELEVANT DATA AND INFORMATION

The author is unaware of any other relevant data.

25 INTERPRETATION AND CONCLUSIONS

The 2017 exploration program focused on cobalt mineral potential while the 2018 exploration program focused on gold mineral potential at the Golden Wonder Property. Additionally, the mineral potential of silver and copper were evaluated, all by confirming historic assay results and determining field conditions. The 2017 program included rock sampling and stream pan concentrate sampling; the 2018 program included rock sampling and soil sampling, with a focus on the Golden Wonder area.

Soil and rock analytical results indicate that there is significant mineralization at the Golden Wonder area, in massive to narrow sulphide veins and in the surrounding argillite/mudstone. Elevated gold values in both the soil and rock samples occur along an approximate 500 m strike length at Golden Wonder. A high proportion of the rock samples displayed anomalous Au values, with 33 of the 180 samples returning greater than 0.5 g/t Au.

Subsequent work is essential to further develop the Golden Wonder area. A ground magnetometer survey and subsequent diamond drilling would be beneficial to further understand the underlying geology and mineralized structures/trends in areas with cover.

26 RECOMMENDATIONS

Based on the results of the 2017 and 2018 exploration programs reported in this document, the author confirms that the Golden Wonder Property exhibits favourable geologic characteristics and sufficient potential to warrant further exploration for gold, silver, copper and cobalt. The author recommends a two-phase exploration program, with phase 2 being contingent upon positive results from Phase 1.

The recommended Phase 1 exploration consists of:

- a) communicating (social planning) with local landholders where access is required through private lands,
- b) collecting an additional 80 samples at the soil-grid at Golden Wonder to the east northeast of soil samples 128192, 128195, 128208 and 128216 with anomalous Au/Ag mineralization (Fig. 26-1),
- c) collecting an additional 80 samples at the soil-grid at Golden Wonder to the west southwest of soil sample 128195, 128208 and 128216
- d) collecting an additional 120 samples at the soil-grid at Golden Wonder to the west southwest of soil sample 121135 with anomalous Au/Ag mineralization (Fig. 26-1),
- e) approximately 8 line kms of ground magnetic surveys roughly coincident with the soil grid (50-m spaced lines, 25-m stations) and known mineralized trend at Golden Wonder,
- f) further geologic mapping and sampling at and on trend from those locations with anomalous soil geochemistry identified in 2017 and 2018.

The estimated cost of the recommended work program is \$115,803 not including GST (Table 26-1).

In the event discrete magnetic signature(s), coincidental with positive soil geochemistry and known outcrop mineralization is delineated by the Phase 1 work, a second phase of exploration should be conducted consisting of an approximately 500 m diamond drilling. The phase 2 program will consist of at least five core holes averaging 100 m depth in order to confirm width, continuity, grade of the known Au +/- Ag, Cu, Co mineralization in the Golden Wonder area. The first diamond drill hole should be concentrated in the main Golden Wonder Showing where access is excellent. Step out drilling locations will be dependent on the phase 1 work however it is recommended that one drill hole is conducted in the area approximately 300 metres east of the main showings where highly anomalous gold samples occur. Road access and drill site construction will depend on surface rights access agreements and surface disturbance.

The total estimated cost for Phase 2 work, along with a 25% contingency, would be about \$166,875 (). Phase II has been estimated using a 25% contingency to account for variability in industry drilling and construction rates, as well as cover drilling associated complications such as poor drilling conditions or loss of drill string.

Item	Estimated Cost
Planning and Logistics	\$3,000
Personnel (2 senior geologists at \$900/day and 2 field assistants @ \$600/day for 20 days)	\$60,000
Transportation (Truck & ATV rental; Fuel)	\$4,000
Accommodation and Meals (4 persons at \$163/day for 20 days)	\$13,000
Equipment Rentals (Magnetometer; GPS)	\$6,000
Supplies, Communications & Sample Shipping	\$2,000
Analytical (est. 280 soils at \$55/ sample + 25 rock samples at \$75/sample)	\$17,275
Contingency (10%)	\$10,528
Total:	\$115,803

Table 26-1.Phase 1 Estimated Budget for Detailed Ground Magnetic Survey and SoilSample Program

Table 26-2. Phase 2 Estimated Budget for 500 m Diamond Drill Program

Item	Estimated Cost
Permitting, Planning & Logistics	\$10,000
Access & Drill site Construction and Reclamation	\$30,000
Transportation (Truck Rental and ATV Rental)	\$4,000
Accommodation and Meals	\$3,000
Drill Program Personnel (2 persons for 7 days)	\$14,000
Drilling 500 m (all in: drill mob and demob; drill moves, core boxes, drill crew, downhole deviation survey tool)	\$50,000
Supplies and Communication	\$4,500
Analytical (est. 250 Core samples at \$75/sample)	\$18,000
Contingency (25%)	\$33,375
Total:	\$166,875

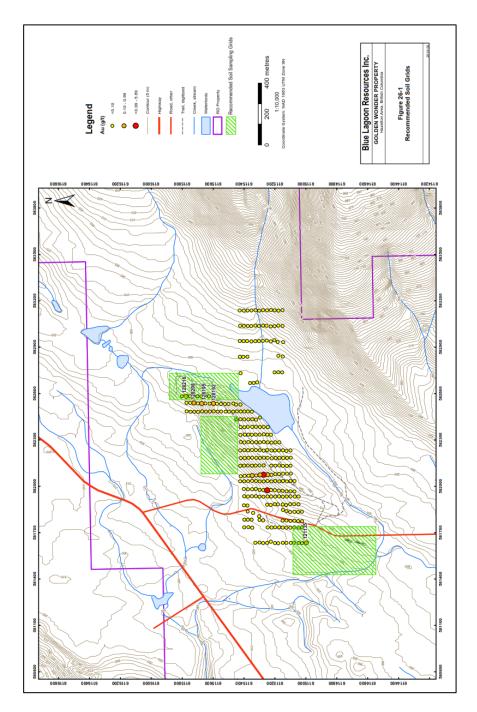


Figure 26-1. Recommended Soil Grid Locations

27 References

- Burgoyne, A.A., Kikauka, A., 2007, Technical report on the Rocher Deboule Property, B.C, Min. Energy, Mines, Petr. Res. Assessment report 29338, 239 p., 17 fig., 2 appendices.
- E. Meyers Consulting, 1980, Geological report on the CRO Tungsten-Molybdenum claims, New Hazelton Area, British Columbia, B.C, Min. Energy, Mines, Petr. Res. Assessment report 7903, 32 p.,6 fig.
- Ethier, D. and Pinsent, R.H., 2011, Prospecting and geochemical report on the Rocher Deboule property, B.C, Min. Energy, Mines, Petr. Res. Assessment report 33297, 366 p., 25 fig., 7 appendices.
- Fominoff, P.J., 1971, Report on an induced polarization survey, Hazelton Area, British Columbia on behalf of Chapparal Mines Limited, B.C, Min. Energy, Mines, Petr. Res. Assessment report 3463, 8 p., 5 fig.
- Harivel, C., 1984, Report on the King mineral claim, Rocher Deboule Mountain, Hazelton Area, British Columbia, B.C, Min. Energy, Mines, Petr. Res. Assessment report 12133, 16 p., 5 fig., 2 appendices.
- Kikauka, A., 2016, Geological & Geochemical Report on the Rocher Deboule Mineral Property, Cap Mineral Occurrences, Hazelton, B.C., B.C, Min. Energy, Mines, Petr. Res. Assessment report 36089, 37 p., 8 fig., 4 appendices.
- Kindle, E.D., 1954, Mineral resources, Hazelton and Smithers Areas, Cassiar and Coast Districts, British Columbia, Canada Dept. of Mines and Technical Surveys, GSC Memoir 223, 159 p., 12 fig.
- Kyba, J., 2017, National Instrument 43-101 Technical Report on the Cobalt Mountain Property, Omineca Mining Region, British Columbia, NI 43-101 Technical Report, May 24, 2017, 62 p., 13 fig., 2 appendices.
- L'Orsa, A., 1981, Prospecting report Judi 1 to 6 mineral claims, New Hazelton Area, British Columbia, B.C, Min. Energy, Mines, Petr. Res. Assessment report 8837, 11 p., 2 fig.
- MacIntyre, D.G., 2006, Geology and Mineral Resources of the Skeena Arch, West-Central British Columbia: A Geoscience BC Digital Data Compilation Project (parts of NTS 093E, L, M, 094D, 103I, and 103P) *in* Geological Field work 2005, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 2006-1, pages 303-312.
- McInnis, D., 2006, Assessment report on exploration activities, the Golden Wonder, Hazelton, British Columbia, B.C, Min. Energy, Mines, Petr. Res. Assessment report 28625, 12 p., 2 fig., 4 appendices.
- McLeod, J.W., 1979, Report on the King Mineral Claim, Rocher Deboule Mountain, Hazelton Area, British Columbia, B.C, Min. Energy, Mines, Petr. Res. Assessment report 7779, 9 p.,2 fig.

- Meyers, E., 1980, Geological report on the CRO tungsten-molybdenum claims, New Hazelton Area, British Columbia, B.C, Min. Energy, Mines, Petr. Res. Assessment report 7903, 32 p., 6 fig., 2 appendices.
- Minister of Mines, B.C., MINFILE Reports 093M 053, 093M 055, 093M 056, 093M 057, 093M 073, 093M 074, and 093M 113.
- Oats, G.L., 1960, Report of geophysical survey, Strike and Ridge Groups, B.C., Min. Energy, Mines, Petr. Res. Assessment report 324, 13 p., 2 fig.
- Olson, D.H., 1980, Report on geology and magnetic survey Golden Wonder prospect, B.C, Min. Energy, Mines, Petr. Res. Assessment report 8521, 23 p., 5 fig.
- Reeder., J., 2017, Technical Report on the RD Cobalt Property, British Columbia, Canada, NI 43-101 Technical Report, SEDAR.
- Salame, C., 2019, 2018 Geochemical Rock and Soil Sampling of the RD Cobalt Property, Rocher DéBoulé Range, Near New Hazelton British Columbia.
- SutherlandBrown, A., 1960, Geology of the Rocher Deboule Range, British Columbia Department of Mines and Petroleum Resources, Bulletin 43, 85 p., 15 fig., 14 plates.
- Warkentin, D., 2017, Prospecting and Geochemical Testing Assessment Report on the Porphyry Creek Property, Omineca Mining Division, British Columbia, B.C, Min. Energy, Mines, Petr. Res. Assessment report 36512, 31 p., 10 fig., 2 appendices.

28 DATE AND SIGNATURE PAGE

This report, entitled **"Technical Report on the Golden Wonder Property**" and with an effective date of June 11, 2019, was prepared on behalf of Blue Lagoon Resources Inc. and is signed by the author, Jeffrey J. Reeder, P.Geo.

Jeffrey J. Reeder, P.Geo.

APEGBC License #19945

29 CERTIFICATE OF QUALIFIED PERSON

I, Jeffrey J. Reeder, P.Geo, do hereby certify that:

- 1. I am a Professional Geoscientist with a business address at **1240 Fleet Street**, **Mississauga**, **Ontario L5H 3P5**.
- 2. I am the author of the technical report entitled "**Technical Report on the Golden Wonder Property**", prepared on behalf of Blue Lagoon Resources Inc. and with an effective date of June 11, 2019.
- 3. I graduated in 1988 with a B.S.c with specialization in Geology from the University of Alberta.
- 4. I am a Registered Professional Geologist (P.Geo.) with the Association of Engineers and Geoscientists of British Columbia with License #19945.
- 5. I have been employed as a Professional Geoscientist continuously since November 1992.I have been practicing my profession since 1988 and worked primarily in

Cordilleran Geology exploring for precious and base metal deposits in North and South America.

- 6. I am a Qualified Person for purposes of National Instrument 43-101.
- 7. I inspected the Golden Wonder Property on May 22, 2017.
- 8. I am responsible for the preparation and take responsibility for all sections of the report entitled "**Technical Report on the Golden Wonder Property**", prepared on behalf of Blue Lagoon Resources Inc. and with an effective date of June 11, 2019.
- 9. I am independent of the issuer of this report.
- 10. Besides writing the 2017 Report, I have not had prior involvement with the Property that is the subject of this report.
- 11. I have read National Instrument 43-101 and the report entitled **"Technical Report on the Golden Wonder Property** "has been prepared in compliance with this Instrument.
- 12. On the effective date of the report, June 11, 2019, to the best of my knowledge, information, and belief, this technical report contains all scientific and technical information that is required to be disclosed to make the technical report not misleading.

Jeffrey Reeder, P.Geo, APEGBC License #19945