TECHNICAL REPORT

on the

Daniel's Harbour Property

Mineral Licences 22337M, 25085M, 25179M, 25180M, 25497M, 25539M & 25555M

NTS 12I/06

Northern Peninsula Newfoundland and Labrador Canada

FOR Ubique Minerals Limited

PREPARED BY Elliott M. Stuckless, P. Geo

EFFECTIVE DATE December 6th, 2017

TABLE OF CONTENTS

		Page #			
1.0	SUMMARY	4			
2.0	INTRODUCTION AND TERMS OF REFERENCE	4			
3.0	RELIANCE ON OTHER EXPERTS				
4.0	PROPERTY DESCRIPTION AND LOCATION				
5.0	ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE & PHYSIOGRAPHY				
6.0	HISTORY	7			
	6.1 Introduction	7			
	6.2 Summary of Past Exploration	7			
	6.2.1 Pre-1963	7			
	6.2.3 1999-2011	o g			
7.0		10			
/10	7.1 Geological Setting	10			
	7.1.1 Regional Geology	10			
	7.1.2 Property Geology	12			
	7.2 Mineralization	14			
8.0	DEPOSIT TYPE	15			
9.0	EXPLORATION	17			
10.0	DRILLING	17			
11.0	10.1 Results from 2017 Diamond Drilling	17			
11.0	SAMPLE PRERPERATION, ANALYSIS AND SECURITY	18			
120		0			
12.0		20			
15.0		20			
14.0		20			
15.0		20			
16.0	MINING METHODS	20			
17.0	RECOVERY METHODS	21			
18.0	PROJECT INFRASTRUCTURE	21			
19.0	MARKET STUDIES AND CONTRACTS	21			
20.0	ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY IMPACT	21			
21.0	20.1 Summary of Exploration Licence Requirements	22			
21.0	CAPITAL AND OPERATING COSTS	22			
22.0		22			
23.0	ADJACENT PROPERTIES	23			
	23.2 Daniel's Harbour B Zone	25 26			

	23.3 Daniel's Harbour C Zone	29		
	23.4 Daniel's Harbour D Zone	31		
	23.5 Daniel's Harbour E Zone	34		
	23.6 Daniel's Harbour F Zone	37		
	23.7 Daniel's Harbour G Zone	40		
	23.8 Daniel's Harbour H Zone	43		
	23.9 Daniel's Harbour J Zone	45		
	23.10 Daniel's Harbour K Zone	48		
	23.11 Daniel's Harbour L Zone	51		
	23.12 Daniel's Harbour M Zone	54		
	23.13 Daniel's Harbour N Zone	56		
	23.14 Daniel's Harbour O Zone	59		
	23.15 Daniel's Harbour P Zone	62		
	23.16 Daniel's Harbour Q Zone	65		
	23.17 Irapper Zone	6/		
	23.18 Black Duck Zone	70		
	23.19 Additional Snowings/Prospects/Past Producers	/2		
24.0	OTHER RELEVANT DATA AND INFORMATION	72		
25.0	INTERPRETATIONS AND CONCLUSIONS	72		
	25.1 P Zone	73		
	25.2 Muddy Pond Brook	74		
	25.3 Tilt Pond & Cobo's Pond	75		
26.0	RECOMMENDATIONS	75		
	26.1 Phase I	75		
	26.2 Phase II	76		
27.0	REFERENCES CITED	77		
28.0	DATE AND SIGNATURE PAGE 8			

LIST OF TABLES

Table 1: Details of Unknown Brook Property Claims	6
Table 2: Summary of Claim Renewal Fees and Expenditure Requirements	22
Table 3: Estimated Phase I Exploration Budget	76
Table 4: Estimated Phase II Exploration Budget	76

LIST OF APPENDICES

APPENDIX I: STATEMENT OF QUALIFICATIONS APPENDIX II: MAPS & FIGURES APPENDIX III: 2017 DIAMOND DRILLING LOGS AND ASSAY CERTIFICATES APPENDIX IV: SUMMARY OF HISTORIC DIAMOND DRILLING APPENDIX V: PHOTOGRAPHS

LIST OF FIGURES

- Figure 1: Daniel's Harbour Property Generalized Location Map
- Figure 2: Daniel's Harbour Property Claim Location Map
- Figure 3: Generalized Newfoundland Geology Map
- Figure 4: Daniel's Harbour Property Geology Map
- Figure 5: Stratigraphic Section of Area
- Figure 6: Section of Matrix Breccia
- Figure 7: Location Map of 2017 Diamond Drill Holes
- Figure 8: Detailed DDH Location Map UM-1, UM-2 & UM-3
- Figure 9: Detailed DDH Location Map UM-4, UM-5, UM-6, UM-7, UM-8 & UM-9
- Figure 10: Section 23510N (UM-4, UM-5 & UM-6)
- Figure 11: Section 23410N
- Figure 12: Section A-A'
- Figure 13: Section B-B'
- Figure 14: Section C-C'
- Figure 15: Section D-D'
- Figure 16: Section E-E'
- Figure 17: Section F-F'
- Figure 18: P Zone North Drift Proposed DDH Location Map
- Figure 19: P Zone East Drift Proposed DDH Location Map
- Figure 20: Muddy Pond Area Sketch Map
- Figure 21: Generalized Location Map of Areas Recommended for Follow-up Work
- Figure 22: Location of Showings/Prospects

1.0 SUMMARY

This report is an amendment to the previously filed technical report of the same title (effective date December 1st, 2017). The original report outlined a three phase program in the recommendations section (Section 26) which has been condensed to a two phase program in this report.

The Daniel's Harbour Property consists of 7 mineral licences (22337M, 25085M, 25179M, 25180M, 25497M, 25539M & 25555M) comprised of 108 map-staked claims, covering a total area of 27km². The property is located on NTS map sheet 12I/06, approximately 10 kilometers northeast of the small community of Daniel's Harbour on Newfoundland's Northern Peninsula. The property lies just off of Route 430N, a paved road which joins the Trans-Canada Highway (TCH – Route 1) at the town of Deer Lake.

The Daniel's Harbour area first came to prominence in 1963 when prospectors were preforming reconnaissance stream geochemistry, looking for lead and zinc deposition in carbonate rocks (i.e. Mississippi Valley-Type deposits). A significant anomaly led two prospectors to the edge of what would become known as Zinc Lake and the "A" zone was discovered. By the mid-1970s Leitch Gold Mines, the primary project operator during that time, had completed a feasibility study on the property and reported an estimated (non-43-101 compliant) minable ore reserve 4,451,000 tons at an average grade of 8.78% Zn (Billheimer, 1974). Mining began in 1975 with initial production of 1500 tons/day and continued until operations were ceased in the early 1990s; during this period the reported production was 7,225,375 tons at an average grade of 7.93% Zn (Caines, 1990).

Mineralization in the Daniels Harbour zinc deposits generally occur as long, narrow bodies trending in a northeast direction, parallel to both the long axes of dolomite breccia piles and to localized normal faults. In the project area, a total of 21 'zones' named alphabetically 'A' to 'W' have been identified all of which contain sulphide mineralization almost entirely of sphalerite, with local minor quantities of pyrite, marcasite and extremely rare galena. The sphalerite is exceptionally pure and iron deficient.

As of the effective date of this document, work completed on the property by Ubique Minerals has consisted of compilation, prospecting and most recently, diamond drilling.

2.0 INTRODUCTION & TERMS OF REFERENCE

This technical report describes the geology, exploration history and mineral potential of Mineral Exploration Licences 22337M, 25085M, 25179M, 25180M, 25497M, 25539M & 25555M herein referred to as the 'Daniel's Harbour Property, located on the Northern Peninsula of Newfoundland & Labrador, Canada on NTS 121/06.

This report was prepared by Elliott M. Stuckless, P.Geo. for Ubique Minerals Limited ("**Ubique**") to comply with technical, reporting and disclosure requirements set out under National Instrument 43-101 and was commissioned by The Ubique Minerals Limited Board

of Directors. The terms of reference were established between Ubique and the author in August of 2017. It is the understanding of the author that this report will be used to assist in the listing of Ubique Minerals Limited.

The Daniel's Harbour Property is located in the area of a former high grade zinc producer, mined by Teck Exploration (operating as Newfoundland Zinc Mining Limited) from 1975 to 1990. The currently claim areas have been strategically staked to encompass the extents of known breccias and truncated mine areas, deemed by the company to be the most prospective in terms of further development and mine re-activation.

The data presented in this report was obtained from the following sources:

- 1. Assessment reports describing exploration on and around the Daniel's Harbour Property, filed with the Newfoundland and Labrador Department of Mines and Energy by previous operators.
- 2. Press releases and other documentation put forward by previous operators.
- 3. Documents and data supplied by Ubique Minerals.
- 4. Various published reports and maps dealing with the geology and mineral potential of the Daniel's Harbour area and Mississippi Valley Deposit types.
- 5. The primary author's personal knowledge of the property.

Documents used in the completion of this report are listed in Section 27.0 and have been referenced throughout.

The author of this report is a professional geologist (P. Geo) and prepared this report after a review of past exploration on the property. The author is a qualified professional who worked strictly on a fee for service basis with Ubique. A site visit was completed on September 23rd, 2017, at which time mineralization was observed in outcrop, historic workings were viewed, and diamond drilling core was presented from the most recent program completed by Ubique in August 2017. Based on this site visit, as well as verification of data provided by Ubique detailing recent work, the author is certain that the work detailed in this technical report has actually been completed.

3.0 RELIANCE ON OTHER EXPERTS

Mr. Roland Crossley, P, Geo. is a semi-retired professional geologist who has been intimately involved in the mining and development of zinc deposits in the Daniel's Harbour area. Having acted as a mine geologist with Newfoundland Zinc Mining Limited, his knowledge and understanding of Daniel's Harbour mineralization has been imperative in preparing this report. This report was completed by the author for Ubique Minerals Limited. and the information, conclusions and recommendations contained herein are based upon information available to the authors at the time of report preparation. This includes data

made available by Ubique as well as from government and public sources. Information contained in this report is believed reliable but the report is based upon information not within the author's control. There is no apparent reason to question the quality and validity of data used in this report and as such comments and conclusions presented represent the author's best judgment at the time of report preparation and are based upon all known information available at that time.

This report expresses opinions regarding the exploration and development potential of the Daniel's Harbour Property as well as recommendations for further evaluation. These opinions and recommendations are intended to serve as guidance for further development, but should not be viewed as a guarantee of success.

4.0 PROPERTY DESCRIPTION AND LOCATION

The Daniel's Harbour Property is located on NTS map sheet 121/06, approximately 10 kilometers northeast of the small community of Daniel's Harbour on Newfoundland's Northern Peninsula. The property lies just off of Route 430N, a paved road which joins the Trans-Canada Highway (TCH – Route 1) at the town of Deer Lake (*Figure 1*).

The Daniel's Harbour Property consists of 7 mineral licences (22337M, 25085M, 25179M, 25180M, 25497M, 25539M & 25555M) comprised of 108 map-staked claims, covering a total area of 27km2 (*Figure 2, Table 1*).

Licence	Claims	NTS	Issued	Renewal	Required Expenditure	Required By
022337M	8	121/06	2014/08/18	2019/08/18	\$ 1,602.81	2019/08/18
025085M	17	121/06	2017/05/23	2022/05/23	\$ 3,400.00	2018/05/23
025179M	16	121/06	2017/06/21	2022/06/21	\$ 3,200.00	2018/06/21
025180M	8	121/06	2017/06/21	2022/06/21	\$ 1,600.00	2018/06/21
025497M	23	121/06	2017/11/08	2022/11/08	\$ 4,600.00	2018/11/08
025539M	28	121/06	2017/12/04	2022/12/04	\$ 5,600.00	2018/12/04
025555M	8	121/06	20107/12/07	2022/12/07	\$ 1,600.00	2018/12/07

Table 1: Details of Daniel's Harbour Property Claims

5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTRE AND PHYSIOGRAPHY

The Daniel's Harbour Property is located on NTS map sheet 121/06, approximately 10 kilometers northeast of the small community of Daniel's Harbour on Newfoundland's Northern Peninsula. The property lies just off of Route 430N, a paved road which joins the Trans-Canada Highway (TCH – Route 1) at the town of Deer Lake (*Figure 1*).

Primary access to the property is excellent via the town of Deer Lake, which in addition to being located directly on the TCH is also home to a regional airport. Departing Deer Lake, drive north along Hwy 430N for approximately 155 km to the town of Daniel's Harbour, continue along the highway for another 5 km and turn right onto a paved road (Zinc Mine Road). From here it is 8 km to the decommissioned mine site. Turn left at the mine site up a wide gravel road to access the P Zone (on the right side of the road, ~5 km in). On the gravel road you will pass by several mined out open pits and flooded underground workings. Access to other sections of the claim area is via old logging and skidder roads in various conditions.

The climate is marine in character; it is affected by the Gulf of St. Lawrence to the west and the North Atlantic to the east. Temperature extremes are rare, but windy conditions are common. The average daily high for June to September is 15.6° C. The average daily minimum for December to March is –11.1° C, windy conditions and snow may limit access at times. Average precipitation is 806.5 mm of rain and 422.9 cm of snow.

6.0 HISTORY

6.1 Introduction

The Daniels Harbour property and region has effectively been explored and developed by one owner (Teck) since zinc-mineralized Mississippi Valley Type carbonates were discovered in 1963. Operating as a zinc producer, the property reported production was 7,225,375 tons at an average grade of 7.93% Zn (Caines, 1990).

6.2 Summary of Past Exploration

6.2.1 Pre-1963

The Daniel's Harbour area of Newfoundland and Labrador was vastly unexplored prior to 1963. The only exception being a regional geological mapping study which delineated rock units in the current project area and identified some local faulting which was completed by The Geological survey of Newfoundland in 1955 (Nelson, 1955). The British Newfoundland Exploration Company (Brinex) also held a large concession in the Daniel's Harbour area during this time, however no significant work was reported as having been completed in the project area.

6.2.2 1963-1999

In 1963, Leitch Gold Mines, with Mastadon Highland Bell Mines and American Metals Climax commissioned an exploration program looking for Mississippi Valley Type lead and zinc deposits in carbonate rocks known to be present along the Northern Peninsula. Reconnaissance stream and soil geochemistry identified a significant anomaly along the edge of Bound's Brook approximately 4 km north of the community of Daniel's Harbour. Prospectors J.T. Meagher and Mike Labchuck followed the anomaly up stream to Bound's Pond, where further geological investigation led to the discovery a small high grade zone on the edge of Zinc Lake (later referred to as the A zone). Approximately 9000 soil geochemistry samples were taken in the area, trenching was undertaken on anomalies and zinc boulders were found in till. Line cutting and geophysical surveys were completed with mixed results; gravity returned some weak southwest trending profiles, which were attributed to faults and electromagnetic work showed no response over the Zinc Lake showing.

In September of 1963, Leitch Gold Mines staked a large concession covering approximately 1200 square kilometers of the Northern Peninsula extending from Portland Creek Pond north to the southern shore of Hawke's Bay and from the coast on the west to the base of the Long Range Mountains to the east. Following the initial discovery, the original joint venture partners incorporated Newfoundland Zinc Mines Limited and transferred 99 claims in the discovery area to the new company. By December 16, 1963, Leitch Gold /Newfoundland Zinc Mines had completed 67 diamond drill holes totalling 1,946 meters and identified zinc mineralization in what would become known as the A, B, C, D, E, F, G, H, J, K & L zones.

Drilling commenced again in early 1964 and by the July 10th an additional 103 delineation diamond drill holes were completed.

By December of 1967 the number of holes completed in the area totalled 481 and a non-43-101 geological reserve of 5,407,000 tons at 7.75 % zinc had been outlined (Newfoundland Zinc Mines Limited, 1967).

In 1968 Cominco optioned the property from Leitch Gold and carried out geological mapping, geochemistry, geophysics and diamond drilling surveys. In total an additional 100 diamond drill holes were completed, however no new mineralized zone were discovered. The property was subsequently relinquished back to Newfoundland Zinc Mines Ltd in 1973, which was now

operating under the control of the Tech Corporation (Teck having acquired a controlling interest in Leitch earlier). Teck began a large drill program in February 1973 and by July 1974 an additional 233 diamond drill holes had been completed on definition and exploration targets.

In April of 1974, a feasibility report was completed followed by a public announcement in May 1974 that a new zinc mine would be built near Daniel's Harbour. Mineable ore reserves were estimated at 4,451,000 tons at 8.78% zinc. Construction began in June 1974 and the official opening took place in August 1975. Original production was 1500 tons per day, but was increased to 1600 tons per day about a year later. During mining operations exploration continued and new zones were added, M,N.O,P,Q,R,S,T,U.V,W,X,Y & NNL and the NOSE Zone; not all were developed.

Operations ceased in August 1990, total production was reported to be 7,225,375 tons at a grade of 7.93% zinc; most of this production came from underground operations with approximately 20% from open pits. Recovery in the mill ranged from 96-98%, with an average concentrate grade in the vicinity of 62.5% zinc (Caines, 1990).

Beginning in 1991, Teck spent several years rehabilitating the site – removing all surface buildings, metal and scrap, sculpting the various open pit zones, and grassing over the tailings pond. Once all remediation was completed, mineral rights were relinquished and the majority of the mine area became available for staking in June 1999.

6.2.3 1999-2011

Boliden Westmin Canada limited staked a 129 claim mineral licence in the area in June of 1999 and subsequently completed IP and gravity surveys over two small grid. The eastern grid, located next to a known breccia, produced several northeast striking IP chargeability anomalies with associated gravity response. Soil sampling was also completed by Boliden over both areas of known mineralization and previously unexplored targets. Samples were analyzed with multi-element ICP and Mobile Metal Ion (MMI) techniques; other than reporting a good correlation between the two techniques, no new areas were identified for follow-up (Terry & Scott, 2000)

Boliden withdrew from exploration in Canada the following year and the licence lapsed in 2002.

Topsails LLC staked 94 claims in the area in November of 2004 and subsequently completed IP and gravity surveys in the areas previous identified by Boliden with their 1999 work (Scott, 2005). By 2006, targets had been identified for drill testing and a four hole, 590m program was completed. Only one hole intersected zinc mineralization, with trace amounts being reported over a short interval. The source of coincident IP and gravity responses was deemed to be unexplained and property was dropped in 2009 (Scott, 2006).

Messina Minerals Inc. acquired 80 claims when the ground came open for staking. Initial compilation and field reconnaissance indicated zones of interest lay outside these claims which lead to Messina staking an additional four licences, covering 101 claims, in October 2009.

During 2009-2012 Messina undertook preliminary exploration including road GPS surveys, drill hole compilation (See Appendix IV), drill collar location, logging of a previously unlogged drill hole, a prospecting program, and a conceptual evaluation of the resource required to re-initiate mining (Tallman, 2010). Messina intent was to relocate historic drill collars and re-establish old mine grid coordinates from the Teck era; although several reference points were identified, the program was deemed minimally successful and the property was dropped. Messina's decision to relinquish the property was reportedly due to a lack of financial resources and as such they still viewed the expanded mineral potential of the area to be very good (Tallman, 2012).

7.0 GEOLOGICAL SETTING & MINERALIZATION

7.1 Geological Setting

7.1.1 Regional Geology

The island of Newfoundland forms the northern end of the Appalachian Orogen. The Island is split-up into 4 distinct geological subdivisions; from west to east these are the Humber, Dunnage, Gander and Avalon zones (*Figure 3*). These zones are based on stratigraphic and structural contrasts related to the formation and later destruction of a late Precambrian - early Paleozoic ocean known as lapetus, the proto-Atlantic Ocean. The Humber Zone, in the west, a remnant of the North American continental margin, is comprised of Paleozoic shelf facies units (sedimentary rocks) deposited on crystalline Precambrian (Grenville) basement. The Dunnage zone units, in central Newfoundland, consist of ophiolitic and volcanic, volcaniclastic and sedimentary rocks of island arc and back arc affinity that represent the vestiges of the lapetus (proto Atlantic) Ocean. The Gander Zone, in east central Newfoundland, is comprised of mainly deep-water sedimentary rocks deposited at or near the eastern side of lapetus. The Avalon Zone, in eastern Newfoundland, is formed by late Precambrian volcanic, sedimentary and plutonic rocks overlain by early Paleozoic platformal sedimentary rocks which formed part of the European continent.

A basement of Precambrian granites and gneiss believed to be of Grenvillian age underlies the claim area; they form a platform on which the overlying sediments were deposited.

The basal unit is the Labrador Group of lower Cambrian Age; this is followed by the Port Au Port Group of middle to upper Cambrian Age, followed by the St. George Group of lower Ordovician age and finally the Table Head Group of middle Ordovician Age.

The platform sediments dip under the Gulf of St. Lawrence to the northwest and butt up against the Long Range Mountains to the southeast. The Long Range Mountains are Precambrian and under lie the coastal plain to the west, they are uplifted an estimated 1700 to 2000 m, this north east trending fault is assumed to be close to vertical.

The Labrador group is composed of three formations, the Bradore Fm., the Forteau Fm., and the Hawke Bay Fm. The Bradore Fm. is basal red sandstone, which lies unconformable on the basement. The overlying Forteau Fm. varies from limestone to silt stone to shale. The top unit is the Hawke fm., a quartz arenite with minor red green and gray shales. Total thickness of the Labrador group is estimated at 400m \pm . No mineralization has been observed in this group.

The Port Au Port group conformably overlies the Labrador group it is divided into two formations, the March Point Fm., and the Petit Jardin Fm. Total thickness is estimated at about 500 m \pm . The March Point Fm. is mixture of shales, glauconitic and phosphatic sandstones thin quartzite beds and argillaceous dolostone. The over lying Petit Jardin Fm., consists of dolostone, limestone, and shale. Occasional lead and zinc mineralization is seen in both.

The St. George group conformably overlies the Labrador Group and has an estimated thickness of about 400 m ±, it is divided into four formations. The Watts Bight Fm, the Boat Harbour Fm, the Catoche Fm, and the Aguthuna Fm. The Watts Bight Fm consists of gray to black limestones and gray-tan diagenetic dolostones. The Boat Harbour Fm., consists of metre-thick repetitive sequences of limestone, dolomitic limestone and dolostones; minor lead and zinc mineralization is seen in dolostone and weakly developed pseudobreccia occurs. The Catoche fm. lies above the Watts Bight fm., it consists of cyclical light to medium grey limestones, the upper 75 m is replaced in some areas by diagenetic dolostones and pseudobreccia, this section plays host to all the economic zinc mineralization mined in Daniel's Harbour. Evidence indicates there may have been active movements by northeast trending faults and uplift at this time, resulting in erosion and development of a major erosional disconformity in the upper Catoche leading to the development of Matrix Breccias. The upper most unit is the Aguathuna

Fm (mine terminology-- siliceous dolomite) it consists of primarily of meterthick cyclical sequence of microcrystalline light grey dolostone and green and gray shales and minor limestones, its early stage development is thicker were it is infilling depressions left it the Catoche by matrix breccia filled sink holes.

The Table Head Group is next at an estimated thickness of 460 m \pm , it is divided locally into two formations, the Table Point Fm. and the Table Cove Fm. The Table Head fm. is primarily limestone with minor dolostone, occasional lead zinc mineralization is seen near it base. The upper most formation is the Table Cove fm., which is primarily black shales with minor limestones and sandstones.

7.1.2 Property Geology

Sufficient diamond drilling has been completed in the claim area to create a good picture of the local geology. The belt of rocks known to contain economic zinc mineralization appears to stop to the west along major northeast trending fault with about 300 feet (91 m) of vertical displacement up on the west side, there is no way to tell if there is any horizontal movement or if it is significant. To the south east the area is moderately well defined by drilling and appears to end about 3 miles (5000m) from the above mentioned fault, beyond this point the favourable units appear to dip down into an area of moderately intense folding. From south west to the northeast drilling low grade to ore and mineralization is known to exist over a strike length of at least 5 miles (8000m). Several small faults are known in this area but most are minor. Weak mineralization approaching ore grade in some areas has been found over another approximate 10 miles (16km) to the north east of the P zone (*Figure 4, 5 & 6*).

Several open folds have been identified in the area, with the P zone appearing to be on the eastern side of a small anticline, which separates it from the C, D and E zones.

Drilling and underground mining has identified 6 matrix breccias in the area. These oval shaped objects range in size from the smallest about 100 X 200 ft (33 X 66 m) to the largest 6000 X 1200 ft (1800 X 360 m). These appear to have developed in later stages of the Catoche fm. They developed when the area was subject to uplift erosion and karstifcation. Large sinkholes appear to have developed, probably controlled by small fracture originating in the basement. They were subsequently filled with the Aguthuna fm., which is down warped into the depression left by the sinkholes. These matrix breccias are partially filled with broken material from higher up in the stratigaphic column. These breccias may in part be one of the controls for the dolomitization of the Catoche fm. As you move away from them in most areas dolomite and pseudo breccia changes to a porous dolomite then to a razor dolomite (mine term) and eventually to a razor limestone. The P zone is located a short distance north of a poorly defined matrix breccia.

The pseudo breccia beds (ps bx) are well developed in many parts of the upper 180 ft (55m) of the Catoche formation. They may contain up to 80%+ white sparry dolomite the rest is medium to dark gray fine-grained dolomite; they can vary in thickness from a few inches to 5 ft (<0.1 to 1.5 m). Each sparry bed is separated from the one above and below by a medium to dark gray fine grained dolomite bed. The tops of the each bed has a good sharp cleavage and were used in the underground for grade and back control purposes, in the pit they were used for floor control. The beds are consistent over a wide area and a stratigaphic type section has been generated to help reference your location relative to other beds in the sequence and location to well-known markers.

All ps bx beds are measured from a distinct marker bed that is found 7 to 15ft (2.1 to 4.6 m) below the contact of the overlying siliceous dolomite and the dark gray dolomite. This bed called the "worms' marker bed" has been observed in almost all holes that penetrate this area of the section. It normally varies from 12 to 24 inches, (30.5 to 61.0 cm), it appears as small (1-2 mm) white dolomite tubes in a dark find grained dolomite and is thought to be lithified worm burrows. For defining the ps bx beds the bottom of the worms marker bed is considered as "0 ft". Immediately below the worms marker is another bed called the pellet marker, it may not be present in some areas. When logging core the last few years of operation all ps bx beds are measured for depth, thickness and the percent sparry dolomite estimated. A quick calculation is used to calculate the percent ps bx in that section of core. The average percent sparry dolomite for the interval is calculated by averaging the estimated sparry dolomite and the result are used to describe the interval as incipient or poor, fair, moderate, good, and very good. The assumption being that ore is generally associated with moderate to good ps bx; 30% or greater sparry dolomite. Occasionally there are well-developed networks of sparry dolomite veins with sphalerite that usually enhance the mineralization. From 0 to 30 ft (0 to 9.1 m) below the worms' marker there is often no ps bx beds or occasionally one to three weakly developed ones. At 30 ft (9.1 m) we usually see the start of ps bx development. There are three other readily recognizable markers that can be usually be seen in core one at "66ft" (20.1 m), one at "80ft" (24.4 m) and one at "120ft" (36.6 m). With practice these are usually readily identifiable in core and in faces underground and in pits. This ps bx section holds true with minor variations from the lower end of the L and T zones to the south and to the P zone to the north, a distance of over 5 miles (8 km) and in deeper holes drilled to the south of the L and T zones workings.

Faults have been seen in the L zone and are suspected to exist in some other areas, vertical movement is generally small 0 to 40 ft (0 to 12 m) were it can

be measured. They are seldom seen in core due to their almost vertical dip, but are only interpreted from the apparent offset of markers seen in some sections. The influence of faulting on ore emplacement is in debate as little hard evidence is available.

7.2 Mineralization

Mineralization can be located anywhere from the "30" ps bx bed to about the "150" stratigraphic level or over about 120 to 130 ft (36.5 to 39.6m) section of the altered Catoche fm. Mineralization tends to occur in the upper part of the ps bx bed first but may fill the entire ps bx bed in some locations. Average ore thickness is usually in the 15 to 30 ft (4.6 to 9.1m) if several beds are mineralized, but can range from as little as 3 to 5 ft (0.9 to 1.5 m) of high grade in one ps bx bed, to a maximum in one location of 90 ft, (27.4 m). An estimated 90 % + of the mineralization occurs in the ps bx beds replacing the sparry dolomite part of the bed. Minor mineralization may also occur as veins and fractures fillings and vugs in broken grey dolomite beds between ps bx intervals.

The change from high-grade mineralization to waste (a few traces at best) is abrupt in most ps bx beds. It can go from 45% Zn over 2-3 ft (0.7-0.9 m) to a trace in 1 to 2 feet (0.3-0.6m) measured at right angles to strike, in this distance there is often no visible traces left in the wall of some well mineralized ps bx beds. In thicker sections of ore were mineralization occurs in several or more beds, it has a tendency to step up and away giving a step stair pattern in cross section. Ore lenses range in width from a minimum of about 20 ft (6.1m) to greater than 100 ft (30.5 m) in some locations. There is an exception to this in the longhole stope of the L zone where it exceeds 200 ft (60 m) in width for about 500 ft (150 m) of length. Ore lens length usually exceed 1000's ft in length but several shorter ones have been developed. Several much longer ones have been seen if the interpretation of some of the data is correct, some in the L zone lenses may have been as long as 15000 ft (4600 m). In some of the lenses the grade may decrease to uneconomic grade (waste) for a short distance 50 to 100 ft (15 to 30 m) then return to regular grade ore; if one does not have diamond drilling ahead of the face: it is difficult to know if the grade will improve in a short distance or it is all waste.

Occasionally mineralization will jump up or down into different ps bx beds; a constant watch must be made for this occurrence especially if diamond drilling information is not available. Most of the ore lenses tend strike northeast \pm 20°. But they also demonstrate other odd strikes; in the lower L zone twice the ore has changed strike by about 90° for no apparent reason. The ore lens will continue off strike for 200 to 400 ft (60 to 120 m) then turn almost 180° then come back to where it would normally be expected. These are known locally as "Whoop-dee-doos" as they approximately double the ore reserve of that section because of the increased strike length. At first

glance they resemble a drag fold but no evidence can be found to prove this, however there are thin sparry dolomite veins in the back that follow the ore contact in these structures.

Mineralization comes in various colours; very pale yellow, honey brown, brown, and yellowish green to black. Tom Lane has proposed the following paragenetic sequence; red brown (rare), pale yellow, yellow brown, brown, and yellow and green to black sphalerite followed by saddle dolomite, gypsum, barite, fluorite, celestite and calcite; the later usually occurring in vugs and veins.

In some areas the mineralized lens appear to follow parallel to and several hundred meters from the contact between good ps bx sections and poorly developed ps bx mixed with dolomitic limestone and limestone. The matrix breccia may have influenced the location of fractures, which controlled the development of ps bx, which later controlled the ore solutions.

8.0 **DEPOSIT TYPE** (After Tallman, 2010)

The Daniels Harbour Property is prospective for 'Mississippi Valley Type' ("MVT") sulphide zinc deposits. MVT lead-zinc deposits account for approximately 25% of the world's resources of these metals. Individual MVT deposits are generally less than 2 million tonnes, are zinc-dominant and possess grades that rarely exceed 10% (Pb+Zn). The deposits do however characteristically occur in clusters, referred to as 'districts'. For example, the Cornwallis district in Nunavut hosts the Polaris deposit (45 Mt @ ~17.5% Pb+Zn) and approximately 80 showings.

Examples of MVT lead-zinc deposits within the Appalachian orogenic belt, extending along the eastern USA and Canada, include Daniels Harbour as well as the Virbunum Trend and Old Lead Belt mines of southern Missouri, as well as those in the Upper Mississippi Valley within the drainage basin of the Mississippi River (from which the deposit class name is derived), also in Illinois-Kentucky Cave-in-Rock District and the central Tennessee Mascot-Jefferson City District among others.

Some of the largest MVT deposits in the world have been discovered in Canada including Pine Point in NWT, Polaris, NWT and Nanisivik (43 Mt @ ~9% Pb+Zn) on Baffin Island, Nunavut. Examples of Canadian Appalachian MVT deposits include Upton (1.3 Mt @ ~3% Pb+Zn) in Quebec, Gays River (6 Mt @ ~7% Pb+Zn), Walton (barite and some Pb+Zn), Most MVT deposits are zinc enriched relative to lead with the exception of the Southeast Missouri deposits which contain lead with very little zinc with ratios of Zn/(Zn+Pb)=<0.1. Of comparative interest, Daniels Harbour and the many deposits of Eastern Tennessee (eg. the Young, Coy, and Immel mines presently owned by Glencore, who purchased the assets for \$65 million from Asarco in 2006) are essentially lead-free and have Zn/ (Zn+Pb) ratios=1.0. MVT lead-zinc deposits are a family of epigenetic ore deposits that form predominately in dolostone and which lead and zinc are the major commodities Worldwide, most MVT deposits are found in Cambrian-Ordovician (eg. Daniels Harbour), Devonian-Carboniferous, and Triassic age rocks. Foreland carbonate platforms are the favoured tectonic setting for MVT deposits (including Daniels Harbour); fewer are in carbonate sequences in foreland thrust belts bordering foredeeps and fewer still are associated with rift zones. MVT deposits typically are in districts covering hundreds or thousands of square kilometres. Within districts, deposits display remarkably similar features including mineral assemblages, isotopic compositions, and textures. Ore controls typically are district-specific; examples include limestone-dolostone transitions, reef complexes, solution collapse breccias, faults, and basement topography. Most MVT ore districts are the product of regional or subcontinental scale hydrologic processes. Therefore diversity among MVT districts is expected because of wide ranging fluid compositions, geological and geochemical conditions, fluid pathways, and precipitation mechanisms possible at the scale of MVT fluid migration.

Geophysical exploration for MVT deposits has had some successful applications indirectly. Airborne magnetic surveys have been used in Southeast Missouri to define buried Precambrian basement topography. Induced Polarization (IP) has been used in the USA and Ireland to detect conductivity of lead and pyrite halos to zinc mineralization. Resistivity surveys (IP and others) have been used to map subsurface faults that control mineralization. Geochemical exploration for MVT deposits has yielded the most direct successes. Daniels Harbour was initially detected by analysis of zinc in stream silts and soils. The geochemical mobility of zinc conceptually produces broad primary and secondary near-surface zinc geochemical halos that can be further refined using other exploration methods.

The Daniels Harbour property is the most significant concentration of MVT mineralization in the Canadian Appalachians, however other MVT zinc-lead occurrences, showings and prospects are known to occur throughout the carbonate rocks of western Newfoundland from the Port aux Port Peninsula in the SW to the Round Pond area in the NW over a distance of 250 kilometers.

There are numerous zinc occurrences and showings throughout the carbonate stratigraphy of the Northern Peninsula. In particular there are many zinc occurrences north of Daniels Harbour, as well as north and south of Round Pond. Many of the mineral occurrences are located along the coast – a reflection of the lack of outcrop inland and open coastal exposures. Near the northern extremity of carbonate platform rocks along the Northern Peninsula, approximately 100 km north of Daniels Harbour, is a series of zinc showings over a 10 km square area including the Round Pond prospect which is the most significant of them.

The Round Pond zinc prospect occurs associated with carbonate collapse breccias and dolomites near the base of the Boat Harbour Formation. It was discovered in 1968 by Cominco along with a dozen other surface showings and drill tested in 1970. Based on 4

drill holes Cominco guessed the Round Pond (Cominco showing #8) contained 150,000 tons of 2.5% zinc (Rhodes & Young, 1972).

9.0 EXPLORATION

As of the effective date of this report exploration on Daniel's Harbour Property by Ubique Minerals has consisted of compilation, prospecting and most recently a nine hole, 556.4 m, diamond drilling program (See *Figure 7* & Section 10).

10.0 DRILLING

Ubique's 2017 drill program was laid out to investigate two areas, one north of the P Zone's North Drift (*Figure 8*) to determine if ore continues in that direction, and two to investigate the south east end of the P Zone's East Drift (*Figure 9*) to see if earlier drilling had missed a possible change in strike of the ore and to confirm the presence of the mineralization seen in earlier drilling.

10.1 Results from 2017 Diamond Drilling (after Crossley, 2017)

P ZONE - NORTH DRIFT DRILLING:

Three drill holes were completed on section 23510N just north of the last know drill fence completed in the area during mine production in the late 1980s. UM-1, 2 & 3 for a total of 94.5 meters. All three failed to intersect any zinc mineralization (*Figure 10*).

P ZONE - EAST DRIFT DRILLING:

Six holes were drilled southeast of the stopped underground face of the P Zones East Drift for a total of 461.9 m. The purpose of the drilling was two-fold to confirm the earlier drilling results and interpretation and to look for a possible continuation of the mineralization.

DDH UM-4, 6 & 9 were drilled to fill gaps in earlier drilling. All three saw significant mineralization. DDH UM-4 (*Figure 8*), intersected 13.60% zinc/12.2m with 17.43% Zinc over 8.6m, which vastly exceeded what was predicted based on historic drilling in this area. DDH UM-6 intersected 5.06% zinc/11.5m and appears to be the continuation of the ore intersected in UM-4. DDH UM-9 intersected 5.37% zinc/4.2m and is likely on the edge of the mineralized zone.

DDH UM-5, 7 & 8 were drilled to look for the continuation of mineralization that had been proven by two historic drill hole fences (*Figure 9*) to have terminated the ore

to the south east. All three holes intersected hi-grade mineralization over short intervals the best being UM-7 which intersected 12.79% zinc/1.7m at 66.5m deep.

Several of the holes in this program, as well as several historic holes, intersected a section of hematitic alteration a short distance below the zinc mineralization. The dolomite and pseudo breccia are a pink to reddish in colour due to fine disseminations of hematite and in small fractures. The oxidizing conditions are hard to explain below what must have been a reducing environment during zinc emplacement.

11.0 SAMPLE PREPERATION, ANALYSIS AND SECURITY

All 2017 drill core samples were split by Ubique Minerals personnel and placed in clear plastic bags together with a paper ticket depicting a unique sample number. Each bag was then tied with vinyl flagging tape and labeled with a permanent marker. Samples are stored under the care and control of Ubique personnel and are delivered directly to Eastern Analytical Limited in Springdale, NL for processing.

11.1 Control Standards, Duplicates & Procedures

During the 2017 Daniel's Harbour diamond drill program, nine duplicate assays were performed from pulps from the group of 56 samples submitted for assay. Eastern Analytical also has an analytical system using controls, duplicates, and blanks.

All samples submitted to Eastern Analytical Ltd. of Springdale, NL are prepared to the following specifications (from Eastern Analytical brochure, website, personal communication, etc.):

Samples are organized and labeled when they enter the lab. They are then placed in drying ovens until they are completely dry. After drying is complete samples are taken and crushed in a Rhino Jaw Crusher to approximately -10 mesh material. The entire crushed sample (-10 mesh) is riffle split to 300 g. The remaining un-pulverized sample is bagged and stored as "coarse reject". The 300 g split is then ring milled to 98% -150 mesh (~ < 100 microns) material. The ring mills and jaw crushers are cleaned with silica sand between clients. The rings and bowls are also inspected after each sample and cleaned with silica sand as necessary.

A sub-sample of the resulting rock powder is then transferred to a small envelope (the "pulp") and submitted to Eastern's laboratory for various analyses.

Eastern Analytical Limited Analytic Procedures

Rock samples are analyzed using a 34-element aqua ICP-OES suite, while Au is determined by fire assay as described further below.

34-Element ICP Sample Digestion

A 0.200 g sample is digested with 2 ml HNO3 in a 95°C water bath for ½ hour, after which 1 ml HCL is added and the sample is returned to the water bath for an additional ½ hour. After cooling, samples are diluted to 10 ml with deionized water, stirred and let stand for 1 hour to allow precipitate to settle. Samples are then ready for ICP Analysis. Each rack is to contain one blank, two CanMet standards and up to 37 unknowns, of which two will be duplicates. Detection limits for ICP-34 are as listed below:

Element	Detection Limit	Element	Detection Limit
Ag (Silver)	0.2 – 6.0ppm	Mn (Manganese)	1 – 20,000ppm
Al* (Aluminum)	0.01 - 20.00%	Mo (Molybdenum)	1 – 1000ppm
As* (Arsenic)	5 – 10,000ppm	Na* (Sodium)	0.01 - 10%
Ba (Barium)	5 – 10,000ppm	Ni (Nickel)	1 – 1100ppm
Be (Beryllium)	0.5 – 1000ppm	P (Phosphorus)	0.01 - 10%
Bi (Bismuth)	2 – 1000 ppm	Pb (Lead)	2 – 2200ppm
Ca* (Calcium)	0.01 – 20%	S (Sulfur)	0.01 - 20.00%
Cd (Cadmium)	0.5 – 1000ppm	Sb (Antimony)	3 – 440ppm
Ce (Cerium)	2 – 5000ppm	Se (Selenium)	10 – 1000ppm
Co (Cobalt)	2 – 550ppm	Sn* (Tin)	10 – 220ppm
Cr* (Chromium)	5 – 10,000ppm	Sr (Strontium)	1 – 10,000ppm
Cu (Copper)	5 – 10,000ppm	Ti (Titanium)	0.01 - 10%
Fe (Iron)	0.01 - 10.00%	U (Uranium)	2 – 1000ppm
In (Indium)	2 – 1000ppm	V (Vanadium)	1 – 550ppm
K* (Potassium)	0.01 - 10%	W * (Tungsten)	10 – 1000ppm
La* (Lanthanum)	1 – 5000ppm	Zn (Zinc)	5 – 2200ppm
Mg* (Magnesium)	0.01 -10%	Zr (Zirconium)	1 – 5000ppm

The assay procedure is used for Cu, Pb, Zn, Ni, Co & Ag when samples exceed the ICP upper detection limits.

Assay Procedure for Au Fire Assay

The sample is weighed into an earthen crucible containing PbO fluxes and then mixed. Silver nitrate is then added and the sample is fused in a fire assay oven to obtain a liquid which is poured into a mold and let cool. The lead button is then separated from the slag and placed in a fire assay oven which contains a silver bead containing gold. The silver is removed with nitric acid and then hydrochloric acid is added. After cooling, deionized water is added to bring the sample up to a present volume. Then the sample is analyzed by the Atomic Absorption method.

Assay Procedure for Cu, Pb, Zn, Ni, Co

A 0.200 g sample is digested in a beaker with 10 ml of nitric acid and 5 ml of hydrochloric acid for 45 minutes. Samples are then transferred to 100 ml volumetric

flasks and then analyzed by the Atomic Absorption method. Lower detection limit is 0.01 %, no upper detection limit.

Assay Procedure for Ag

A 1000 mg sample is digested in a 500 ml beaker with 10 ml of hydrochloric acid and 10 ml of nitric acid with the cover left on for 1 hour. Remove the covers and evaporate to a moist paste. Add 25 ml of hydrochloric acid and 25 ml of deionized water, heat gently and swirl to dissolve solids. Cool, transfer to a 100 ml volumetric flask and analyze by the Atomic Absorption method. Lower detection limit is 0.01 g/t, no upper detection limit.

Data Evaluation

Each full sample run contains one blank, two CanMet standards and 37 unknowns (40 in total), of which two will be duplicates. All data are reviewed by the laboratory's chief assayer, and signed before release to the client.

12.0 DATA VERIFICATION

As of the effective date of this report no data verification has been completed by Ubique.

13.0 MINERAL PROCESSING AND METALLURGICAL TESTING

As of the effective date of this report no mineral processing or metallurgical testing has been completed by Ubique.

14.0 MINERAL RESOURCE ESTIMATES

No mineral resource estimates were prepared as part of this report.

15.0 MINERAL RESERVE ESTIMATES

No mineral reserve estimates were prepared as part of this report.

16.0 MINING METHODS

This section is not applicable to this report.

17.0 RECOVERY METHODS

This section is not applicable to this report.

18.0 PROJECT INFRASTRUCTURE

This section is not applicable to this report.

19.0 MARKET STUDIES AND CONTRACTS

This section is not applicable to this report.

20.0 ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY IMPACT

Ubique Minerals holds the exclusive right to explore for minerals within the boundaries of mineral licences 22337M, 25085M, 25179M, 25180M, 25497M, 25539M & 25555M but does not hold the surface rights to the property. Access to the property has always been granted to exploration companies by the Government of Newfoundland and Labrador in the past and the author has no reason to assume access would be denied in the future.

To the author's knowledge, there are no environmental liabilities applicable to the Daniel's Harbour Property. At the time of this report, no new work is being carried out on the property and no exploration permits are currently in place. For any future work contemplated, exploration approval must be obtained from the provincial Department of Natural Resources and all provincial and federal conditions, acts or regulations complied with. Exploration approval for the Unknown Brook property has always been granted in the past and there is no reason to assume that exploration approval would be denied in the future. A summary of approvals that may need to be obtained can be found below and it should be noted that 4-6 weeks should be allowed to acquire the necessary approvals.

- 1. **Exploration Approval Permit:** This permit would cover prospecting, rock and soil geochemistry, line cutting, trenching, bulk sampling, airborne &/or ground geophysical surveys, fuel storage, ATV usage, diamond drilling, etc.
- **2. Timber Rights Permit:** This permit would cover the removal of timber for line cutting, diamond drilling site preparation, trenching, etc.
- **3. Temporary Water Use Permit:** This permit would allow the use of water, from a specified location, for camp and drilling related needs.

4. Licence to Occupy: This would be required if a camp location was to be used for a period of time longer than that which was allowed as part of the Exploration Approval. This permit is obtained from the Provincial Department of Crown lands.

20.1 Summary of Exploration Licence Requirements

Mineral exploration licences are issued by the Newfoundland and Labrador Department of Natural Resources and must be registered with the Mineral Claims Recorders Office. Licences are comprised of 500 m² single claim blocks which are based on one-quarter of a Universal Transverse Mercator (UTM) grid square. Licences are acquired via map staking using an online system and are referenced using UTM coordinates for the corner points in a relevant map projection. A maximum of 256 contiguous claims can be covered by one exploration licence. The fees for staking are comprised of a \$10/claim claim staking fee as well as \$50/claim security deposit, which is refunded upon completion of the 1st year assessment requirements. Each licence is issued for a 5 year term and may be held for a maximum of 20 years, with renewal fees due on the anniversary date in assessment years 5, 10 and 15. In order for claims to remain in good standing, assessment expenditures must be met for each year, with a report summarizing work completed due annually. A summary of the renewal fees and expenditure requirements can be found in Table 2.

Assessment Year	Renewal Fees	Minimum Expenditure
1	N/A	\$200/claim
2	N/A	\$250/claim
3	N/A	\$300/claim
4	N/A	\$350/claim
5	\$25/claim	\$400/claim
6 through 10	\$50/claim (Year 10)	\$600/claim
11 through 15	\$100/claim (Year 15)	\$900/claim
16 through 20	N/A	\$1200/claim

Table 2: Summary of Claim Renewal Fees and Expenditure Requirements

21.0 CAPITAL AND OPERATING COSTS

This section is not applicable to this report.

22.0 ECONOMICAL ANALYSIS

This section is not applicable to this report.

23.0 ADJACENT PROPERTIES

Several zinc showings occur on the properties immediately adjacent to the Daniel's Harbour Property (*Figure 22*). These showings/prospects share a similar deposit type and style of mineralization with the showings found on the Daniel's Harbour Property. These showing are all related to the former Teck mining operation and have had varying levels of development.

It should be noted that the information in this section is derived from the Government of Newfoundland and Labrador's online Mineral Occurrence Database system and supplemented by data reported in SEDAR filed technical reports and press releases prepared by/for the respective companies and that all specific references have been cited. The author has not visited any of the adjacent properties and is unable to verify the information presented. Mineralization on adjacent properties should not be considered indicative of mineralization on Ubique's Daniel's Harbour Property.

23.1 Daniel's Harbour A Zone

National Mineral Inventory Number: 012I/06/Zn 001 Record ID Number: 1121

DEPOSIT SUMMARY

Deposit Name: Daniel's Harbour A Zone Alternate Name: Major Commodity: Zinc Secondary Commodities: Lead Status: Past Producer Complexity: Singular Body

DDH: Drilled during mining operations – number of holes unknown Trench: Yes Adit: No Shaft: No Workings: Underground and open pit

Deposit Type: Stratabound epigenetic secondary void filling deposit in carbonate rocks.

LOCATION

Region: Newfoundland NTS Area: 12I/06 UTM Zone: 21 Latitude: 50.2957591412575 Longitude: 57.4651217583147 Northing: 5571400 Easting: 4665870 Elevation (m): 975 Location Uncertainty (m): 50 Object Located: Geochemistry/diamond drilling (Green, 1974)

ACCESSIBILITY

The discovery is on the shore of a pond now called Zinc Lake 8.5 km NE of Daniel's Harbour, 6.7 km SE of Bellburns. Access is by road.

PHYSIOGRAPHIC SETTING

The property is situated in the centre of a broad low-lying coastal strip. Numerous ponds dot the area.

MINERALOGICAL COMPOSITION

Ore Minerals: Sphalerite, Galena Gangue Minerals: Dolomite, Calcite, Pyrite Alteration Minerals: Alteration Type: Age of Mineralization: Unknown

DESCRIPTION OF DEPOSIT

The A Zone is one of several long narrow tabular bodies which roughly trend NE/SW and gently dip (30°) to the NW. At the Daniel's Harbour mine, the sphalerite ore bodies occupy at 35-45 m thick, medium to coarsely crystalline dolostone unit which is laterally correlatable. This zone occurs within the Diagenetic Carbonates which constitute the upper strata of the St. George Group, Lower Ordovician in age.

Zinc mineralization occurs as cavity fillings in pseudobreccia beds and in veins that cut the pseudobreccia beds.

METAL/MINERAL CONTENT

1980 Teck Annual Report: recovery of 98.2% of ore grading at 8.3% zinc.

A Zone production (Crossley, 1989): 153,454 tons @ 7.80% zinc - 100% recovery

PRODUCTION AND/OR RESERVES

Initial reserves: 156,000 tons at 8.7% Zn (140,400 metric tons). Mined out: 161,024 tons at 7.9% Zn (144,921.6 metric tons).

(1978 figures)

NATURE OF MINERALIZATION AND GENESIS

The sulphide mineralization consists almost entirely of sphalerite with minor quantities of pyrite, marcasite and galena. Two types of zinc mineralization were found to be present. The first and most common type occurs as cavity fillings in a series of narrow (0.15 - 1.5 m) pseudobreccia beds. Ore grade is variable and may change from trace amounts to 30% zinc within a few feet. The second type of mineralization consists of veins which cut the sequence of pseudobreccia beds at various angles. The pseudobreccia beds may be barren or mineralized for a distance of 1.5 - 3.0 metres from the veins.

All known zinc deposits within the Daniel's Harbour Mine area (Mike Lake area) are located within 600 m from breccia depressions, and most occur along the southern fringes in close association with the normal faults. Zinc mineralization is present along the north fringe of the large breccia depression with which the "L" zone is associated to the south.

REGIONAL GEOLOGY AND TECTONIC SETTING

Geological Province: Appalachian Tectonic Zone: Humber Stratigraphic Unit: St George Group Geological Age: Lower Ordovician Rock Type(s): Dolomitized limestone, pseudobreccia.

Regionally, the Mike Mining Leases and Claims and the Trapper Claims are located on the stable St. Lawrence Platform which extends along the west coast of Newfoundland's Great Northern Peninsula. The Platform is underlain by Precambrian basement rocks, which in the vicinity of Daniel's Harbour probably occur at depths exceeding 900 m.

The rocks of the St. Lawrence Platform consist of Cambrian sediments (Labrador Group, Micrite Formation, Cambrian Dolomites) and Ordovician sediments (St. George Group, Table Head Formation).

Of economic importance are the Diagenetic Carbonates which form the upper part of the St. George Group. The carbonates have been divided into the lower Grey Dolomite-Pseudobreccia and the upper Siliceous Dolomite.

Generally, the St. George and Table Head Formations underlying the area are gently folded into NE trending anticlines and synclines. Their dips are shallow (300) and they gently plunge southward. Numerous faults cut the entire area and strike north-northeast.

GEOPHYSICAL EXPRESSION

Hartlein & Blecha, 1975 reported that the deposits do not respond to any known geophysical methods. According to Watson, 1964 this may be due to the almost complete absence of pyrite or other sulphides.

GEOCHEMICAL EXPRESSION

Geochemistry is effective for sub-outcropping mineralization, but, since anomalies maybe transported, it often takes prospecting to locate their original source.

23.2 Daniel's Harbour B Zone

National Mineral Inventory Number: 012I/06/Zn 002 Record ID Number: 1122

DEPOSIT SUMMARY

Deposit Name: Daniel's Harbour B Zone Alternate Name: Major Commodity: Zinc Secondary Commodities: Lead Status: Past Producer Complexity: Singular Body

DDH: Drilled during mining operations – number of holes unknown Trench: Yes Adit: No Shaft: No Workings: Underground and open pit

Deposit Type: Stratabound epigenetic secondary void filling deposit in carbonate rocks.

LOCATION

Region: Newfoundland NTS Area: 12I/06 UTM Zone: 21 Latitude: 50.2974968437946 Longitude: 57.4578379745938 Northing: 5571590 Easting: 467390 Elevation (m): 120 Location Uncertainty (m): 50 Object Located: Geochemistry/diamond drilling (Green, 1974)

ACCESSIBILITY

The ore zone lies 0.5 km due north of the north shore of Lead Lake and is 7.0 km southeast of Bellburns, 11.4 km northeast of Daniel's Harbour. Access is by road.

PHYSIOGRAPHIC SETTING

The property is situated in the centre of a broad low-lying coastal strip. Numerous ponds dot the area.

MINERALOGICAL COMPOSITION

Ore Minerals: Sphalerite, Galena, Marcasite, Cadmium Gangue Minerals: Dolomite, Calcite, Pyrite Alteration Minerals: Alteration Type: Age of Mineralization: Unknown

DESCRIPTION OF DEPOSIT

The B Zone is one of several long narrow tabular bodies which roughly trend NE/SW and gently dip (30°) to the NW. At the Daniel's Harbour mine, the sphalerite ore bodies occupy at 35-45 m thick, medium to coarsely crystalline dolostone unit which is laterally correlatable. This zone occurs within the Diagenetic Carbonates which constitute the upper strata of the St. George Group, Lower Ordovician in age.

Zinc mineralization occurs as cavity fillings in pseudobreccia beds and in veins that cut the pseudobreccia beds.

PRODUCTION AND/OR RESERVES

Initial reserves (1981): 79,818 tons at 8.9% Zn (71,836 metric tons).

B Zone production (Crossley, 1989): 68,686 tons @ 6.70% zinc - 100% recovery

NATURE OF MINERALIZATION AND GENESIS

The sulphide mineralization consists almost entirely of sphalerite with minor quantities of pyrite, marcasite and galena. Two types of zinc mineralization were found to be present. The first and most common type occurs as cavity fillings in a series of narrow (0.15 - 1.5 m) pseudobreccia beds. Ore grade is variable and may change from trace amounts to 30% zinc within a few feet. The second type of mineralization consists of veins which cut the sequence of pseudobreccia beds at

various angles. The pseudobreccia beds may be barren or mineralized for a distance of 1.5 - 3.0 metres from the veins.

The sulphide mineralization consists almost entirely of sphalerite with minor quantities of pyrite, marcasite and galena. Gangue is almost exclusively white sparry dolomite which serves as a matrix for euhedral sphalerite grains up to 0.6 cm. The sphalerite is very pure (cadmium:zinc = 1:300); iron content is 1.3%. Simple ore mineralogy yields sphalerite at 98%, the concentrate grades at 63% zinc.

REGIONAL GEOLOGY AND TECTONIC SETTING

Geological Province: Appalachian Tectonic Zone: Humber Stratigraphic Unit: St George Group Geological Age: Lower Ordovician Rock Type(s): Dolomitized limestone, pseudobreccia.

Regionally, the Mike Mining Leases and Claims and the Trapper Claims are located on the stable St. Lawrence Platform which extends along the west coast of Newfoundland's Great Northern Peninsula. The Platform is underlain by Precambrian basement rocks, which in the vicinity of Daniel's Harbour probably occur at depths exceeding 900 m.

The rocks of the St. Lawrence Platform consist of Cambrian sediments (Labrador Group, Micrite Formation, Cambrian Dolomites) and Ordovician sediments (St. George Group, Table Head Formation).

Of economic importance are the Diagenetic Carbonates which form the upper part of the St. George Group. The carbonates have been divided into the lower Grey Dolomite-Pseudobreccia and the upper Siliceous Dolomite.

Generally, the St. George and Table Head Formations underlying the area are gently folded into NE trending anticlines and synclines. Their dips are shallow (300) and they gently plunge southward. Numerous faults cut the entire area and strike north-northeast.

GEOPHYSICAL EXPRESSION

Hartlein & Blecha, 1975 reported that the deposits do not respond to any known geophysical methods. According to Watson, 1964 this may be due to the almost complete absence of pyrite or other sulphides.

GEOCHEMICAL EXPRESSION

Geochemistry is effective for sub-outcropping mineralization, but, since anomalies may be transported, it often takes prospecting to locate their original source.

23.3 Daniel's Harbour C Zone

National Mineral Inventory Number: 012I/06/Zn 003 Record ID Number: 1123

DEPOSIT SUMMARY

Deposit Name: Daniel's Harbour C Zone Alternate Name: Major Commodity: Zinc Secondary Commodities: Lead Status: Past Producer Complexity: Singular Body

DDH: Drilled during mining operations – number of holes unknown Trench: Yes Adit: No Shaft: No Workings: Underground and open pit

Deposit Type: Stratabound epigenetic secondary void filling deposit in carbonate rocks.

LOCATION

Region: Newfoundland NTS Area: 12I/06 UTM Zone: 21 Latitude: 50.3043487968663 Longitude: 57.4535507687473 Northing: 5572350 Easting: 467700 Elevation (m): 120 Location Uncertainty (m): 50 Object Located: Geochemistry/diamond drilling (Green, 1974)

ACCESSIBILITY

The ore zone lies 1.0 km due east of the east shore of Mike Lake, 6.7 km southeast of Bellburns 12.1 km northeast of Daniel's Harbour. Access is by road.

PHYSIOGRAPHIC SETTING

The property is situated in the centre of a broad low-lying coastal strip. Numerous ponds dot the area.

MINERALOGICAL COMPOSITION

Ore Minerals: Sphalerite, Galena, Cadmium Gangue Minerals: Dolomite, Calcite, Pyrite Alteration Minerals: Alteration Type: Age of Mineralization: Unknown

DESCRIPTION OF DEPOSIT

The C Zone is one of several long narrow tabular bodies which roughly trend NE/SW and gently dip (30°) to the NW. At the Daniel's Harbour mine, the sphalerite ore bodies occupy at 35-45 m thick, medium to coarsely crystalline dolostone unit which is laterally correlatable. This zone occurs within the Diagenetic Carbonates which constitute the upper strata of the St. George Group, Lower Ordovician in age.

Zinc mineralization occurs as cavity fillings in pseudobreccia beds and in veins that cut the pseudobreccia beds.

PRODUCTION AND/OR RESERVES

September 1978: Ore 383,862 tons (345,475 metric tons) @ 6.48 % zinc February 1981: Ore 281,399 tons (253,259 metric tons) @ 6.31 % zinc Inferred: Ore 91,272 tons (82,144 metric tons) @ 6.22 % zinc

C Zone production (Crossley, 1989): 368,017 tons @ 6.23% zinc - 85% recovery C Zone Ext. production (Crossley, 1989): 67,529 tons @ 7.91% zinc - 100% recovery

NATURE OF MINERALIZATION AND GENESIS

The sulphide mineralization consists almost entirely of sphalerite with minor quantities of pyrite, marcasite and galena. Two types of zinc mineralization were found to be present. The first and most common type occurs as cavity fillings in a series of narrow (0.15 - 1.5 m) pseudobreccia beds. Ore grade is variable and may change from trace amounts to 30% zinc within a few feet. The second type of mineralization consists of veins which cut the sequence of pseudobreccia beds at various angles. The pseudobreccia beds may be barren or mineralized for a distance of 1.5 - 3.0 metres from the veins.

All known zinc deposits within the Daniel's Harbour Mine area (Mike Lake area) are located within 600 m from breccia depressions, and most occur along the southern fringes in close association with the normal faults. Zinc mineralization is present along the north fringe of the large breccia depression with which the "L" zone is associated to the south.

REGIONAL GEOLOGY AND TECTONIC SETTING

Geological Province: Appalachian Tectonic Zone: Humber Stratigraphic Unit: St George Group Geological Age: Lower Ordovician Rock Type(s): Dolomitized limestone, pseudobreccia.

Regionally, the Mike Mining Leases and Claims and the Trapper Claims are located on the stable St. Lawrence Platform which extends along the west coast of Newfoundland's Great Northern Peninsula. The Platform is underlain by Precambrian basement rocks, which in the vicinity of Daniel's Harbour probably occur at depths exceeding 900 m.

The rocks of the St. Lawrence Platform consist of Cambrian sediments (Labrador Group, Micrite Formation, Cambrian Dolomites) and Ordovician sediments (St. George Group, Table Head Formation).

Of economic importance are the Diagenetic Carbonates which form the upper part of the St. George Group. The carbonates have been divided into the lower Grey Dolomite-Pseudobreccia and the upper Siliceous Dolomite.

Generally, the St. George and Table Head Formations underlying the area are gently folded into NE trending anticlines and synclines. Their dips are shallow (300) and they gently plunge southward. Numerous faults cut the entire area and strike north-northeast.

GEOPHYSICAL EXPRESSION

Hartlein & Blecha, 1975 reported that the deposits do not respond to any known geophysical methods. According to Watson, 1964 this may be due to the almost complete absence of pyrite or other sulphides.

GEOCHEMICAL EXPRESSION

Geochemistry is effective for sub-outcropping mineralization, but, since anomalies may be transported, it often takes prospecting to locate their original source.

23.4 Daniel's Harbour D Zone

National Mineral Inventory Number: 012I/06/Zn 004 Record ID Number: 1124

DEPOSIT SUMMARY

Deposit Name: Daniel's Harbour D Zone Alternate Name: Major Commodity: Zinc Secondary Commodities: Lead Status: Past Producer Complexity: Singular Body

DDH: Drilled during mining operations – number of holes unknown Trench: Yes Adit: No Shaft: No Workings: Underground and open pit

Deposit Type: Stratabound epigenetic secondary void filling deposit in carbonate rocks.

LOCATION

Region: Newfoundland NTS Area: 12I/06 UTM Zone: 21 Latitude: 50.3079515764548 Longitude: 57.4521807414626 Northing: 5572750 Easting: 467800 Elevation (m): 100 Location Uncertainty (m): 50 Object Located: Geochemistry/diamond drilling (Green, 1974)

ACCESSIBILITY

The ore zone lies 1.0 km due east of the northeast cove of Mike Lake, 6.6 km southeast of Bellburns, 12.4 km northeast of Daniel's Harbour. Access is by road.

PHYSIOGRAPHIC SETTING

The property is situated in the centre of a broad low-lying coastal strip. Numerous ponds dot the area.

MINERALOGICAL COMPOSITION

Ore Minerals: Sphalerite, Galena, Cadmium Gangue Minerals: Dolomite, Calcite, Pyrite Age of Mineralization: Unknown

DESCRIPTION OF DEPOSIT

The D Zone is one of several long narrow tabular bodies which roughly trend NE/SW and gently dip (30°) to the NW. At the Daniel's Harbour mine, the sphalerite ore bodies occupy at 35-45 m thick, medium to coarsely crystalline dolostone unit which is laterally correlatable. This zone occurs within the Diagenetic Carbonates which constitute the upper strata of the St. George Group, Lower Ordovician in age.

Zinc mineralization occurs as cavity fillings in pseudobreccia beds and in veins that cut the pseudobreccia beds.

PRODUCTION AND/OR RESERVES

September 1978: Ore 180,000 tons (162,000 metric tons) @ 5.80 % zinc February 1981: Ore 166,179 tons (149,561 metric tons) @ 6.40 % zinc Inferred: Ore 17,955 tons (16,159 metric tons) @ 12.00 % zinc

D Zone production (Crossley, 1989): 48,631 tons @ 6.01% zinc - 100% recovery

NATURE OF MINERALIZATION AND GENESIS

The sulphide mineralization consists almost entirely of sphalerite with minor quantities of pyrite, marcasite and galena. Two types of zinc mineralization were found to be present. The first and most common type occurs as cavity fillings in a series of narrow (0.15 - 1.5 m) pseudobreccia beds. Ore grade is variable and may change from trace amounts to 30% zinc within a few feet. The second type of mineralization consists of veins which cut the sequence of pseudobreccia beds at various angles. The pseudobreccia beds may be barren or mineralized for a distance of 1.5 - 3.0 metres from the veins.

All known zinc deposits within the Daniel's Harbour Mine area (Mike Lake area) are located within 600 m from breccia depressions, and most occur along the southern fringes in close association with the normal faults. Zinc mineralization is present along the north fringe of the large breccia depression with which the "L" zone is associated to the south.

REGIONAL GEOLOGY AND TECTONIC SETTING

Geological Province: Appalachian Tectonic Zone: Humber Stratigraphic Unit: St George Group Geological Age: Lower Ordovician Rock Type(s): Dolomitized limestone, pseudobreccia.

Regionally, the Mike Mining Leases and Claims and the Trapper Claims are located on the stable St. Lawrence Platform which extends along the west coast of Newfoundland's Great Northern Peninsula. The Platform is underlain by Precambrian basement rocks, which in the vicinity of Daniel's Harbour probably occur at depths exceeding 900 m.

The rocks of the St. Lawrence Platform consist of Cambrian sediments (Labrador Group, Micrite Formation, Cambrian Dolomites) and Ordovician sediments (St. George Group, Table Head Formation).

Of economic importance are the Diagenetic Carbonates which form the upper part of the St. George Group. The carbonates have been divided into the lower Grey Dolomite-Pseudobreccia and the upper Siliceous Dolomite.

Generally, the St. George and Table Head Formations underlying the area are gently folded into NE trending anticlines and synclines. Their dips are shallow (30o) and they gently plunge southward. Numerous faults cut the entire area and strike north-northeast.

GEOPHYSICAL EXPRESSION

Hartlein & Blecha, 1975 reported that the deposits do not respond to any known geophysical methods. According to Watson, 1964 this may be due to the almost complete absence of pyrite or other sulphides.

GEOCHEMICAL EXPRESSION

Geochemistry is effective for sub-outcropping mineralization, but, since anomalies may be transported, it often takes prospecting to locate their original source.

23.5 Daniel's Harbour E Zone

National Mineral Inventory Number: 012I/06/Zn 005 Record ID Number: 1125

DEPOSIT SUMMARY

Deposit Name: Daniel's Harbour E Zone Alternate Name: Major Commodity: Zinc Secondary Commodities: Lead Status: Past Producer Complexity: Singular Body

DDH: Drilled during mining operations – number of holes unknown Trench: Yes Adit: No Shaft: No Workings: Underground and open pit

Deposit Type: Stratabound epigenetic secondary void filling deposit in carbonate rocks.

LOCATION

Region: Newfoundland NTS Area: 12I/06 UTM Zone: 21 Latitude: 50.3106658675949 Longitude: 57.4479933621322 Northing: 5573050 Easting: 468100 Elevation (m): 75 Location Uncertainty (m): 50 Object Located: Geochemistry/diamond drilling (Green, 1974)

ACCESSIBILITY

The ore zone lies 1.2 km due east of the northeast cove of Mike Lake, 6.8 km southeast of Bellburns, 12.8 km northeast of Daniel's Harbour. Access is by road.

PHYSIOGRAPHIC SETTING

The property is situated in the centre of a broad low-lying coastal strip. Numerous ponds dot the area.

MINERALOGICAL COMPOSITION

Ore Minerals: Sphalerite, Galena, Cadmium Gangue Minerals: Dolomite, Calcite, Pyrite Age of Mineralization: Unknown

DESCRIPTION OF DEPOSIT

The E Zone is one of several long narrow tabular bodies which roughly trend NE/SW and gently dip (30°) to the NW. At the Daniel's Harbour mine, the sphalerite ore bodies occupy at 35-45 m thick, medium to coarsely crystalline dolostone unit which is laterally correlatable. This zone occurs within the Diagenetic Carbonates which constitute the upper strata of the St. George Group, Lower Ordovician in age.

Zinc mineralization occurs as cavity fillings in pseudobreccia beds and in veins that cut the pseudobreccia beds.
PRODUCTION AND/OR RESERVES

September 1978: Drill indicated Ore 88,000 tons (79,200 metric tons) @ 3.80 % zinc

E Zone production (Crossley, 1989): 21,866 tons @ 8.03% zinc - 100% recovery

NATURE OF MINERALIZATION AND GENESIS

The sulphide mineralization consists almost entirely of sphalerite with minor quantities of pyrite, marcasite and galena. Two types of zinc mineralization were found to be present. The first and most common type occurs as cavity fillings in a series of narrow (0.15 - 1.5 m) pseudobreccia beds. Ore grade is variable and may change from trace amounts to 30% zinc within a few feet. The second type of mineralization consists of veins which cut the sequence of pseudobreccia beds at various angles. The pseudobreccia beds may be barren or mineralized for a distance of 1.5 - 3.0 metres from the veins.

All known zinc deposits within the Daniel's Harbour Mine area (Mike Lake area) are located within 600 m from breccia depressions, and most occur along the southern fringes in close association with the normal faults. Zinc mineralization is present along the north fringe of the large breccia depression with which the "L" zone is associated to the south.

REGIONAL GEOLOGY AND TECTONIC SETTING

Geological Province: Appalachian Tectonic Zone: Humber Stratigraphic Unit: St George Group Geological Age: Lower Ordovician Rock Type(s): Dolomitized limestone, pseudobreccia.

Regionally, the Mike Mining Leases and Claims and the Trapper Claims are located on the stable St. Lawrence Platform which extends along the west coast of Newfoundland's Great Northern Peninsula. The Platform is underlain by Precambrian basement rocks, which in the vicinity of Daniel's Harbour probably occur at depths exceeding 900 m.

The rocks of the St. Lawrence Platform consist of Cambrian sediments (Labrador Group, Micrite Formation, Cambrian Dolomites) and Ordovician sediments (St. George Group, Table Head Formation).

Of economic importance are the Diagenetic Carbonates which form the upper part of the St. George Group. The carbonates have been divided into the lower Grey Dolomite-Pseudobreccia and the upper Siliceous Dolomite. Generally, the St. George and Table Head Formations underlying the area are gently folded into NE trending anticlines and synclines. Their dips are shallow (300) and they gently plunge southward. Numerous faults cut the entire area and strike north-northeast.

GEOPHYSICAL EXPRESSION

Hartlein & Blecha, 1975 reported that the deposits do not respond to any known geophysical methods. According to Watson, 1964 this may be due to the almost complete absence of pyrite or other sulphides.

GEOCHEMICAL EXPRESSION

Geochemistry is effective for sub-outcropping mineralization, but, since anomalies may be transported, it often takes prospecting to locate their original source.

23.6 Daniel's Harbour F Zone

National Mineral Inventory Number: 012I/06/Zn 006 Record ID Number: 1126

DEPOSIT SUMMARY

Deposit Name: Daniel's Harbour F Zone Alternate Name: Major Commodity: Zinc Secondary Commodities: Lead Status: Past Producer Complexity: Singular Body

DDH: Drilled during mining operations – number of holes unknown Trench: Yes Adit: No Shaft: No Workings: Underground and open pit

Deposit Type: Stratabound epigenetic secondary void filling deposit in carbonate rocks.

LOCATION

Region: Newfoundland NTS Area: 12I/06 UTM Zone: 21 Latitude: 50.2943651554573 Longitude: 57.4537366293576 Northing: 5571240 Easting: 467680 Elevation (m): 105 Location Uncertainty (m): 50 Object Located: Geochemistry/diamond drilling (Green, 1974)

ACCESSIBILITY

The ore zone lies 0.3 km east of the northern tip of Lead Lake, 7.4 km southeast of Bellburns, and 12.3 km northeast of Daniel's Harbour. Access is by road.

PHYSIOGRAPHIC SETTING

The property is situated in the centre of a broad low-lying coastal strip. Numerous ponds dot the area.

MINERALOGICAL COMPOSITION

Ore Minerals: Sphalerite, Galena, Cadmium Gangue Minerals: Dolomite, Calcite, Pyrite Age of Mineralization: Unknown

DESCRIPTION OF DEPOSIT

The F Zone is one of several long narrow tabular bodies which roughly trend NE/SW and gently dip (30°) to the NW. At the Daniel's Harbour mine, the sphalerite ore bodies occupy at 35-45 m thick, medium to coarsely crystalline dolostone unit which is laterally correlatable. This zone occurs within the Diagenetic Carbonates which constitute the upper strata of the St. George Group, Lower Ordovician in age.

Zinc mineralization occurs as cavity fillings in pseudobreccia beds and in veins that cut the pseudobreccia beds.

PRODUCTION AND/OR RESERVES

September 1978: Drill indicated Ore 101,000 tons (90,900 metric tons) @ 4.00 % zinc

F Zone production (Crossley, 1989): 199,314 tons @ 5.10% zinc - 100% recovery

NATURE OF MINERALIZATION AND GENESIS

The sulphide mineralization consists almost entirely of sphalerite with minor quantities of pyrite, marcasite and galena. Two types of zinc mineralization were found to be present. The first and most common type occurs as cavity fillings in a series of narrow (0.15 - 1.5 m) pseudobreccia beds. Ore grade is variable and may

change from trace amounts to 30% zinc within a few feet. The second type of mineralization consists of veins which cut the sequence of pseudobreccia beds at various angles. The pseudobreccia beds may be barren or mineralized for a distance of 1.5 - 3.0 metres from the veins.

All known zinc deposits within the Daniel's Harbour Mine area (Mike Lake area) are located within 600 m from breccia depressions, and most occur along the southern fringes in close association with the normal faults. Zinc mineralization is present along the north fringe of the large breccia depression with which the "L" zone is associated to the south.

REGIONAL GEOLOGY AND TECTONIC SETTING

Geological Province: Appalachian Tectonic Zone: Humber Stratigraphic Unit: St George Group Geological Age: Lower Ordovician Rock Type(s): Dolomitized limestone, pseudobreccia.

Regionally, the Mike Mining Leases and Claims and the Trapper Claims are located on the stable St. Lawrence Platform which extends along the west coast of Newfoundland's Great Northern Peninsula. The Platform is underlain by Precambrian basement rocks, which in the vicinity of Daniel's Harbour probably occur at depths exceeding 900 m.

The rocks of the St. Lawrence Platform consist of Cambrian sediments (Labrador Group, Micrite Formation, Cambrian Dolomites) and Ordovician sediments (St. George Group, Table Head Formation).

Of economic importance are the Diagenetic Carbonates which form the upper part of the St. George Group. The carbonates have been divided into the lower Grey Dolomite-Pseudobreccia and the upper Siliceous Dolomite.

Generally, the St. George and Table Head Formations underlying the area are gently folded into NE trending anticlines and synclines. Their dips are shallow (300) and they gently plunge southward. Numerous faults cut the entire area and strike north-northeast.

GEOPHYSICAL EXPRESSION

Hartlein & Blecha, 1975 reported that the deposits do not respond to any known geophysical methods. According to Watson, 1964 this may be due to the almost complete absence of pyrite or other sulphides.

GEOCHEMICAL EXPRESSION

Geochemistry is effective for sub-outcropping mineralization, but, since anomalies may be transported, it often takes prospecting to locate their original source.

23.7 Daniel's Harbour G Zone

National Mineral Inventory Number: 012I/06/Zn 007 Record ID Number: 1127

DEPOSIT SUMMARY

Deposit Name: Daniel's Harbour G Zone Alternate Name: Major Commodity: Zinc Secondary Commodities: Lead Status: Past Producer Complexity: Singular Body

DDH: Drilled during mining operations – number of holes unknown Trench: Yes Adit: No Shaft: No Workings: Underground and open pit

Deposit Type: Stratabound epigenetic secondary void filling deposit in carbonate rocks.

LOCATION

Region: Newfoundland NTS Area: 12I/06 UTM Zone: 21 Latitude: 50.2944806539588 Longitude: 57.4471394131925 Northing: 5571250 Easting: 468150 Elevation (m): 120 Location Uncertainty (m): 50 Object Located: Geochemistry/diamond drilling (Green, 1974)

ACCESSIBILITY

The ore zone lies 0.5 km northeast of the middle point of the eastern shore of Lead Lake, 7.7 km southeast of Bellburns and 11.9 km northeast of Daniel's Harbour. Access is by road.

PHYSIOGRAPHIC SETTING

The property is situated in the centre of a broad low-lying coastal strip. Numerous ponds dot the area.

MINERALOGICAL COMPOSITION

Ore Minerals: Sphalerite, Galena, Cadmium Gangue Minerals: Dolomite, Calcite, Pyrite Age of Mineralization: Unknown

DESCRIPTION OF DEPOSIT

The G Zone is one of several long narrow tabular bodies which roughly trend NE/SW and gently dip (30°) to the NW. At the Daniel's Harbour mine, the sphalerite ore bodies occupy at 35-45 m thick, medium to coarsely crystalline dolostone unit which is laterally correlatable. This zone occurs within the Diagenetic Carbonates which constitute the upper strata of the St. George Group, Lower Ordovician in age.

Zinc mineralization occurs as cavity fillings in pseudobreccia beds and in veins that cut the pseudobreccia beds.

PRODUCTION AND/OR RESERVES

September 1978: Drill indicated Ore 140,000 tons (127,005, metric tons) @ 7.3 % zinc

G Zone production (Crossley, 1989): 127,801 tons @ 7.77% zinc - 100% recovery

NATURE OF MINERALIZATION AND GENESIS

The sulphide mineralization consists almost entirely of sphalerite with minor quantities of pyrite, marcasite and galena. Two types of zinc mineralization were found to be present. The first and most common type occurs as cavity fillings in a series of narrow (0.15 - 1.5 m) pseudobreccia beds. Ore grade is variable and may change from trace amounts to 30% zinc within a few feet. The second type of mineralization consists of veins which cut the sequence of pseudobreccia beds at various angles. The pseudobreccia beds may be barren or mineralized for a distance of 1.5 - 3.0 metres from the veins.

All known zinc deposits within the Daniel's Harbour Mine area (Mike Lake area) are located within 600 m from breccia depressions, and most occur along the southern fringes in close association with the normal faults. Zinc mineralization is present along the north fringe of the large breccia depression with which the "L" zone is associated to the south.

REGIONAL GEOLOGY AND TECTONIC SETTING

Geological Province: Appalachian Tectonic Zone: Humber Stratigraphic Unit: St George Group Geological Age: Lower Ordovician Rock Type(s): Dolomitized limestone, pseudobreccia.

Regionally, the Mike Mining Leases and Claims and the Trapper Claims are located on the stable St. Lawrence Platform which extends along the west coast of Newfoundland's Great Northern Peninsula. The Platform is underlain by Precambrian basement rocks, which in the vicinity of Daniel's Harbour probably occur at depths exceeding 900 m.

The rocks of the St. Lawrence Platform consist of Cambrian sediments (Labrador Group, Micrite Formation, Cambrian Dolomites) and Ordovician sediments (St. George Group, Table Head Formation).

Of economic importance are the Diagenetic Carbonates which form the upper part of the St. George Group. The carbonates have been divided into the lower Grey Dolomite-Pseudobreccia and the upper Siliceous Dolomite.

Generally, the St. George and Table Head Formations underlying the area are gently folded into NE trending anticlines and synclines. Their dips are shallow (300) and they gently plunge southward. Numerous faults cut the entire area and strike north-northeast.

GEOPHYSICAL EXPRESSION

Hartlein & Blecha, 1975 reported that the deposits do not respond to any known geophysical methods. According to Watson, 1964 this may be due to the almost complete absence of pyrite or other sulphides.

GEOCHEMICAL EXPRESSION

Geochemistry is effective for sub-outcropping mineralization, but, since anomalies may be transported, it often takes prospecting to locate their original source.

23.8 Daniel's Harbour H Zone

National Mineral Inventory Number: 012I/06/Zn 008 Record ID Number: 1128

DEPOSIT SUMMARY

Deposit Name: Daniel's Harbour H Zone Alternate Name: Major Commodity: Zinc Secondary Commodities: Lead Status: Past Producer Complexity: Singular Body

DDH: Drilled during mining operations – number of holes unknown Trench: Yes Adit: No Shaft: No Workings: Underground and open pit Deposit Type: Stratabound epigenetic secondary void filling deposit in carbonate rocks.

LOCATION

Region: Newfoundland NTS Area: 12I/06 UTM Zone: 21 Latitude: 50.2917869771668 Longitude: 57.4459911152725 Northing: 5570950 Easting: 468230 Elevation (m): 135 Location Uncertainty (m): 50 Object Located: Geochemistry/diamond drilling (Green, 1974)

ACCESSIBILITY

The ore zone lies 0.7 km due east of the midpoint of the eastern shore of Lead Lake, 11.8 km northeast of Daniel's Harbour and 8.0 km southeast of Bellburns. Access is by road.

PHYSIOGRAPHIC SETTING

The property is situated in the centre of a broad low-lying coastal strip. Numerous ponds dot the area.

MINERALOGICAL COMPOSITION

Ore Minerals: Sphalerite, Galena, Cadmium Gangue Minerals: Dolomite, Calcite, Pyrite Age of Mineralization: Unknown

DESCRIPTION OF DEPOSIT

The H Zone is one of several long narrow tabular bodies which roughly trend NE/SW and gently dip (30°) to the NW. At the Daniel's Harbour mine, the sphalerite ore bodies occupy at 35-45 m thick, medium to coarsely crystalline dolostone unit which is laterally correlatable. This zone occurs within the Diagenetic Carbonates which constitute the upper strata of the St. George Group, Lower Ordovician in age.

Zinc mineralization occurs as cavity fillings in pseudobreccia beds and in veins that cut the pseudobreccia beds.

PRODUCTION AND/OR RESERVES

September 1978: Drill indicated Ore 55,000 tons (49,500 metric tons) @ 6.4 % zinc

H Zone production (Crossley, 1989): 139,741 tons @ 9.22% zinc - 100% recovery

NATURE OF MINERALIZATION AND GENESIS

The sulphide mineralization consists almost entirely of sphalerite with minor quantities of pyrite, marcasite and galena. Two types of zinc mineralization were found to be present. The first and most common type occurs as cavity fillings in a series of narrow (0.15 - 1.5 m) pseudobreccia beds. Ore grade is variable and may change from trace amounts to 30% zinc within a few feet. The second type of mineralization consists of veins which cut the sequence of pseudobreccia beds at various angles. The pseudobreccia beds may be barren or mineralized for a distance of 1.5 - 3.0 metres from the veins.

All known zinc deposits within the Daniel's Harbour Mine area (Mike Lake area) are located within 600 m from breccia depressions, and most occur along the southern fringes in close association with the normal faults. Zinc mineralization is present along the north fringe of the large breccia depression with which the "L" zone is associated to the south.

REGIONAL GEOLOGY AND TECTONIC SETTING

Geological Province: Appalachian Tectonic Zone: Humber Stratigraphic Unit: St George Group Geological Age: Lower Ordovician Rock Type(s): Dolomitized limestone, pseudobreccia.

Regionally, the Mike Mining Leases and Claims and the Trapper Claims are located on the stable St. Lawrence Platform which extends along the west coast of Newfoundland's Great Northern Peninsula. The Platform is underlain by Precambrian basement rocks, which in the vicinity of Daniel's Harbour probably occur at depths exceeding 900 m.

The rocks of the St. Lawrence Platform consist of Cambrian sediments (Labrador Group, Micrite Formation, Cambrian Dolomites) and Ordovician sediments (St. George Group, Table Head Formation).

Of economic importance are the Diagenetic Carbonates which form the upper part of the St. George Group. The carbonates have been divided into the lower Grey Dolomite-Pseudobreccia and the upper Siliceous Dolomite.

Generally, the St. George and Table Head Formations underlying the area are gently folded into NE trending anticlines and synclines. Their dips are shallow (300) and they gently plunge southward. Numerous faults cut the entire area and strike north-northeast.

GEOPHYSICAL EXPRESSION

Hartlein & Blecha, 1975 reported that the deposits do not respond to any known geophysical methods. According to Watson, 1964 this may be due to the almost complete absence of pyrite or other sulphides.

GEOCHEMICAL EXPRESSION

Geochemistry is effective for sub-outcropping mineralization, but, since anomalies may be transported, it often takes prospecting to locate their original source.

23.9 Daniel's Harbour J Zone

National Mineral Inventory Number: 012I/06/Zn 009 Record ID Number: 1129

DEPOSIT SUMMARY

Deposit Name: Daniel's Harbour J Zone Alternate Name: Major Commodity: Zinc Secondary Commodities: Lead Status: Past Producer Complexity: Singular Body DDH: Drilled during mining operations – number of holes unknown Trench: Yes Adit: No Shaft: No Workings: Underground and open pit

Deposit Type: Stratabound epigenetic secondary void filling deposit in carbonate rocks.

LOCATION

Region: Newfoundland NTS Area: 12I/06 UTM Zone: 21 Latitude: 50. 3024660711688 Longitude: 57. 4745948488015 Northing: 5572150 Easting: 4662000 Elevation (m): 975 Location Uncertainty (m): 50 Object Located: Geochemistry/diamond drilling (Green, 1974)

ACCESSIBILITY

The ore zone lies 0.2 km north of the midpoint of the northern shore of Mike lake, 10.8 km northeast of Daniel's Harbour and 5.55 km southeast of Bellburns. Access is by road.

PHYSIOGRAPHIC SETTING

The property is situated in the centre of a broad low-lying coastal strip. Numerous ponds dot the area.

MINERALOGICAL COMPOSITION

Ore Minerals: Sphalerite, Galena, Cadmium Gangue Minerals: Dolomite, Calcite, Pyrite Age of Mineralization: Unknown

DESCRIPTION OF DEPOSIT

The J Zone is one of several long narrow tabular bodies which roughly trend NE/SW and gently dip (30°) to the NW. At the Daniel's Harbour mine, the sphalerite ore bodies occupy at 35-45 m thick, medium to coarsely crystalline dolostone unit which

is laterally correlatable. This zone occurs within the Diagenetic Carbonates which constitute the upper strata of the St. George Group, Lower Ordovician in age.

Zinc mineralization occurs as cavity fillings in pseudobreccia beds and in veins that cut the pseudobreccia beds.

PRODUCTION AND/OR RESERVES

September 1978: Drill indicated Ore 134,000 tons (120,600 metric tons) @ 4.5 % zinc

NATURE OF MINERALIZATION AND GENESIS

The sulphide mineralization consists almost entirely of sphalerite with minor quantities of pyrite, marcasite and galena. Two types of zinc mineralization were found to be present. The first and most common type occurs as cavity fillings in a series of narrow (0.15 - 1.5 m) pseudobreccia beds. Ore grade is variable and may change from trace amounts to 30% zinc within a few feet. The second type of mineralization consists of veins which cut the sequence of pseudobreccia beds at various angles. The pseudobreccia beds may be barren or mineralized for a distance of 1.5 - 3.0 metres from the veins.

All known zinc deposits within the Daniel's Harbour Mine area (Mike Lake area) are located within 600 m from breccia depressions, and most occur along the southern fringes in close association with the normal faults. Zinc mineralization is present along the north fringe of the large breccia depression with which the "L" zone is associated to the south.

REGIONAL GEOLOGY AND TECTONIC SETTING

Geological Province: Appalachian Tectonic Zone: Humber Stratigraphic Unit: St George Group Geological Age: Lower Ordovician Rock Type(s): Dolomitized limestone, pseudobreccia.

Regionally, the Mike Mining Leases and Claims and the Trapper Claims are located on the stable St. Lawrence Platform which extends along the west coast of Newfoundland's Great Northern Peninsula. The Platform is underlain by Precambrian basement rocks, which in the vicinity of Daniel's Harbour probably occur at depths exceeding 900 m.

The rocks of the St. Lawrence Platform consist of Cambrian sediments (Labrador Group, Micrite Formation, Cambrian Dolomites) and Ordovician sediments (St. George Group, Table Head Formation).

Of economic importance are the Diagenetic Carbonates which form the upper part of the St. George Group. The carbonates have been divided into the lower Grey Dolomite-Pseudobreccia and the upper Siliceous Dolomite.

Generally, the St. George and Table Head Formations underlying the area are gently folded into NE trending anticlines and synclines. Their dips are shallow (30o) and they gently plunge southward. Numerous faults cut the entire area and strike north-northeast.

GEOPHYSICAL EXPRESSION

Hartlein & Blecha, 1975 reported that the deposits do not respond to any known geophysical methods. According to Watson, 1964 this may be due to the almost complete absence of pyrite or other sulphides.

GEOCHEMICAL EXPRESSION

Geochemistry is effective for sub-outcropping mineralization, but, since anomalies may be transported, it often takes prospecting to locate their original source.

23.10 Daniel's Harbour K Zone

National Mineral Inventory Number: 012I/06/Zn 010 Record ID Number: 1130

DEPOSIT SUMMARY

Deposit Name: Daniel's Harbour K Zone Alternate Name: Major Commodity: Zinc Secondary Commodities: Lead Status: Past Producer Complexity: Singular Body

DDH: Drilled during mining operations – number of holes unknown Trench: Yes Adit: No Shaft: No Workings: Underground and open pit

Deposit Type: Stratabound epigenetic secondary void filling deposit in carbonate rocks.

LOCATION

Region: Newfoundland NTS Area: 12I/06 UTM Zone: 21 Latitude: 50. 2934961618316 Longitude: 57. 4687497540787 Northing: 5571150 Easting: 466610 Elevation (m): 975 Location Uncertainty (m): 50 Object Located: Geochemistry/diamond drilling (Green, 1974)

ACCESSIBILITY

The ore zone lies 0.1 km due east of the south cove of Mike Lake, 10.55 km northeast of Daniel's Harbour and 6.6 km southeast of Bellburns. The deposit area can be reached by road.

PHYSIOGRAPHIC SETTING

The property is situated in the centre of a broad low-lying coastal strip. Numerous ponds dot the area.

MINERALOGICAL COMPOSITION

Ore Minerals: Sphalerite, Galena, Cadmium Gangue Minerals: Dolomite, Calcite, Pyrite Age of Mineralization: Unknown

DESCRIPTION OF DEPOSIT

The K Zone is one of several long narrow tabular bodies which roughly trend NE/SW and gently dip (30°) to the NW. At the Daniel's Harbour mine, the sphalerite ore bodies occupy at 35-45 m thick, medium to coarsely crystalline dolostone unit which is laterally correlatable. This zone occurs within the Diagenetic Carbonates which constitute the upper strata of the St. George Group, Lower Ordovician in age.

Zinc mineralization occurs as cavity fillings in pseudobreccia beds and in veins that cut the pseudobreccia beds.

PRODUCTION AND/OR RESERVES

September 1978: Drill indicated Ore 74,431 tons (70,587 metric tons) @ 8.77% zinc

K Zone production (Crossley, 1989): 319,911 tons @ 7.81% zinc – 99.3% recovery (Underground and Open Pit).

NATURE OF MINERALIZATION AND GENESIS

The sulphide mineralization consists almost entirely of sphalerite with minor quantities of pyrite, marcasite and galena. Two types of zinc mineralization were found to be present. The first and most common type occurs as cavity fillings in a series of narrow (0.15 - 1.5 m) pseudobreccia beds. Ore grade is variable and may change from trace amounts to 30% zinc within a few feet. The second type of mineralization consists of veins which cut the sequence of pseudobreccia beds at various angles. The pseudobreccia beds may be barren or mineralized for a distance of 1.5 - 3.0 metres from the veins.

All known zinc deposits within the Daniel's Harbour Mine area (Mike Lake area) are located within 600 m from breccia depressions, and most occur along the southern fringes in close association with the normal faults. Zinc mineralization is present along the north fringe of the large breccia depression with which the "L" zone is associated to the south.

REGIONAL GEOLOGY AND TECTONIC SETTING

Geological Province: Appalachian Tectonic Zone: Humber Stratigraphic Unit: St George Group Geological Age: Lower Ordovician Rock Type(s): Dolomitized limestone, pseudobreccia.

Regionally, the Mike Mining Leases and Claims and the Trapper Claims are located on the stable St. Lawrence Platform which extends along the west coast of Newfoundland's Great Northern Peninsula. The Platform is underlain by Precambrian basement rocks, which in the vicinity of Daniel's Harbour probably occur at depths exceeding 900 m.

The rocks of the St. Lawrence Platform consist of Cambrian sediments (Labrador Group, Micrite Formation, Cambrian Dolomites) and Ordovician sediments (St. George Group, Table Head Formation).

Of economic importance are the Diagenetic Carbonates which form the upper part of the St. George Group. The carbonates have been divided into the lower Grey Dolomite-Pseudobreccia and the upper Siliceous Dolomite.

Generally, the St. George and Table Head Formations underlying the area are gently folded into NE trending anticlines and synclines. Their dips are shallow (300) and they gently plunge southward. Numerous faults cut the entire area and strike north-northeast.

GEOPHYSICAL EXPRESSION

Hartlein & Blecha, 1975 reported that the deposits do not respond to any known geophysical methods. According to Watson, 1964 this may be due to the almost complete absence of pyrite or other sulphides.

GEOCHEMICAL EXPRESSION

Geochemistry is effective for sub-outcropping mineralization, but, since anomalies may be transported, it often takes prospecting to locate their original source.

23.11 Daniel's Harbour L Zone

National Mineral Inventory Number: 012I/06/Zn 011 Record ID Number: 1120

DEPOSIT SUMMARY

Deposit Name: Daniel's Harbour K Zone Alternate Name: Major Commodity: Zinc Secondary Commodities: Lead, Dolomite Status: Past Producer Complexity: Multiple Ore Bodies

DDH: Drilled during mining operations – number of holes unknown Trench: Yes Adit: No Shaft: No Workings: Underground and open pit

Deposit Type: Stratabound epigenetic secondary void filling deposit in carbonate rocks.

LOCATION

Region: Newfoundland NTS Area: 12I/06 UTM Zone: 21 Latitude: 50. 2768614060579 Longitude: 57. 4678847057078 Northing: 5569300 Easting: 466660 Elevation (m): 1125 Location Uncertainty (m): 50 Object Located: Geochemistry/diamond drilling (Green, 1974)

ACCESSIBILITY

The area of numerous stratabound deposits is approximately 6.25 km southeast of Bellburns. The L zone is 0.2 km north of Trout Lake, 9.65 km northeast of Daniels Harbour and 8.1 km southeast of Bellburns. Access is by road.

PHYSIOGRAPHIC SETTING

The property is situated in the centre of a broad low-lying coastal strip. Numerous ponds dot the area.

MINERALOGICAL COMPOSITION

Ore Minerals: Sphalerite, Galena, Cadmium Gangue Minerals: Dolomite, Calcite, Marcasite Age of Mineralization: Unknown

DESCRIPTION OF DEPOSIT

The L zone is the largest of several long narrow tabular bodies which roughly trend NE/SW and gently dip (30o) to the NW. The "L" zone has a proven depth of 135 m and is associated with a N/S trending anticline. The length of the zone is presently 3,000 m. The zinc mineralization occurs as (1) cavity fillings in a series of narrow pseudobreccia beds (0.15 - 1.5 m) separated by barren massive grey dolomite and (2) in veins that cut the pseudobreccia beds at various angles.

All known zinc occurrences on the mining leases and in the surrounding area occur within the diagenetic carbonates which constitute the upper strata of the St. George Group, Lower Ordovician in age.

PRODUCTION AND/OR RESERVES

1980 Teck Annual Report: recovery of 98.2% of ore grading at 8.3% zinc.

L Zone production (Crossley, 1989): L Zone production - 3,785,379 tons @ 8.48% zinc - 87% recovery NORTH L Zone Production - 23,332 tons @ 3.80% zinc - 100% recovery NEW NORTH L (NNL) Zone Production - 159,689 tons @ 7.53% zinc - 97.4% recovery EAST L Zone Production - 189,704 tons @ 2.03% zinc - 100% recovery

NATURE OF MINERALIZATION AND GENESIS

The sphalerite mineralization is restricted to the lower limestone facies of the St. George Group. Two types of zinc mineralization were recognized in the "L" zone.

The first and most common type occurs as cavity fillings in a series of narrow (0.15 - 1.5 m) pseudobreccia beds. Ore grade is variable and may change from trace amounts to 30% zinc within a few feet. The second type of mineralization consists of veins which cut the sequence of pseudobreccia beds at various angles. The pseudobreccia beds may be barren or mineralized for a distance of 1.5 - 3.0 metres from the veins.

The sulphide mineralization consists almost entirely of sphalerite with minor quantities of pyrite, marcasite and galena. Gangue is almost exclusively white sparry dolomite which serves as a matrix for euhedral sphalerite grains up to 0.6 cm. The sphalerite is very pure (cadmium:zinc = 1:300); iron content is 1.3%. Simple ore mineralogy yields sphalerite at 98%, the concentrate grades at 63% zinc.

REGIONAL GEOLOGY AND TECTONIC SETTING

Geological Province: Appalachian Tectonic Zone: Humber Stratigraphic Unit: St George Group Geological Age: Lower Ordovician Rock Type(s): Dolomitized limestone, pseudobreccia.

Regionally, the Mike Mining Leases and Claims and the Trapper Claims are located on the stable St. Lawrence Platform which extends along the west coast of Newfoundland's Great Northern Peninsula. The Platform is underlain by Precambrian basement rocks, which in the vicinity of Daniel's Harbour probably occur at depths exceeding 900 m.

The rocks of the St. Lawrence Platform consist of Cambrian sediments (Labrador Group, Micrite Formation, Cambrian Dolomites) and Ordovician sediments (St. George Group, Table Head Formation).

Of economic importance are the Diagenetic Carbonates which form the upper part of the St. George Group. The carbonates have been divided into the lower Grey Dolomite-Pseudobreccia and the upper Siliceous Dolomite.

Generally, the St. George and Table Head Formations underlying the area are gently folded into NE trending anticlines and synclines. Their dips are shallow (300) and they gently plunge southward. Numerous faults cut the entire area and strike north-northeast.

GEOPHYSICAL EXPRESSION

Hartlein & Blecha, 1975 reported that the deposits do not respond to any known geophysical methods. According to Watson, 1964 this may be due to the almost complete absence of pyrite or other sulphides.

GEOCHEMICAL EXPRESSION

Geochemistry is effective for sub-outcropping mineralization, but, since anomalies may be transported, it often takes prospecting to locate their original source.

23.12 Daniel's Harbour M Zone

National Mineral Inventory Number: 012I/06/Zn 012 Record ID Number: 1131

DEPOSIT SUMMARY

Deposit Name: Daniel's Harbour M Zone Alternate Name: Major Commodity: Zinc Secondary Commodities: Lead Status: Past Producer Complexity: Singular Body

DDH: Drilled during mining operations – number of holes unknown Trench: Yes Adit: No Shaft: No Workings: Underground and open pit

Deposit Type: Stratabound epigenetic secondary void filling deposit in carbonate rocks.

LOCATION

Region: Newfoundland NTS Area: 12I/06 UTM Zone: 21 Latitude: 50.2951369718656 Longitude: 57.4401259854977 Northing: 5571320 Easting: 468650 Elevation (m): 120 Location Uncertainty (m): 50 Object Located: Geochemistry/diamond drilling (Green, 1974)

ACCESSIBILITY

The ore zone is 1.6 km due east of the northern cove of Lead Lake, 12.3 km northeast of Daniel's harbour and 8.1 km southeast of Bellburns. Acess is by road.

PHYSIOGRAPHIC SETTING

The property is situated in the centre of a broad low-lying coastal strip. Numerous ponds dot the area.

MINERALOGICAL COMPOSITION

Ore Minerals: Sphalerite, Galena, Cadmium Gangue Minerals: Dolomite, Calcite, Pyrite Age of Mineralization: Unknown

DESCRIPTION OF DEPOSIT

The M Zone is one of several long narrow tabular bodies which roughly trend NE/SW and gently dip (30°) to the NW. At the Daniel's Harbour mine, the sphalerite ore bodies occupy at 35-45 m thick, medium to coarsely crystalline dolostone unit which is laterally correlatable. This zone occurs within the Diagenetic Carbonates which constitute the upper strata of the St. George Group, Lower Ordovician in age.

Zinc mineralization occurs as cavity fillings in pseudobreccia beds and in veins that cut the pseudobreccia beds.

PRODUCTION AND/OR RESERVES

-

NATURE OF MINERALIZATION AND GENESIS

The sulphide mineralization consists almost entirely of sphalerite with minor quantities of pyrite, marcasite and galena. Two types of zinc mineralization were found to be present. The first and most common type occurs as cavity fillings in a series of narrow (0.15 - 1.5 m) pseudobreccia beds. Ore grade is variable and may change from trace amounts to 30% zinc within a few feet. The second type of mineralization consists of veins which cut the sequence of pseudobreccia beds at various angles. The pseudobreccia beds may be barren or mineralized for a distance of 1.5 - 3.0 metres from the veins.

All known zinc deposits within the Daniel's Harbour Mine area (Mike Lake area) are located within 600 m from breccia depressions, and most occur along the southern fringes in close association with the normal faults. Zinc mineralization is present along the north fringe of the large breccia depression with which the "L" zone is associated to the south.

REGIONAL GEOLOGY AND TECTONIC SETTING

Geological Province: Appalachian

Tectonic Zone: Humber Stratigraphic Unit: St George Group Geological Age: Lower Ordovician Rock Type(s): Dolomitized limestone, pseudobreccia.

Regionally, the Mike Mining Leases and Claims and the Trapper Claims are located on the stable St. Lawrence Platform which extends along the west coast of Newfoundland's Great Northern Peninsula. The Platform is underlain by Precambrian basement rocks, which in the vicinity of Daniel's Harbour probably occur at depths exceeding 900 m.

The rocks of the St. Lawrence Platform consist of Cambrian sediments (Labrador Group, Micrite Formation, Cambrian Dolomites) and Ordovician sediments (St. George Group, Table Head Formation).

Of economic importance are the Diagenetic Carbonates which form the upper part of the St. George Group. The carbonates have been divided into the lower Grey Dolomite-Pseudobreccia and the upper Siliceous Dolomite.

Generally, the St. George and Table Head Formations underlying the area are gently folded into NE trending anticlines and synclines. Their dips are shallow (300) and they gently plunge southward. Numerous faults cut the entire area and strike north-northeast.

GEOPHYSICAL EXPRESSION

Hartlein & Blecha, 1975 reported that the deposits do not respond to any known geophysical methods. According to Watson, 1964 this may be due to the almost complete absence of pyrite or other sulphides.

GEOCHEMICAL EXPRESSION

Geochemistry is effective for sub-outcropping mineralization, but, since anomalies may be transported, it often takes prospecting to locate their original source.

23.13 Daniel's Harbour N Zone

National Mineral Inventory Number: 012I/06/Zn 013 Record ID Number: 1132

DEPOSIT SUMMARY

Deposit Name: Daniel's Harbour N Zone Alternate Name: Major Commodity: Zinc Secondary Commodities: Lead Status: Past Producer Complexity: Singular Body

DDH: Drilled during mining operations – number of holes unknown Trench: Yes Adit: No Shaft: No Workings: Underground and open pit

Deposit Type: Stratabound epigenetic secondary void filling deposit in carbonate rocks.

LOCATION

Region: Newfoundland NTS Area: 12I/06 UTM Zone: 21 Latitude: 50. 2987277461324 Longitude: 57. 4869130548527 Northing: 5571740 Easting: 465320 Elevation (m): 75 Location Uncertainty (m): 50 Object Located: Geochemistry/diamond drilling (Green, 1974)

ACCESSIBILITY

The zone is 0.5 km due west of the west shore of Mike Lake, 5.3 km southeast of Bellburns and 9.85 km northeast of Daniel's Harbour. The deposit area can be reached by road.

PHYSIOGRAPHIC SETTING

The property is situated in the centre of a broad low-lying coastal strip. Numerous ponds dot the area.

MINERALOGICAL COMPOSITION

Ore Minerals: Sphalerite, Galena, Cadmium Gangue Minerals: Dolomite, Calcite, Pyrite Age of Mineralization: Unknown

DESCRIPTION OF DEPOSIT

The N Zone is one of several long narrow tabular bodies which roughly trend NE/SW and gently dip (30°) to the NW. At the Daniel's Harbour mine, the sphalerite ore bodies occupy at 35-45 m thick, medium to coarsely crystalline dolostone unit which is laterally correlatable. This zone occurs within the Diagenetic Carbonates which constitute the upper strata of the St. George Group, Lower Ordovician in age.

Zinc mineralization occurs as cavity fillings in pseudobreccia beds and in veins that cut the pseudobreccia beds.

PRODUCTION AND/OR RESERVES

-

NATURE OF MINERALIZATION AND GENESIS

The sulphide mineralization consists almost entirely of sphalerite with minor quantities of pyrite, marcasite and galena. Two types of zinc mineralization were found to be present. The first and most common type occurs as cavity fillings in a series of narrow (0.15 - 1.5 m) pseudobreccia beds. Ore grade is variable and may change from trace amounts to 30% zinc within a few feet. The second type of mineralization consists of veins which cut the sequence of pseudobreccia beds at various angles. The pseudobreccia beds may be barren or mineralized for a distance of 1.5 - 3.0 metres from the veins.

All known zinc deposits within the Daniel's Harbour Mine area (Mike Lake area) are located within 600 m from breccia depressions, and most occur along the southern fringes in close association with the normal faults. Zinc mineralization is present along the north fringe of the large breccia depression with which the "L" zone is associated to the south.

REGIONAL GEOLOGY AND TECTONIC SETTING

Geological Province: Appalachian Tectonic Zone: Humber Stratigraphic Unit: St George Group Geological Age: Lower Ordovician Rock Type(s): Dolomitized limestone, pseudobreccia.

Regionally, the Mike Mining Leases and Claims and the Trapper Claims are located on the stable St. Lawrence Platform which extends along the west coast of Newfoundland's Great Northern Peninsula. The Platform is underlain by Precambrian basement rocks, which in the vicinity of Daniel's Harbour probably occur at depths exceeding 900 m. The rocks of the St. Lawrence Platform consist of Cambrian sediments (Labrador Group, Micrite Formation, Cambrian Dolomites) and Ordovician sediments (St. George Group, Table Head Formation).

Of economic importance are the Diagenetic Carbonates which form the upper part of the St. George Group. The carbonates have been divided into the lower Grey Dolomite-Pseudobreccia and the upper Siliceous Dolomite.

Generally, the St. George and Table Head Formations underlying the area are gently folded into NE trending anticlines and synclines. Their dips are shallow (300) and they gently plunge southward. Numerous faults cut the entire area and strike north-northeast.

GEOPHYSICAL EXPRESSION

Hartlein & Blecha, 1975 reported that the deposits do not respond to any known geophysical methods. According to Watson, 1964 this may be due to the almost complete absence of pyrite or other sulphides.

GEOCHEMICAL EXPRESSION

Geochemistry is effective for sub-outcropping mineralization, but, since anomalies may be transported, it often takes prospecting to locate their original source.

23.14 Daniel's Harbour O Zone

National Mineral Inventory Number: 012I/06/Zn 014 Record ID Number: 1134

DEPOSIT SUMMARY

Deposit Name: Daniel's Harbour O Zone Alternate Name: Major Commodity: Zinc Secondary Commodities: Lead Status: Past Producer Complexity: Singular Body

DDH: Drilled during mining operations – number of holes unknown Trench: Yes Adit: No Shaft: No Workings: Underground and open pit Deposit Type: Stratabound epigenetic secondary void filling deposit in carbonate rocks.

LOCATION

Region: Newfoundland NTS Area: 12I/06 UTM Zone: 21 Latitude: 50. 2728279250554 Longitude: 57. 4644773528381 Northing: 5565580 Easting: 466900 Elevation (m): 90 Location Uncertainty (m): 50 Object Located: Geochemistry/diamond drilling (Green, 1974)

ACCESSIBILITY

The zone lies between Trout Lake and Spring Lake, 9.7 km northeast of Daniel's Harbour, 8.6 km southeast of Bellburns.

PHYSIOGRAPHIC SETTING

The property is situated in the centre of a broad low-lying coastal strip. Numerous ponds dot the area.

MINERALOGICAL COMPOSITION

Ore Minerals: Sphalerite, Galena, Cadmium Gangue Minerals: Dolomite, Calcite, Pyrite Age of Mineralization: Unknown

DESCRIPTION OF DEPOSIT

The O Zone is one of several long narrow tabular bodies which roughly trend NE/SW and gently dip (30°) to the NW. At the Daniel's Harbour mine, the sphalerite ore bodies occupy at 35-45 m thick, medium to coarsely crystalline dolostone unit which is laterally correlatable. This zone occurs within the Diagenetic Carbonates which constitute the upper strata of the St. George Group, Lower Ordovician in age.

Zinc mineralization occurs as cavity fillings in pseudobreccia beds and in veins that cut the pseudobreccia beds.

PRODUCTION AND/OR RESERVES

September 1978: Drill indicated Ore 31,124 tons (28,011 metric tons) @ 13.87% zinc

NATURE OF MINERALIZATION AND GENESIS

The sulphide mineralization consists almost entirely of sphalerite with minor quantities of pyrite, marcasite and galena. Two types of zinc mineralization were found to be present. The first and most common type occurs as cavity fillings in a series of narrow (0.15 - 1.5 m) pseudobreccia beds. Ore grade is variable and may change from trace amounts to 30% zinc within a few feet. The second type of mineralization consists of veins which cut the sequence of pseudobreccia beds at various angles. The pseudobreccia beds may be barren or mineralized for a distance of 1.5 - 3.0 metres from the veins.

All known zinc deposits within the Daniel's Harbour Mine area (Mike Lake area) are located within 600 m from breccia depressions, and most occur along the southern fringes in close association with the normal faults. Zinc mineralization is present along the north fringe of the large breccia depression with which the "L" zone is associated to the south.

REGIONAL GEOLOGY AND TECTONIC SETTING

Geological Province: Appalachian Tectonic Zone: Humber Stratigraphic Unit: St George Group Geological Age: Lower Ordovician Rock Type(s): Dolomitized limestone, pseudobreccia.

Regionally, the Mike Mining Leases and Claims and the Trapper Claims are located on the stable St. Lawrence Platform which extends along the west coast of Newfoundland's Great Northern Peninsula. The Platform is underlain by Precambrian basement rocks, which in the vicinity of Daniel's Harbour probably occur at depths exceeding 900 m.

The rocks of the St. Lawrence Platform consist of Cambrian sediments (Labrador Group, Micrite Formation, Cambrian Dolomites) and Ordovician sediments (St. George Group, Table Head Formation).

Of economic importance are the Diagenetic Carbonates which form the upper part of the St. George Group. The carbonates have been divided into the lower Grey Dolomite-Pseudobreccia and the upper Siliceous Dolomite.

Generally, the St. George and Table Head Formations underlying the area are gently folded into NE trending anticlines and synclines. Their dips are shallow (300) and they gently plunge southward. Numerous faults cut the entire area and strike north-northeast.

GEOPHYSICAL EXPRESSION

Hartlein & Blecha, 1975 reported that the deposits do not respond to any known geophysical methods. According to Watson, 1964 this may be due to the almost complete absence of pyrite or other sulphides.

GEOCHEMICAL EXPRESSION

Geochemistry is effective for sub-outcropping mineralization, but, since anomalies may be transported, it often takes prospecting to locate their original source.

23.15 Daniel's Harbour P Zone

National Mineral Inventory Number: 012I/06/Zn 015 Record ID Number: 1133

DEPOSIT SUMMARY

Deposit Name: Daniel's Harbour P Zone Alternate Name: Portal Ore Zone Major Commodity: Zinc Secondary Commodities: Lead Status: Past Producer Complexity: Singular Body

DDH: Drilled during mining operations – number of holes unknown Trench: Yes Adit: No Shaft: No Workings: Underground and open pit

Deposit Type: Stratabound epigenetic secondary void filling deposit in carbonate rocks.

LOCATION

Region: Newfoundland NTS Area: 12I/06 UTM Zone: 21 Latitude: 50.2779658509151 Longitude: 57.4615801790762 Northing: 5569420 Easting: 467110 Elevation (m): 90 Location Uncertainty (m): 50 Object Located: Geochemistry/diamond drilling (Green, 1974)

ACCESSIBILITY

The zone lies near Bowing Brook between Lead Lake and Spring Lake, 10.1 km northeast of Daniel's Harbour and 8.3 km southeast of Bellburns.

PHYSIOGRAPHIC SETTING

The property is situated in the centre of a broad low-lying coastal strip. Numerous ponds dot the area.

MINERALOGICAL COMPOSITION

Ore Minerals: Sphalerite, Galena, Cadmium Gangue Minerals: Dolomite, Calcite, Pyrite Age of Mineralization: Unknown

DESCRIPTION OF DEPOSIT

The P Zone is one of several long narrow tabular bodies which roughly trend NE/SW and gently dip (30°) to the NW. At the Daniel's Harbour mine, the sphalerite ore bodies occupy at 35-45 m thick, medium to coarsely crystalline dolostone unit which is laterally correlatable. This zone occurs within the Diagenetic Carbonates which constitute the upper strata of the St. George Group, Lower Ordovician in age.

Zinc mineralization occurs as cavity fillings in pseudobreccia beds and in veins that cut the pseudobreccia beds.

PRODUCTION AND/OR RESERVES

September 1978: Drill indicated Ore 31,124 tons (28,011 metric tons) @ 13.87% zinc

P Zone production (Crossley, 1989): 55,004 tons @ 6.30% zinc – 62.8% recovery

NATURE OF MINERALIZATION AND GENESIS

The sulphide mineralization consists almost entirely of sphalerite with minor quantities of pyrite, marcasite and galena. Two types of zinc mineralization were found to be present. The first and most common type occurs as cavity fillings in a series of narrow (0.15 - 1.5 m) pseudobreccia beds. Ore grade is variable and may change from trace amounts to 30% zinc within a few feet. The second type of mineralization consists of veins which cut the sequence of pseudobreccia beds at various angles. The pseudobreccia beds may be barren or mineralized for a distance of 1.5 - 3.0 metres from the veins.

All known zinc deposits within the Daniel's Harbour Mine area (Mike Lake area) are located within 600 m from breccia depressions, and most occur along the southern fringes in close association with the normal faults. Zinc mineralization is present along the north fringe of the large breccia depression with which the "L" zone is associated to the south.

REGIONAL GEOLOGY AND TECTONIC SETTING

Geological Province: Appalachian Tectonic Zone: Humber Stratigraphic Unit: St George Group Geological Age: Lower Ordovician Rock Type(s): Dolomitized limestone, pseudobreccia.

Regionally, the Mike Mining Leases and Claims and the Trapper Claims are located on the stable St. Lawrence Platform which extends along the west coast of Newfoundland's Great Northern Peninsula. The Platform is underlain by Precambrian basement rocks, which in the vicinity of Daniel's Harbour probably occur at depths exceeding 900 m.

The rocks of the St. Lawrence Platform consist of Cambrian sediments (Labrador Group, Micrite Formation, Cambrian Dolomites) and Ordovician sediments (St. George Group, Table Head Formation).

Of economic importance are the Diagenetic Carbonates which form the upper part of the St. George Group. The carbonates have been divided into the lower Grey Dolomite-Pseudobreccia and the upper Siliceous Dolomite.

Generally, the St. George and Table Head Formations underlying the area are gently folded into NE trending anticlines and synclines. Their dips are shallow (300) and they gently plunge southward. Numerous faults cut the entire area and strike north-northeast.

GEOPHYSICAL EXPRESSION

Hartlein & Blecha, 1975 reported that the deposits do not respond to any known geophysical methods. According to Watson, 1964 this may be due to the almost complete absence of pyrite or other sulphides.

GEOCHEMICAL EXPRESSION

Geochemistry is effective for sub-outcropping mineralization, but, since anomalies may be transported, it often takes prospecting to locate their original source.

23.16 Daniel's Harbour Q Zone

National Mineral Inventory Number: 012I/06/Zn 016 Record ID Number: 1135

DEPOSIT SUMMARY

Deposit Name: Daniel's Harbour Q Zone Alternate Name: Major Commodity: Zinc Secondary Commodities: Lead Status: Past Producer Complexity: Singular Body

DDH: Drilled during mining operations – number of holes unknown Trench: Yes Adit: No Shaft: No Workings: Underground and open pit

Deposit Type: Stratabound epigenetic secondary void filling deposit in carbonate rocks.

LOCATION

Region: Newfoundland NTS Area: 12I/06 UTM Zone: 21 Latitude: 50. 2974067883921 Longitude: 57. 4801604481315 Northing: 5571590 Easting: 465800 Elevation (m): 90 Location Uncertainty (m): 50 Object Located: Geochemistry/diamond drilling (Green, 1974)

ACCESSIBILITY

The zone lies on the west shore of Mike Lake, 5.8 km southeast of Bellburns, 10.1 km northeast of Daniel's Harbour.

PHYSIOGRAPHIC SETTING

The property is situated in the centre of a broad low-lying coastal strip. Numerous ponds dot the area.

MINERALOGICAL COMPOSITION

Ore Minerals: Sphalerite, Galena, Cadmium Gangue Minerals: Dolomite, Calcite, Pyrite Age of Mineralization: Unknown

DESCRIPTION OF DEPOSIT

The Q Zone is one of several long narrow tabular bodies which roughly trend NE/SW and gently dip (30°) to the NW. At the Daniel's Harbour mine, the sphalerite ore bodies occupy at 35-45 m thick, medium to coarsely crystalline dolostone unit which is laterally correlatable. This zone occurs within the Diagenetic Carbonates which constitute the upper strata of the St. George Group, Lower Ordovician in age.

Zinc mineralization occurs as cavity fillings in pseudobreccia beds and in veins that cut the pseudobreccia beds.

PRODUCTION AND/OR RESERVES

-

NATURE OF MINERALIZATION AND GENESIS

The sulphide mineralization consists almost entirely of sphalerite with minor quantities of pyrite, marcasite and galena. Two types of zinc mineralization were found to be present. The first and most common type occurs as cavity fillings in a series of narrow (0.15 - 1.5 m) pseudobreccia beds. Ore grade is variable and may change from trace amounts to 30% zinc within a few feet. The second type of mineralization consists of veins which cut the sequence of pseudobreccia beds at various angles. The pseudobreccia beds may be barren or mineralized for a distance of 1.5 - 3.0 metres from the veins.

All known zinc deposits within the Daniel's Harbour Mine area (Mike Lake area) are located within 600 m from breccia depressions, and most occur along the southern fringes in close association with the normal faults. Zinc mineralization is present along the north fringe of the large breccia depression with which the "L" zone is associated to the south.

REGIONAL GEOLOGY AND TECTONIC SETTING

Geological Province: Appalachian Tectonic Zone: Humber Stratigraphic Unit: St George Group Geological Age: Lower Ordovician Rock Type(s): Dolomitized limestone, pseudobreccia. Regionally, the Mike Mining Leases and Claims and the Trapper Claims are located on the stable St. Lawrence Platform which extends along the west coast of Newfoundland's Great Northern Peninsula. The Platform is underlain by Precambrian basement rocks, which in the vicinity of Daniel's Harbour probably occur at depths exceeding 900 m.

The rocks of the St. Lawrence Platform consist of Cambrian sediments (Labrador Group, Micrite Formation, Cambrian Dolomites) and Ordovician sediments (St. George Group, Table Head Formation).

Of economic importance are the Diagenetic Carbonates which form the upper part of the St. George Group. The carbonates have been divided into the lower Grey Dolomite-Pseudobreccia and the upper Siliceous Dolomite.

Generally, the St. George and Table Head Formations underlying the area are gently folded into NE trending anticlines and synclines. Their dips are shallow (30o) and they gently plunge southward. Numerous faults cut the entire area and strike north-northeast.

GEOPHYSICAL EXPRESSION

Hartlein & Blecha, 1975 reported that the deposits do not respond to any known geophysical methods. According to Watson, 1964 this may be due to the almost complete absence of pyrite or other sulphides.

GEOCHEMICAL EXPRESSION

Geochemistry is effective for sub-outcropping mineralization, but, since anomalies may be transported, it often takes prospecting to locate their original source.

23.17 Trapper Zone

National Mineral Inventory Number: 012I/06/Zn 017 Record ID Number: 1136

DEPOSIT SUMMARY

Deposit Name: Trapper Zone Alternate Name: Major Commodity: Zinc Secondary Commodities: Status: Showing Complexity: Singular Body

DDH: 6

Trench: No Adit: No Shaft: No Workings: Underground and open pit

Deposit Type: Stratabound epigenetic secondary void filling deposit in carbonate rocks.

LOCATION

Region: Newfoundland NTS Area: 12I/06 UTM Zone: 21 Latitude: 50. 3490627414004 Longitude: 57. 2766020880554 Northing: 5577260 Easting: 480320 Elevation (m): 135 Location Uncertainty (m): 50 Object Located: Geochemistry/diamond drilling (Lane, 1980)

ACCESSIBILITY

The occurrence lies southwest of Flat Pond in a low area east of a large oval shaped hill, approximately 18.0 km east of Bellburns.

PHYSIOGRAPHIC SETTING

The Trapper Zone lies in a relatively flat area with gently rolling hills with elevations up to 150 m.

MINERALOGICAL COMPOSITION

Ore Minerals: Sphalerite Gangue Minerals: Dolomite Age of Mineralization: Unknown

DESCRIPTION OF DEPOSIT

Prospecting in 1963 located an outcrop containing a flat-lying 0.3 m thick bed of pseudobreccia heavily mineralized with sphalerite.

Geologically, the mineralization occurs within the pseudobreccia interval of the Dark Grey Dolomite which underlies the Siliceous Dolomite. These rocks are part of the St. Geeorge Group and are lower Ordovician in age.

A west-northwest trending train of mineralization, boulders, some containing high grade zinc mineralization, extends for a distance of 3 miles from the Trapper Zone to Cobo's Pond. This, according to Lane (1980), along with the fact that the mineralization is on the surface, suggests an eroded zone. Further exploration work is not warranted.

METAL/MINERAL CONTENT

Diamond drill hole 556 assayed at 23.3% Zn/1 foot (Lane, 1980)

NATURE OF MINERALIZATION AND GENESIS

Sphalerite heavily mineralizes a 0.3 m thick bed of pseudobreccia. Additional mineralization was encountered in one drill hole (#556).

REGIONAL GEOLOGY AND TECTONIC SETTING

Geological Province: Appalachian Tectonic Zone: Humber Stratigraphic Unit: St George Group Geological Age: Lower Ordovician Rock Type(s): Dolomitized limestone, pseudobreccia.

The Trapper Claims are underlain by the favourable pseudobreccia horizons. The Trapper Zone is hosted within a belt which dips northwesterly under the Table Head Formation. The overall structure of the belt appears to be monoclinal with the strata dipping uniformly to the west.

Regionally, the area is located on the stable St. Lawrence Platform. The rocks of the Platform consist of Cambrian strata which are overlain by dolomites and limestone of the Lower Ordovician St. George Group.

GEOPHYSICAL EXPRESSION

Hartlein & Blecha, 1975 reported that the deposits do not respond to any known geophysical methods. According to Watson, 1964 this may be due to the almost complete absence of pyrite or other sulphides.

GEOCHEMICAL EXPRESSION

Geochemistry is effective for sub-outcropping mineralization, but, since anomalies may be transported, it often takes prospecting to locate their original source.

23.18 Black Duck Zone

National Mineral Inventory Number: 012I/06/Zn 018 Record ID Number: 1137

DEPOSIT SUMMARY

Deposit Name: Black Duck Zone Alternate Name: Major Commodity: Zinc Secondary Commodities: Status: Showing Complexity: Singular Body

DDH: 28 Trench: No Adit: No Shaft: No Workings: Underground and open pit

Deposit Type: Stratabound epigenetic secondary void filling deposit in carbonate rocks.

LOCATION

Region: Newfoundland NTS Area: 12I/06 UTM Zone: 21 Latitude: 50.32523899287 Longitude: 57.3975574805177 Northing: 5574650 Easting: 471700 Elevation (m): 1125 Location Uncertainty (m): 50 Object Located: Geochemistry/diamond drilling (Lane, 1980)

ACCESSIBILITY

The zone is 1.7 km east-southeast of the southern tip of Bellburns Pond, 9.7 km east of Bellburns and 16.5 km northeast of Daniel's Harbour. The area can be reached by road.

PHYSIOGRAPHIC SETTING

The Black Duck Zone lies in a relatively flat area with gently rolling hills with elevations up to 150 m.

MINERALOGICAL COMPOSITION

Ore Minerals: Sphalerite Gangue Minerals: Dolomite Age of Mineralization: Unknown

DESCRIPTION OF DEPOSIT

Mineralization does not appear in outcrop but was found by testing a geochemical anomaly by diamond drilling. The mineralization is widespread but is not fully delimited by drilling.

Pseudobreccia outcrops in two north-northeast trending belts, a west and an east belt. The west pseudobreccia consists of a south segment which extends south from Kill Devil Pond area to Black Duck Zone. Here, the Black Duck Zone represents the east limb of a major syncline. The Black Duck Zone represents the eastward continuation of the pseudobreccia horizon which hosts all the zinc deposits of the Mike Lake area, and which is part of the Diagenetic Carbonates, Lower Ordovician in age.

METAL/MINERAL CONTENT

Assay results from two drill holes (Lane, 1980): DDH # 967 - 6.55% Zn over 2 feet DDH #1158 - 11.45% Zn over 1.5 feet

NATURE OF MINERALIZATION AND GENESIS

The mineralization does not outcrop but was seen to be present in drill core as sphalerite mineralization within pseudobreccia.

REGIONAL GEOLOGY AND TECTONIC SETTING

Geological Province: Appalachian Tectonic Zone: Humber Stratigraphic Unit: St George Group Geological Age: Lower Ordovician Rock Type(s): Dolomitized limestone, pseudobreccia.

Regionally, the Black Duck Zone is located on the stable St. Lawrence Platform. The rocks of the platform consist of Cambrian strata which are overlain by dolomites and limestone of the lower Ordovician St. George Group.

The Black Duck Zone represents the east limb of a major syncline, which is the eastward continuation of the pseudobreccia horizon which hosts all the zinc deposits of the Mike Lake area. It is located directly on strike with the major
structural trend of the mineralized zones and is considered to be the most favourable area.

GEOPHYSICAL EXPRESSION

Hartlein & Blecha, 1975 reported that the deposits do not respond to any known geophysical methods. According to Watson, 1964 this may be due to the almost complete absence of pyrite or other sulphides.

GEOCHEMICAL EXPRESSION

Geochemistry is effective for sub-outcropping mineralization, but, since anomalies may be transported, it often takes prospecting to locate their original source.

23.19 Additional Showing/Prospects/Past Producers

The following zones were identified as part of the Teck Exploration mining operation at Daniel's Harbour, but are not listed on the Newfoundland and Labrador Department of Natural Resources Mineral Occurrence Database System (MODS):

- R Zone (Open Pit): Production 54,213 tons @ 5.53% zinc 100% Recovery
- T Zone (underground): Production 827,064 @ 7.72% zinc 94.6% Recovery
- U Zone (open pit): Production 33,482 tons @ 6.97% zinc 100% Recovery
- V Zone (open pit): Production 9,685 tons @ 6.87% zinc 100% Recovery
- W Zone (open pit & underground): 50,880 tons @ 7.21 zinc 96.2% Recovery
- X Zone (underground): 159,689 tons @ 7.53% zinc 97.4% Recovery
- Y Zone (open pit): 10,260 tons @ 7.38% zinc 100% Recovery

* All production, grade and recovery numbers from Crossley, 1989 & Caines, 1990.

24.0 OTHER RELAVENT DATA AND INFORMATION

No other relevant data or information is available that would affect future exploration on the Unknown Brook Property.

25.0 INTERPRETAION AND CONCLUSIONS

The Daniel's Harbour area has been the site of mineral exploration for over a 50 years; exploration that has identified several prospects which contain zones of highly anomalous zinc, many of which were the focus of an extensive mining operation throughout most of the 1970s and 1980s. Based on the author's assessment and interpretation of all available,

historically relevant data, the following exploration targets have been recommended for further assessment (See Figure 21 for generalized location).

25.1 P Zone

The P Zone area was the focus of 2017 exploration by Ubique and saw the completion of nine new diamond drill holes, totalling 556.4m. The P Zone has been a known zinc showing for decades and was partially mined as part of Teck's operation prior to mine closure in 1990. It is the only section of the former mine that had known ore grade material ahead of the mine face when operations ceased.

Located north of a poorly defined matrix breccia, The P Zone is comparable to the B and C zones (Sections 23.2 & 23.3 of this report respectively) which are located north of the East Matrix Breccia; This type of mineralization is common, with similar situations occurring at the Q zone, which appears to follow along the north side of the Mike Lake Matrix Breccia, and the T, X and NNL Zones which all follow along the north side of the Trout Lake Matrix breccia.

As discussed in Section 10 of this report, the drilling was separated into two areas, the first of which is located just north of the previously mined P-Zone (The North Drift) and a second area just southeast of the stopped underground face (The East Drift).

Despite the fact that the three holes completed in the North Drift area failed to intersect mineralization, the geological information provided was valuable in allowing correlation between the last drill fence completed by Teck and the most recent drilling 100m north. The correlation of Ubique hole DDH UM-1 and historic hole 2655. Section 23410N (*Figure 11*) and 23510N (*Figure 10*) indicate a possible correlation between DDH 2655 and DDH UM-1 which are quite similar especially in pseudo breccia development. Joining these holes gives a northeast strike (the common strike direction for mineralization) and may indicate that the drilling along Section 23510N was not continued far enough to the east.

Low grade mineralization typically continues for long distances after ore grade material is no longer present, with as much as 50m seen in historic drilling. No trace of mineralization was seen whatsoever in the drilling completed by Ubique and as such may be indicative of a change in strike to the northeast, which had been documented on several occasions during mine operation. To verify if this is indeed the case, drilling additional holes, of similar depth, east of UM-3 is recommended. These holes should me spaced no more than 10m apart along the same grid line (*Figure 18*).

Six holes were drilled southeast of the stopped underground face of the P Zone East Drift for a total of 461.9 m.

As stated in Section 10, DDH UM-4, 6 & 9 were drilled to fill gaps in earlier drilling. UM-4 intersected 13.60% zinc/12.2m with 17.43% Zinc over 8.6m, historic drilling in this area indicated that mineralization on the order of 5-6 meters at 7-9% zinc was typical. DDH UM-6 intersected 5.06% zinc/11.5m and appears to be the continuation of the ore intersected in UM-4. If this interpretation is correct the ore zone may be much wider than originally expected and would indicate a definite kink/bulge in the zone.

The thickening of the ore in UM-4 is likely due to a small thrust fault, which has resulted in approximately five meters of the ore zone being repeated (*Figure 12*). This however does not explain the thick section of mineralization in UM-6 as the fault was not seen and projects below the bottom of this hole.

Additional drilling 10m south of UM-4 and 10m southwest of UM-6 would provide clarity on the thickness of the zone as well as give a clearer indication of width. This would also serve to infill the area and help better define potential extension of the mineralization in multiple directions. Additional drilling in this area may be necessary, contingent upon the result of the first two recommended holes.

DDH UM-5, 7 & 8 were drilled to look for the continuation of mineralization that had been proven by two drill hole fences to have terminated the ore to the south east. All three holes intersected hi-grade mineralization over short intervals and appear to indicate a change in the strike of the ore horizon to the northeast. Historically speaking, this has been the favourable direction for mineralization in this belt. The narrowing and thinning of the ore is common and occurred about 100m northwest of this area, where the mineralized zone expanded after a short section of similar material to that observed in drilling.

To verify if this has occurred again in this area, an additional drill hole fence 30-40m northeast of UM-7 is recommended. Additional holes to the south, spaced 10-12m apart, should also be considered depending on the findings in the first hole (*Figure 19*).

25.2 Muddy Pond Brook

The Muddy Pond Brook Zone is located approximately 500m south of the P Zone (*Figure 21*) and is just south of an underexplored, poorly defined matrix breccia. This is a geological environment similar to the L Zone, which for a large part of its length follows along the south edge of the Trout Lake Matric Breccia, The K Zone, which follows along the southern edge of the Mike Lake Matrix Breccia and the F Zone, which occurs along the south corner of the East Matrix Breccia.

This area, which structurally appears to be a continuation of the M Zone (See Section 23.12), is documented as having intersected near ore grade mineralization in several historic drill holes (*Figure 20*); If the original diamond drill holes can be located, definition drilling of the shallowest sections is highly recommended.

25.3 Tilt Pond & Cobo's Pond

These areas are northeast of former mine and have only been subjected to sporadic diamond drilling despite exhibiting elevated geochemical soil sample results and hosting several large mineralized boulder fields, the source of which has yet to be identified. The drilling that has been completed in these areas is widely spaced (400-1600m) and intersected weak mineralization in good geology but no follow-up was ever completed to provide a clear definition of mineralized intercepts.

The location of historic drill collars, geological mapping, prospecting and detailed soil sampling of interesting areas is recommended to determine if known mineralized trends continue to the northeast, or if these areas potentially host untapped resources, potentially deeper than previous identified ore bodies.

26.0 RECOMMENDATIONS

Based on the findings of this report, the following recommendations are presented for ongoing exploration:

26.1 Phase I

- Complete diamond drilling on existing targets in the P Zone and Muddy Pond Brook areas. This will provide better understanding of these zones and allow targets to be developed for an expanded drill program to be completed as Phase II. This should include, but not be limited to, drill targets discussed in the Sections 25.1 and 25.2.
- 2. A detailed digital compilation of all data acquired though historic exploration should be completed, including all geological mapping, geochemical sampling, and geophysical surveys. Much of this data exists on paper, or in incompatible/inconsistent digital forms; having all data related to the property in one format, using consistent nomenclature, coordinate system and units of measure would prove invaluable moving forward.
- 3. Core from previous drilling should be located, re-examined and systematic sampling should be carried out. Specific attention should be given to the sections of core that were reported to have contained zinc mineralization in previously unmined areas. Much of the drilling that exists on the property was completed using a mine grid system and as such, accurate relocation of these holes would serve to give a clearer picture of mineralized trends and help refine future drilling targets.

- 4. Establish exploration grids to follow-up on existing targets, as well as any new targets identified during the course of Phase I. Geological mapping/prospecting and geochemical soil sampling (Basal Till?) are recommended.
- 5. Identify new/refine existing drill targets and make recommendations for Phase II exploration program.

Proposed Exploration	Estimated Cost			
Diamond Drilling (1,500-2,000m)	\$	200,000.00		
Planning & Supervision – Qualified Professional	\$	35,000.00		
Drilling Assistant	\$	15,000.00		
Geochemical Assays	\$	15,000.00		
Logistics, Site Preparation, etc.	\$	25,000.00		
Detailed Data Review/Compilation	\$	15,000.00		
Re-location/Re-examination of Historic DDH	\$	15,000.00		
Grid Establishment	\$	7,500.00		
Prospecting/Mapping	\$	10,000.00		
TOTAL ESTIMATE	\$	337,500.00		

Table 3: Estimated Phase I Exploration Budget

26.2 Phase II

1. Complete diamond drilling on new targets identified in Phase I to define any potential resource and provide better context on the feasible reality of re-establishing mining operations at Daniel's Harbour. This drilling would likely be extensive and should only be undertaken based on positive results from Phase I exploration and upon the establishment of a comprehensive target generation/review process. It should be noted that access becomes increasingly difficult as you move away from the historic mine infrastructure and as such diamond drill and site preparation expenses are expected to be proportionately higher for the northern claim areas (ie Tilt Pond and Cobo's Pond).

Proposed Exploration	Estimated Cost			
Diamond Drilling (10,000m+)	\$	1,500,000.00		
Planning & Supervision – Qualified Professional	\$	100,000.00		
Drilling Assistant	\$	50,000.00		
Geochemical Assays	\$	75,000.00		
Logistics, Site Preparation, etc.	\$	200,000.00		
TOTAL ESTIMATE	\$	1,925,000.00		

Table 4: Estimated Phase II Exploration Budget

27.0 REFERENCES CITED

Adams, J., 1990: Eighth year supplementary assessment report on diamond drilling exploration for licence 2272 on claim blocks 5399-5403, 12772 and 12775, licence 2273 on claim blocks 2237 and 12771, A and K mining lease and L mining lease in the Zinc Lake and Daniel's Harbour areas Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 121/0201, 1990, 204 pages.

Anderson, G. M. and MacQueen, R.W., 1982: Ore Deposit Models – Mississippi Valley-Type Lead-Zinc Deposits. Geoscience Canada, Volume 9, Number 2, pages 108-117.

Anderson, G.M., 1975: Precipitation of Mississippi Valley-Type Ores. Economic Geology, Volume 70, Pages 937-942.

Beals, F.W. and Onasick, E.P., 1970: The Stratigraphic Habitat of Mississippi Valley Type Ore Bodies. Trans. Institute of Mining Metals, Section B, Volume 79, pages 145-154.

Billheimer, L., 1974: Newfoundland Zinc Mines Ltd. Feasibility Study Newfoundland Zinc Project 1500 TPD, April, 1974 (Final). April 1974.

Blecha, M., 1974: Report on geochemical basal till sampling in the vicinity of the Daniel's Harbour zinc deposits, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0084, 1974, 9 pages.

Blecha, M., 1975: Report on exploration from July 10, 1974 to July 9, 1975 of the Daniel's Harbour Concession, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/0098, 1975, 150 pages.

Caines, R., 1990: Newfoundland Zinc Mines Limited Mine Engineering Progress Report 1990/08. Internal Document. August, 1990.

Collins, C. and O'Connell, J.G., 1984: Assessment report on 1984 drilling for licence 2272 on claim block 226 and for Mike mining lease, L mining lease and C mining lease in the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/0168, 1984, 195 pages.

Collins, J.A. and Young, B.B., 1970: Diamond drilling data from the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0059, 1970, 47 pages.

Collins, J.A., Utard, M and Young, B.B., 1970: Year-end report with geological, geochemical, geophysical and diamond drilling data on the Leitch subconcession in the Daniels Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File NFLD/0550, 1970, 118 pages.

Cominco Limited, 1969: Diamond drilling data from the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 121/06/0056, 1969, 76 pages.

Cominco Limited, 1970: Geological, geochemical and geophysical reports for the Daniel's Harbour area on the Great Northern Peninsula, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/0090, 1970, 17 pages.

Cook, R.B., 1969: Report on geological, geochemical and diamond drilling, work done on Leitch Concession in the Daniel's Harbour west area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0045, 1969, 104 pages.

Cook, R.B., 1969: Diamond drilling data from the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 121/06/0054, 1969, 22 pages.

Crossley, R.V., 1989: Personal communication – Document sent to Newfoundland and Labrador Department of Natural Resources detailing production, by zone, at Daniel's Harbour during mine operations by Teck Exploation Limited/Newfoundland Zinc Mines Limited. All data acquired from personal records and historic mine production/recovery documentation in Mr. Crossley's possession.

Crossley, R.V., 2016: First year assessment report on Compilation of Historical Data, Evaluation and Prospecting of the Ubique Minerals Limited. Daniel's Harbour Property.

Crossley, R.V. and Lane, T.E., 1984: A Guide to the Newfoundland Zinc Mines Limited Ore Bodies, Daniel's Harbour. Mineral Deposits of Newfoundland a 1984 perspective. Department of Mines and Energy, Mineral Development Division, Report 84-03, 1984, pages 45-51.

Dillon, P.J., 1981: Assessment report for licences 1628-1637 and 12198-12202 on the Mike claims in the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/0145, 1981, 167 pages.

Dillon, P.J., 1981: Assessment report on drilling exploration for the C mining lease, L mining lease, Mike mining lease and Mike development licence on property in the Daniels Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/0151, 1981, 215 pages.

Dillon, P.J., 1982: Report on 1981 exploration in the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 121/0150, 1982, 357 pages.

Dillon, P.J. and Lane, T., 1982: Assessment report for licences 1628-1637 and 12199-12202 on the Mike Lake claims in the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/0155, 1982, 173 pages.

Green, P., 1974: Report on the Geology of the Daniel's Harbour Concession, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0089, 1974, 336 pages.

Hamilton, J.M. and Young, B.B., 1969: Geological, geochemical, geophysical and diamond drilling report for the 1964 season in the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0062, 1969, 87 pages.

Hartlein, A.J., 1973: Summary of diamond drill holes from February 9 to July 10, 1973 in the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0073, 1973. 206 pages.

Hartlein, A.J., 1973: Assessment diamond drilling in the Mike Lake area of the Daniel's Harbour area Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0085, 1973. 200 pages.

Hartlein, A.J., 1974: Summary of diamond drill holes from February 9 to July 10, 1973 in the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0074, 1973, 253 pages.

Hartlein, A.J., 1975: Report T729 on diamond drilling in the A-K Zones of the development licence and Daniel's Harbour Concession in the Daniels Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0104, 1975, 49 pages.

Knight, I., 1985: Bellburns, St. Barbe South District, Newfoundland. Newfoundland and Labrador Geological Survey, Open File 12I/0170, [Map 85-063], 1985.

Lane, T., 1978: Assessment report with diamond drill holes for the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0116, 1978, 339 pages.

Lane, T., 1979: Diamond drilling data for zone L mining lease north of Trout River breccia in the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0120, 1979, 138 pages.

Lane, T., 1979: Report on the assessment of diamond drill holes for the Mike and Trapper licences. Trapper and Mike lakes area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0124, 1979, 138 pages.

Lane, T., 1980: Diamond drilling results for 1979 drilling A and K Mining Lease, L Mining Lease, Mike Development Licence. Trapper Development Licence and licence 1385 on claim block 1392 in the Mike Lake and Trout Lake areas, near Daniel's Harbour. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0131, 1980, 193 pages.

Lane, T., 1980: Report on the geology of Trapper claims for licence 1377-1388 in the Daniels Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0133, 1980, 96 pages.

Lane, T., 1984: Preliminary Classification of Carbonate Breccias, Newfoundland Zinc Mine, Daniel's Harbour, Newfoundland. Current Research Part A, Geological Survey of Canada, Paper 84-01A, 1984, pages 505-512.

Lane T., 1985: A prospectors guide to Mississippi Valley-Type (MVT) deposits in Newfoundland and Labrador, Matty Mitchell Prospectors Resources Room information circular Number 3.

Lane, T., 1990: Dolomitization, brecciation and zinc mineralization and their paragenetic, stratigraphic and structural relationships in the Upper St.George Group (Ordovician)) at Daniel's Harbour, Western Newfoundland. Doctoral thesis Memorial University of Newfoundland.

Leach, D. L., Taylor, R. D., Fay, D. L., Diehl, S., and Saltus, R. W., 2010: A Deposit Model for Mississippi Valley-Type Lead Zinc ore. USGS-Scientific Investigation Report 2010-5070-A.

Nelson, S.J., 1955: Stratigraphy and structure of the Portland Creek Pond-Port aux Choix map area, Newfoundland. Newfoundland and Labrador Geological Survey, Internal Report, File 012I/0014, 1955.

Newfoundland Zinc Mines Limited, 1963: Diamond drilling data from the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 121/06/0047, 1963, 163 pages.

Newfoundland Zinc Mines Limited, 1964: Diamond drilling data from the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0048, 1964.

Newfoundland Zinc Mines Limited, 1965: Diamond drilling data from the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0051, 1965, 514 pages.

Newfoundland Zinc Mines Limited, 1965: Diamond drilling data from the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0046, 1965, 156 pages.

Newfoundland Zinc Mines Limited, 1966: Diamond drilling data from the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0052, 1966, 408 pages.

Newfoundland Zinc Mines Limited, 1967: Diamond drilling data from the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0053, 1967, 146 pages.

Newfoundland Zinc Mines Limited, 1973: Diamond drilling data from the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0072, 1973, 1 pages.

Newfoundland Zinc Mines Limited, 1973: Progress report on diamond drilling for Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/04/0075, 1973, 9 pages.

Newfoundland Zinc Mines Limited, 1980: Diamond drill hole logs for 1980 surface drilling for the L mining lease, L mining lease extension number 1 and licence 2272 on claim block 2234 in the Trout Lake, Daniels Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0141, 1980, 27 pages.

Newfoundland Zinc Mines Limited, 1983: Assessment report on 1983 diamond drilling on Mike mining lease, C mining lease and L mining lease in the Daniel's Harbour area, Newfoundland.

Nigol, I.E., 1984: Fourth year assessment report on diamond drilling exploration for licence 2272 on claim blocks 1398 and 2236 in the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/0164, 1984, 47 pages.

O'Connell, J.G., 1985: Assessment report on 1985 diamond drilling for licence 2272 on claim blocks 2235-2236, 12776 and 12778, licence 2273 on claim block 2237, licence 2513 on claim block 2247, Mike mining lease L mining lease and C mining lease in the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 121/0176, 1985, 340 pages.

O'Connell, J.G., 1987: Assessment report on diamond drilling for L mining lease extension number 2 in the Daniels Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/0185, 1987, 48 pages.

O'Connell, J.G., 1988: Seventh year assessment report on diamond drilling exploration for licence 2272 on claim blocks 5402 and 12276 and licence 2276 on claim block 12773 and C mining lease and Mike mining lease in the Lead Lake, Mike Lake and Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 121/0191, 1988, 95 pages.

O'Connell, J.G., 1989: Assessment report on drilling exploration for the Mike mining lease, C mining lease, L mining lease and extensions 1 and 2 and L mining lease in the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0194, 1989, 266 pages.

O'Connell, J.G. and Alley, F., 1989: Drill hole logs and survey records on property in the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/0203, 1989, 342 pages.

O'Connell, J.G. and Dillon, P.J., 1986: First year assessment report on diamond drilling for licence 2513 on claim blocks 2247-2249 in the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/0175, 1986, 14 pages.

O'Connell, J.G. and Dillon, P.J., 1986: Sixth year assessment report on diamond drilling for licence 2272 on claim blocks 2235-2236 and 1399 and claims 12776 and 12778 and licence 2237 on claim block 2237 in the Daniel's Harbour area. Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 121/0178, 1986, 116 pages.

O'Connell, J.G. and Dillon, P.J., 1987: Seventh year assessment report on drilling exploration on the Mike claims for licence 2272-2273 on the property in the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 121/0183, 1987, 58 pages.

O'Connell, J.G. and Dillon, P.J., 1987: Eighth year assessment report on diamond drilling exploration for licence 2272e on claim block 5403 and licence 2273e on claim block 2237 in the Daniel's Harbour area, on the Great Northern Peninsula, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 121/0192, 1988, 52 pages.

O'Connell, J.G. and Dillon, P.J., 1987: First and fourth year assessment report on diamond drilling exploration for the Newfoundland Zinc/Newfields project for licence 2899 on claim blocks 4474-4475 and licence 3273 on claim blocks 4474-4449 in the Daniel's Harbour and Bowing Brook areas of the Great Northern Peninsula, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/0193, 1988, 271 pages.

O'Connell, J.G. and Gaucher, E., 1977: Report on geological, geophysical and geochemical surveys and diamond drilling for the period July 1976 to July 1977 in the Daniel's Harbour area. Newfoundland and Labrador Geological Survey, Assessment File 121/0109, 1977, 433 pages.

Paradis, S., Hannigan, P., and Dewing, K., 2007: Mississippi Valley-type lead-zinc deposits in Goodfellow, W.D. (ed.), A Syntheses of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods, Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, pages185-203.

Pegg, C.W., 1964: Report on exploration carried out to July 10 1964 in the Daniel's Harbour Area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/0023, 1964, 214 pages.

Pegg, C.W., 1965: Report on the exploration work carried out on a group of claims near Daniel's Harbour, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 121/0024, 1965, 9 pages.

Rhodes, D. and Young, B., 1969: Annual report in 1969, report 3, on the Great Northern Peninsula Concession, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File NFLD/0473, 1969, 12 pages.

Rhodes, D. and Young, B., 1971: Annual report on Commodore Mining activities on the Great Northern Peninsula Concession, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File NFLD/0528, 1971, 291 pages.

Rhodes, D. and Young, B., 1971: Annual Report of Diamond Drilling in the St. Barbe-White Bay area of the Great Northern Peninsula, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File NFLD/0585, 1971, 45 pages.

Scott, S.A., 2006: Second year assessment report on diamond drilling exploration for licence 10351M on claims in the Daniel's Harbour area, western Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/0279, 2006, 50 pages.

Scott, W.J., 2005: First year assessment report on geophysical exploration for licence 10351M on claims in the Daniel's Harbour area, western Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/0275, 2005, 27 pages.

Siew, T.M., 1979: Assessment report on dewatering of an underground zinc mine on property in the Daniels Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File NFLD/1221, 1979, 26 pages.

Tallman, P., 2010: First year assessment report on prospecting, compilation, geochemical exploration and diamond drill core logging for licences 15940M, 16704M-16706M and 16756M on claims in the Mike Lake area near Daniel's Harbour, on the Great Northern Peninsula, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/0314, 2010, 98 pages.

Tallman, P., 2012: First year assessment report on geological and geochemical exploration for licence 15940M on claims in the Mike Lake area, near Daniels Harbour, on the Great Northern Peninsula, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0308, 2012, 43 pages.

Tecam Limited, 1976: Report on exploration of the Mike and Trapper development licences in Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0105, 1976, 133 pages.

Teck Exploration Limited, 1980: Summary of diamond drilling on mining leases in the Daniel's Harbour area. Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0140, 1980, 149 pages.

Teck Exploration Limited, 1982: Diamond drilling summary on the mining leases in the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/0157, 1982, 135 pages.

Terry, D.A. and Scott, W.J., 2000: First year assessment report on geochemical and geophysical exploration for licence 6914M for claims in the Lead Pond area, near Daniel's Harbour, on the Great Northern Peninsula, Newfoundland, 2 reports. Newfoundland and Labrador Geological Survey, Assessment File 12I/0262, 2000, 105 pages.

Thom, J. and Anderson G.M., 2008: The Role of Thermochemical Sulfate Reduction in the Origin of Mississippi Valley-Type Deposits. Experimental Results Geofluids (2008) 8, pages 16-26.

Wade, J.G., 1968: Exploration Report on the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 12I/06/0033, 1968, 26 pages.

Watson, I.M., 1964: Assessment Work Report on Daniel's Harbour Mike Lake Property. Newfoundland and Labrador Geological Survey, Assessment File 12I/0021, 1964, 17 pages.

Williams, G.K., 1963: Diamond drill logs from the Daniel's Harbour area, Newfoundland. Newfoundland and Labrador Geological Survey, Assessment File 121/06/0049, 1963, 77 pages.

DATE AND SIGANTURE PAGE

Respectfully Submitted,

illedt m. Stuckless

Elliott M. Stuckless, P. Geo.

December 6th 2017 Date:

Paul Cullingham, CEO Ubique Minerals Limited.

December 6/2017 Date:

APPENDIX I

STATEMENT OF QUALIFICATIONS

Certificate of Qualified Person

I, Elliott M. Stuckless, P. Geo. do hereby certify thot:

1. I currently reside in Paradise, Newfoundland and Labrador and that I am currently employed by:

Vale Suite 700, Baine Johnston Centre 10 Fort William Place St. John's, NL Canada A1C 1K4

- 2. I graduated with a Bachelor of Science (Honours) degree in Earth Science from Memorial University of Newfoundland.
- 3. I am a registered member in good standing with the Association of Professional Engineers and Geoscientists of Newfoundland and Labrador (PEGNL) Membership No. 05677.
- 4. I have been employed as a geologist in the mining and exploration industry in Newfoundland and Labrador for 15 Years.
- I have read the definition of "Qualified Person" as set out in National Instrument 43-101 and certify that I fulfill the requirements by reason of my education, affiliation with a professional association and relevant past work experience.
- 6. I am the qualified person responsible for all items in the technical report titled:

"Technical Report on the Daniel's Harbour Property, Mineral Licences 22337M, 25085M, 25179M, 25180M, 25497M, 25539M & 25555M NTS 121/06 Northern Peninsula Newfoundland and Labrador Canada For Ubique Minerals Limited. Prepared by Elliott M. Stuckless, P. Geo. Effective Date December 6th, 2017"

- I visited the Daniel's Harbour Property on September 23rd, 2017, accompanied by VP Exploration Roland Crossley.
- To the best of my knowledge, information and belief, all sections within this technical contains all the scientific and technical information that is required to be disclosed to ensure that those sections are not misleading.
- 9. I have read the National Instrument 43-101 and Form 43-101F and believe that this technical report has been prepared in compliance with the instrument and form.
- 10. As of the effective date of this report, I am independent of Ubique Minerals Limited and all its affiliates applying all the tests in Section 1.5 of the NI 43-101 guideline.
- 11. I consent to the filing of this technical report with any stock exchange and other regulatory authority and publication by them for regulatory processes, including electronic publication in the public company files on their website accessible by the public.

Dated this 6th of December, 2017

Ellectt m. Ostuckless

Elliott M. Stuckless, P. Geo.

APPENDIX II

MAPS & FIGURES

GEOLOGY OF THE ISLAND OF NEWFOUNDLAND

Figure 3 - Generalized Newfoundland Geology Map (Coleman-Saad et al, 1990)

FIGURE 5 Stratigraphy from Newfoundland Zinc Mines set in the stratigraphy of the Humber Zone Autochthon (adapted from James and Stevens, 1982).

Distribution of the fine breccia types across an ore zone and a structural depression (After Tom Lane)

17	SECTION F-F SECTION F-F DDH (2323 -2325) Looking east 100 FEET 25 METERS									K.V.C. SEPT 2017			
FIGURE			DGD		Elv. 800'	1001	Ps Bx Excellent 46% Spar	Hem. Staining	Red Sphalerite and Pyrite			322	
-		0.000 P	DGD			Minor Diss Py.	660 Minor Diss Py Ps Bx Excellent 4 86. Con	Frequent veins Minor Diss Py.	0.54%/1.0		330'	H 2320 DDH 2	
		Winns.	DGD			-"66"	0.55%1.3° (0.55%1.3°) Ps Bx 2.48%1.5° (55% Spar 0.91%1.6° (Frequent Veins 1.72%1.0° (1.000)	0.62%2.1	1.28%6/3.6	320° L 320' L		DDH 2321 DDH	
	1	ll		I	l	1							

APPENDIX III

2017 DIAMOND DRILL LOGS AND ASSAY CERTIFICATES

Diamond Drill Log

Property/Claim Block "P" Zone /022337m Ore Zone: "P ZONE" Location: Mine Grid approx. 19030 E /23510N UTM: NAD 27 469169E /5573175N ±4 Drilling Co.: New Valley Drilling

Started: 18 Aug 2017 Finished: 18 Aug 2017 Length: 110 feet

Core Size: BQTK

Tests: Depth Dip Azimuth At Collar -90 0

____ ____

Logged: ROLAND V. CROSSLEY

Remarks: Casing pulled. No visible zinc mineralization observed. Overall poor to moderate ps bx.

Depth:

Sample F	ootage
----------	--------

From	To ~15	Length	Rock Type	Description	No.	Est%Zn	From	То	Length	%
0.0	~15	~15	Cashig							
~ 15	28.5	13.5	Mixed dolomite wit	h various core angles may						
			in part be overburde	en.						
28.5	110.0	81.5	Pseudo breccia inte	rval						
			28.5- 29.0 ps b	ox 30% sparry dol.						
			29.0-31.1 dol.	Light grey, 3-5% sparry dol.						
			In fractures	s, bedding 80° to 85° to ca.						
			31.1-32.7 , ps	bx 45% sparry dol., 32.4 grey chert						
			32.7-35.3, dol,	similar to above						
			35.3-39.2, ps b	ox, 35% sparry dol, 1-2% white chert						
			39.2-40.7, dol.	, similar to above						
			39.7, 1 cm	1 fault gauge						
			40.7-41.5, ps b	ox, 25% sparry dol.						
			41.5-43.1,dol.,	minor fracturing						
			43.1-45.1, ps b	ox, poor, 10-15% sparry dol, 43.1 1-2 c	m					
			fault ga	uge?						

Depth:					Sam	ple Fo	ootage			
From	То	Length	Rock Type	Description	No.	Est%Zn	From	То	Length	%
			45.1-46.0, dol., light g 46.0-47.3, ps bx, poor 47.3-51.3, dol., light g 51.3-54.7, ps bx, poor 54.7-70.6, dol., light g fine fracturing, 67.5, downward 70.6-71.9, ps bx, 25-30 71.9-74.4, dol., grey, n 74.4-75.0, weak incipi 75.0-76.9, dol., similat 76.9-78.9, ps bx, 20-30 78.9-110.0, dol., with 80.9 last visible	rey , 5-15 sparry dol. rey, massive , 0-20% sparry dol. rey, 1% white chert, 59.0-68.2 veins 1-2 mm, fault zone ? ds increasing red hematite stainin 0% sparry dol. ninor dol. veining with hematite ent ps bx r to above 5% sparry dol very weak incipient ps bx develo	ng stainin opmen	ng t				
110.0			E.O.H							

Diamond Drill Log

Property/Claim Block "P" Zone /022337m Ore Zone: "P ZONE" Location: Mine Grid approx. 18985E / 23510N UTM: NAD 27 469162 E / 5573176 ±4 Drilling Co.: New Valley Drilling

Started:18 Aug 2017Core Size: BQTKDepthDipAzimuthFinished:18 Aug 2017At Collar-900Length:100 feet__________________

Logged: ROLAND V. CROSSLEY

Remarks: Casing pulled. No visible zinc mineralization observed. Slightly better ps bx development then in UM-1.

Depth: Feet Sample Footage From Length Rock Type Description No. Est.%Zn From То Length % То ~16 ~16 Casing 0.0 100.0 84.0 Pseudo Breccia interval. ~16 25.6-28.3 ps bx, 25-30% sparry dol 28.3-33.1 dol., dark grey dol?, 32.4 oval mottles? 33.1-33.8 ps bx, 5-10% sparry dol. 33.8-35.5 dol., similar to above 35.5-37.9 ps bx, poor, 10-20% sparry dol., may be two thin beds. 37.9-41.6 dol., may in part be weak ps bx, 2-4% sparry dol., in fractures. 41.6-43.1 ps bx, 10-15% sparry dol. 43.1-45.0 dol., similar to above 45.0-47.4 ps bx, 10-15% sparry dol. 47.4-49.1 dol., similar to above 49.1-52.5 ps bx, 25-35% sparry dol. 52.5-60.4 dol., may in part be incipient ps bx

Hole No. UM-2 Page 1 of 2

Tests:

_ ____

Page 2 of 2

Depth: Sample Footage From To Length Rock Type Description No. Est.%Zn From To Length % 60.4-61.6 ps bx, 40% sparry dol. 61.6-64.3 dol., similar to above 64.3-65.8 ps bx, 30% sparry dol. 65.8-68.6 dol., similar to above 68.6-70.1 px bx, 25% sparry dol. 70.1-72.0 dol., similar to above 72.0-76.2 ps bx, 25-30% sparry dol.,"120 bed"? 76.2-79.2 dol., as above minor red hematite at 78.7 79.2-80.6 ps bx, 25-30% sparry dol. 80.6-84.8 dol., as above 84.8-85.1 ps bx, 20-25% sparry dol. 85.1-100.0 dol., similar to above with weak bands of incipient ps bx' 100.0 E.O.H.

UBIQUE MINERALS Hole No. UM-3 **Diamond Drill Log** Page 1 of 2 Property/Claim Block Drilling Co. New Valley Drilling "P" Zone /022337m Ore Zone: "P ZONE" Tests: Location: Mine Grid approx. Started: 19 Aug 2017 Core Size: BQTK Depth Dip Azimuth Finished: 19 Aug 2017 At Collar -90 19060 E / 23510 N 0 UTM: NAD 27 Length: 100 feet 469180 E /5573180 N ±5 _ ___ __ Logged: ROLAND V. CROSSLEY Remarks: Casing left in hole. No visible zinc mineralization observed. Pseudo appears to better developed in this hole then In DDH UM-1&2 Depth: Feet Sample Footage From To Length Rock Type Description No. Est % Zn From To Length % ~17 ~17 Overburden 0.0 100.0 83.0 ~17 Pseudo breccia interval 17.0-19.4 dol., dark grey?, oval mottles? near lower contact. 19.4-20.0 ps bx, 10-15% sparry dol. 20.0-23.6 dol., dark grey, oval mottles? near lower contact. 23.6-24.8 ps bx, 15-30% sparry dol. 24.8-29.2 dol., grey 29.2-31.2 ps bx, 30-45 % sparry dol.

31.2-32.6 dol., as above

to 2 cm.

32.6-33.9 ps bx, 15-20% sparry dol

38.0-41.2 ps bx, 20-25% sparry dol.

45.0-46.5 ps bx, 30-40 sparry dol,

33.9-38.0 dol., as above, 1-2% white chert

41.2-45.0 dol, as above, 2-3% white chert nodules

Depth:				Samp	ole Foota	ige		
From To %	Length	46 48.0-50.2 50.2-51.4 51.4-57.0 57.0-59.4 59.4-62.8 62.8-67.2 67.2-70.0 70.0-71.1 71.1-73.1 73.1-82.3 82.3-83.0 yellowish 83.0-85.0 85.0-100.0	Description .5-48.0 dol., as above, 1% white chert to 1 cm ps bx, 25-30% sparry dol. dol. ps bx, 15-25% sparry dol. dol as above ps bx, 20-25% sparry dol, vuggy dol., as above ps bx, 25-35% sparry dol, dol., as above ps bx, 25-35% sparry dol. dol., as above with a few incipient ps bx beds recemented fault zone ?, small fragments in 1 grey matrix ps bx, 20-30% sparry dol. 0 dol., with weak bands of incipient ps bx	No. n	Est. % Zn	From	То	Length

100.0

E.O.H.

Dian	nond D	orill Log			C						Page 1	of
Property "P" Zone	/Claim	Block		Drilling C	co.:New Valley	Drilling						
Ore Zon Location 19385E UTM: 469260 Logged	n: Mine /22655N NAD 27 DE /5572 d: ROLA	ONE" Grid appro N 2908N ±5 AND V. CF	ox. ROSSLEY	Started: Finished: Length:	19 Aug 2017 20 Aug 2017 240 feet	Core Size: BQT	ΥK		Depth At Collar	Гests: Dip -90	Azimuth 0	
Remark	s: Casir 13.629	ng left in ho %Zn/39.9'	ole. Fault at 185.0 a @ 159.1. 17.4	appears co 3%Zn 28.2	ntinuation of fat	alt in next section	to the v	west.				
Depth:	Feet							Sample	Fo	ootage		
From 0.0	То 39.5	Length 39.5	Rock Type Casing Overbu	ırden	Description		No.	Est%Zn	From	То	Length	%
39.5	88.0	48.5	Siliceous Dolor grey. Gene beds. Beddi conglomera fragments a	mite (Agua rally thin b ing 75° to 8 ite, a mixtu nd black s	othuna Fm) ligh bedded with occ 80° to ca., 83.6- are of siliceous of hale also with n	t to medium dark casional thicker 84.9 intra formatio lol, fragments, che ninor py blebs 1-3	onal ert mm.					
88.0	142.1	54.1	Dark Grey Dolo grey, very d dol., only oc 75°-80° to c to be from the bottom usually con	mite. Cont ifferent in ccasionally a.a. Worms 103.1-105. of the mas sidered the	act sharp. Gene appearance from thin bedded, b bed marker dif 4 followed by p sive basal unit, a base of the dar	erally medium to d n over lying siliced edding where obsection ficult to define app ellet marker. 142. approximately "30 k grey dolomite.	ark ous erved oears 1 is "an is					
142.1	240.0	97.9	Pseudo Breccia	Interval, a	mix of dol. and	ps bx beds,						

Depth:	Fee	et			Sam	ple	Footage			
From	То	Length	Rock Type	Description	No. Est	%Zn	From	То	Length	%
		C	142.1-144.4 grad	lual change to ps bx, 0-15% sparry dol.					C	
			144.4-147.5 dol	., grey						
			147.5-149.1 ps l	ox, fair to good 30-35% sparry dol.	266701	tr	147.0-	148.8	1.8	0.01
			tr yellow brown	zinc, tr py blebs to 5 mm						
			149.1-152.3 dol	., as above						
			152.3-155.4 ps l	ox, fair 20-30% sparry dol., tr yellow	266702	tr	152.7-	153.7	1.0	tr
			brown sphalerite	e, tr py blebs to 5mm.						
			155.4-159.2 dol	., as above						
			159.2-160.0 ps l	ox, 20-30 sparry dol, estimated 10% Zn	266703	10%	159.1-	160.0	0.9	18.1
			over 0.8., yellov	v-brown ZnS						
			160.0-162.8 dol	. as above	266704	tr	160.0-	-161.9	1.9	tr
			162.8-163.7 ps l	ox, good, 30-40% sparry dol., yellowish-	· 266705	10%	161.9-	164.0	2.1	8.30
			brown ZnS, est,	10%/1.9						
			163.7-165.7 dol	., as above, tr ZnS in fractures	266706	tr	164.0-	165.7	1.7	0.45
			165.7-167.7 ps l	ox, good, 40-45% sparry dol. 3-5%	266707	1-2%	165.7-	167.7	2.0	5.65
			yellowish brown	ZnS, est. 4% Zn / 2.0'						
			167.7-170.0 dol	., as above, 1-2% ZnS in flat veins.	266708	tr	167.7	-170.0	2.3	1.86
			170.0-170.8 ps l	ox, 50% sparry dol., 1-2% yellowish	266709	1-2%	170.0	-170.8	0.8	2.34
			brown ZnS							
			170.8-175.6 dol	., yellow brown ZnS in veins to 0.5'	266710	tr	170.8	8-173.0) 2.2	tr
			minor Py in bleb	s to 1 cm.						
			175.6-178.0 ps b	x, good, 30-35% sparry dol. brownish	266711	12%	173.0)-175.6	5 2.6	23.1
			ZnS, est. 30-359	6 Zn over 1.2' at 175.6	266712	25%	175.6	5-177.() 1.4	34.3
			178.0-179.0 dol	., as above, 2-4 yellowish ZnS in veins	266713	tr	177.0)-178.3	3 1.3	3.01
			lots of white che	rt.	266714	25%	178.3	3-180.	6 2.3	22.9
			179.0-185.0 px	bx, 30-40% sparry dol., est. 20%+ ZnS	266715	tr	180.0	5-183.0	2.4	4.14
			in ps bx and in d	ol. veins.	266716	25%	183.0)-185.	0 2.0	42.1
			185.0-185.1 <u>Fau</u>	lt zone , black fault gauge,	266717	?	185.0)-185.	1 0.1	15.0

Hole No. UM-4 Page 3 of 4

Sample Footage

From	То	Length	Rock Type	Description	No.	Est	%Zn	From	То	Length	%
			185.1-186.0 186.0-188.1 yellow ZnS, 188.1-192.4 192.4-199.0 grade section grinding 195	dol. ps bx, good 30 sparry dol. brown and est. 15-20% Zn /2.1', botriodial in places dol., grey, 2-3 cm veins with brown ZnS ps bx, 15-30% sparry dol., several high ns of 30-40% ZnS, some good ore lost to	266 266 266 266 266 266	718 719 720 721 722 723	tr 20% tr 30% tr 10%	185.1- 185.8-1 187.3- 192.0- 194.5- 195.5-	185.8 187.3 192.0 194.5 195.5 198.0	0.7 1.5 4.7 2.5 1.0 2.5	1.21 28.5 0.92 35.5 0.67 35.6
			198.0 –199.0) dol., grey minor trace of ZnS	266	724	tr	198.0-	199.0	1.0	4.96
			206.0-207.6 207.6-209.1 209.1-210.7 210.7-212.0 212.0-213.8 213.8-214.7 214.7-215.5 215.5-218.1 hematite stai 218.1-220.8 220.8-223.5 dol. 223.5-228.3 measles like 228.3-229.6 staining. 229.6-231.1 231.1-233.1 stained	 dol. grey ps bx, 40-45% sparry dol. dol., grey ps bx, 30% sparry dol. dol., grey ps bx, 30-35% sparry dol. dol., grey, 1% sparry dol. in fractures ps bx, 15-20% sparry dol. weak red ining in fractures. dol., grey, 1-2% sparry dol. infractures poor to incipient ps bx, 0-15% sparry dol., 1-2% sparry dol in fractures, red blotches of hematite staining ps bx, 45-50 sparry dol., minor hematite dol., similar to 223.5-228.3 ps bx, 50-60% sparry dol., hematite 							

Depth: Feet

Hole No. UM-4 Page 4 of 4

SampleFootageRock TypeDescriptionNo. Est%ZnFrom To Length %233.1-235.0 dol., similar to above, hematite
staining
235.0-237.5 px bx, 50-60% sparry dol.No. Est%ZnFrom To Length %

Feet

To Length

237.5-240.0 dol., similar to above. E.O.H.

hematite staining

240.0

Depth:

From

UBIQUE MINERALS Hole No. UM-5 **Diamond Drill Log** Page 1 of 2 Property/Claim Block Drilling Co.: New Valley Drilling "P" Zone /022337m Ore Zone: "P ZONE" Tests: Location: Mine Grid approx. Started: 20 Aug 2017 Core Size: BQTK Depth Dip Azimuth At Collar -90 19660E /22680N Finished: 21 Aug 2017 0 UTM: NAD 27 Length: 260 feet 469344E/5572922N ±4 Logged: ROLAND V. CROSSLEY Remarks : Casing pulled. 14.06%Zn/2.3' @210.7' Depth: Feet Sample Footage Length Rock Type Description No. Est%Zn From From То То Length % 23 Casing / Overburden 0.0 23 23 138.5 115.5 Siliceous Dolomite, light to medium dark grey, thin to massive bedded, bedding $\sim 80^{\circ}$ to core axis. Occasional intra formational conglomerates, and bio-turbated. 134.0-135.0 well developed break in sedimentation fragments along contact. (see hole UM-4) 138.5 43.0 Dark grey dolomite, contact gradational, medium to dark 181.5 grey, distinctly different in character from the above unit. Several areas look like worm tube marker, the most likely is at 144.8 to 146.5 with pellet bed from 146.5 to 147.5. Several incipient ps bx indicate by vuggy zones, only recognizable ps bx from 177.9 to179.6 with 15-20 sparry dol. 181.5 78.5 260.0 Pseudo Breccia Interval. Contact gradational, dark to medium grey in colour mixture of dol. beds and ps bx. Occasional sparry dol in fractures.

Depth:	Feet				Samp	ple	Foot	age					
From	То	Length	Rock Type	Description	No.	Est	%Zn	From	То	Length	%		
			181.5-201.7 dol.	, grey and incipient ps bx									
			201.7-203.5 ps t	ox poor 10-15% sparry dol.									
			203.5-210.1 dol.,	with possible incipient ps bx beds									
			210.1-212.4 ps b	x, 20% sparry dol. 210.7-212.0 (1.3')	266	738	20%	210.7-2	212.0	1.3	23.4		
			20-25% yellow b	orown ZnS	266	739	<1%	212.0-2	213.0	1.0	1.92		
			212.4-214.0 dol	as above									
			214.0-215.0 px l	bx 10-15% sparry dol., minor trace									
			yellow ZnS										
			215.0-218.5 dol.	, as above									
			218.5-219.5 ps t	ox, 25-35% sparry dol., minor trace									
			yellow ZnS										
			219.5-223.6 dol.	., 1-2% sparry dol in veins									
			223.6-225.3 px l	bx, 45-50% sparry dol									
			225.3-226.1 dol as above										
			226.1-228.6 ps t	ox, 40-45% sparry dol									
			228.6-232.2 dol	as above									
			232.2-237.0 ps t	bx 40-50 sparry dol									
			237.0-242.0 dol.	, as above but with strong hematite stai	ining								
			and 20-30% dol.	in veins and fractures									
			242.0-243.1 ps t	ox 20-25% sparry dol. with red hematite	e								
			staining										
			243.1-245.1 dol,.	2-3% sparry dol in fractures									
			245.1-246.4 ps t	ox, 60-70% sparry dol. with hematite st	aining	5							
			246.4-248.3 dol.										
			248.3-252.3 ps bx, 20-45 sparry dol. tr hematite										
			252.5-255.5 d0l, 255.3-258.0 ns by 30-50 snarry dol strong hematite staining										
			255.3-258.0 ps t	5x, $50-50$ sparry doi. strong nematite sta	aining	,)							
<u> </u>			258.0-260.0 dol.,	minor nematite staining									
60.0			E.O.H										

Diam	nond I	Drill Log		UBIQUE	MINERALS				Hole No. Page 1	UI of	M-6 3
Property "P" Zone	/Claim 2 /0223	Block 37m		Drilling Co.: New Valley	Drilling			T /			
Ure Zon Location 19500E UTM: 1 4693001	e: ^A P Z h: Mine E /2260 NAD 2 E / 557	ONE ^{**} e Grid approx 0N 7 2894N ±4	Χ.	Started: 21 Aug 2017 Finished: 22 Aug 2017 Length: 245 feet	Core Size: BQTK		Depth At Collar	Dip -90	Azimuth 0		
Logged:	ROLA	ND V. CRO	SSLEY								
Remarks	s: Cas	ing pulled. 1	3.80%/9.9 @184	.0', 5.06% Zn/37.8 @	184.0',						
Depth:	Fee	t				Sample	Footag	ge			
From 0	То 30	Length 30	Rock Type Casing overburd	Description	Ν	lo. Est%Zn	From	То	Length	%	
30	116.2	86.2	Siliceous Dolom sections, thin formational c 10° to core av	ite. Generally light grey of to thick bedded, several z conglomerate observed bea kis.	occasional darker cones of intra- dding approx						
116.2	161.8	45.6	Dark Grey Dolo are gradation unit, where s 124.5-125.8 125.8-126.3 149.4-150.8 150.8-161.8 little observ possible min 161.8-164.4	omite both upper and lown nal, almost no good beddi seen ~10° to c.a. worms marker pellet bed first ps bx bed 10-15% sp massive basal unit, very able structure. Often cons neralized Pseudo Breccia i	er contacts ng observed in this parry dol. fine grained sidered start of interval.						

Depth:	Feet	-			Sam	ple Foo	otage		
From	То	Length	Rock Type	Description	No.	Est%Zn	From To	Leng	gth %
161.8 2	245.0	83.2	Pseudo Breccia In	terval, composed mostly of dol. and					
			ps bx, beds.						
			161.8-164.4 p	os bx, 15-20% sparry dol.					
			164.1-167.4 c	lol. medium grey, 2-3% sparry dol in veins					
			and fractu	ures, tr ZnS					
			167.4-170.0 p	os bx, 25-35% sparry dol.	26675	3 <1%	167.7-168.8	1.1	1.02
			170.0-173.0 č	lol.					
			173.0-175.6 p	os bx, 30-40% sparry dol.					
			175.6-184.0 c	lol, 1% sparry dol infractures					_
			184.0-185.8 p	ox bx, 25-30% brownish ZnS	26672	5 27%	184.0-185.8	1.8	26.6
			185.8-188.6 v	weak ps bx and dol	26672	26 tr	185.8-188.6	2.8	1.63
			188.6-191.9	dol.	26672	7 tr	188.6-191.9	3.3	0.48
			191.9-193.9	ps bx, 35-40% ZnS	26672	.8 30%	191.9-193.9	2.0	41.3
			193.9-197.6	dol,	26672	9 tr	193.9-197.6	3.7	0.21
			197.6-198.6	ps bx, 5% brownish ZnS	26673	0 5%	197.6-198.6	1.0	9.70
			198.6-199.8	dol.	26673	1 tr	198.6-202.9	4.3	tr
			199.8-201.3	ps bx, 25% sparry dol.	26673	2 tr	202.9-206.0	3.1	tr
			201.3-206.0	dol.	26673	3 tr	206.0-209.0	3.0	tr
			206.0-209.0	ps bx, 45% sparry dol.	26673	4 tr	209.0-212.5	3.5	tr
			209.0-212.5	dol.	26673	5 10%	212.5-213.5	1.0	24.3
			212.5-214.2	ps bx, possible two beds, contains	26673	6 tr	213.5-219.4	5.9	tr
			contains 5	cm of high grade ZnS	22673	2%	219.4-221.8	2.4	8.30
			214.6-215.6	dol.					
			215.6-217.7	ps bx, 20% sparry dol.					
			217.7-219.4	dol.					
			219.4-223.5] 1-2% redd	ps bx, 40% sparry dol. 219.4-221.8 dish-brown ZnS					
			223.5-236.2	dol., with incipient ps bx					
			236.2-238.1	ps bx, 15-20 sparry dol.					

Depth:	Feet		Sample Footage
From	To Length	Rock TypeDescription238.1-240.0dol., 1% sparry dol. in fractures240.0-241.3ps bx, 10-15% sparry dol.241.3-244.0dol., as above244.0-245.0incipient ps bx, 5% sparry dol.	No. Est%Zn From To Length %
245.0		E.O.H.	

Diamond Drill Log

Property/Claim Block "P" Zone /022337m Ore Zone: "P ZONE" Location: Mine Grid approx. 19690E / 22630N UTM: NAD 27 469348E / 5572915N ±4 Drilling Co.: New Valley Drilling

Started: 22 Aug 2017 Co Finished: 23 Aug 2017 Length: 260 feet

Core Size: BQTK

Tests: Depth Dip Azimuth At Collar -90 0

____ ___

___ ___

Logged: ROLAND V. CROSSLEY

Remarks : Casing pulled., 12.79% Zn/ 5.4' @217.9'

Depth:	Fee	t			Sam	ple	Footage			
From 0	То ~30	Length ~30	Rock Type Casing overburden	Description	No.	Est%Zn	From	То	Length	%
~30	145.0	115.0	Siliceous Dolomite, simila to thick bedded, sever seen, bedding ~ 80° to	ar to holes UM-4,5&6, very thin al intra-formational conglomerates o core axis.						
145.0	197.0	52.0	Dark Grey Dolomite, conta the overlying unit, be 161.3-163.0 worms n 163.3-163.6 pellet be 163.6-197.0 dol., with	ect gradational, very different from edding generally indistinct. narker bed ed n a few weak incipient ps bx beds						
197.0	260.0	63.0	Pseudo Breccia Interval, co mix of alternating dol 197.0-199.1 ps bx, 10 199.1-202.3 dol., gre 202.3-204.9 ps bx 15 ½ cm clot of Py 204.9-207.9 dol., 1-2	ontact based on first good ps bx bed, and ps bx 0-15% sparry dol, may be "30" bed y 5-20 % siliceous dolomite, 204.2 2% sparry dol. in fractures	,					

Hole No. UM-7 Page 1 of 3

Depth:	Feet				Sam	ple Foo	otage		
From	То	Length	Rock Type	Description	No.	Est%Zn	From To	Length	%
			207.9-210.6	ps bx, 25-30% sparry dol., several					
			½ cm cl	ots of Py					
			210.6-215.0	dol. as above					
			215.0-215.7	px bx, 5-10% sparry dol.					
			215.7-217.9	dol. as above					
			217.9-220.4	ps bx, 20% sparry dol. 25% brownish	26674	40 20%	217.9-220.1	2.2	28.2
			ZnS.						
			220.4-222.4	dol. as above	26674	41 tr	220.1-222.3	2.2	0.40
			222.4-224.3	ps bx, 20% sparry dol,, tr. to 7%					
			brownis	sh ZnS	26674	42 7%	222.3-223.3	1.0	6.14
			224.3-226.7	dol., as above					
			226.7-228.7	ps bx, 30-35% sparry dol.	26674	43 tr	223.3-224.3	1.0	0.42
			228.7-232.0	dol., as above					
			232.0-235.1	ps bx, 20-15% sparry dol. may be two					
			beds?						
			235.1-239.5	dol., as above, 238.2 start of red hemat	ite				
			staining	g.					
			239.5-243.1 staining	ps bs, 30-35% sparry dol. minor hemat	tite				
			243.1-246.0	dol, red measles hematite staining					
			246.0-248.0	ps bx 20-30% sparry dol_strong hema	atite				
			staining						
			248.0-249.0	dol., hematite staining					
			249.0-250.8	ps bx, 20% sparry dol., hematite staini	ing				
			250.8-251.6	dol., hematite staining					
			251.6-253.6	px bx, 20% sparry dol., hematite staini	ng				
			253.6-254.9	dol., read hematite measles staining and	1				
			alteration	on.					

Depth:	Feet		Sample Footage
From	To Length	Rock TypeDescription254.9-255.7ps bx 20-30% sparry dol.255.7-256.6dol., hematite staining256.6-257.5ps bx, 20-25% sparry dol.257.5-258.3dol., weak hematite staining258.3-260.0ps bx, 25-30 sparry dol., redhematite staining.	No. Est%Zn From To Length %
260.0		E.O.H.	

Diamond Drill Log

Property/Claim Block "P" Zone /022337m Ore Zone: "P ZONE" Location: Mine Grid approx. 19670E /22615N UTM: NAD 27 429350E /5572906N ±4 Drilling Co.: New Valley Drilling

Started: 23 Aug 2017 Finished: 24 Aug 2017 Length: 260 feet

Core Size: BQTK

Tests: Depth Dip Azimuth At Collar -90 0

____ ___

Logged: ROLAND V. CROSSLEY

Remarks : Casing pulled., 10.80% Zn/2.1' @ 216.6'

Depth	: Fee	et			Sam	ple	Footage			
From	To ~28	Length	Rock Type	Description	No.	Est%Zn	From	То	Length	%
0	~28	~28	Casing overbuilden							
~28	148.9	120.9	Siliceous dolomite, light to bedded, occasional intra ~ 80° to core axis. Last dolomite veins up to ½	medium grey, thin bedded to massive a-formational conglomerates, bedding t 15 feet of siliceous dol. 1-3% white a cm wide, sub parallel to core axis						
148.9	194.2	2 45.3	Dark grey dolomite, conta occasional sub vertical 156.9-159.7 worms m 159.7-160.4 pellet bed 185.5-194.2 massive b 190.0 8cm? black m	act gradational, darker grey then above dol. veins to ½ cm. Bedding minimal arker l basal unit nud seam, resembles ground Py, but no	, one vis	sible				
194.2	260.0	65.8	Pseudo Breccia Interval, r 194.2-196.3 ps bx, po 196.0-200.7 dol., grey 200.7-202.7 ps bx, 15 202.7-206.1 dol.	nix of alternating ps bx and dol. bands or, 5-10% sparry dol. 5-20% sparry dol.						

Hole No. UM-8 Page 1 of 2

Depth:	Feet				Sam	ple Foo	otage			
From	То	Length	Rock Type	Description	No.	Est%Zn	From	То	Lengt	h %
			206.1-209.2	ps bx, 15-20% sparry dol						
			209.2-213.4	dol.,						
			213.4-213.8	ps bx, 10-15% sparry dol. 15% yellow-	26675	54 7%	213.4-2	214.4	1.0	4.28
			brown Z	nS/0.8						
			213.8-216.1	dol.,	26675	55 4%	216.6-2	18.7	2.1	10.8
			216.1-219.2	ps bx, 7-10% yellowish-brown ZnS/1.0'						
			219.2-220.1	dol.	26675	56 1%	222.3-2	23.3	1.0	0.79
			220.1-223.6	ps bx, 30-35% sparry dol., < 1% ZnS						
			223.6-225.5	dol.,						
			225.5-227.4	ps bx. 35-40% sparry dol.						
			227.4-230.8	dol., 1-3 sparry dol. in veins						
			230.8-233.0	ps bx, 25-35 sparry dol.						
			233.0-233.8	dol.,						
			233.8-235.5	ps bx, 30-35% sparry dol.						
			235.5-240.4	dol.,						
			240.4-243.5	ps bx, 35-40% sparry dol., tr hematite						
			staining	g, vuggy						
			243.5-247.0	dol., red hematite measles like alteration						
			247.0-249.0	mixed sparry dol., veins and possible rece	emented	1				
			materia	l in shear zone, also hematite staining						
			249.0-250.0	dol.,						
			250.0-251.7	ps bx, 40-50 sparry dol., hematite staining	g					
			251.7-253.1	dol., measles type alteration						
			253.1-258.4 staining	ps bx, variable 5-50% sparry dol., minor	hematit	e				
			258.4-260.0	dol., measles type,						
260.0			E.O.H.							

Diamond Drill Log

Property/Claim Block "P" Zone /022337m Ore Zone: "P ZONE" Location: Mine Grid approx. 19510E /22625N UTM: NAD 27 469307E /5572905N ±5

Drilling Co.: New Valley Drilling

Core Size: BQTK Started: 24 Aug 2017 Depth Dip Azimuth Finished: 24 Aug 2017 At Collar -90 0 Length: 250 feet _____ ____

Logged: ROLAND V. CROSSLEY

Remarks : Casing pulled., 5.37%Zn/13.7' @181.7'

Depth:	Fee	t			Samp	le	Footage	-	. .	
From 0	~30	~30	Rock Type Casing / Overburden	Description	No.	Est%Zn	From	10	Length	%
~30	117.2	87.2	Siliceous Dolomite, predor dark grey sections. This bedding ~ 80° to core as	ninately lights grey with occasional n bedded with occasional massive beak kis.	ds					
117.2	161.0	43.8	Dark grey dolomite, general recognizable bedding, r character. Contact grad 124.3-126.6 worms ma 126.6-127.2 pellet bed 152.2-161.0 massive b considered base of dark	lly dark grey colour, only minor much different from above in overall ational arker bed pasal unit, thick massive bed usually k grey dol.						
161.0	250.0	89.0	Pseudo Breccia interval, co sequence of dol. and ps 161.0-163.2 ps bx wea 163.2-166.4 dol., 1% sp 166.4-168.0 px bx, 15-	omposed mostly of a repetitive s bx bands k, 10-15% sparry dol. parry dol. in fractures 20% sparry dol						

Hole No. UM-9 Page 1 of 3

Tests:

___ ___

Hole No. UM-9 Page 2 of 3

Depth:	Fee	t			Sa	ampl	le I	Footage			
From	То	Length	Rock Type 168.0-171.6	Description dol., 2-3% sparry dol, in yeins/fractures	No.	Est	:%Zn	From	То	Length	%
			171.6-174.3	px bx, 30-35% sparry dol.							
			174.3-181.7	dol. 1% sparry dol. in veins							
			181.7-183.3 ZnS	ps bx, 20% sparry dol., 10% yellow brown	2667	744	7%	181.7-	183.8	2.1	8.80
			183.8-185.2	dol., tr ZnS in sparry dol. veins	2667	745	tr	183.8-	185.2	1.4	0.32
			185.2-187.0	ps bx, 30-35% sparry dol., 1-2 % ZnS	266'	746	4%	185.2-	187.0	1.8	3.47
			187.0-189.7	dol. tr ZnS in sparry dol. veins	266	747	tr	187.0-	189.7	2.7	1.49
			189.7-190.7	ps bx, 30-35% sparry dol. 1-2% ZnS	266	748	3%	189.7-	190.7	1.0	3.14
			190.7-194.2	dol., 193.2-194.2 1-2% ZnS is sparry	2664	449	tr	190.7-	193.2	2.5	0.34
			dol. ve	ins							
			194.2-197.8	ps bx, 20-30% sparry dol., 25% yellowish	266	750	2%	193.2-	194.2	1.0	7.70
			brown	ZnS	266	751	20%	194.2-	-195.4	1.2	27.2
			197.8-199.1	dol.,	2667	752	tr	195.4	-196.4	2.0	0.46
			199.1-199.6	ps bx, 30-35% sparry dol.							
			199.6-202.2	dol., with incipient ps bx							
			202.2-205.7	ps bx, 30-35% sparry dol., minor hematite							
			stainin	g							
			205.7-208.7	dol., tr hematite staining							
			208.7-210.3	ps bx 15-20% sparry dol., tr hematite staini	ng						
			210.3-219.8	dol., may in part be incipient ps bx							
			219.8-221.3	ps bx, 25-35% sparry dol.							
			221.3-222.0	recemented fault							
			222.0-228.0	dol., with occasional network fracturing							
			227.3 1	cm shear zone							
			228.0-229.2	ps bx, 20-25% sparry dol.							
			229.2-231.7	dol.							
			231.7-235.0	ps bx, 45-50% sparry dol.							
			235.0-236.6	dol., 1-3% sparry dol in veins							
			236.6-239.0	ps bx, 25-30% sparry dol							

Hole No. UM-9 Page 3 of 3

Depth:	Fee	t			Sa	imple Fo	ootage			
From	То	Length	Rock Type	Description	No.	Est%Zn	From	То	Length	%
			239.0-240.8	dol.						
			240.8-243.6	ps bx, 25-30% sparry dol.						
			243.6-245.6	dol.						
			245.6-247.8	ps bx, 30-35% sparry dol.						
			247.8-249.5	dol.						
			249.5-250.0	ps bx, 30% sparry dol.						

250.0 E.O.H.

ICP - 34 Certificate

Client: Geologist: Project: Sample:	Ubique Mi Roland Cr Daniels H Core	inerals rossley larbour											E A	AS Ana	TE lyti	RN cal										Signe	d by:	Ana	n UV	ught	\geq			
DskFile:	167-17164	405											Email	info@	Doosta	rnana	lutical c	2							F	Results	s apply	to samp	oles as	s subm	itted.			
DateIn: DateOut:	August 29 Septembe), 2017 er 14, 2	017										P.O. E 403 Li Phone	Box 18 ttle Ba : 709-	9 Easte 7 1y Roa 673-39	d Sprir 909 / F	ngdale,	⊐ NL A0J 9-673-3	1T0 408						Conc	entrati interf	ions in erences	assay ra s in asso	ange i ociate	may ca d elem	use ents.			
Sample	Ag	AI	As	 Ва	Be	Bi	Ca	 Cd	Ce	Co	Cr	Cu	Fe	In	К	La	Mg	Mn	Мо	Na	 Ni	 Р	Pb	S	Sb	Se	Sn	Sr	Ti		V	W	Zn	Zr
Number	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
BLANK	<0.2	<0.01	<5	<5	<0.5	<2	0.01	<0.5	<2	<2	<5	<5	0.01	<2	<0.01	<1	<0.01		<1	<0.01	<1	<0.01	<2	0.01	<3	<10	<10	<1	<0.01	<2	<1	<10	<5	<1
STD-OREAS-45D	0.3	7.86	13	175	0.8	<2	0.19	< 0.5	36	29	564	384 :	>10.00	<2	0.43	16	0.24	475	2	0.10	216	0.04	22	0.05	<3	<10	<10	29	0.75	4	234	<10	48	136
266701	<0.2	0.23	5	10	< 0.5	3	15.41	8.2	6	2	33	25	1.36	2	0.20	2	>10.00	166	<1	0.02	4	< 0.01	31	1.89	<3	<10	<10	23	0.01	4	5	<10	>2200	2
266702	< 0.2	0.14	5	11	< 0.5	2	15.44	1.3	5	2	8	<5	0.23	4	0.15	2	>10.00	209	2	0.02	4	< 0.01	<2	0.15	<3	<10	<10	23	0.01	4	3	<10	759	2
266703	0.3	0.17	<5	10	< 0.5	2	11.53	322.9	6	<2	18	20	0.60	<2	0.13	2	9.18	118	2	0.02	6	< 0.01	235	9.52	<3	12	<10	21	0.01	5	3	<10	>2200	2
266704	<0.2	0.37	<5	14	<0.5	-2	15 28	1.0	7	<2	9	20	0.28	3	0.30	2	>10.00	127	1	0.02	3	<0.01	200	0.20	<3	<10	<10	26	0.02	5	5	<10	276	5
266705	<0.2	0.07	<5	7	<0.5	<2	14 41	175.5	. 8	<2	20	6	0.35	4	0.00	3	>10.00	133	2	0.02	6	<0.01	68	3.84	<3	10	<10	22	0.01	4	4	<10	>2200	2
266706	<0.2	0.13	~5	6	<0.0	2	14 69	89	7	-2	20	~5	0.00	6	0.10	3	>10.00	154	-1	0.02	2	<0.01	21	0.32	-3	~10	~10	22	0.01	4	3	~10	>2200	2
266707	<0.2	0.10	5	6	<0.0	-2	1/ 58	11/ 2	, 8	-2	17	6	0.26	1	0.11	3	<pre>>10.00</pre>	135	1	0.02	1	<0.01	32	2.52	3	13	~10	22	0.01	1	3	~10	>2200	2
266708	<0.2 0.2	0.13	-5	12	<0.5	~2	15 13	36.0	7	~2	6	6	0.20		0.11	3	<pre>>10.00</pre>	1//	2	0.02	1	<0.01	35	1 00	-3	~10	<10	25	0.01		5	<10	>2200	5
266709	<0.2	0.00	~5	12	<0.5	~2	15.15	/8 1	á	~2	5	5	0.33	6	0.23	3	<pre>>10.00</pre>	1/18	1	0.02	т 3	<0.01	80	1.03	<3	<10	<10	20	~0.02	3	2	<10	>2200	2
266710	<0.2	0.03	<5	17	<0.5	~2	15.27	-0.1	2 Q	~2	6	-5	0.27	1	0.00	3	>10.00	128	-1	0.02	5	<0.01	00 g	0.34	<3	<10	<10	22	0.03	1	7	<10	2200	2 Q
200710	<0.2 2.2	0.09	<0 0	1/	<0.5	2	10.07	360.4	7	2	11	150	1.06	4	0.35	3	7 26	120	2	0.02	5	<0.01	371	12 22	<3	<10	<10	22	0.03	4	6	<10	~209	6
266711 P-DUP	2.2	0.40	6	14	<0.5	-2	10.42	377 /	7	1	12	153	1 10	4	0.30	3	7.20	104	-1	0.02	2 2	<0.01	373	12.55	<3	<10	<10	22	0.02	5	6	<10	>2200	6
2007111-001	2.0	0.40	6	10	<0.5	~2	7 10	1207	5		26	24	0.00	-2	0.04	2	5.02	06	2	0.02	4	0.01	450	20.00	~2	<10	<10	11	0.02	7	2	<10	> 2200	2
200712	-0.2	0.11	5	7	<0.5	2	12 15	420.7	0	-2	20	24 25	0.99	~2	0.00	2	5.27 > 10.00	1/0	2	0.01	4	-0.01	400	20.00	<0	<10	<10	22	0.01	7	3	<10	>2200	2
200713	<0.2	0.17	5	1	<0.5	2	10.15	47.0	9	<2	20	<5 0	0.30	ა ი	0.12	ວ ວ	7 70	140	1	0.02	5	< 0.01	21	1.07	< 3	<10	<10	47	0.01	6	4	<10	>2200	ა ი
200714	0.4	0.14		6	<0.5	2	10.07	203.5	8	<2	11	8	0.99	2	0.10	2	1.18	119	1	0.01	2	0.01	240	11.88	<3	<10	<10	17	0.01	0	4	<10	>2200	2
200715	<0.2	0.10	<5	5	<0.5	2	13.76	00.1	9	<2	8	13	0.27	<2	0.07	3	>10.00	174	<1	0.01	2	<0.01	28	1.97	<3	<10	<10	20	0.01	4	3	<10	>2200	2
266/16	5.9	0.06	<5	<5	<0.5	<2	4.79	744.4	5	4	20	188	1.49	2	0.04	2	3.89	107	1	0.01	3	< 0.01	392 >	20.00	<3	<10	<10	14	<0.01	4	2	<10	>2200	1
266/17	>6.0	1.98	<5	102	0.9	<2	8.51	376.3	22	6	61	128	1.75	5	0.83	10	6.92	184	1	0.06	29	0.02	140	8.84	5	10	<10	39	0.11	5	35	17	>2200	30
266718	<0.2	0.47	<5	17	<0.5	<2	13.90	21.6	10	4	10	5	0.60	4	0.32	4	>10.00	182	1	0.02	3	< 0.01	12	1.10	<3	<10	<10	34	0.02	5		<10	>2200	6
BLANK	<0.2	< 0.01	<5	<5	<0.5	<2	0.01	<0.5	<2	<2	<5	<5	0.01	<2	< 0.01	<1	0.01	1	<1	< 0.01	<1	< 0.01	<2	0.01	<3	<10	<10	<1	< 0.01	<2	<1	<10	<5	<1
STD-OREAS-45E	0.3	6.28	15	237	0.7	<2	0.06	<0.5	23	55	898	/18:	>10.00	<2	0.30	10	0.16	572	2	0.05	426	0.03	19	0.05	<3	<10	<10	15	0.56	3	337	<10	50	113
266719	0.3	0.09	7	5	<0.5	<2	9.02	591.6	7	2	11	9	0.59	<2	0.07	2	7.12	92	1	0.01	4	<0.01	350	14.90	7	<10	<10	15	0.01	4	3	<10	>2200	2
266720	<0.2	0.63	<5	21	<0.5	<2	13.53	17.9	8	2	16	<5	0.46	<2	0.50	3	>10.00	117	1	0.02	1	< 0.01	4	0.78	<3	<10	<10	29	0.03	4	8	<10	>2200	9
266721	1.4	0.18	12	7	<0.5	<2	6.03	488.0	5	2	29	20	1.19	3	0.13	2	5.19	97	1	0.01	2	<0.01	498 >	20.00	8	<10	<10	12	0.01	6	4	<10	>2200	3
266721 C-DUP	1.4	0.19	<5	7	<0.5	2	6.28	478.0	5	<2	27	20	1.17	3	0.14	2	5.18	99	1	0.01	4	<0.01	499 >	20.00	<3	<10	<10	12	0.01	7	4	<10	>2200	2
266722	<0.2	0.21	<5	11	<0.5	<2	14.61	12.3	9	<2	17	<5	0.33	2	0.15	4	>10.00	182	1	0.02	<1	<0.01	6	0.53	<3	<10	<10	25	0.01	5	5	<10	>2200	3
266723	2.3	0.09	11	5	<0.5	2	7.02	665.2	6	<2	18	20	1.01	<2	0.06	2	5.84	113	1	0.01	3	<0.01	288 >	20.00	<3	<10	<10	13	0.01	6	3	<10	>2200	1
266724	0.3	0.12	<5	6	<0.5	2	13.54	144.0	9	<2	13	6	0.27	<2	0.09	4	>10.00	178	<1	0.02	3	<0.01	29	2.37	<3	<10	<10	23	0.01	4	3	<10	>2200	2
266725	0.9	0.11	<5	6	<0.5	2	8.65	548.8	5	2	17	9	0.58	5	0.09	2	7.52	123	2	0.01	2	<0.01	>2200	15.52	4	<10	<10	14	0.01	5	3	<10	>2200	2
266726	<0.2	0.14	<5	7	<0.5	<2	14.02	47.8	7	<2	9	<5	0.27	4	0.12	3	>10.00	169	<1	0.02	6	<0.01	15	0.88	<3	<10	<10	22	0.01	4	3	<10	>2200	2
266727	<0.2	0.36	<5	14	<0.5	<2	14.48	5.7	7	<2	14	<5	0.32	<2	0.31	3	>10.00	160	1	0.03	1	<0.01	11	0.41	3	<10	<10	27	0.02	5	5	<10	>2200	5
266728	0.3	0.05	<5	<5	<0.5	<2	5.39	526.3	4	<2	9	5	1.70	<2	0.04	1	4.44	94	3	0.01	1	0.01	450 >	20.00	3	<10	<10	9	<0.01	6	2	<10	>2200	1
266729	<0.2	0.65	5	20	<0.5	2	14.15	4.2	9	<2	7	<5	0.37	3	0.53	4	>10.00	113	1	0.02	6	<0.01	5	0.43	<3	12	<10	28	0.03	4	8	<10	>2200	9
266730	0.4	0.19	<5	8	<0.5	2	11.91	155.8	8	<2	22	<5	0.38	4	0.15	3	9.84	162	2	0.02	4	0.01	69	5.02	<3	<10	<10	19	0.01	6	4	<10	>2200	3
266731	<0.2	0.14	<5	7	<0.5	<2	13.69	0.8	8	<2	10	<5	0.24	3	0.11	3	>10.00	208	<1	0.02	<1	< 0.01	7	0.07	<3	11	<10	22	0.01	6	4	<10	225	2
266731 P-DUP	<0.2	0.14	8	6	< 0.5	2	14.21	0.5	7	<2	11	<5	0.23	<2	0.11	3	>10.00	203	<1	0.02	2	< 0.01	5	0.07	<3	<10	<10	22	0.01	5	3	<10	178	2
266732	<0.2	0.19	6	8	<0.5	-2	14 76	<0.5	. 7	-2	7	<5	0.19	-2	0.15	3	>10.00	224	1	0.02	4	<0.01	~?	0.09	<3	10	<10	26	0.01	5	3	<10	106	- 3
266733	<0.2	0.07	<5	5	<0.5	<2	13,99	0.9	10	<2	.5	<5	0.17	6	0.06	4	>10.00	234	1	0.02	1	< 0.01	6	0.05	<3	<10	<10	19	< 0.01	4	2	10	452	2
								0.0															•								-			-

1 of 2

ICP - 34 Certificate

Client: Geologist: Project: Sample:	Ubique M Roland C Daniels H Core	linerals rossley larbour												Ana	STE lyti	RN ical										Signe	d b y ∺	Ana	n Ul	ugh	\geq			
DskFile:	167-1716	405													_										ŀ	Results	s apply	to samį	oles a	s subm	itted.			
DateIn: DateOut:	August 29 Septembe	9, 2017 er 14, 2	017										Email P.O. I 403 L Phone	: info Box 18 ittle Ba e: 709	@east 37 ay Roa -673-3	ernana ad Sprir 3909 / F	lytical.c ngdale, Fax: 70	xa NL A0. 9-673-3	J 1T0 3408						Cond	entrat interf	ions in erence	assay ra s in ass	ange ociate	may ca ed elem	use ents.			
Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Ce ppm	Co ppm	Cr ppm	Cu ppm	Fe %	In ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P %	Pb ppm	S %	Sb ppm	Se ppm	Sn ppm	Sr ppm	Ti %	U ppm	V ppm	W ppm	Zn ppm	Zr ppm
266734	<0.2	0.32	<5	12	2 <0.5	<2	13.91	0.7	8	<2	7	<5	0.28	3	0.23	3 3	>10.00	223	1	0.02	7	<0.01	5	0.20	6	<10	<10	30	0.01	5	5	<10	480	5
266735	0.4	0.08	<5	16	6 <0.5	3	9.30	233.5	6	<2	8	17	0.54	<2	0.06	6 2	7.72	171	1	0.02	2	<0.01	576	12.53	<3	<10	<10	15	0.01	4	3	<10	>2200	2
266736	<0.2	0.18	<5	12	2 <0.5	2	12.40	1.2	7	<2	5	<5	0.21	3	0.11	3	>10.00	233	1	0.02	2	<0.01	2	0.11	<3	<10	<10	25	0.01	4	4	<10	978	3
266737	0.6	0.05	<5	7	7 <0.5	2	11.89	41.2	6	2	9	54	0.40	4	0.04	1 2	>10.00	227	1	0.02	4	< 0.01	98	3.73	4	<10	<10	20	<0.01	6	3	<10	>2200	1
266738	1.0	0.09	<5	<5	5 <0.5	<2	8.73	390.3	6	2	15	40	0.77	<2	0.06	6 2	7.96	126	2	0.01	2	<0.01	458	13.33	<3	<10	<10	15	<0.01	6	3	<10	>2200	2
BLANK	<0.2	0.01	<5	<5	5 <0.5	<2	0.01	<0.5	<2	<2	<5	<5	<0.01	<2	<0.01	<1	0.01	<1	<1	<0.01	<1	<0.01	<2	0.01	<3	<10	<10	<1	<0.01	<2	<1	<10	<5	<1
STD-OREAS-923	1.5	6.93	7	408	3 2.4	20	0.44	0.5	80	22	67	4012	6.89	<2	2.48	3 38	1.78	1002	1	0.31	34	0.06	78	0.72	<3	<10	13	40	0.42	4	97	<10	550	117
266739	<0.2	0.16	<5	15	5 <0.5	2	13.65	29.7	7	<2	8	10	0.33	4	0.11	3	>10.00	145	<1	0.02	3	<0.01	37	1.01	<3	<10	<10	24	0.01	4	3	<10	>2200	3
266740	2.3	0.09	5	7	7 <0.5	2	8.09	556.1	5	7	13	78	0.93	2	0.07	72	6.99	90	3	0.01	7	< 0.01	264	15.67	<3	<10	<10	14	0.01	6	3	<10	>2200	1
266741	<0.2	0.13	5	g	9 <0.5	2	14.33	11.0	7	<2	8	6	0.30	3	0.11	2	>10.00	163	2	0.02	<1	<0.01	6	0.31	6	<10	<10	24	0.01	5	3	<10	>2200	2
266741 C-DUP	<0.2	0.14	<5	7	7 <0.5	<2	14.31	9.1	7	<2	9	5	0.30	<2	0.11	3	>10.00	162	1	0.02	: 1	<0.01	2	0.28	<3	14	<10	24	0.01	5	3	<10	>2200	2
266742	0.2	0.10	<5	6	6 <0.5	2	13.04	144.8	9	3	8	32	0.35	3	0.08	3 4	>10.00	138	2	0.02	4	< 0.01	43	2.81	<3	13	<10	22	0.01	4	3	<10	>2200	2
266743	<0.2	0.11	7	7	7 <0.5	<2	14.42	10.5	11	2	8	<5	0.27	6	0.09	9 4	>10.00	166	1	0.02	: 1	<0.01	4	0.29	<3	<10	<10	24	0.01	5	3	<10	>2200	2
266744	0.2	0.14	<5	7	7 <0.5	2	12.35	142.9	8	<2	8	<5	0.33	6	0.10) 2	>10.00	143	1	0.02	<1	<0.01	>2200	4.65	<3	<10	<10	20	0.01	7	4	<10	>2200	2
266745	<0.2	0.15	<5	7	7 <0.5	3	14.26	5.9	7	<2	5	<5	0.26	3	0.12	2 2	>10.00	162	1	0.02	3	<0.01	7	0.26	<3	<10	<10	24	0.01	5	3	<10	>2200	2
266746	<0.2	0.15	6	ç	9 <0.5	2	14.13	92.1	7	<2	6	6	0.23	<2	0.12	2 3	>10.00	149	1	0.02	3	<0.01	30	1.65	<3	<10	<10	21	0.01	6	4	<10	>2200	2
266747	<0.2	0.39	<5	15	5 <0.5	2	14.09	26.9	8	<2	6	<5	0.37	<2	0.33	3 3	>10.00	138	<1	0.03	4	< 0.01	26	0.97	5	<10	<10	27	0.02	5	6	<10	>2200	6
266748	<0.2	0.15	6	8	3 <0.5	<2	13.66	93.1	9	<2	7	11	0.26	2	0.12	2 4	>10.00	154	1	0.02	4	< 0.01	17	1.60	3	<10	<10	21	0.01	6	3	<10	>2200	3
266749	<0.2	0.60	<5	18	3 < 0.5	<2	13.37	9.0	9	<2	9	<5	0.37	3	0.45	5 3	>10.00	105	2	0.02	7	< 0.01	7	0.46	<3	11	<10	27	0.03	4	7	<10	>2200	9
266750	0.5	0.66	<5	21	<0.5	2	11.92	232.0	10	2	10	13	0.44	3	0.52	2 4	9.71	97	2	0.02	2	<0.01	27	4.13	6	<10	<10	28	0.03	5	8	<10	>2200	10
266751	0.9	0.16	<5	7	7 <0.5	2	8.16	601.1	7	2	15	36	0.46	<2	0.12	2 3	6.81	100	6	0.01	2	<0.01	292	14.99	4	<10	<10	14	0.01	7	3	<10	>2200	3
266751 P-DUP	1.1	0.16	<5	ç	9 < 0.5	3	8.28	611.4	7	2	17	60	0.49	3	0.12	2 3	6.89	104	6	0.01	6	0.01	301	15.60	<3	11	<10	15	0.01	6	3	<10	>2200	2
266752	<0.2	0.14	<5	8	3 <0.5	2	13.04	17.5	11	<2	11	8	0.28	4	0.10) 4	>10.00	175	1	0.02	5	<0.01	3	0.32	<3	12	<10	21	0.01	5	4	<10	>2200	2
266753	0.4	0.14	<5	8	3 <0.5	2	13.27	3.8	6	<2	9	<5	0.32	5	0.13	3 2	>10.00	293	1	0.01	7	<0.01	11	0.70	<3	<10	<10	22	0.01	4	3	<10	>2200	2
266754	1.1	0.23	8	10) <0.5	<2	13.22	34.8	7	<2	7	18	0.33	7	0.18	3 3	>10.00	145	1	0.02	3	< 0.01	48	2.18	<3	<10	<10	25	0.01	4	4	<10	>2200	3
266755	0.7	0.11	<5	15	> <0.5	2	11.80	196.6	8	4	8	46	0.40	4	0.09) 3	10.00	135	3	0.02	3	<0.01	83	5.17	<3	11	<10	20	0.01	6	3	<10	>2200	2
266756	<0.2	0.10	<5	10) <0.5	<2	13.87	21.6	10	<2	6	46	0.28	<2	0.09) 4	>10.00	163	1	0.02	<1	<0.01	8	0.50	<3	<10	<10	21	<0.01	4	3	<10	>2200	2

Assay Certificate

Client: Geologist: Project: Sample:	Ubique Minerals Roland Crossley Daniels Harbour Core			ASTERN Dalytical	Signed by: Johan Wright
DskFile:	167-1716585				Results apply to samples as submitted.
DateIn:	August 29, 2017	E	mail: info@ .O. Box 187	easternanalytical.ca	
	September 14, 2017	4	03 Little Bav	Road Springdale, NI AO I 1TO	ISO 17025
Daleoul.		P	hone: 709-6	73-3909 / Fax: 709-673-3408	* Accrediated Procedures
SAMPLE		* Pb	* Zn	* Ag	
NUMBER		%	%	g/t	
BLANK		<0.01	<0.01	<0.1	
STD ME - 1201		0.47	5.21	37.7	
266701			0.73		
266703			18.1		
266705			8.30		
266706			0.45		
266707			5.65		
266708			1.86		
266709			2.34		
266711			23.1		
266711 P-DUP			23.3		
266712			34.3		
266713			3.01		
266714			22.9		
266715			4.14		
266716			42.1		
266717			15.0	7.4	
266718			1.21		
266719			28.5		
266720			0.92		
266721			35.5		
266721 C-DUP			35.5		
266722			0.67		
266723			35.6		
266724			4.96		
266725		0.37	26.6		
266726			1.63		
266727			0.48		
266728			41.3		
266729			0.21		
266730			9.7		
266735			24.3		
266737			8.3		
266738			23.4		
266739			1.92		
266740			28.2		

Assay Certificate

Client: Geologist: Project: Sample:	Ubique Minerals Roland Crossley Daniels Harbour Core		E/	STERN	Signed by: Johan Wright
DskFile:	167-1716585				Results apply to samples as submitted.
Dateln:	August 29, 2017	Er P.	mail: info@e O. Box 187	easternanalytical.ca	
DateOut:	September 14, 2017	40 Pł	03 Little Bay none: 709-67	Road Springdale, NL A0J 1T0 73-3909 / Fax: 709-673-3408	ISO 17025 * Accrediated Procedures
SAMPLE		* Pb	* Zn	* Ag	
NUMBER		%	%	g/t	
266741			0.40		
266741 C-DUP			0.39		
266742			6.14		
266743			0.42		
266744		0.74	8.80		
266745			0.32		
266746			3.47		
266747			1.49		
266748			3.14		
266749			0.34		
266750			7.70		
266751			27.5		
266751 P-DUP			27.2		
266752			0.46		
266753			1.02		
266754			4.28		
266755			10.8		
266756			0.79		

APPENDIX IV SUMMARY OF HISTORIC DIAMOND DRILLING

After Tallman, 2010

	7	Mine Gr	id (feet)	D'-		Corre	Та	Loooth	7- 0/		
Hole ID	Zone	North	East	UIP	Length_ft	From	10	Length	ZN %	Start Date	End Date
513	W of Mike Lake Area	17959.00	5632.00	-90	538	461	474.6	13.6	6.78	07/05/1973	07/09/1973
702	C Zone	20118.35	13721.32	-90	61					06/10/1973	06/20/1973
703	C Zone	21237.59	14308.42	-90	83	40.6	51.6	11	5.56	06/21/1973	06/22/1973
704	C Zone	21261.37	14621.22	-90	81					06/22/1973	06/23/1973
705	C Zone	21365.45	14572.85	-90	88	56.1	62.8	6	13.31	06/23/1973	06/23/1973
706	C Zone	21538.18	14763.81	-90	98	58.4	81.6	25.2	11.69	06/27/1973	06/28/1973
708	L Zone	9931.79	9064.62	-90	469	415.4	431.7	16.3	15.03	06/21/1973	06/23/1973
709	L Zone	9994.50	8979.35	-90	458					06/25/1973	06/28/1973
710	L Zone	10054.66	9236.53	-90	434	379.2	402.5	23.3	10.45	06/28/1973	06/30/1973
711	L Zone	10836.89	10916.59	-90	228	168.7	179.3	10.6	34.77	07/02/1973	07/04/1973
712	L Zone	10237.83	9322.58	-89	449	382.4	386.7	4.3	3.35	07/02/1973	07/04/1973
712	L Zone	10237.83	9322.58	-90	449	403.7	406.3	2.6	3.5	07/05/1973	07/04/1973
713	L Zone	10123.71	9482.49	-89	438	337.3	367.3	30	15.83	07/09/1973	07/07/1973
714	L Zone	10471.14	9699.43	-89	434	344	425	81	15.76	07/09/1973	07/11/1973
715	L Zone	10365.60	9873.32	-90	387	296.7	326.1	29.4	0.93	07/11/1973	07/14/1973
716	L Zone	10311.41	9961.07	-90	328	273	279	6	22.06	07/09/1973	07/13/1973
717	L Zone	10498.97	10328.56	-90	320	277.9	293.2	15.3	2.41	07/09/1973	07/07/1973
717	L Zone	10498.97	10328.56	-89	320	277.9	283.9	6	3.5	07/05/1973	07/07/1973
719	C Zone	21137.37	13890.91	-90	70					07/18/1973	07/18/1973
719	W of Mike Lake Area	17660.00	5712.00	-88	508	413.5	419.5	6	4.06	07/17/1973	07/20/1973
720	C Zone	21441.53	14723.45	-90	95	29.7	32.4	2.7	1.25	07/21/1973	07/21/1973
721	C Zone	21502.61	14660.73	-90	108	77.4	86.3	0.9	5.79	07/20/1973	07/20/1973
722	W of Mike Lake Area	17670.00	5570.00	-90	503					07/23/1973	07/25/1973
723	W of Mike Lake Area	17515.00	5700.00	-89	483	431	444.7	13.7	1.06	07/26/1973	07/30/1973
724	C Zone	21605.93	14994.30	-90	114	92.5	97.6	5.1	1.83	07/24/1973	07/25/1973
725	C Zone	21717.34	15042.32	-90	103	49.6	55.6	6	11.76	07/23/1973	07/24/1973
726	C Zone	21960.17	15306.03	-90	108	23.4	34.9	11.5	11.83	07/25/1973	07/26/1973
727	C Zone	22156.55	15656.63	-90	88					07/26/1973	07/27/1973
728	C Zone	22005.38	15261.58	-90	103	56.7	62.1	5.4	2.03	07/31/1973	08/01/1973
729	C Zone	21910.58	15330.20	-90	100	22	35.4	13.4	7.91	07/28/1973	08/03/1973
730	C Zone	21872.91	15354.87	-90	65					07/01/1973	07/02/1973

After Tallman, 2010

	7000	Mine Gr	id (feet)	Die	Length_ft	Carro	Та	Logath	7- 0/		Ead Data
Hole ID	Zone	North	East	UIP		FIOIII	10	Length	ZN %	Start Date	End Date
731	G Zone	16248.00	14450.00	-90	58					08/04/1973	08/04/1973
732	G Zone	16308.00	14365.00	-90	74					08/06/1973	08/06/1973
733	G Zone	16770.00	14930.00	-90	81	41.9	56.6	14.7	1.3	08/06/1973	08/06/1973
734	G Zone	16840.00	14855.00	-90	94					08/07/1973	08/07/1973
735	G Zone	17070.00	15220.00	-90	100	21.7	24.9	3.2	2.17	08/07/1973	08/08/1973
735	G Zone	17070.00	15220.00	-90	100	67.8	69.6	1.8	3.45	08/07/1973	08/08/1973
736	G Zone	14140.00	15150.00	-90	114	25.6	36.2	10.6	5.23	08/08/1973	08/09/1973
737	G Zone	17385.00	15570.00	-90	100					08/10/1973	08/10/1973
738	G Zone	17470.00	15545.00	-90	114	53.1	54.7	1.6	4.35	08/10/1973	08/11/1973
739	G Zone	17465.00	15525.00	-90	119					08/11/1973	08/14/1973
740	G Zone	17615.00	15960.00	-90	102	69.7	71.7	2	13.5	08/14/1973	08/15/1973
741	G Zone	17705.00	15908.00	-90	114					08/15/1973	08/16/1973
742	G Zone	17875.00	16265.00	-90	113	80.2	86	5.2	6.5	08/06/1973	08/17/1973
743	G Zone	18140.00	16410.00	-90	122					08/17/1973	08/17/1973
744	W of Mike Lake Area	17530.00	5555.00	-90	513					08/07/1973	08/10/1973
745	L Zone	11230.76	11063.24	-90	270					08/28/1973	08/30/1973
746	L Zone	11179.48	11169.83	-89	212	149.9	169.2	19.3	14.83	08/24/1973	08/28/1973
747	L Zone	11123.62	11252.20	-90	191					08/22/1973	08/25/1973
748	L Zone	11756.84	11368.65	-90	271	218.2	223.7	5.5	3.45	08/20/1973	08/21/1973
749	L Zone	11702.45	11445.33	-90	235	166.9	184	17.1	7.22	08/17/1973	08/20/1973
749	L Zone	11702.45	11445.33	-90	235	172.1	184	11.9	9.23	08/15/1973	08/20/1973
750	L Zone	11645.80	11529.17	-90	194	128.7	140.3	11.6	33.23	09/05/1973	08/16/1973
751	G Zone	17505.00	15800.00	-90	94					08/20/1973	08/20/1973
752	H Zone	16570.00	15345.00	-90	64	11.1	14.4	3.3	7.5	08/21/1973	08/21/1973
752	H Zone	16570.00	15345.00	-90	64	40.1	46.7	6.6	5.5	08/21/1973	08/21/1973
753	H Zone	16580.00	15120.00	-90	62	18.9	25.1	6.2	9.05	08/22/1973	08/22/1973
754	H Zone	16620.00	15790.00	-90	84					08/24/1973	08/24/1973
755	H Zone	16795.00	15695.00	-90	74	33.5	39	5.5	5.03	08/24/1973	08/24/1973
756	H Zone	16804.00	15925.00	-90	82					09/06/1973	09/06/1973
757	L Zone	10234.32	11159.33	-90	178	115.5	121.5	6	2.98	09/05/1973	09/06/1973

After Tallman, 2010

	7	Mine Grid (feet)		Die		[То	Leasth	7- 0/	Start Data	
Hole ID	Zone	North	East	UIP	cengui_ri	FIOIII	10	Length	ZN %	Start Date	
758	L Zone	10585.45	11285.26	-90	168					09/06/1973	09/07/1973
759	L Zone	10859.25	10514.29	-89	354					09/10/1973	09/12/1973
760	L Zone	10920.99	10441.24	-90	376					09/19/1973	09/21/1973
761	L Zone	10550.45	10240.08	-90	368	229.7	235.7	6	6.64	09/13/1973	09/15/1973
761	L Zone	10550.45	10240.08	-90	368	295.3	320.8	25.5	2.87	09/13/1973	09/15/1973
762	L Zone	10655.28	10057.24	-90	408	280.9	282.6	1.7	22	09/17/1973	09/19/1973
762	L Zone	10655.28	10057.24	-90	408	328	338	10	3.1	09/17/1973	09/19/1973
762	L Zone	10655.28	10057.24	-90	408	385.3	390.9	5.6	8.05	09/17/1973	09/19/1973
763	L Zone	10958.46	10363.00	-90	363					09/22/1973	06/25/1973
764	L Zone	9593.52	8434.00	-90	525	422.4	427.7	5.3	7.5	09/28/1973	10/02/1973
901	C Zone	20222.10	13672.60		52	17.4	28.5	11.1	1.21	03/01/1975	03/01/1975
902	C Zone	20165.36	13741.00		41					03/03/1975	03/03/1975
903	C Zone	20295.77	13728.55		71	4.4	7.9	3.5	8.25	03/04/1975	04/03/1975
904	C Zone	20237.68	13802.29		62					03/06/1975	06/03/1975
905	C Zone	20303.53	13839.33		53	6	16.3	10.3	11.42	03/07/1975	07/03/1975
906	C Zone	20391.05	13787.98		76	27.5	41.6	14.1	2.35	03/05/1975	05/03/1975
907	C Zone	20421.78	13913.02		71	10.7	37.1	26.4	12.89	03/08/1975	08/03/1975
908	C Zone	20492.10	14034.54		52					03/11/1975	11/03/1975
909	C Zone	20582.83	14096.36		48					03/13/1975	13/03/1975
910	C Zone	20662.31	13901.56		89	24	26	2	0.9	03/12/1975	11/03/1975
911	C Zone	20903.50	14269.83		72	23	36.5	13.5	0.77	03/14/1975	14/03/1975
912	C Zone	20968.31	14156.64		84	62.1	66.5	4.4	1.11	03/15/1975	15/03/1975
913	C Zone	20840.95	14051.61		83	54	56.5	2.5	2.05	03/16/1975	16/03/1975
914	C Zone	20748.59	14139.46		55	24.3	27	2.7	7.35	03/17/1975	17/03/1975
915	C Zone	20537.92	13841.66		87					03/18/1975	18/03/1975
916	C Zone	20428.01	13958.36		51	7.4	13.8	6.4	5.87	03/20/1975	20/03/1975
917	C Zone	20378.75	13837.73		72	32.3	35.8	3.5	1.45	03/20/1975	20/03/1975
918	C Zone	20513.58	13882.86		98	17.3	77.3	60	3.35	03/19/1975	19/03/1975
919	Tailing Pond	9790.00	12280.00		75	328	342	14	3.72	03/24/1975	24/03/1975

After Tallman, 2010

	7	Mine Grid (feet)		0'-		F ace m	Te	Logath	7- 0/		
Hole ID	Zone	North	East	UIP	Length_rt	From	10	Length	ZN %	Start Date	End Date
920	L Zone	11810.80	11358.00		241					04/07/1975	07/04/1975
921	L Zone	11460.00	10955.00		306					05/22/1975	22/05/1975
922	L Zone	11325.00	10808.00		320					05/25/1975	25/05/1975
923	L Zone	12646.00	12196.00		171					05/29/1975	29/05/1975
924	L Zone	11055.00	10514.00		365					06/16/1975	16/06/1975
925	L Zone	10628.60	9876.70		441.7					06/23/1975	23/06/1975
960	N of L Zone			-90	555	484.4	486.5	2.1	0.03	05/17/1976	05/19/1976
960	N of L Zone			-90	555	486.5	488.5	2	0.1	05/17/1976	05/19/1976
960	N of L Zone			-90	555	488.5	189.5	1	0.02	05/17/1976	05/19/1976
961	N of L Zone			-90	550	394	395	1	0.01	05/20/1976	05/22/1976
961	N of L Zone			-90	550	395	396	1	3.96	05/20/1976	05/22/1976
961	N of L Zone			-90	550	396	398	2		05/20/1976	05/22/1976
962	N of L Zone			-90	533	396	398.5	2.5		05/25/1976	05/27/1976
962	N of L Zone			-90	533	398.5	401.4	2.9		05/25/1976	05/27/1976
962	N of L Zone			-90	533	401.4	403.4	2	20.35	05/25/1976	05/27/1976
962	N of L Zone			-90	533	403.4	404	0.6	0.03	05/25/1976	05/27/1976
962	N of L Zone			-90	533	404	406	2	0.01	05/25/1976	05/27/1976
962	N of L Zone			-90	533	406	408.2	2.2	0.45	05/25/1976	05/27/1976
962	N of L Zone			-90	533	408.2	413.2	5	0.2	05/25/1976	05/27/1976
963	N of L Zone			-90	527					05/28/1976	06/02/1976
964	N of L Zone			-90	536	396.5	407	10.5	1.07	06/03/1976	06/05/1976
964	N of L Zone			-90	536	369.5	398.5	2	0.75	06/03/1976	06/05/1976
964	N of L Zone			-90	536	398.5	400.3	1.8	0.04	06/03/1976	06/05/1976
964	N of L Zone			-90	536	400.3	402.6	2.3	1	06/03/1976	06/05/1976
964	N of L Zone			-90	536	402.6	404.5	1.9	0.35	06/03/1976	06/05/1976
964	N of L Zone			-90	536	404.5	407	2.5	2.7	06/03/1976	06/05/1976
965	N of L Zone			-90	536					06/07/1976	06/10/1976
976	Mike Lake North			-90	263					07/12/1976	07/13/1976
977	Mike Lake North			-90	266					07/14/1976	07/15/1976
978	Mike Lake North			-90	221					07/16/1976	07/17/1976
979	Mike Lake North			-90	221					07/19/1976	07/20/1976

After Tallman, 2010

	7	Mine Grid (feet)		Die		Corre	Та	Leasth	7- 0/		Fod Data
Hole ID	Zone	North	East	UIP	Length_rt	FIOIII	10	Length	ZN %	Start Date	
995	N.E. of L Zone			-90	100					08/09/1976	08/09/1976
996	N.E. of L Zone			-90						08/11/1976	08/11/1976
997	N.E. of L Zone			-90	102					08/12/1976	08/12/1976
998	N.E. of L Zone			-90	118					08/12/1976	08/13/1976
999	N.E. of L Zone			-90	112						
1002	C+ Zone	20900.22	13781.76		60.5					07/13/1975	13/07/1975
1003	C+ Zone	20881.70	13704.58		61.4					07/14/1975	14/07/1975
1004	C+ Zone	21045.73	13836.38		71.1	42.5	61.5	19	1.84	07/15/1975	15/07/1975
1005	C+ Zone	21174.66	13858.10		70.8					07/16/1975	16/07/1975
1006	C+ Zone	21219.26	13820.28		49.6					07/17/1975	17/07/1975
1007	C Zone	20726.49	14101.40		51.4	22.4	31.4	9	4.49	09/10/1975	10/09/1975
1008	C Zone	20823.91	14084.19		61	23.2	43.6	20.4	6.61	09/11/1975	11/09/1975
1009	C Zone	20870.24	14169.01		62	24	39.7	15.7	5.08	09/11/1975	11/09/1975
1010	C Zone	21020.27	14239.91		68.7	37.1	60.8	23.7	2.97	09/12/1975	12/09/1975
1011	C Zone	20968.17	14321.64		58	22.5	32	9.5	9.6	09/12/1975	12/09/1975
1012	C Zone	21127.14	14328.21		76	34.6	61.2	26.6	3.08	09/13/1975	13/09/1975
1013	C Zone	21057.10	14394.93		56	29.7	39.6	9.9	7.72	09/15/1975	15/09/1975
1014	C Zone	21133.47	14464.16		52	35.8	42.7	6.9	13.53	09/15/1975	15/09/1975
1015	C Zone	21281.89	14477.36		87	51.4	74.3	22.9	6.1	09/17/1975	17/09/1975
1016	C Zone	21217.20	14538.59		52.7	38	43.8	5.8	14.39	09/18/1975	18/09/1975
1017	C Zone	21300.07	14599.22		57.6	44.9	50.7	5.8	8.2	09/19/1975	19/09/1975
1018	C Zone	21436.01	14604.36		91.1	61.1	82.7	21.6	4.67	09/20/1975	20/09/1975
1019	C Zone	21400.59	14632.59		78.1	54.7	51.2	6.5	12.03	09/22/1975	22/09/1975
1020	C Zone	21384.68	14656.68		52.9					09/23/1975	23/09/1975
1021	C Zone	21490.60	14698.03		88.6	53.8	79.5	25.7	4.27	09/24/1975	24/09/1975
1022	C Zone	21589.39	14737.88		111	60	66.6	6.6	2.22	09/27/1975	27/09/1975
1023	C Zone	21525.07	14786.79		77.8	51	61	10	7.96	09/25/1975	25/09/1975
1024	C Zone	21614.69	14911.29		98.2	51.5	77.6	26.1	2.09	09/39/1975	29/09/1975
1025	C Zone	21740.10	14926.81		108.2	96.5	100.9	4.4	1.14	09/30/1975	30/09/1975
1026	C Zone	21768.73	15036.14		83.7	47.9	78.8	26.8	8.36	10/01/1975	01/10/1975
1027	C Zone	21369.31	14523.49		98	56.5	82.5	26	4.71	10/03/1975	03/10/1975
After Tallman, 2010

	7	Mine Gr	id (feet)	Die		Care	Ta	Lagath	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_ft	From	10	Length	ΖΠ %	Start Date	End Date
1028	C Zone	21173.95	14364.41		85.3	59	65.1	6.1	1.76	10/04/1975	04/10/1975
1029	L Zone	10738.90	10365.20		355	325	348.7	23.7	3.37	10/08/1975	08/10/1975
1051	S.W. of Spring Lake			-90	167						
1052	S.W. of Spring Lake			-90	173						
1053	S.W. of Spring Lake			-90	120	35.9	37.5	1.6	85		
1054	S.W. of Spring Lake			-90	161	23	24	1	86		
1055	S.W. of Spring Lake			-90	111						
1056	S.W. of Spring Lake			-90	101						
1057	S.W. of Spring Lake			-90	132						
1058	Mike Lake North			-90	223					08/18/1976	08/19/1976
1059	Mike Lake North			-90	148					08/20/1976	08/20/1976
1060	Mike Lake North			-90	96					08/23/1976	08/23/1976
1061	Mike Lake North			-90	81					08/25/1976	08/25/1976
1062	Mike Lake North			-90	68					08/27/1976	08/27/1976
1063	Bellburns Area			-90	190					08/31/1976	08/31/1976
1064	Bellburns Area			-90	252					09/02/1976	09/03/1976
1065	Bellburns Area			-90	135	8	9	1	0.63	09/07/1976	09/07/1976
1066	Bellburns Area			-90	182	64.5	65.5	1	0.53	09/09/1976	09/09/1976
1067	Bellburns Area			-90	345					09/11/1976	09/13/1976
1068	Bellburns Area			-90	104					09/15/1976	09/15/1976
1069	Bellburns Area			-90	160					09/17/1976	09/27/1976
1070	Bellburns Area			-90	138	25.5	26.5	1	0.39	09/30/1976	10/01/1976
1070	Bellburns Area			-90	138	57.5	58.5	1	0.76	09/30/1976	10/01/1976
1070	Bellburns Area			-90	138	62.6	63.6	1	0.04	09/30/1976	10/01/1976
1070	Bellburns Area			-90	138	70.5	73.5	3	0.1	09/30/1976	10/01/1976
1071	Bellburns Area			-90	128					10/02/1976	10/04/1976
1072	Bellburns Area			-90	168					10/05/1976	10/06/1976
1073	Bellburns Area			-90	180					10/06/1976	10/08/1976
1074	Bellburns Area			-90	225					10/06/1976	10/11/1976
1075	Bellburns Area			-90	205					10/12/1976	10/13/1976
1076	N.E. of M Zone			-90	416					09/15/1976	09/28/1976

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	0:-	Langeth Ch	6	T	1 + -	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_ft	From	10	Length	ZN %	Start Date	End Date
1077	N.E. of M Zone			-90	200					09/29/1976	09/30/1976
1078	N.E. of M Zone			-90	170					09/30/1976	10/01/1976
1079	N.E. of M Zone			-90	219	112.8	113.8	1	0.17	10/02/1976	10/04/1976
1079	N.E. of M Zone			-90	219	116.7	117.7	1	0.14	10/02/1976	10/04/1976
1079	N.E. of M Zone			-90	219	128.1	129.1	1	0.24	10/02/1976	10/04/1976
1079	N.E. of M Zone			-90	219	132.8	135.3	2.5	2.81	10/02/1976	10/04/1976
1079	N.E. of M Zone			-90	219	135.3	137.3	2	0.06	10/02/1976	10/04/1976
1080	N.E. of M Zone			-90	191	136.1	147.4	11.3	4.15	10/05/1976	10/06/1976
1081	N.E. of M Zone			-90	198					10/08/1976	10/09/1976
1082	N.E. of M Zone			-90	220					10/11/1976	10/11/1976
1083	N.E. of M Zone			-90	286	145.5	147.5	2	0.04	10/12/1976	10/13/1976
1083	N.E. of M Zone			-90	286	147.5	148.5	1.3	11.88	10/12/1976	10/13/1976
1083	N.E. of M Zone			-90	286	148.8	149.8	1	0.08	10/12/1976	10/13/1976
1083	N.E. of M Zone			-90	286	149.8	150.8	1	0.39	10/12/1976	10/13/1976
1083	N.E. of M Zone			-90	286	150.8	152.8	2	0.03	10/12/1976	10/13/1976
1083	N.E. of M Zone			-90	286	152.8	155.3	2.5	1.36	10/12/1976	10/13/1976
1083	N.E. of M Zone			-90	286	155.3	157.3	2	0.04	10/12/1976	10/13/1976
1084	N.E. of M Zone			-90	326						
1085	Bellburns Area			-90	131					10/14/1976	10/15/1976
1086	N.E. of F.G.M			-90	316					10/27/1976	10/28/1976
1087	N.E. of F.G.M			-90	257					10/29/1976	11/01/1976
1088	N.E. of F.G.& M Zones			-90	228					11//1976	11//1976
1089	N.E. of F.G.& M Zones			-90	223						11/15/1976
1090	N.E. of F.G.& M Zones			-90	201					11/17/1976	11/18/1976
1091	N.E. of F.G.& M Zones			-90	184					11/19/1976	11/19/1976
1092	N.E. of F.G.& M Zones			-90	212	140	141.5	1.5	1.99	11/22/1976	11/23/1976
1093	N.E. of F.G.& M Zones			-90	244					11/24/1976	11/25/1976
1094	N.E. of F.G.& M Zones			-90	276	193.5	203	9.5		11/26/1976	11/29/1976
1095	N.E. of F.G.& M Zones			-90	288					12/01/1976	12/02/1976
1096	Black Duck Central			-90	173					05/06/1977	05/07/1977
1097	Black Duck Central			-90	186					05/09/1977	05/09/1977

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	0'-	Langeth Ch	5	T	1 + -	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_ft	From	10	Length	ZN %	Start Date	End Date
1098	Black Duck Central			-90	201					05/11/1977	05/13/1977
1099	Black Duck Central			-90	208					05/11/1977	05/13/1977
1108	L Zone	9723.11	8563.35		480	402.3	445	42.7	10.44	02/05/1979	02/05/1979
1109	L Zone	9687.96	8605.78		470	414	436.1	24.5	9.96	02/05/1979	02/05/1979
1110	L Zone	9635.55	8383.9		475	437.7	467.7	30	6.15	02/05/1979	02/05/1979
1111	L Zone	9673.16	8345.38		480	440.6	456	15.4	1.37	02/05/1979	02/05/1979
1165	North of L Zone			-90	471					04/14/1977	04/16/1977
1166	North of L Zone			-90	511	421.8	433	11.2	0.38	04/18/1977	04/21/1977
1166	North of L Zone			-90	511	421.8	422.8	1	0.84	04/18/1977	04/21/1977
1166	North of L Zone			-90	511	427.1	428.6	1.5	1.8	04/18/1977	04/21/1977
1166	North of L Zone			-90	511	431	433	0.5	0.38	04/18/1977	04/21/1977
1167	Bellburns Area			-90	128	57.9	58.9	1	0.38	04/26/1977	04/26/1977
1168	Bellburns Area			-90	120					04/27/1977	04/27/1977
1169	Bellburns Area			-90	134	42.2	48.5	6.3	0.42	04/27/1977	04/27/1977
1169	Bellburns Area			-90	134	55	58	3	0.28	04/27/1977	04/27/1977
1170	Bellburns Area			-90	188					04/24/1977	04/30/1977
1171	Bellburns Area			-90	193					05/02/1977	05/02/1977
1178	Bellburns Area			-90	118					06/08/1977	06/08/1977
1179	Bellburns Area			-90	283					06/10/1977	06/11/1977
1180	Bellburns Area			-90	245					06/13/1977	06/14/1977
1181	Bellburns Area			-90	261					06/15/1977	06/17/1977
1182	E Zone			-90	115					06/21/1977	06/23/1977
1183	E Zone			-90	101					06/23/1976	06/24/1977
1184	E Zone			-90	102					06/24/1977	06/25/1977
1184	E Zone			-90	102					06/25/1977	06/25/1977
1185	E Zone			-90	101					06/25/1977	06/27/1977
1185	E Zone			-90	101					06/25/1977	06/27/1977
1186	E Zone			-90	93					06/27/1977	06/28/1977
1186	E Zone			-90	93					06/27/1977	06/28/1977
1187	E Zone			-90	108					06/29/1977	06/30/1977
1187	E Zone			-90	108					06/29/1977	06/30/1977

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	0'-		6	T	1 46	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_ft	нгот	10	Length	ΖΠ %	Start Date	End Date
1188	E Zone			-90	119					06/30/1977	07/01/1977
1188	E Zone			-90	119					06/30/1977	07/01/1977
1189	E Zone			-90	109					07/01/1977	07/02/1977
1189	E Zone			-90	109						
1190	S.W. of L Zone	9566.96	8074.3	-90	507	435.1	449.8	14.7	8.86	07/01/1977	07/05/1977
1190	S.W. of L Zone	9566.96	8074.3	-90	507	435.1	443.2	8.1	1.59	07/01/1977	07/05/1977
1190	S.W. of L Zone	9566.96	8074.3	-90	507	440.9	449.8	8.9	13.86	07/01/1977	07/05/1977
1190	S.W. of L Zone	9566.96	8074.3	-90	507	443.2	449.8	6.6	17.79	07/01/1977	07/05/1977
1190	S.W. of L Zone	9566.96	958.3	-90	507	435.1	449.8	14.7	8.86	07/01/1977	07/05/1977
1190	S.W. of L Zone	9566.96	958.3	-90	507	435.1	443.2	8.1	1.59	07/01/1977	07/05/1977
1190	S.W. of L Zone	9566.96	958.3	-90	507	443.2	449.8	6.6	17.79	07/01/1977	07/05/1977
1191	S.W. of L Zone	9635	8038.79	-90	516	443.5	462.4	18.9	9.8	07/06/1977	07/09/1977
1191	S.W. of L Zone	9635	8038.79	-90	516	443.5	454.2	10.7	14.52	07/06/1977	07/09/1977
1191	S.W. of L Zone	9635	8038.79	-90	516	454.2	459.4	5.2	1.05	07/06/1977	07/09/1977
1191	S.W. of L Zone	9635	8038.79	-90	516	459.4	462.4	3	8.17	07/06/1977	07/09/1977
1191	S.W. of L Zone	9635	937.98	-90	516	443.5	462.4	18.9	9.8	07/06/1977	07/09/1977
1191	S.W. of L Zone	9635	937.98	-90	516	443.5	454.2	10.7	14.52	07/06/1977	07/09/1977
1191	S.W. of L Zone	9635	937.98	-90	516	454.2	459.4	5.2	1.05	07/06/1977	07/09/1977
1191	S.W. of L Zone	9635	937.98	-90	516	459.4	462.4	3	8.17	07/06/1977	07/09/1977
1192	S.W. of L Zone	9698.86	8003.42	-90	510	446.6	448.6	2	2.12	07/11/1977	07/13/1977
1192	S.W. of L Zone	9696.86	955.84	-90	510					07/11/1977	07/13/1977
1193	S.W. of L Zone	9492.41	8102.53	-90	500	440.3	441.3	1	0.19	07/15/1977	07/17/1977
1193	S.W. of L Zone	9492.41	8102.53	-90	500	449.5	450.5	1	0.27	07/15/1977	07/17/1977
1193	S.W. of L Zone	9492.41	966.03	-90	500					07/15/1977	07/17/1977
1194	S.W. of L Zone	9133.01	8238.13	-90	451	402	406.6	4.6	0.47	07/19/1977	07/22/1977
1194	S.W. of L Zone	9143	962.56	-90	451					07/19/1977	07/22/1977
1195	S.W. of L Zone	9072.54	8262.57	-90	445	389.1	393.8	4.7	2.67	07/23/1977	07/26/1977
1195	S.W. of L Zone	9072.54	964.39	-90	445					07/23/1977	07/26/1977
1196	S.W. of L Zone	9001.72	8289.64	-90	446	392	393.6	1.6	3.05	07/27/1977	07/29/1977
1196	S.W. of L Zone	9001.72	8289.64	-90	446	423.7	425.2	1.5	2.63	07/27/1977	07/29/1977
1197	S.W. of L Zone	9346.88	7353.28	-90	533	430	464.2	3.8	24.22	08/01/1977	08/03/1977

After Tallman, 2010

	7	Mine Gr	id (feet)	Di-		5	Та	Lagath	7- 0/		
Hole ID	Zone	North	East	UIP	Length_ft	From	10	Length	ΖΠ %	Start Date	End Date
1198	S.W. of L Zone	9433.74	7296.67	-90	546					08/08/1977	08/08/1977
1199	S.W. of L Zone	8623.72	6615.02	-90	573	470.9	505.8	34.1	14.5	08/10/1977	08/12/1977
1227	S.W. of L Zone	8412.66	5826.66	-90	641	577.7	603.2	25.5	2.29	10/18/1977	10/21/1977
1227	S.W. of L Zone	8412.66	5826.66	-90	641	577.7	591.4	13.7	2.2	10/18/1977	10/21/1977
1227	S.W. of L Zone	8412.66	5826.66	-90	641	591.4	603.2	11.8	3.37	10/18/1977	10/21/1977
1228	S.W. of L Zone	8090	5495	-90	718	685.1	686.2	1.1	3.15	10/27/1977	10/31/1977
1229	S.W. of L Zone	8045	5560	-90	678	607	621	14	7.88	11/02/1977	11/07/1977
1229	S.W. of L Zone	8045	5560	-90	678	607	610.4	3.4	2.34	11/02/1977	11/07/1977
1229	S.W. of L Zone	8045	5560	-90	678	610.4	621	10.6	9.65	11/02/1977	11/07/1977
1230	S.W. of L Zone	8691.6	6582.86	-90	582	485.4	516.4	31	3.61	08/13/1977	08/17/1977
1231	S.W. of L Zone	8756.06	6650.26	-90	590					08/18/1977	08/20/1977
1232	S.W. of L Zone	8381.44	8297.18	-90	610	488.5	489.9	1.4	1.1	08/25/1977	08/29/1977
1232	S.W. of L Zone	8381.44	8297.18	-89.5	610	504.6	505.6	1	1.23	08/25/1977	08/29/1977
1232	S.W. of L Zone	8381.44	8297.18	-89.5	610	508.7	509.7	1	1.57	08/25/1977	08/29/1977
1232	S.W. of L Zone	8381.44	8297.18		610	579.9	580.9	1	1.17	08/25/1977	08/29/1977
1233	S.W. of L Zone	8448.31	6263.89	-90	600	502.7	503.7	1	1.06	08/31/1977	09/02/1977
1233	S.W. of L Zone	8448.31	6263.89	-90	600	514	515.1	1.1	1.39	08/31/1977	09/02/1977
1234	S.W. of L Zone	8576.47	6188.89	-90	608	540.6	563.8	23.2	2.78	09/06/1977	09/09/1977
1235	S.W. of L Zone	8647.37	613.15	-90	616	537.9	570.3	32.4	9.3	09/13/1977	09/15/1977
1236	S.W. of L Zone	1717.27	6134.41	-90	688					09/19/1977	09/22/1977
1237	S.W. of L Zone	8617.15	5718.01	-90	400					09/24/1977	09/27/1977
1238	S.W. of L Zone	8446.46	5786.31	-90	688					09/29/1977	10/03/1977
1239	S.W. of L Zone	8347.31	5861.85	-90	643	546.3	576.6	30.3	8.87	10/05/1977	10/10/1977
1239	S.W. of L Zone	8347.31	5861.85	-90	643	546.3	554.6	8.3	4.22	10/05/1977	10/10/1977
1239	S.W. of L Zone	8347.31	5861.85	-90	643	554.6	566.3	12.7	1.03	10/05/1977	10/10/1977
1239	S.W. of L Zone	8347.31	5861.85		643	566.3	576.6	10.3	21.5	10/05/1977	10/10/1977
1240	S.W. of L Zone	8282.83	5898.33	-90	626	530.5	542.9	12.4	0.58	10/11/1977	10/14/1977
1240	S.W. of L Zone	8282.83	5898.33	-88	626	537.7	542.9	5.2	1.18	10/11/1977	10/14/1977
1240	S.W. of L Zone	8282.83	5898.33	-89	626	537.7	539	1.3	1.86	10/11/1977	10/14/1977
1240	S.W. of L Zone	8282.83	5898.33		626	541.9	542.9	1	3.69	10/11/1977	10/14/1977
1241	S.W. of L Zone	8005	5625	-90	650	581.3	602.7	21.4	4.09	11/09/1977	11/11/1977

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	0:-	Langeth ft	6	τ.	1 46	7- 0/		
Hole ID	Zone	North	East	υιρ	Lengtn_tt	From	10	Length	ZN %	Start Date	End Date
1241	S.W. of L Zone	8005	5625	-89	650	581.3	596.2	14.9	1.16	11/09/1977	11/11/1977
1241	S.W. of L Zone	8005	5625	-89	650	596.2	602.7	6.5	10.81	11/09/1977	11/11/1977
1242	S.W. of L Zone	7960	5685	-90	650	568.8	570.5	1.7	1.87	11/15/1977	11/07/1977
1242	S.W. of L Zone	7960	5685	-90	650	608.6	610	1.4	0.86	11/15/1977	11/07/1977
1243	S.W. of L Zone	7790	4955	-90	778	733.7	735.2	1.5	1.24	11/21/1977	11/24/1977
1244	S.W. of L Zone	7705	5075	-90	750	684	684.6	0.6	2.83	12/01/1977	12/03/1977
1244	S.W. of L Zone	7705	5075	-90	750	709	710.1	1.1	2.73	12/01/1977	12/03/1977
1246	S.W. of L Zone	7705	5260	-90	720	642.9	649	6.1	4.34	12/13/1977	12/17/1977
1246	S.W. of L Zone	7705	5260	-90	720	649	674.6	25.6	0.37	12/13/1977	12/17/1977
1247	S.W. of L Zone	7750	5200	-90	731	685	636.6	1.6	1.77	03/20/1978	03/25/1978
1248	S.W. of L Zone	7660	5320	-90	699	648.2	649.2	1	1.44	03/28/1978	03/31/1978
1249	S.W. of L Zone	7045	4810	-90	738	667	683.1	14.1	0.88	04/01/1978	04/06/1978
1249	S.W. of L Zone	7045	4810	-90	738	670.5	681.1	10.6	1.02	04/01/1978	04/06/1978
1250	S.W. of L Zone	7185	4750	-90	754	703.6	704.6	1	1.16	04/07/1978	04/10/1978
1250	S.W. of L Zone	7185	4750	-90	754	707.5	708.7	1.2	0.89	04/07/1978	04/10/1978
1251	S.W. of L Zone	7450	4320	-90	852	776.8	787.1	10.3	1.06	04/13/1978	04/18/1978
1251	S.W. of L Zone	7450	4320	-90	852	776.8	779.5	2.7	3.02	04/13/1978	04/18/1978
1252	S.W. of L Zone	7200	7430	-90	519	409.7	459	49.3	0.39	04/20/1978	04/22/1978
1253	S.W. of L Zone	9090	7440	-90	476	416.5	433.2	16.6	0.85	04/24/1978	04/26/1978
1253	S.W. of L Zone	9090	7440	-90	476	432	433.2	1.2	3.01	04/24/1978	04/26/1978
1254	S.W. of L Zone	2940	7570	-90	444					04/27/1978	04/28/1978
1255	S.W. of L Zone	2250	7630	-90	473	422.5	427.8	5.3	1.47	04/28/1978	05/02/1978
1255	S.W. of L Zone	2250	7630	-90	473	422.5	423.8	1.3	3.28	04/28/1978	05/02/1978
1255	S.W. of L Zone	2250	7630	-90	473	426.6	427.8	1.2	2.96	04/28/1978	05/02/1978
1256	S.W. of L Zone	8873	7600	-90	481	423.5	429.7	6.2	0.98	05/03/1978	05/05/1978
1256	S.W. of L Zone	8873	7600	-90	481	423.5	424.8	1.3	1.99	05/03/1978	05/05/1978
1256	S.W. of L Zone	8873	7600	-90	481	428.7	429.7	1	2.88	05/03/1978	05/05/1978
1257	S.W. of L Zone	2595	7755	-90	448	406.4	429	12.6	1.38	05/08/1978	05/09/1978
1257	S.W. of L Zone	2595	7755	-90	448	410.4	419	8.6	1.87	05/08/1978	05/09/1978
1258	S.W. of L Zone	3390	7270	-90	438	383.8	394.8	11	2.01	05/10/1978	05/11/1978
1258	S.W. of L Zone	3390	7270	-85.5	438	392.9	394.8	1.9	7.28	05/10/1978	05/11/1978

After Tallman, 2010

	7	Mine Gr	id (feet)	Die		Carro	Ta	Lagath	7- 0/		
Hole ID	Zone	North	East	υр	Length_ft	From	10	Length	ZN %	Start Date	End Date
1259	S.W. of L Zone		7810	-90	451	408.1	414.3	6.2	1.54	05/12/1978	05/12/1978
1259	S.W. of L Zone		7810	-90	451	408.1	410.4	2.3	2	05/12/1978	05/12/1978
1259	S.W. of L Zone		7810	-90	451	412.6	414.3	1.7	2.5	05/12/1978	05/12/1978
1260	S.W. of L Zone		7990	-90	468	341.8	348.9	7.1	4.3	05/12/1978	05/15/1978
1260	S.W. of L Zone		7990	-90	468	415.3	443.3	28	1.22	05/12/1978	05/15/1978
1260	S.W. of L Zone		7990	-90	468	420	425.7	5.7	3.16	05/12/1978	05/15/1978
1260	S.W. of L Zone		7990	-90	468	420	430.7	10.7	2.09	05/12/1978	05/15/1978
1261	S.W. of L Zone		8050	-90	463	344	252.2	8.2	1.28	05/18/1978	05/19/1978
1261	S.W. of L Zone		8050	-90	463	417.2	423.1	5.9	1.67	05/18/1978	05/19/1978
1261	S.W. of L Zone		8050	-90	463	430	446.4	16.4	0.97	05/18/1978	05/19/1978
1261	S.W. of L Zone		8050	-90	463	430	440	10	1.31	05/18/1978	05/19/1978
1262	S.W. of L Zone	18075	5200	-90	201					04/18/1978	04/20/1978
1263	East Breccia	17940	15260	-90	139					04/21/1978	04/22/1978
1264	East Breccia	17860	15300	-90	136					04/24/1978	04/25/1978
1265	East Breccia	18630	17550	-90	201					04/26/1978	04/27/1978
1266	East Breccia	18560	16590	-90	201					04/28/1978	05/01/1978
1267	East Breccia	18870	17450	-90	100					05/03/1978	05/02/1978
1268	East Breccia	19270	17565	-90	158					05/03/1978	05/04/1978
1269	East Breccia	19360	17490	-90	87					05/05/1978	05/05/1978
1270	East Breccia	20500	18225	-90	230					05/08/1978	05/09/1978
1271	East Breccia			-90	211					05/10/1978	05/12/1978
1272	East Breccia			-90	102					05/13/1978	05/15/1978
1273	East Breccia			-90	201					05/16/1978	05/17/1978
1274	East Breccia			-90	110	66.4	68.3	1.9	2.64	05/18/1978	05/19/1978
1275	East Breccia			-90	154					05/19/1978	05/20/1978
1276	East Breccia			-90	108					05/20/1978	05/22/1978
1277	East Breccia			-90	208					05/22/1978	05/23/1978
1278	East Breccia	19925	16210	-90	230					05/24/1978	05/25/1978
1279	East Breccia	20090	16150	-90	213					05/25/1978	05/26/1978
1280	East of Trout Breccia			-90	516	439	462.2	23.2	0.6	05/23/1978	05/25/1978
1280	East of Trout Breccia			-86	516	445	462.2	17.2	0.71	05/23/1978	05/25/1978

After Tallman, 2010

	7	Mine Gri	id (feet)	D'-		Coord	Та	Lagath	7- 0/		
Hole ID	Zone	North	East	UIP	Length_ft	From	10	Length	ZN %	Start Date	End Date
1281	East of Trout Breccia	11575	9240	-90	549	439.6	441	1.4	1.89	05/24/1978	05/30/1978
1281	East of Trout Breccia	11575	9240	-86	549	481.8	496	14.2	0.23	05/24/1978	05/30/1978
1282	East of Trout Breccia	11520	9450	-90	548					06/23/1978	06/26/1978
1283	East of Trout Breccia	11460	9910	-90	449					06/26/1978	06/29/1978
1284	East of Trout Breccia	11750	9880	-90	522	462.3	463.8	1.5	4.01	06/30/1978	07/04/1978
1285	East of Trout Breccia	11250	10050	-90	516	438.1	442.1	4	1.34	07/05/1978	07/07/1978
1286	East of Trout Breccia	11920	9900	-90	520					07/08/1978	07/12/1978
1287	East of Trout Breccia	11700	10100	-90	508	388.7	448	59.3	3.58	07/13/1978	07/15/1978
1287	East of Trout Breccia	11700	10100	-89	508	437.1	438.1	1		07/13/1978	07/15/1978
1288	East of Trout Breccia	9760	11710	-90	528					07/19/1978	07/21/1978
1289	East of Trout Breccia	9790	11850	-90	505	438	459.6	21.5	3.16	07/24/1978	07/27/1978
1289	East of Trout Breccia	9790	11850	-90	505	438	448.8	10.8	4.19	07/24/1978	07/27/1978
1289	East of Trout Breccia	9790	11850		505	448	452.6	3.8	2.52	07/24/1978	07/27/1978
1289	East of Trout Breccia	9790	11850	-90	505	452.6	459.6	7	1.93	07/24/1978	07/27/1978
1290	East Breccia	19500	15100	-90	213					05/27/1978	05/28/1978
1291	East Breccia	19440	15150	-90	220					05/30/1978	05/31/1978
1292	East Breccia	19570	15070	-90	202					05/31/1978	06/02/1978
1293	East Breccia	19640	15080	-90	202					06/02/1978	06/03/1978
1304	East of Trout Breccia	9850	11590	-90	511	454	465	1	2.2	07/22/1978	07/31/1978
1305	East of Trout Breccia			-90	55	443.3	444.8	1.5	0.57	08/01/1978	08/03/1978
1306	East of Trout Breccia			-90	478					08/04/1978	08/08/1978
1347	Mike Lake Breccia	16050	9540	-90	240	158.8	159.8	1	0.78	05/03/1979	05/03/1979
1347	Mike Lake Breccia	16050	9540	-90	240	163.7	164.7	1	1.4	05/03/1979	05/03/1979
1347	Mike Lake Breccia	16050	9540	-90	240	174.7	176.2	1.5	2.33	05/03/1979	05/03/1979
1348	Mike Lake Breccia	16667.84	9491.71	-90	235	156.6	171.1	14.5	22	05/05/1979	05/05/1979
1349	Mike Lake Breccia	16603.56	9458.44	-90	218	165	175.1	10.1	7.55	05/06/1979	05/06/1979
1349	Mike Lake Breccia	16603.56	9458.44	-90	218	165	166.7	1.7	34.49	05/06/1979	05/06/1979
1349	Mike Lake Breccia	16603.56	9458.44	-90	218	189.7	191	1.3	1.3	05/06/1979	05/06/1979
1350	Mike Lake Breccia	16537.38	9424.57	-90	238	163.3	177.4	14.1	4.99	05/07/1979	05/07/1979
1351	Mike Lake Breccia	16500	9360	-90	254	180.3	181.9	1.6	1.43	05/08/1979	05/09/1979
1351	Mike Lake Breccia	16500	9360	-90	254	188	189	1	0.82	05/08/1979	05/09/1979

After Tallman, 2010

	7	Mine Gr	id (feet)	Die		Carro	Ta	Lagath	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_ft	From	10	Length	ΖΠ %	Start Date	End Date
1352	Mike Lake Breccia	16810	8950	-90	320					05/14/1979	05/14/1979
1353	Mike Lake Breccia	16670	8890	-90	338					05/15/1979	05/16/1979
1354	Mike Lake Breccia	16540	8790	-90	338	278.7	279.7	1	2.11	05/17/1979	05/18/1979
1355	Mike Lake Breccia	16840	9020	-90	307					05/18/1979	05/19/1979
1356	Mike Lake Breccia	17080	9150	-90	300	237.4	238	1.4	6.05	05/19/1979	05/20/1979
1357	Mike Lake Breccia	17210	9150	-90	320					05/20/1979	05/20/1979
1358	Mike Lake Breccia	17330	9205	-90	120					05/22/1979	05/22/1979
1359	Mike Lake Breccia	17009	9049	-90	292	206.3	207.3	1	0.66	05/23/1979	05/23/1979
1360	Mike Lake Breccia	17135	9108	-90	311					05/28/1979	05/29/1979
1361	Mike Lake Breccia	16610	9190	-90	275					05/30/1979	05/30/1979
1362	Mike Lake Breccia	16540	9210	-90	274					05/31/1979	05/31/1979
1363	Mike Lake Breccia	16407	9230	-90	284					06/01/1979	06/01/1979
1364	Mike Lake Breccia	16690	9160	-90	285	198.9	199.9	1	2.75	06/02/1979	06/03/1979
1364	Mike Lake Breccia	16690	9160	-90	285	199.9	200.9	1	19.62	06/02/1979	06/03/1979
1365	Q Zone	17620	7990	-90	407	358	365.2	7.2	2.88	06/05/1979	06/06/1979
1366	Q Zone	17750	7920	-90	392					06/06/1979	06/07/1979
1367	Q Zone	17700	8120	-90	403	323.6	372.1	48.5	0.29	06/11/1979	06/13/1979
1367	Q Zone	17700	8120	-90	403	366.1	372.1	6	1.39	06/11/1979	06/13/1979
1368	Q Zone	17650	8170	-90	406					06/14/1979	06/16/1979
1369	K Zone	16765.49	10449.48	-90	122					07/10/1979	07/10/1979
1370	Q Zone	17760	9070	-90	407	115.8	322.5	6.7	6.77	07/12/1979	07/12/1979
1371	Q Zone	17895	8235	-90	358	254	278	24	4.96	07/19/1979	07/21/1979
1372	Q Zone	17835	8275	-90	369	269.2	281	11.8	5.04	07/22/1979	08/01/1979
1373	Q Zone	17765	8310	-90	364					08/03/1979	08/04/1979
1374	Q Zone	18045	8385	-90	335	263.8	264.8	1	1.29	08/05/1979	08/08/1979
1374	Q Zone	18045	8385	-90	335	269.3	270.3	1	0.08	08/05/1979	08/08/1979
1375	Q Zone	17910	8405	-90	306					08/13/1979	08/14/1979
1376	Q Zone	17975	8425	-90	318	231.2	238	6.8	3.01	08/15/1979	08/16/1979
1377	Mike Lake Breccia	16705	9650	-90	223					08/19/1979	08/19/1979
1378	Mike Lake Breccia	16625	9645	-90	220					08/20/1979	08/20/1979
1379	Mike Lake Breccia	16780	9690	-90	207	141.1	152.4	11.3	7.13	08/21/1979	08/21/1979

After Tallman, 2010

	7	Mine Gr	id (feet)	0:-	Langeth ft	6	Ŧ	1 + -	7- 0/		
Hole ID	Zone	North	East	UIP	Length_ft	From	10	Length	ZN %	Start Date	End Date
1380	Trapper Dev. Lic.	28700	23230	-90	800					06/15/1979	06/20/1979
1381	Trapper Dev. Lic.	32500	20010	-90	98					06/27/1979	06/28/1979
1382	Trapper Dev. Lic.	41500	25280	-90	588					06/20/1979	06/25/1979
1383	Trapper Dev. Lic.	52215	28745	-90	803					06/28/1979	07/07/1979
1384	Trapper Dev. Lic.	35250	48600	-90	787					06/26/1979	06/27/1979
1385	Trapper Dev. Lic.	40800	50720	-90	648					07/06/1979	07/16/1979
1386	Trout Lake Breccia	11850	8180	-90	611	551.9	570.7	18.8	8.96	07/19/1979	07/22/1979
1387	Trout Lake Breccia	11910	8100	-90	611					07/23/1979	07/25/1979
1388	Trout Lake Breccia	12170	8625	-90	576					07/30/1979	08/01/1979
1389	Trout Lake Breccia	11555	9315	-90	255					08/03/1979	09/04/1979
1390	Trout Lake Breccia	11765	9495	-90	571	461	462	1	0.41	08/06/1979	08/14/1979
1390	Trout Lake Breccia	11765	9495	-90	571	471.6	472.6	1	0.29	08/06/1979	08/14/1979
1391	Trout Lake Breccia	11720	9420	-90	239					08/16/1979	08/15/1979
1392	Trout Lake Breccia	11730	9430	-90	557					08/17/1979	08/20/1979
1393	South of H&M	6300	16625	-90	367					08/23/1979	08/28/1979
1394	South of H&M	16140	16820	-90	367					08/30/1979	08/31/1979
1395	South of H&M	15920	17030	-90	423					09/02/1979	09/06/1979
	Muddy Brook Pond										
1396	Area Muddu Brook Dood	20925	19625	-90	502					09/12/1979	09/19/1979
1207		20775	10025	00	4.20	<u>ээ</u> т г	220 5	1	20	00 /25 /1070	00/20/1070
1597	Muddu Brook Pond	20775	19025	-90	420	557.5	558.5	I	5.0	09/25/19/9	09/28/19/9
1397	Агеа	20775	19625	-90	426	357.3	358.7	1.4	27.25	09/25/1979	09/28/1979
	Muddy Brook Pond										
1398	Агеа	20850	19625	-90	427					09/30/1979	10/02/1979
	Muddy Brook Pond										
1399	Area	20700	19625	-90	427	347.2	348.2	1	0.37	10/09/1979	10/12/1979
1399	K Zone West Est.	20700	19625	-90	427	358.2	359.2	1	3.75	10/09/1979	10/12/1979
1400	K Zone West Est.	16855	9650	-90	228	121	122.9	1	1.5	08/22/1979	08/27/1979
1400	K Zone West Est.	16855	9650	-90	228	140.9	142.2	1.3	2.25	08/22/1979	08/27/1979
1401	K Zone West Est.	16860	9825	-90	208					08/28/1979	08/30/1979
1402	K Zone West Est.	16710	9825	-90	198	125.8	151	25.2	13.93	08/30/1979	08/31/1979

After Tallman, 2010

	7	Mine Gr	id (feet)	D'-		5	Та	Lagath	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_ft	From	10	Length	ZN %	Start Date	End Date
1403	K Zone West Est.	16710	9825	-90	208					09/01/1979	09/02/1979
1404	K Zone West Est.	16787.2	10229.92	-90	158					09/03/1979	09/04/1979
1405	K Zone West Est.	16858.82	10221.26	-90	178					09/04/1979	09/04/1979
1406	K Zone West Est.	16716.03	10275.32	-90	147	91.2	112.2	20.9	2.3	09/10/1979	09/10/1979
1406	K Zone West Est.	16716.03	10275.32	-90	147	91.2	101.2	10	3.39	09/10/1979	09/10/1979
1406	K Zone West Est.	16716.03	10275.32	-90	147	92.7	93.7	1	24.27	09/10/1979	09/10/1979
1407	K Zone West Est.	16695.83	10288.41	-90	128	89.9	92.9	3	3.77	09/11/1979	09/11/1979
1407	K Zone West Est.	16695.83	10288.41	-90	128	107.3	116.5	9.2	10.96	09/11/1979	09/11/1979
1408	K Zone West Est.	16743.8	10294.31	-90	128	89.4	95.7	6.3	7.38	09/12/1979	09/12/1979
1409	K Zone West Est.	16650	9170	-90	258	194.9	198.1	3.2	13.81	09/14/1979	09/15/1979
1410	K Zone West Est.	16610	9010	-90	298	251.1	256.5	5.4	7.37	09/17/1979	09/15/1979
1411	K Zone West Est.	16610	8790	-90	328					09/24/1979	09/25/1979
1412	K Zone West Est.	16461	8790	-90	320					09/27/1979	09/28/1979
1413	K Zone West Est.	16580	8790	-90	328	278.4	280.5	2.1	4.48	09/30/1979	10/01/1979
1414	K Zone West Est.	16515	8605	-90	348					10/03/1979	10/09/1979
1415	Trout Lake Breccia	11950	9410	-90	528	403.4	404.5	1.1	1.4	10/13/1979	10/15/1979
1415	Trout Lake Breccia	11950	9410	-90	528	433.5	434.5	1	1.4	10/13/1979	10/15/1979
1416	Trout Lake Breccia	12090	9305	-90	518	430.8	439.9			10/17/1979	10/24/1979
1417	Trout Lake Breccia	12010	9370	-90	514	442.3	443.3	1	19	10/26/1979	10/28/1979
1417	Trout Lake Breccia	12010	9370	-90	514	463.4	464.5	1.1	4.01	10/26/1979	10/28/1979
1417	Trout Lake Breccia	12010	9370	-90	514	467.6	469.5	1.9	2.11	10/26/1979	10/28/1979
1418	Trout Lake Breccia	12070	9630	-90	518			1	0.38	10/30/1979	11/01/1979
1419	Trout Lake Breccia	12020	9670	-90	518					11/06/1979	11/08/1979
	Muddy Brook Pond										
1420	Area	20760	19220	-90	317					10/17/1979	10/24/1979
1/ 71		20000	20020	00	527		(20 5	1	(07	10 /20 /1070	11/05/1070
1421	Area Muddu Brook Pond	20960	20030	-90	527	437.5	438.5	1	4.03	10/28/19/9	11/05/19/9
1422	Агеа	21190	20960	-90	547	494	495 2	12	9.8	11/07/1979	11/14/1979
1766	Muddy Brook Pond	21150	20500	50	5-11	777			5.0	, ., ., ., ., ., .	, , , , , , , , , , , , , , , , , , ,
1422	Агеа	21910	20360	-90	547	512.6	513.6	1	10.4	11/07/1979	11/14/1979

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	0:-	Langeth ft	6	τ.	1 + -	7- 0/		
Hole ID	Zone	North	East	UIP	Length_ft	From	10	Length	ZN %	Start Date	End Date
	Muddy Brook Pond										
1423	Агеа	21265	20360	-90	547					11/16/1979	11/18/1979
	Muddy Brook Pond										
1424	Area Muddu Brook Dood	21115	20360	-90	540	459.4	460.8	1.4	1.9	11/20/1979	11/26/1979
1/.2/.		21115	20360	-90	540	500 0	511	1 1	4.23	11/20/1070	11/26/1070
1424	Muddu Brook Pond	21115	20300	- 50	540	505.5	511	1.1	4.25	11/20/15/5	11/20/15/5
1425	Агеа	21390	20700	-90	617	537.5	538.5	1	3.31	11/28/1979	11/30/1979
	Muddy Brook Pond									,,	.,,
1425	Агеа	21390	20700	-90	617	574.5	576	1.5	2.81	11/28/1979	11/30/1979
	Muddy Brook Pond										
1425	Агеа	21390	20700	-90	617	575.5	577	1.1	19.22	11/28/1979	11/30/1979
1437	NE of E Zone	23680	20320	-90	232	142	151	9	2.09	06/02/1980	06/03/1980
1438	NE of E Zone	27540	20960	-90	244					06/06/1980	07/06/1980
1439	NE of E Zone	27260	19580	-90	152					06/08/1980	06/08/1980
1475	NE of E Zone	22690	19275	-90	282					07/15/1980	07/16/1980
1476	NE of E Zone	22820	19200	-90	220	139.2	160.7	21.5	8.51	07/16/1900	07/17/1980
1477	NE of E Zone	22890	19165	-90	237	134	135	1	9.33	07/21/1980	07/22/1980
1478	NE of E Zone	22615	18850	-90	160	39.5	40.5	1	2	07/22/1980	07/23/1980
1479	NE of E Zone	22475	18935	-90	164					07/23/1980	07/23/1980
1480	NE of E Zone	22445	18890	-90	131	56	57	1	10.94	07/23/1980	07/24/1980
1481	NE of E Zone	22680	18815	-90	102					07/24/1980	07/24/1980
1482	NE of E Zone	22725	19370	-90	260	160.7	161.7	1	0.15	07/25/1980	07/26/1980
1483	NE of E Zone	22985	19325	-90	255	157.7	158.7	1	1.82	07/27/1980	07/27/1980
1484	NE of E Zone	22860	19405	-90	242					07/28/1980	07/29/1980
1485	NE of E Zone	22695	19040	-90	190	149.3	162.6	13.3	2.69	07/29/1980	07/30/1980
1486	NE of E Zone	22955	19350	-90	242						
1487	NE of E Zone	22575	18880	-90	121					08/22/1980	08/22/1980
1488	NE of E Zone	22635	19087	-90	191					08/22/1980	08/23/1980
1489	NE of E Zone	22565	19125	-90	200					08/23/1980	08/24/1980
1490	NE of E Zone	23050	19285	-90	260		1			08/24/1980	08/25/1980
1543	C.B. 1392			-90	147					10/06/1981	10/06/1981

After Tallman, 2010

	_	Mine Gr	id (feet)	0.1		~	-			<u> </u>	5 10 1
Hole ID	Zone	North	East	UIP	Length_ft	From	10	Length	ZN %	Start Date	End Date
1544	C.B. 1392			-90	202					10/08/1981	10/08/1981
1545	C.B. 1392			-90	317					10/10/1981	10/12/1981
1546	C.B. 1392			-90	427					10/15/1981	10/19/1981
1547	C.B. 1392			-90	311					10/23/1981	10/24/1981
1548	C.B. 1392			-90	287					10/27/1981	10/28/1981
1549	C.B. 1392			-90	247					11/02/1981	11/03/1981
1550	C.B. 1389			-90	707					11/07/1981	11/09/1981
1551	C.B. 1389			-90	740					11/11/1981	11/16/1981
1552	C.B. 1389			-90	717					11/17/1981	11/20/1981
1553	C.B. 1389			-90	580					11/14/1981	11/16/1981
1554	C.B. 1388			-90	555	453	454.6	1.6	0.31	11/10/1981	11/25/1981
1555	C.B. 1388			-90	720					05/20/1982	05/25/1982
1556	C.B. 1388			-90	761					05/25/1982	05/31/1982
1557	C.B. 1384			-90	102					06/02/1982	06/02/1982
1558	C.B. 1384			-90	157					06/02/1982	06/02/1982
1559	C.B. 1386			-90	287	227.8	228.8	1	0.25	06/03/1982	06/04/1982
1560	C.B. 1386			-90	200	111.7	112.7	1	3.09	06/04/1982	06/05/1982
1561	C.B. 1386			-90	200	112.9	113.9	1	0.27	06/05/1982	06/05/1982
1562	C.B. 1386			-90	87					06/06/1982	06/06/1982
1563	C.B. 1386			-90	100					06/07/1982	06/07/1982
1564	Claim 14499			-90	36					06/08/1982	06/08/1982
1565	Claim 12781			-90	210					06/08/1982	06/09/1982
1566	Claim 12781			-90	114					06/09/1982	06/10/1982
1567	Claim 12780			-90	152					06/10/1982	06/10/1982
1568	Claim 14498			-90	46					06/10/1982	06/11/1982
1569	C.B. 2239			-90	325					06/12/1982	06/14/1982
1570	C.B. 1393			-90	747					06/16/1982	06/20/1982
1571	C.B. 1393			-90	800	584.5	568	1.5		06/20/1982	06/23/1982
1572	C.B. 2241			-90	53					06/24/1982	06/29/1982
1573	C.B. 2241			-90	200					06/20/1982	06/29/1982
1574	C.B. 1391			-90	100					06/30/1982	06/30/1982

After Tallman, 2010

	_	Mine Gr	id (feet)	0.1		~	-			<u> </u>	5 10 1
Hole ID	Zone	North	East	υιρ	Length_ft	From	10	Length	ZN %	Start Date	End Date
1575	C.B. 1395			-90	450					07/02/1982	07/03/1982
1576	C.B. 1395			-90	707					07/04/1982	07/06/1982
1577	C.B. 1389			-90	357					07/14/1982	07/15/1982
1578	C.B. 1389			-90	450					07/16/1982	07/17/1982
1579	C.B. 1389			-90	572					07/18/1982	07/20/1982
1580	C.B. 1389			-90	374					07/20/1982	07/21/1982
1581	C.B. 1388			-90	727					07/22/1982	07/29/1982
1582	C.B. 1388			-90	475					07/29/1982	07/30/1982
1583	C.B. 1387			-90	317	275	276	1	0.66	07/31/1982	07/31/1982
1584	C.B. 1387			-90	240					08/01/1982	08/02/1982
1585	C.B. 1387			-90	230					08/02/1982	08/03/1982
1586	C.B. 1387			-90	136					08/03/1982	08/03/1982
1587	C.B. 1388			-90	212	170.5				08/05/1982	08/12/1982
1588	C.B. 1388			-90	201					08/13/1982	08/14/1982
1589	C.B. 1388			-90	250	196	197	1	4.73	08/14/1982	08/16/1982
1590	Claim 12781			-90	175					08/17/1982	08/17/1982
1591	C.B. 2240			-90	295					08/18/1982	08/23/1982
1592	C.B. 2239			-90	485					08/24/1982	08/25/1982
1593	C.B. 2239			-90	170					08/25/1982	08/26/1982
1594	C.B. 2239			-90	245					08/26/1982	08/26/1982
1595	C.B. 2238			-90	80					08/27/1982	08/27/1982
1596	C.B. 2238			-90	431					08/27/1982	08/27/1982
1597	C.B. 2238			-90	303					08/29/1982	09/01/1982
1598	C.B. 2238			-90	101					09/01/1982	09/02/1982
1599	C.B. 2238			-90	80					09/02/1982	09/09/1982
1625	CB 2231			88	1075	1015.2	1016.2	1	1.79	03/08/1981	03/14/1981
1625	CB 2231			88	1075	1022.8	1023.8	1	0.69	03/08/1981	03/14/1981
1626	CB 1399			89	907					03/17/1981	03/21/1981
1628	CB 2232			89	1078	963.9	992.9	29	0.39	04/06/1981	04/11/1981
1629	CB 2232			90	1020	988.1	989.1	1	2.43	04/24/1981	04/27/1981
1629	CB 2232			90	1020	991.6	992.6	1	1.49	04/24/1981	04/27/1981

After Tallman, 2010

	-	Mine Gr	id (feet)	0.		~	-		7 0/	<u> </u>	5 10 1
Hole ID	Zone	North	East	DIP	Lengtn_tt	From	10	Length	ZN %	Start Date	End Date
1636	CB 1399			89	820					05/28/1981	06/04/1981
1660	CB 2233				105					07/02/1981	07/02/1981
1661	CB 2233				85					07/03/1981	07/03/1981
1662	CB 2233				60					07/03/1981	07/03/1981
1663	CB 2233				60					07/04/1981	07/04/1981
1664	CB 2233				263					07/04/1981	07/05/1981
1665	CB 2233				100					07/06/1981	07/06/1981
1666	CB 2233				70					07/06/1981	07/06/1981
1667	CB 2233				65					07/06/1981	07/07/1981
1668	CB 2233				52					07/07/1981	07/07/1981
1669	CB 2233				10					07/08/1981	07/08/1981
1670	CB 2235				89					07/03/1981	07/14/1981
1671	CB 2235				100					07/14/1981	07/14/1981
1672	CB 2235				90	37.7	40	2.3	0.71	07/15/1981	07/15/1981
1672	CB 2235				90	44.6	48.1	3.5	0.58	07/15/1981	07/15/1981
1673	CB 2235				75	17	50.4	33.4	0.33	07/15/1981	07/15/1981
1674	CB 2235				75	22.6	33.4	10.8	1.38	07/15/1981	07/15/1981
1675	CB 2235				75	17.5	22.7	5.2	0.4	07/16/1981	07/16/1981
1675	CB 2235				75	38	40.1	2.1	0.97	07/16/1981	07/16/1981
1676	Claim 12770				937					07/14/1981	07/17/1981
1677	CB 2236				30					07/14/1981	07/17/1981
1678	CB 2236				50	10.5	11.5	1	0.14	07/17/1981	07/17/1981
1679	Claim 12770				120	17.8	19.7	1.9	2.19	07/18/1981	07/20/1981
1680	CB 2236				150	87	88	1	1.92	07/21/1981	07/21/1981
1681	CB 2236				160					07/22/1981	07/22/1981
1682	CB 1397				120					07/24/1981	07/24/1981
1683	CB 1397				120	40	41	1	1.39	07/24/1981	07/24/1981
1684	CB 1397				120					07/24/1981	07/25/1981
1685	CB 1397				110					07/25/1981	7/26/1981
1686	CB 1397				190	129.9	132.4	2.5	0.54	07/26/1981	07/27/1981
1687	CB 1398				680					07/29/1981	08/04/1981

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	01-		6	T	1 + -	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_ft	From	10	Length	ZN %	Start Date	End Date
1688	Claim 12779				565	454.6	455.7	1.1	3	08/05/1981	08/06/1981
1689	Claim 12771				50					08/08/1981	08/08/1981
1690	Claim 12771				50					08/08/1981	08/08/1981
1731	F Zone	17500	13755	-90	75					10/12/1981	10/12/1981
1735	F Zone	17315	13633	-90	60					10/14/1981	10/14/1981
1736	F Zone	17265	13660	-90	75					10/14/1981	10/14/1981
1737	F Zone	17362	13609	-90	75					10/15/1981	10/15/1981
1738	F Zone	17405	13584	-90	75	12.8	34.8	22	2.76	10/15/1981	10/15/1981
1738	F Zone	17405	13584	-90	75	16.3	34.8	18.5	3.11	10/15/1981	10/15/1981
1739	F Zone	17425	13570	-90	70	45.3	60	14.7	1.35	10/19/1981	10/19/1981
1740	F Zone	17381	13595	-90	60	10.7	33.6	22.9	7.6	10/20/1981	10/20/1981
1741	F Zone	17381	13595	-90	60	25	33.6	8.6	15.6	10/20/1981	10/20/1981
1741	F Zone	17398	13357	-90	72					10/20/1981	10/20/1981
1742	F Zone	17483	13309	-90	60					10/21/1981	10/21/1981
1743	F Zone	17435	13333	-90	60					10/21/1981	10/21/1981
1744	F Zone	17567	13257	-90	60	45.4	46.4	1	2.76	10/22/1981	10/22/1981
1744	F Zone	17567	13257	-90	60	48.8	49.8	1	2.09	10/22/1981	10/22/1981
1745	F Zone	17549	13269	-90	60	14.8	15.9	1.1	1.25	10/22/1981	10/22/1981
1745	F Zone	17549	13269	-90	60	38.5	39.5	1	1.13	10/22/1981	10/22/1981
1745	F Zone	17549	13269	-90	60	55.7	57.2	1.5	1.45	10/22/1981	10/22/1981
1746	F Zone	17528	13282	-90	62	31.8	47.6	15.8	2.21	10/22/1981	10/22/1981
1747	F Zone	17506	13295	-90	58					10/22/1981	10/22/1981
1748	F Zone	17850	13960	-90	60					10/23/1981	10/23/1981
1749	F Zone	17520	13405	-90	60	46.8	49.4	2.6	2.7	10/23/1981	10/23/1981
1750	F Zone	17390	13350	-90	34					10/24/1981	10/24/1981
1751	NE of L Zone	14965	11515	-90	150					10/28/1981	10/28/1981
1752	NE of L Zone	14860	11690	-90	170					11/02/1981	11/03/1981
1753	NE of L Zone	15090	11925	-90	122					11/03/1981	11/03/1981
1754	NE of L Zone			-90	100					11/04/1981	11/04/1981
1755	NE of L Zone	14960	11760	-90	150	55.9	63.3	7.4	8.6	11/12/1981	11/15/1981
1755	NE of L Zone	14960	11760	-90	150	55.9	77.7	21.8	3.47	11/12/1981	11/15/1981

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	0:-	Langeth Ch	6	T	1 + - + +	7- 0/		
Hole ID	Zone	North	East	υр	Lengtn_tt	From	10	Length	ΖΠ %	Start Date	End Date
1755	NE of L Zone	14960	11760	-90	150	55.9	57.4	1.5	25.67	11/12/1981	11/15/1981
1755	NE of L Zone	14960	11760	-90	150	61.9	63.3	1.4	17.71	11/12/1981	11/15/1981
1755	NE of L Zone	14960	11760	-90	150	76.7	77.7	1	11.05	11/12/1981	11/15/1981
1756	NE of L Zone	14895	11795	-90	160	59	60	1	0.84	11/15/1981	11/16/1981
1757	NE of L Zone	14980	11735	-90	150	47	48	1	1.19	11/16/1981	11/18/1981
1758	NE of L Zone	14965	11745	-90	100	52	59.5	7.5	6.05	11/18/1981	11/19/1981
1758	NE of L Zone	14965	11745	-90	100	52	53.3	1.3	23.95	11/18/1981	11/19/1981
1758	NE of L Zone	14965	11745	-90	100	58	59.5	1.5	8.01	11/18/1981	11/19/1981
1759	NE of L Zone	14620	11925	-90	180	77.2	79.4	2.2	2.79	11/19/1981	11/19/1981
1759	NE of L Zone	14620	11925	-90	180	89.5	90.5	1	5.77	11/19/1981	11/19/1981
1759	NE of L Zone	14620	11925	-90	180	164.5	166.9	2.4	2.91	11/19/1981	11/19/1981
1760	NE of L Zone	14590	12025	-90	190					11/20/1981	11/20/1981
1761	NE of L Zone	14575	11975	-90	180	108.1	109.1	1	2.4	11/21/1981	11/21/1981
1761	NE of L Zone	14575	11975	-90	180	113	114	1	1.89	11/21/1981	11/21/1981
1761	NE of L Zone	14575	11975	-90	180	130.1	131.1	1	1.5	11/21/1981	11/21/1981
1762	NE of L Zone	14625	11945	-90	180	75.9	77.1	1.2	7.97	11/21/1981	11/21/1981
1762	NE of L Zone	14625	11945	-90	180	81	82	1	1.04	11/21/1981	11/22/1981
1763	NE of L Zone	14760	11860	-90	180	118.6	128.4	9.8	1.47	11/22/1981	11/22/1981
1763	NE of L Zone	14760	11860	-90	180	118.6	121.2	1.6	4.45	11/22/1981	11/22/1981
1763	NE of L Zone	14760	11860	-90	180	123.7	124.8	1.1	3.64	11/22/1981	11/22/1981
1764	NE of L Zone	14710	11890	-90	180	75	76.4	1.4	3.94	11/23/1981	11/23/1981
1764	NE of L Zone	14710	11890	-90	180	85.4	86.9	1.5	3.41	11/23/1981	11/23/1981
1765	NE of L Zone	14435	11995	-90	180					11/24/1981	11/24/1981
1766	NE of L Zone	14795	11840	-90	150	96.7	97.7	1	12.1	11/24/1981	11/25/1981
1766	NE of L Zone	14795	11840	-90	150	109	110.6	1.6	1.96	11/24/1981	11/25/1981
1766	NE of L Zone	14795	11840	-90	150	112.3	113.3	1	1.04	11/24/1981	11/25/1981
1767	NE of L Zone	14740	11870	-90	150	74.7	75.7	1	1.73	12/01/1981	12/02/1981
1767	NE of L Zone	14740	11870	-90	150	79.6	80.6	1	1.4	12/01/1981	12/02/1981
1767	NE of L Zone	14740	11870	-90	150	84.9	85.9	1	3.4	12/01/1981	12/02/1981
1768	NE of L Zone	14605	11960	-90	150					12/02/1981	12/02/1981
1769	NE of L Zone	14555	11885	-90	150	106	107	1	0.8	12/03/1981	12/03/1981

After Tallman, 2010

	7	Mine Gr	id (feet)	Die		5	Та	Lagath	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_ft	From	10	Length	ZN %	Start Date	End Date
1769	NE of L Zone	14555	11885	-90	150	109.2	110.2	1	1.2	12/03/1981	12/03/1981
1770	NE of L Zone	15755	12535	-90	148	30.6	31.6	1	0.84	12/04/1981	12/04/1981
1771	NE of L Zone	16025	12370	-90	123	46.4	51.5	5.1	3.1	12/04/1981	12/04/1981
1771	NE of L Zone	16025	12370	-90	123	49.5	51.5	2	4.21	12/04/1981	12/04/1981
1772	NE of L Zone	15980	12340	-90	60	18.6	19.6	1.09	11.1	12/05/1981	12/05/1981
1772	NE of L Zone	15980	12340	-90	60	21	22	1	3.74	12/05/1981	12/05/1981
1772	NE of L Zone	15980	12340	-90	60	27.2	29.6	1	2.25	12/05/1981	12/05/1981
1773	NE of L Zone	16070	12340	-90	60					12/05/1981	12/05/1981
1774	NE of L Zone	15535	13215	-90	90					12/07/1981	12/07/1981
1775	NE of L Zone	15395	13595	-90	80					12/06/1981	12/06/1981
1776	NE of L Zone	15360	13210	-90	100					12/05/1981	12/05/1981
1777	NE of L Zone	16195	13575	-90	100					12/07/1981	12/07/1981
1778	NE of L Zone	16205	13564	-90	18					12/08/1981	12/08/1981
1783	NE Trout Lk. Breccia	11995	9375	-90	505	396.6	397.4	1.4	1.35	12/12/1981	12/15/1981
1789	C.B. 2234			-90	57					05/21/1982	05/21/1982
1790	C.B. 2234			-90	98					05/22/1982	05/22/1982
1791	C.B. 2234			-90	87					05/22/1982	05/22/1982
1792	C.B. 2233			-90	171					05/23/1982	05/23/1982
1793	C.B. 2233			-90	198					05/24/1982	05/24/1982
1794	C.B. 2233			-90	131					05/25/1982	05/25/1982
1795	C.B. 2233			-90	213					05/25/1982	05/27/1982
1796	C.B. 2233			-90	214					05/26/1982	05/27/1982
1797	C.B. 2233			-90	237					05/31/1982	06/01/1982
1798	C.B. 2233			-90	200					06/03/1982	06/04/1982
1799	C.B. 2234			-90	70					06/14/1982	
1800	C.B. 2234			-90	150					06/15/1982	
1801	C.B. 2234			-90	100					06/15/1982	
1802	C.B. 2235			-90	110	60.8	62.2	1.4	2.56	06/16/1982	06/16/1982
1802	C.B. 2235			-90	110	71.2	72.4	1.2	0.9	06/16/1982	06/16/1982
1802	C.B. 2235			-90	110	74.7	75.9	1.2	3.4	06/16/1982	06/16/1982
1802	C.B. 2235			-90	110	75.9	78.3	2.4	0.99	06/16/1982	06/16/1982

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	0:-	Langeth Ch	5	T	1 + -	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_ft	From	10	Length	ΖΠ %	Start Date	End Date
1803	C.B. 2235			-90	104	39	78.5	39.5	1.83	06/17/1982	06/17/1982
1803	C.B. 2235			-90	104	39	41.4	2.4	2.85	06/17/1982	06/17/1982
1803	C.B. 2235			-90	104	42.5	46	3.5	3.01	06/17/1982	06/17/1982
1803	C.B. 2235			-90	104	47.2	53.2	6	2.29	06/17/1982	06/17/1982
1803	C.B. 2235			-90	104	66.3	68.3	2	4.79	06/17/1982	06/17/1982
1804	C.B. 2236			-90	50					06/17/1982	06/17/1982
1805	C.B. 2235			-90	50					06/17/1982	06/17/1982
1806	C.B. 2236			-90	50					06/17/1982	06/17/1982
1807	C.B. 1397			-90	334					06/18/1982	06/19/1982
1808	C.B. 1397			-90	290					06/18/1982	06/18/1982
1809	C.B. 1398			-90	33					06/21/1982	06/21/1982
1844	C.B. 2237			-90	180	102.3	161.5	49.2	2.79	07/15/1982	07/16/1982
1844	C.B. 2237			-90	180	62.1	161.5	99.4	1.88	07/15/1982	07/16/1982
1845	C.B. 2237			-90	68	25.1	27.5	2.4	3.656	07/16/1982	07/17/1982
1845	C.B. 2237			-90	68	29.1	30.2	1.1	2.45	07/16/1982	07/17/1982
1845	C.B. 2237			-90	68	31.6	32.8	1.2	3.69	07/16/1982	07/17/1982
1845	C.B. 2237			-90	68	37	38.1	1.1	4.4	07/16/1982	07/17/1982
1846	C.B. 2237			-90	50					07/17/1982	07/17/1982
1847	C.B. 2237			-90	50	31	33.1	2.1	4.91	07/17/1982	07/17/1982
1848	C.B. 2237			-90	70					07/18/1982	07/18/1982
1849	C.B. 2237			-90	119	45.3	54	8.7	5.24	07/18/1982	07/18/1982
1849	C.B. 2237			-90	119	92	93.4	1.4	4.55	07/18/1982	07/18/1982
1850	C.B. 2237			-90	50					07/19/1982	07/19/1982
1851	C.B. 2237			-90	70					07/19/1982	07/20/1982
1852	C.B. 2237			-90	50					07/20/1982	07/20/1982
1872	Q Zone	17625	8135	-90	350	264.9	273.9	9	4.7	02/16/1983	02/18/1983
1872	Q Zone	17625	8135	-90	350	273.9	291.4	17.5	1.54	02/16/1983	02/18/1983
1872	Q Zone	17625	8135	-90	350	291.4	306.8	15.4	0.5	02/16/1983	02/18/1983
1873	Q Zone	17485	7980	-90	390	315.7	332.1	16.4	0.14	02/19/1983	02/21/1983
1873	Q Zone	17485	7980	-90	390	332.1	340.3	8.2	1.32	02/19/1983	02/21/1983
1874	South of Q Zone	17070	8035	-90	400					02/21/1983	03/04/1983

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	0:-	Langeth Ch	6	T	1 + -	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_tt	From	10	Length	ZN %	Start Date	End Date
1875	South of K Zone	15820	10925	-90	77					02/24/1983	02/25/1983
1876	South of K Zone	15910	10875	-90	71					02/25/1983	02/26/1983
1877	South of K Zone	15705	10330	-90	160					02/26/1983	02/26/1983
1878	South of K Zone	15795	10285	-90	165					02/28/1983	03/01/1983
1879	South of Q Zone	16780	8160	-90	396	363.5	368.4	4.9	1.77	03/08/1983	03/10/1983
1880	South of Q Zone	16050	8300	-90	390	327.5	328.5	1	0.83	03/10/1983	03/12/1983
1880	South of Q Zone	16050	8300	-90	390	343.5	353.3	9.7	2.7	03/10/1983	03/12/1983
1880	South of Q Zone	16050	8300	-90	390	372.9	381.4	8.5	2.76	03/10/1983	03/12/1983
1881	South of Q Zone	16100	8280	-90	390					03/12/1983	03/15/1983
1882	South of Q Zone	16015	8320	-90	390					03/15/1983	03/23/1983
1883	South of Q Zone	16530	8310	-90	390					03/23/1983	03/25/1983
1884	South of Q Zone	16850	8160	-90	395					03/25/1983	03/27/1983
1885	South of Q Zone	16760	8180	-90	395					03/27/1983	03/29/1983
1886	R Zone	21945	14030	-90	125	41.7	42.7	1	0.39	03/30/1983	03/30/1983
1886	R Zone	21945	14030	-90	125	46.4	47.4	1	0.59	03/30/1983	03/30/1983
1886	R Zone	21945	14030	-90	125	51.3	53.7	2.4	0.77	03/30/1983	03/30/1983
1886	R Zone	21945	14030	-90	125	61.7	63.7	2	19.46	03/30/1983	03/30/1983
1887	R Zone	19720	13470	-90	110					03/30/1983	03/31/1983
1888	R Zone	21290	13960	-90	67					04/05/1983	04/05/1983
1889	R Zone	21200	14000	-90	11					04/05/1983	04/05/1983
1890	R Zone	21380	13920	-90	120	33.3	44.1	10.8	2.06	04/06/1983	04/06/1983
1890	R Zone	21380	13920	-90	120	44.1	76.1	32	11.59	04/06/1983	04/06/1983
1891	R Zone	21720	14170	-90	150	31.3	33.5	2.2	1.15	04/06/1983	04/07/1983
1892	R Zone	21620	14230	-90	130	58.6	64.3	5.7	2.7	04/07/1983	04/07/1983
1892	R Zone	21620	14230	-90	130	71.9	79.2	7.3	1.27	04/07/1983	04/07/1983
1892	R Zone	21620	14230	-90	130	98.9	108.4	9.5	1.47	04/07/1983	04/07/1983
1893	R Zone	21590	14250	-90	130	61.6	62.6	1	5.21	04/07/1983	04/08/1983
1893	R Zone	21590	14250	-90	130	79.8	80.8	1	16.27	04/07/1983	04/08/1983
1894	R Zone	21650	14210	-90	130	59	63	4	0.62	04/08/1983	04/08/1983
1894	R Zone	21650	14210	-90	130	83	95	12	5.32	04/08/1983	04/08/1983
1895	Bellburn's Pond			-90	545					04/10/1983	04/12/1983

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	01-		5	T	1 + -	7- 0/		
Hole ID	Zone	North	East	υр	Lengtn_ft	From	10	Length	ZN %	Start Date	End Date
1896	Bellburn's Pond			-90	740					04/12/1983	04/20/1983
1897	Bellburn's Pond			-90	455					04/20/1983	04/22/1983
1898	Bellburn's Pond			-90	440					04/22/1983	04/24/1983
1899	Bellburn's Pond			-90	410	306.3	307.3	1	0.15	04/24/1983	04/26/1983
1900	C.B. 1393			-90	150					08/17/1982	08/13/1982
1901	C.B. 1393			-90	100					08/18/1982	08/18/1982
1902	C.B. 1393			-90	100					08/18/1982	08/19/1982
1903	C.B. 1393			-90	120					08/23/1982	08/24/1982
1904	C.B. 1393			-90	100					08/25/1982	08/25/1982
1905	C.B. 1393			-90	100					08/25/1982	08/25/1982
1906	C.B. 1393			-90	60					08/27/1982	08/27/1982
1907	C.B. 1393			-90	60					08/27/1982	08/27/1982
1908	C.B. 1393			-90	60	10	11.9	1.9	22.05	08/27/1982	08/28/1982
1908	C.B. 1393			-90	60	11.9	12.8	0.9	4.03	08/27/1982	08/28/1982
1908	C.B. 1393			-90	60	12.8	14.4	1.6	20.96	08/27/1982	08/28/1982
1909	C.B. 1393			-90	60					08/28/1982	08/28/1982
1910	C.B. 1393			-90	60					08/29/1982	08/29/1982
1911	C.B. 1393			-90	75					08/29/1982	08/30/1982
1912	C.B. 1393			-90	75					08/30/1982	08/30/1982
1913	C.B. 1393			-90	75					08/31/1983	08/31/1983
1914	C.B. 1393			-90	75					08/31/1983	08/31/1983
1915	Claim 14500			-90	120					08/31/1983	08/31/1983
1916	Claim 14500			-90	120					09/01/1982	09/02/1982
1917	C.B. 1393			-90	100					09/02/1982	09/03/1982
1918	C.B. 1393			-90	90					09/03/1982	09/04/1982
1919	C.B. 1393			-90	80					09/08/1982	09/08/1982
1920	C.B. 1393			-90	110					09/09/1982	09/10/1982
1921	C.B. 1391			-90	109	12.7	14.6	1.9	0.2	09/10/1982	09/11/1982
1922	C.B. 1393			-90	90					09/11/1982	09/12/1982
1923	C.B. 1393			-90	100					09/12/1982	09/12/1982
1924	C.B. 1393			-90	313	258.3	260	1.7		09/14/1982	09/24/1982

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	01-		6	T	1 + - + +	7- 0/		
Hole ID	Zone	North	East	υр	Length_ft	From	10	Length	ZN %	Start Date	End Date
1924	C.B. 1393			-90	313	260	260.9	0.9		09/14/1982	09/24/1982
1925	C.B. 2238			-90	95					09/09/1982	09/10/1982
1926	C.B. 2238			-90	175					09/10/1982	09/11/1982
1927	C.B. 1386			-90	974					09/14/1982	09/22/1982
1928	C.B. 1386			-90	780					09/22/1982	09/25/1982
1930	C.B. 2238			-90	110					09/26/1982	09/27/1982
1931	C.B. 2238			-90	88					06/27/1982	06/29/1982
1932	CO BO's Pond Area			-90	285					09/29/1982	10/01/1982
1933	Black Duck Area			-90	921	857	859.8	2.8	1.01	10/07/1982	10/11/1982
1934	Black Duck Area			-90	327	258.8	260	1.2	1.49	10/11/1982	10/14/1982
1935	Black Duck Area			-90	340					10/15/1982	10/17/1982
1936	Black Duck Area			-90	377					10/18/1982	10/21/1982
1937	Black Duck Area			-90	257					10/21/1982	10/26/1982
1938	Black Duck Area			-90	327	262.7	263.7	1	0.75	10/26/1982	10/27/1982
1938	Black Duck Area			-90	327	282	283	1	1.51	10/26/1982	10/27/1982
1938	Black Duck Area			-90	327	292	293.2	1.2	1.72	10/26/1982	10/27/1982
1938	Black Duck Area			-90	327	296	297	1	1.85	10/26/1982	10/27/1982
1939	Black Duck Area			-90	321					10/27/1982	10/29/1982
1940	Black Duck Area			-90	317	262.3	285.2	22.9	2.08	10/29/1982	10/30/1982
1940	Black Duck Area			-90	317	283.6	285.2	1.6	19.25	10/29/1982	10/30/1982
1941	Black Duck Area			-90	177	105	106	1	3.45	10/30/1982	10/31/1982
1942	Black Duck Area			-90	180					10/31/1982	11/01/1982
1943	Black Duck Area			-90	145					11/01/1982	11/02/1982
1944	Black Duck Area			-90	140					11/02/1982	11/02/1982
1945	Black Duck Area			-90	302	265.6	268.4	2.8		11/03/1982	11/04/1982
1945	Black Duck Area			-90	302	269.6	271.9	2.3		11/03/1982	11/04/1982
1946	North of B Zone	19650	13465	-90	70					04/04/1983	04/04/1983
1947	North of B Zone	19590	13500	-90	70					04/04/1983	04/05/1983
1948	South of C Zone	20200	14600	-90	111	29.5	31.5	2	1.95	04/05/1983	04/05/1983
1949	South of C Zone	20260	14570	-90	110					04/05/1983	04/05/1983
1950	South of C Zone	20330	14530	-90	120					04/05/1983	04/06/1983

After Tallman, 2010

	7	Mine Gr	id (feet)	Die		C	Ta	Lagath	7- 0/		
Hole ID	Zone	North	East	υр	Lengtn_ft	From	10	Length	ZN %	Start Date	End Date
1951	South of C Zone	20120	14650	-90	120					04/06/1983	04/06/1983
1952	South of C Zone	20060	14680	-90	120	47.6	49.8	2.2	2.56	04/06/1983	04/06/1983
1953	South of C Zone	20430	14920	-90	130					04/06/1983	04/06/1983
1954	South of C Zone	20380	14450	-90	130					04/06/1983	04/07/1983
1955	NE of B Zone	19115	13810	-90	77	41.1	46.2	5.1	0.62	04/07/1983	04/07/1983
1955	NE of B Zone	19115	13810	-90	77	60.7	71	10.3	1.54	04/07/1983	04/07/1983
1956	NE of B Zone	19140	13790	-90	75	35	45.3	10.3	0.52	04/07/1983	04/07/1983
1956	NE of B Zone	19140	13790	-90	75	55.5	59	3.5	1.45	04/07/1983	04/07/1983
1957	B Zone	18750	13530	-90	80	51.7	56.1	4.4	0.81	04/07/1983	04/07/1983
1958	B Zone	18710	13550	-90	80	44	45.7	1.7	1.07	04/08/1983	04/08/1983
1958	B Zone	18710	13550	-90	80	51.3	57	5.7	0.35	04/08/1983	04/08/1983
1958	B Zone	18710	13550	-90	80	63.8	674	3.6	0.63	04/08/1983	04/08/1983
1959	NE of B Zone	19670	14910	-90	180	109.9	112	2.1	6.17	04/08/1983	04/08/1983
1960	Bellburn's Pond			-90	185					04/11/1983	04/13/1983
1961	Bellburn's Pond			-90	150					04/13/1983	02/13/1983
1962	Bellburn's Pond			-90	120					04/13/1983	04/14/1983
1963	Bellburn's Pond			-90	100					04/14/1983	04/18/1983
1964	Bellburn's Pond			-90	375					04/18/1983	04/20/1983
1965	Bellburn's Pond			-90	621	463.2	471	7.8	4.05	04/20/1983	04/23/1983
1966	Bellburn's Pond			-90	411					04/23/1983	04/25/1983
1967	Bellburn's Pond			-90	530					04/25/1983	04/28/1983
1968	Bellburn's Pond			-90	440	211.3				04/28/1983	05/03/1983
1969	Bellburn's Pond			-90	320					05/03/1983	05/04/1983
1970	Bellburn's Pond			-90	130					05/04/1983	05/05/1983
1971	Bellburn's Pond			-90	130					05/05/1983	05/05/1983
1972	Bellburn's Pond			-90	140					05/05/1983	05/06/1983
1973	Bellburn's Pond			-90	170					05/05/1983	05/06/1983
1974	Black Duck Area			-90	170					05/06/1983	05/07/1983
1975	Black Duck Area			-90	170					05/09/1983	05/09/1983
1976	Black Duck Area			-90	300					05/09/1983	05/11/1983
1977	Black Duck Area			-90	310					05/11/1983	05/14/1983

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	D'-	Langeth Ch	5	T	1 46	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_ft	нгот	10	Length	ΖΠ %	Start Date	End Date
1978	Black Duck Area			-90	160					05/15/1983	05/15/1983
1979	Black Duck Area			-90	160					05/15/1983	05/16/1983
1980	Black Duck Area			-90	180					05/16/1983	05/16/1983
1981	Black Duck Area			-90	170					05/17/1983	05/17/1983
1982	Black Duck Area			-90	170	108	109.6	1.6	2.19	05/17/1983	05/17/1983
1982	Black Duck Area			-90	170	127.5	129	1.5	12.89	05/17/1983	05/17/1983
1983	Black Duck Area			-90	170	75				05/16/1983	05/18/1983
1984	Black Duck Area			-90	170					05/18/1983	05/19/1983
1985	Black Duck Area			-90	170	159.1	160.1	1	0.96	05/19/1983	05/24/1983
1986	Black Duck Area			-90	170	130.4	131.4	1	0.83	05/24/1983	05/25/1983
1987	Black Duck Area			-90	170					05/25/1983	05/25/1983
1988	Black Duck Area			-90	170					05/26/1983	05/26/1983
1989	Black Duck Area			-90	145					05/26/1983	05/27/1983
1990	Black Duck Area			-90	140					05/27/1983	05/27/1983
1991	Black Duck Area			-90	140					05/27/1983	05/28/1983
1992	Black Duck Area			-90	140					05/28/1983	05/28/1983
1993	Black Duck Area			-90	155					05/28/1983	05/29/1983
1994	Black Duck Area			-90	165					05/29/1983	05/29/1983
1995	Black Duck Area			-90	170	136	140	4.4	6.41	05/29/1983	05/30/1983
1996	Black Duck Area			-90	180	48.9	50.4	1.5	0.27	05/30/1983	05/30/1983
1997	Black Duck Area			-90	180					05/30/1983	05/30/1983
1998	Black Duck Area			-90	140					05/31/1983	05/31/1983
1999	Black Duck Area			-90	170	134.7	135.7	1	0.96	05/31/1983	05/31/1983
2000	Bellburn's Pond			-90	365					04/26/1983	04/27/1983
2001	Bellburn's Pond			-90	343	292				04/27/1983	04/29/1983
2002	Bellburn's Pond			-90	325					04/29/1983	05/02/1983
2003	Bellburn's Pond			-90	290					05/02/1983	05/04/1983
2004	Bellburn's Pond			-90	270					05/04/1983	05/05/1983
2005	Black Duck Area			-90	160	139	140	4.38		05/31/1983	06/01/1983
2006	Black Duck Area			-90	165	108.9	113.4	12.13		06/01/1983	06/01/1983
2006	Black Duck Area			-90	165	135.9	138.3	2.59		06/01/1983	06/01/1983

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	0'-	Langeth Ch	6	τ.	1 + -	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_ft	From	10	Length	ΖΠ %	Start Date	End Date
2007	Black Duck Area			-90	160					06/01/1983	06/01/1983
2008	Black Duck Area			-90	160					06/02/1983	06/02/1983
2009	Black Duck Area			-90	160					06/02/1983	06/02/1983
2010	Black Duck Area			-90	150	106.3	112	5.7	1.35	06/06/1983	06/06/1983
2010	Black Duck Area			-90	150	138	139.6	1.6	2.18	06/06/1983	06/06/1983
2010	Black Duck Area			-90	150	144	145	1	1.54	06/06/1983	06/06/1983
2010	Black Duck Area			-90	150	147.9	149.6	1.7	1.45	06/06/1983	06/06/1983
2011	Black Duck Area			-90	160	128.8	130.2	1.4	7.1	06/06/1983	06/07/1983
2012	Black Duck Area			-90	165	74.3	75.3	1	1.1	06/07/1983	06/08/1983
2012	Black Duck Area			-90	165	106.2	112.2	6	0.82	06/07/1983	06/08/1983
2013	Black Duck Area			-90	170	133.2	134.5	1.3	3.28	06/08/1983	06/08/1983
2014	Black Duck Area			-90	185	126	131	5	4.07	06/09/1983	06/09/1983
2015	Black Duck Area			-90	170	107.6	108.6	1	2.04	06/09/1983	06/09/1983
2015	Black Duck Area			-90	170	122	130	8	1.02	06/09/1983	06/10/1983
2016	Black Duck Area			-90	155	112.4	114	1.6	0.54	06/09/1983	06/10/1983
2016	Black Duck Area			-90	155	115.5	116.9	1.4	2.61	06/09/1983	06/10/1983
2016	Black Duck Area			-90	155	123.5	125.6	2.1	10.55	06/09/1983	06/10/1983
2017	Black Duck Area			-90	170	137.8	138.8	1	0.91	06/10/1983	06/10/1983
2017	Black Duck Area			-90	170	142.1	143.1	1	3.2	06/10/1983	06/10/1983
2018	Black Duck Area			-90	180					06/10/1983	06/11/1983
2019	Black Duck Area			-90	160					06/11/1983	06/11/1983
2020	Black Duck Area			-90	170					06/12/1983	06/12/1983
2021	Black Duck Area			-90	630					06/12/1983	06/14/1983
2022	Bellburn's Pond			-90	520					06/14/1983	06/21/1983
2023	Bellburn's Pond			-90	380					06/21/1983	06/22/1983
2024	Bellburn's Pond			-90	460					06/22/1983	06/24/1983
2025	Bellburn's Pond			-90	490					06/24/1983	06/26/1983
2026	Bellburn's Pond			-90	460					06/26/1983	06/28/1983
2027	Bellburn's Pond			-90	510					07/08/1983	07/11/1983
2028	Bellburn's Pond			-90	590					07/11/1983	07/13/1983
2029	Bellburn's Pond			-90	230	178.2	179.2	1		07/14/1983	07/16/1983

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	D'-	Langeth Ch	C	T	1 + -	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_ft	From	10	Length	ZN %	Start Date	End Date
2030	Bellburn's Pond			-90	296					07/16/1983	07/17/1983
2031	Bellburn's Pond			-90	330					07/17/1983	07/19/1983
2032	Bellburn's Pond			-90	340					07/19/1983	07/20/1983
2033	Bellburn's Pond			-90	370					07/20/1983	07/26/1983
2034	Black Duck Area			-90	271	238				07/26/1983	07/27/1983
2034	Black Duck Area			-90	271	254.7	255.7	1		07/26/1983	07/27/1983
2034	Black Duck Area			-90	271	255				07/26/1983	07/27/1983
2034	Black Duck Area			-90	271	258				07/26/1983	07/27/1983
2035	Black Duck Area			-90	270	244.1	245.2	1.1	2	07/27/1983	07/28/1983
2036	N1 Section			-90	310	251.5	252.5	1	4.14	07/12/1984	07/16/1984
2036	N1 Section			-90	310	279.5	285	5.5	4.69	07/12/1984	07/16/1984
2037	N1 Section			-90	300					07/16/1984	07/18/1984
2038	N2 Section			-90	270	249	250.5	1.5	5.76	07/18/1984	07/19/1984
2039	T3 Section			-90	170	106	107	1	1.59	07/20/1984	07/20/1984
2039	T3 Section			-90	170	108	109	1	0.29	07/20/1984	07/20/1984
2039	T3 Section			-90	170	130.5	131.5	1	0.45	07/20/1984	07/20/1984
2039	T3 Section			-90	170	135.3	136.4	1.1	0.51	07/20/1984	07/20/1984
2040	T3 Section			-90	170					07/20/1984	07/20/1984
2100	R Zone	21270	13995	-90	130					05/06/1983	05/06/1983
2101	R Zone	21170	14040	-90	130	74.1	75.1	1	0.72	05/10/1983	05/10/1983
2102	R Zone	21980	14475	-90	160	70.3	83.4	13.1	6.3	05/10/1983	05/11/1983
2102	R Zone	21980	14475	-90	160	83.4	92.1	8.7	0.96	05/10/1983	05/11/1983
2103	East Breccia	21090	16810	-90	110					05/11/1983	05/11/1983
2104	East Breccia	20995	16870	-90	100					05/11/1983	05/12/1983
2105	East Breccia	20925	16910	-90	100	33.5	34.6	1.1	2.27	05/12/1983	05/12/1983
2106	East Breccia	20820	16960	-90	100					05/12/1983	05/13/1983
2107	East Breccia	21150	17465	-90	100					05/13/1983	05/13/1983
2108	East Breccia	21000	17550	-90	10					05/13/1983	05/14/1983
2109	East Breccia	20885	17620	-90	100	72	73	1	1.41	05/14/1983	05/15/1983
2110	East Breccia	20820	17660	-90	120	54.1	55.7	1.6	5.34	05/15/1983	05/15/1983
2111	East Breccia	19135	17530	-90	150					05/16/1983	05/16/1983

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	0:-		6	τ.	1 + -	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_ft	From	10	Length	ΖΠ %	Start Date	End Date
2112	East Breccia	20025	18300	-90	175					05/17/1983	05/17/1983
2113	East Breccia	20190	18250	-90	190	119.7	120.9	1.2	0.74	05/17/1983	05/18/1983
2113	East Breccia	20190	18250	-90	190	88.5	89.5	1	0.19	05/17/1983	05/18/1983
2114	East Breccia	20365	18145	-90	200					05/18/1983	05/19/1983
2115	East Breccia	20140	18280	-90	150					05/24/1983	05/24/1983
2116	East Breccia	20750	17680	-90	107	74.8	75.9	1.1	8.36	05/25/1983	05/25/1983
2116	East Breccia	20750	17680	-90	107	79.2	80.2	1	9.66	05/25/1983	05/25/1983
2117	East Breccia	20770	17660	-90	100	61.2	62.2	1	3.75	05/25/1983	05/26/1983
2118	East Breccia	20680	17710	-90	150					05/26/1983	05/26/1983
2119	East Breccia	19300	17240	-90	150					05/27/1983	05/27/1983
2120	East Breccia	20720	16870	-90	76					05/28/1983	05/28/1983
2121	East Breccia	20860	16900	-90	100	35.2	36.2	1	1.52	05/28/1983	05/29/1983
2121	East Breccia	20860	16900	-90	100	41.2	42.2	1	2.04	05/28/1983	05/29/1983
2122	East of C Zone	22670	16200	-90	77					05/29/1983	05/29/1983
2123	East of C Zone	22575	16260	-90	72					05/29/1983	05/30/1983
2124	East of C Zone	22490	16310	-90	75					05/30/1983	05/30/1983
2125	East of C Zone	22510	16170	-90	50					05/30/1983	05/30/1983
2126	East Breccia	21030	18575	-90	180					05/31/1983	05/31/1983
2127	East Breccia	20775	18700	-90	180					06/01/1983	06/02/1983
2128	East Breccia	21500	18480	-90	165					06/02/1983	06/06/1983
2129	East Breccia	21435	18350	-90	160					06/07/1983	06/07/1983
2130	East Breccia	21525	18300	-90	87					06/08/1983	06/08/1983
2131	East of C Zone	22640	16190	-90	60					06/08/1983	06/08/1983
2132	East of C Zone	22925	16050	-90	60					06/09/1983	06/09/1983
2133	S.E. of Q zone	19810	8958	-90	260					06/09/1983	06/10/1983
2134	S.E. of Q zone	16965	8700	-90	290					06/10/1983	06/11/1983
2135	S.E. of Q zone	16940	8685	-90	290					06/11/1983	06/12/1983
2136	S.E. of Q zone	16915	8690	-90	290	246.3	247.5	1.2	3.49	06/13/1983	06/14/1983
2137	Nose zone	11452	9970	-90	475					06/14/1983	06/17/1983
2138	Nose zone	11415	9990	-90	467	436.3	454.3	18	1.03	06/20/1983	06/24/1983
2139	Nose zone	11465	9955	-90	475	433.5	450.2	16.7	1.37	06/25/1983	06/28/1983

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	0:-	Langeth Ch	6	T.	1 + - + +	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_tt	From	10	Length	ΖΠ %	Start Date	End Date
2140	East Breccia	18855	13465	-90	65					06/29/1983	06/29/1983
2141	East Breccia	18940	13415	-90	60	21.7	22.9	1.2	3.03	06/30/1983	06/30/1983
2142	East Breccia	18875	13455	-90	65					06/30/1983	07/04/1983
2143	East Breccia	19085	13340	-90	67					07/04/1983	07/04/1983
2144	East Breccia	19330	13170	-90	60					07/05/1983	07/05/1983
2145	East Breccia	19470	13070	-90	40	12	29.1	17.1	5.5	07/05/1983	07/05/1983
2146	East Breccia	19515	13050	-90	40					07/05/1983	07/05/1983
2147	East Breccia	19450	13080	-90	40	12	19.5	7.5	8.8	07/05/1983	07/05/1983
2148	East Breccia	19700	13115	-90	50	12.5	34.1	21.6	3.4	07/06/1983	07/06/1983
2149	East Breccia	19720	13110	-90	50					07/06/1983	07/06/1983
2150	East Breccia	19760	13090	-90	55	12	15.5	3.5	4.8	07/06/1983	07/06/1983
2151	East Breccia	19610	13210	-90	50	9	10.1	1.1	3.7	07/06/1983	07/06/1983
2152	East Breccia	19550	13250	-90	47					07/07/1983	07/07/1983
2153	East Breccia	19645	13170	-90	50					07/07/1983	07/07/1983
2154	East Breccia	19590	13220	-90	50					07/07/1983	07/07/1983
2155	East Breccia	19795	13065	-90	55					07/07/1983	07/07/1983
2156	East Breccia	19670	13140	-90	50					07/07/1983	07/07/1983
2157	K Zone	16355	8910	-90	280					09/30/1983	10/01/1983
2158	K Zone	16400	8890	-90	280	239.9	263.8	23.9	3.25	10/01/1983	10/02/1983
2159	K Zone	16675	9390	-90	225	169.5	172.5	3	22.48	10/03/1983	10/04/1983
2160	K Zone	16670	9315	-90	230					10/04/1983	10/05/1983
2161	K Zone	16680	9430	-90	210	144.9	147	2.1	1.01	10/04/1983	10/05/1983
2161	K Zone	16680	9430	-90	210	154.2	169.2	15	2.22	10/04/1983	10/05/1983
2162	West of K Zone	16020	6490	-90	510					10/31/1983	11/02/1983
2163	West of K Zone	15740	6640	-90	520					11/02/1983	11/08/1983
2164	West of K Zone	15210	6930	-90	500					11/08/1983	11/09/1983
2165	West of K Zone	14940	7080	-90	510					11/10/1983	11/11/1983
2166	West of K Zone	15610	6710	-90	510					11/11/1983	11/12/1983
2167	NE of J Zone	20960	10350	-90	115					06/19/1984	06/19/1984
2168	NE of J Zone	20870	10400	-90	110					06/19/1984	06/20/1984
2169	NE of J Zone	21050	10290	-90	125					06/20/1984	06/21/1984

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	D'-	Langeth Ch	6	T	1 + -	7- 0/		
Hole ID	Zone	North	East	υр	Lengtn_ft	From	10	Length	ZN %	Start Date	End Date
2170	NE of J Zone	21100	10250	-90	135					06/21/1984	06/21/1984
2171	J Zone	19890	9550	-90	100					06/21/1984	06/22/1984
2172	J Zone	20240	9450	-90	140					06/22/1984	06/22/1984
2173	J Zone	20100	9640	-90	100	31	83.7	52.7	0.75	06/23/1984	06/23/1984
2174	J Zone	20125	9625	-90	100	76	89.4	13.4	0.92	06/23/1984	06/23/1984
2175	SE of J Zone	19580	10160	-90	80	33.5	34.5	1	2.89	06/23/1984	06/24/1984
2175	SE of J Zone	19580	10160	-90	80	39	48.5	9.5	0.33	06/23/1984	06/24/1984
2176	SE of J Zone	19680	10160	-90	80	21	24.5	3.5	2.18	06/25/1984	06/26/1984
2176	SE of J Zone	19680	10160	-90	80	35	36	1	2.15	06/25/1984	06/26/1984
2177	SE of J Zone	19740	10025	-90	100					06/26/1984	06/26/1984
2178	SE of J Zone	19990	10075	-90	100					06/26/1984	06/26/1984
2179	NW of J Zone	20640	8600	-90	45					06/27/1984	06/27/1984
2180	NW of J Zone	20935	8410	-90	60					06/27/1984	06/27/1984
2181	NW of J Zone	21100	8295	-90	100					06/27/1984	06/27/1984
2182	NW of J Zone	21270	8190	-90	110					06/27/1984	06/27/1984
2183	SW of J Zone	19180	6815	-90	60					06/27/1984	06/28/1984
2184	SW of J Zone	19440	6670	-90	75					06/28/1984	06/28/1984
2185	SW of J Zone	19705	6520	-90	58					06/28/1984	06/28/1984
2186	J Zone	19730	8755	-90	220					06/29/1984	06/30/1984
2187	J Zone	19665	8725	-90	220					07/03/1984	07/04/1984
2188	J Zone	19780	8700	-90	220	203.3	211.7	8.4	3.9	07/04/1984	07/04/1984
2189	NW of J Zone	21010	8350	-90	70					07/05/1984	07/05/1984
2190	NW of J Zone	21055	8320	-90	80					07/05/1984	07/05/1984
2191	N of D Zone	23020	14790	-90	220					07/05/1984	07/06/1984
2192	N of D Zone	23145	14705	-90	200	40	42	2	2	07/06/1984	07/06/1984
2193	N of D Zone	23310	14595	-90	50					07/06/1984	07/07/1984
2194	E of East Breccia	20830	17910	-90	80					07/07/1984	07/07/1984
2195	E of East Breccia	21005	17810	-90	150					07/10/1984	07/10/1984
2196	E of East Breccia	20910	17860	-90	185					07/10/1984	07/11/1984
2197	H Zone	16525	15655	-90	100					07/21/1984	07/22/1984
2198	H Zone	16570	15625	-90	100	47	48.5	1.5	0.66	07/22/1984	07/22/1984

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	0'-	Langeth ft	C	T	1 + - + +	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_ft	ГОШ	10	Length	ΖΠ %	Start Date	End Date
2198	H Zone	16570	15625	-90	100	62.7	82	19.3	2.66	07/22/1984	07/22/1984
2199	H Zone	16594	15613	-90	100	63.7	83	19.3	2.96	07/22/1984	07/22/1984
2200	Ext. No. 2	6163	1863	-90	997					07/09/1984	07/13/1984
2201	Ext. No. 2	5360	2270	-90	997	914	957.9	43.9	0.26	07/14/1984	07/17/1984
2202	Ext. No. 2	4600	2746	-90	912	844.3	882	37.7	0.16	07/14/0984	07/23/1984
2203	Ext. No. 2	6566	1653	-90	1002	902.4	929.1	26.7	0.2	07/24/1984	07/28/1984
2203	Ext. No. 2	6566	1653	-90	1002	968.2	980	11.8	0.36	07/24/1984	07/28/1984
2204	Ext. No. 2	3797	3179	-90	870					07/29/1984	08/02/1984
2205	Ext. No. 2	4710	1263	-90	1047					08/06/1984	08/10/1984
2206	U Zone	16275	15360	-90	70					07/23/1984	07/23/1984
2207	U Zone	16345	15315	-90	75					07/23/1984	07/23/1984
2208	U Zone	16370	15294	-90	77					07/23/1984	07/24/1984
2209	West of U Zone	16005	15108	-90	75					07/24/1984	07/24/1984
2210	H Zone	15310	15510	-90	50					07/24/1984	07/24/1984
2210	South of H Zone	15310	15510	-90	50					07/24/1984	07/24/1984
2211	H Zone	16655	15310	-90	50					07/24/1984	07/24/1984
2211	South of H Zone	15655	15310	-90	50					07/24/1984	07/24/1984
2212	H Zone	15670	14810	-90	50					07/24/1984	07/24/1984
2212	South of H Zone	15670	14810	-90	50					07/24/1984	07/24/1984
2213	H Zone	16609	15603	-90	100	46.5	83.4	36.9	0.57	07/24/1984	07/25/1984
2214	H Zone	15585	15696	-90	80					07/25/1984	07/25/1984
2214	South of H Zone	15585	15696	-90	80					07/25/1984	07/25/1984
2215	H Zone	15670	15649	-90	80	36	37	1	2.08	07/25/1984	07/26/1984
2215	South of H Zone	15670	15649	-90	80	36	37	1	2	07/25/1984	07/26/1984
2216	H Zone	15500	15748	-90	48					07/26/1984	07/26/1984
2216	South of H Zone	15500	15748	-90	48					07/26/1984	07/26/1984
2217	H Zone	15757	15598	-90	80	46	47	1	2.03	07/30/1984	07/30/1984
2217	South of H Zone	15757	15598	-90	80	46	47	1	2.03	07/30/1984	07/30/1984
2218	H Zone	15843	15549	-90	80	48	49	1	2.07	07/30/1984	07/31/1984
2218	South of H Zone	15843	15495	-90	80	48	49	1	2.07	07/30/1984	07/31/1984
2219	U Zone	15925	15495	-90	76	26.9	28	1.1	1.32	07/31/1984	07/31/1984

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	01-	Langeth ft	C	T	1 + -	7- 0/		
Hole ID	Zone	North	East	υιр	Lengtn_ft	From	10	Length	ZN %	Start Date	End Date
2219	U Zone	15925	15495	-90	76	36.2	38	1.8	4.32	07/31/1984	07/31/1984
2219	U Zone	15925	15495	-90	76	46.5	57.1	10.6	3.63	07/31/1984	07/31/1984
2220	J Zone	16015	15455	-90	80	29	45	16	1.35	07/31/1984	08/01/1984
2221	U Zone	16100	15395	-90	67	16.7	36.6	19.9	2.37	08/01/1984	08/01/1984
2222	U Zone	16190	15345	-90	60	16.3	27.3	11	3.59	08/02/1984	08/02/1984
2223	U Zone	16275	15295	-90	60	10.3	21.4	11.1	5.37	08/02/1984	08/03/1984
2224	U Zone	16300	15285	-90	30	12.2	18.8	6.6	1.28	08/03/1984	08/03/1984
2225	U Zone	16250	15310	-90	30	10	18.3	8.3	6.07	08/03/1984	08/03/1984
2226	U Zone	16120	15380	-90	40	27.4	36	8.6	2.03	08/03/1984	08/03/1984
2227	U Zone	16075	15410	-90	40	21.5	23	1.5	2.38	08/04/1984	08/04/1984
2227	U Zone	16075	15410	-90	40	26.6	28	1.4	1.09	08/04/1984	08/04/1984
2228	U Zone	16040	15434	-90	65	40.3	47	6.7	2.26	08/04/1984	08/04/1984
2229	U Zone	15995	15460	-90	64	33.3	56	22.7	0.84	08/05/1984	08/05/1984
2230	U Zone	15955	15485	-90	60	18	22.1	4.1	1.36	08/05/1984	08/05/1984
2230	U Zone	15955	15485	-90	60	40.5	41.5	1	0.82	08/05/1984	08/05/1984
2231	U Zone	15910	15510	-90	60	31.6	53	21.4	4.3	08/05/1984	08/05/1984
2232	U Zone	16230	15320	-90	30	16	24.2	8.2	21	08/05/1984	08/06/1984
2233	U Zone	16210	15332	-90	34	14	33	19	6.58	08/06/1984	08/06/1984
2234	Ext. No. 2	5488	2202	-90	1000	941.5	952.7	11.2	0.12	11/07/1984	11/10/1984
2235	Ext. No. 2	6698	1570	-90	321					11/12/1984	11/12/1984
2236	Ext. No. 2	6641	1610	-90	970	904.7	920.1	15.4	0.16	11/14/1984	11/21/1984
2237	Ext. No. 2	4723	2661	-90	916	862.7	871.3	8.6	0.15	11/22/1984	11/25/1984
2237	Ext. No. 2	4723	2661	-90	916	890.5	896	5.5	0.12	11/22/1984	11/25/1984
2238	Ext. No. 2	4515	2800	-90	915	849.2	856.4	7.2	0.16	11/27/1984	12/03/1984
2238	Ext. No. 2	4515	2800	-90	915	869.4	889	19.6	0.29	11/27/1984	12/03/1984
2239	Ext. No. 2	6743	1552	-90	955					12/05/1984	12/11/1984
2240	Ext. No. 2	6880	1485	-90	917	866.7	877.6	10.9	1.97	12/13/1984	12/18/1984
2240	Ext. No. 2	6880	1485	-90	917	866.7	875	8.3	2.17	12/13/1984	12/18/1984
2240	Ext. No. 2	6880	1485	-90	917	866.7	881.4	14.7	1.59	12/13/1984	12/18/1984
2241	Ext.No.2	6380	1508	-90	926	870	879.3	9.3	2.14	01/04/1988	01/07/1985
2241	Ext.No.2	6380	1508	-90	926	870	887.2	17.2	2.4	01/04/1988	01/07/1985

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	0:-	Langeth ft	6	τ.	1 + - + +	7- 0/		
Hole ID	Zone	North	East	υιр	Lengtn_ft	From	10	Length	ΖΠ %	Start Date	End Date
2242	Ext.No.2	6700	1580	-90	960	895.2	903.3	8.1	0.42	01/09/1985	01/13/1985
2242	Ext.No.2	6700	1580	-90	960	907.7	916.6	8.9	1.7	01/09/1985	01/13/1985
2242	Ext.No.2	6700	1580	-90	960	895.2	916.6	21.4	0.86	01/09/1985	01/13/1985
2243	Ext.No.2	5580	2150	-90	991					01/16/1985	01/19/1985
2244	Ext.No.2	6835	1720	-90	945	892	896.3	4.3	1.26	01/23/1985	01/25/1985
2244	Ext.No.2	6835	1720	-90	945	899.7	901.3	1.6	1.15	01/23/1985	01/25/1985
2245	Ext.No.2	6880	1690	-90	942	885.5	886.6	1.1	9.44	01/27/1985	01/30/1985
2245	Ext.No.2	6880	1690	-90	942	882.7	892.5	9.8	1.35	01/27/1985	01/30/1985
2246	Ext.No.2	6920	1670	-90	920					02/01/1985	02/05/1985
2247	Ext.No.2	20235	13630	-90	98	28.4	35.2	6.8	1.63	05/28/1985	05/29/1985
2248	R Zone	21275	13595	-90	68					05/29/1985	05/29/1985
2249	R Zone	21200	13665	-90	78	75.7	78	2.3	2.15	05/29/1985	05/29/1985
2250	R Zone	21220	13645	-90	98	26.5	34.5	8	4.14	05/30/1985	05/30/1985
2251	R Zone	21255	13615	-90	68	35.4	37	1.6	2.1	05/30/1985	05/30/1985
2252	R Zone	21310	13810	-90	87	40.6	48	7.4	4.38	05/30/1985	05/31/1985
2253	R Zone	21330	13795	-90	74	28.5	43.8	15.3	2.04	05/31/1985	05/31/1985
2254	R Zone	21355	13775	-90	76	39.4	44.9	5.5	8	06/01/1985	06/01/1985
2254	R Zone	21355	13775	-90	76	56	57	1	5.58	06/01/1985	06/01/1985
2255	R Zone	21490	13475	-90	76	41.3	50	8.7	1.86	06/01/1985	06/01/1985
2255	R Zone	21490	13475	-90	76	57	60.3	3.3	3.66	06/01/1985	06/01/1985
2256	R Zone	21370	13260	-90	76	35	47.6	12.6	1.65	06/02/1985	06/02/1985
2257	R Zone	21410	13730	-90	76	14.3	37.2	22.9	2.18	06/02/1985	06/04/1985
2257	R Zone	21410	13730	-90	76	44.8	49.6	4.8	2.56	06/02/1985	06/04/1985
2258	R Zone	21320	13680	-90	70					06/04/1985	
2259	R Zone	21310	13860	-90	80					06/04/1985	
2260	R Zone	21310	13910	-90	79					06/05/1985	
2261	R Zone	21375	13850	-90	70	19.6	28.7	9.1	15.26	05/06/1985	05/06/1985
2261	R Zone	21375	13850	-90	70	28.7	43.6	14.9	2.66	05/06/1985	05/06/1985
2262	R Zone	21430	13750	-90	60	20	46.3	26.3	3.24	06/06/1985	06/06/1985
2262	R Zone	21430	13750	-90	60	20	30	10	3.68	06/06/1985	06/06/1985
2262	R Zone	21430	13750	-90	60	36.3	46.3	10	4.43	06/06/1985	06/06/1985

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	0'-		6	τ.	1+6	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_ft	From	10	Length	ΖΠ %	Start Date	End Date
2263	R Zone	17315	15515	-90	110	59.1	63.6	4.5	0.83	06/06/1985	06/10/1985
2263	R Zone	17315	15515	-90	110	94	95.3	1.3	16.56	06/06/1985	06/10/1985
2264	G Zone	17355	15495	-90	100	62.8	64.4	1.6	14.79	06/10/1985	06/11/1985
2264	G Zone	17355	15495	-90	100	72	76.6	4.6	0.99	06/10/1985	06/11/1985
2265	G Zone	17515	15890	-90	110	74.7	86.1	11.4	7.04	06/11/1985	06/11/1985
2265	G Zone	17515	15890	-90	110	71.3	93	21.7	4.63	06/11/1985	06/11/1985
2266	G Zone	17740	16240	-90	160					06/11/1985	06/12/1985
2267	G Zone	17677	16280	-90	123	62.2	74.8	12.6	6.67	06/12/1985	06/13/1985
2267	G Zone	17677	16280	-90	123	49.2	78.2	29	4.36	06/12/1985	06/13/1985
2268	G Zone	17655	16291	-90	121	61.2	66	4.8	3.45	06/13/1985	06/13/1985
2268	G Zone	17655	16291	-90	121	73.5	79	5.5	2.65	06/13/1985	06/13/1985
2269	G Zone	17761	16470	-90	128					06/14/1985	06/14/1985
2270	H Zone	16621	15578	-90	100	31	34.6	3.6	4.75	06/15/1985	06/15/1985
2270	H Zone	16621	15578	-90	100	44.5	61.4	16.9	0.6	06/15/1985	06/15/1985
2271	H Zone	16656	15543	-90	100					06/15/1985	06/15/1985
2272	H Zone	16587	15613	-90	100	78.1	83.6	5.5	1.64	06/15/1985	06/15/1985
2273	H Zone	16661	15650	-90	100	50.9	67.1	16.2	6.69	06/16/1985	06/17/1985
2273	H Zone	16661	15650	-90	100	50.9	94.7	43.8	3.51	06/16/1985	06/17/1985
2274	H Zone	16761	15724	-90	100					06/17/1985	06/17/1985
2275	H Zone	16728	15761	-90	100	54.4	62.3	7.9	2.8	06/17/1985	06/17/1985
2276	H Zone	16798	15688	-90	100	63.3	70.7	7.4	2.54	06/18/1985	06/18/1985
2277	H Zone	16780	15706	-90	100					06/18/1985	06/18/1985
2278	H Zone	16745	15742	-90	100	40.8	49.8	9	2.35	06/18/1985	06/19/1985
2279	H Zone	16605	15597	-90	100	75.6	83.5	7.9	10.54	06/19/1985	06/19/1985
2279	H Zone	16605	15597	-90	100	68.5	83.5	15	5.73	06/19/1985	06/19/1985
2280	G Zone	17246	15367	-90	100	50	57.9	7.9	1.42	06/20/1985	06/20/1985
2281	G Zone	17272	15323	-90	100	42.5	56.1	13.6	0.97	06/20/1985	06/24/1985
2281	G Zone	17272	15323	-90	100	61.5	66.4	4.9	2.16	06/20/1985	06/24/1985
2282	G Zone	17196	15369	-90	100	34.4	38.8	4.4	1.84	06/24/1985	06/25/1985
2282	G Zone	17196	15369	-90	100	55.2	61.6	6.4	0.62	06/24/1985	06/25/1985
2283	G Zone	17257	15347	-90	100	49.3	80	30.7	2.62	06/25/1985	06/26/1985

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	01-	Langeth ft	5	T	1 + -	7- 0/		
Hole ID	Zone	North	East	υιр	Lengtn_ft	From	10	Length	ZN %	Start Date	End Date
2283	G Zone	17257	15347	-90	100	58.2	75.3	17.1	3.65	06/25/1985	06/26/1985
2284	G Zone	17220	15368	-90	89	49	54.2	5.2	3.06	06/26/1985	06/26/1985
2285	Ext.No.2	9425	6000	-90	686					06/26/1985	07/01/1985
2286	Ext.No.2	9520	6030	-90	680	587.6	650	62.4	4.48	07/02/1985	07/06/1985
2286	Ext.No.2	9520	6030	-90	680	610.6	630.6	20	11.05	07/02/1985	07/06/1985
2287	Ext.No.1	7540	4195	-90	850	812	813.8	1.8	0.31	07/07/1985	07/09/1985
2287	Ext.No.1	7540	4195	-90	850	820.6	822.2	1.6	0.19	07/07/1985	07/09/1985
2288	Ext.No.1	7580	4140	-90	840	764.1	765.1	1	0.11	07/10/1985	07/17/1985
2288	Ext.No.1	7580	4140	-90	840	778.2	779.2	1	0.6	07/10/1985	07/17/1985
2289	Ext.No.2	7535	2290	-90	890	828.2	853	24.8	1.42	07/18/1985	07/20/1985
2290	Ext.No.2	7497	2325	-90	900	844.9	854.8	9.9	0.74	07/22/1985	07/25/1985
2290	Ext.No.2	7497	2325	-90	900	865	866	1	4.95	07/22/1985	07/25/1985
2291	Ext.No.2	7420	2391	-90	926					07/26/1985	07/30/1985
2292	Ext.No.2	7460	2354	-90	914	854.6	863.9	9.3	3.26	08/01/1985	08/04/1985
2292	Ext.No.2	7460	2354	-90	914	849.4	863.9	14.5	2.62	08/01/1985	08/04/1985
2292	Ext.No.2	7460	2354	-90	914	848	875.5	27.5	1.49	08/01/1985	08/04/1985
2293	Ext.No.2	10460	7350	-90	714					08/05/1985	08/14/1985
2294	Ext.No.2	10725	7200	-90	677					08/15/1985	08/17/1985
2295	Ext.No.2	10852	7125	-90	671	617.5	626.5	9	3.03	08/18/1985	08/20/1985
2296	Ext.No.2	10927	7085	-90	670	574.3	575.3	1	10.6	08/22/1985	08/24/1985
2297	Ext.No.2	10890	7108	-90	670					08/24/1985	08/26/1985
2298	Ext.No.2	10821	7145	-90	670	639.8	648.2	8.4	0.47	08/27/1985	08/29/1985
2299	S of L Zone	8086	8008	-90	460	341.8	344.7	2.9	4.36	09/04/1985	09/06/1985
2300	S of L Zone	8009	8045	-90	460	437.3	440.2	2.9	7.33	09/07/1985	09/08/1985
2301	L Zone	1900	-5850	-90	1705					10/09/1985	23/09/1985
2301	P Zone	1900	5850	-90	1705					09/10/1985	09/23/1985
2302	P Zone	22530	19004	-90	140	84	85.2	1.2	19.32	09/04/1985	09/05/1985
2303	P Zone	22576	18985	-90	140	71.2	75.7	4.5	2.54	09/05/1985	09/05/1985
2304	P Zone	22622	18966	-90	126					09/06/1985	09/06/1985
2305	P Zone	22553	18995	-90	140					09/06/1985	09/07/1985
2306	P Zone	21984	19024	-90	150	125.6	127	1.4	5.25	09/07/1985	09/08/1985

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	0:-	Langeth Ch	6	T	1 + -	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_ft	From	10	Length	ΖΠ %	Start Date	End Date
2307	P Zone	21938	19044	-90	165	98	99	1	13.98	09/08/1985	09/08/1985
2308	P Zone	21922	18928	-90	110					09/08/1985	09/08/1985
2309	P Zone	22602	19079	-90	180	98.3	112.8	14.5	4.19	09/09/1985	09/09/1985
2309	P Zone	22602	19079	-90	180	122.2	140.3	18.1	3.87	09/09/1985	09/09/1985
2310	P Zone	22624	19068	-90	180	109	112.8	3.8	2.93	09/09/1985	09/09/1985
2310	P Zone	22624	19068	-90	180	127.4	132.9	5.5	1.19	09/09/1985	09/09/1985
2311	P Zone	22722	19445	-90	260					09/10/1985	09/11/1985
2312	P Zone	22705	19348	-90	220	145	164.4	19.4	4.37	09/11/1985	09/11/1985
2313	P Zone	22683	19360	-90	230	157.5	172.1	14.6	7.63	09/12/1985	09/12/1985
2314	P Zone	22662	19440	-90	250	163.5	172.2	8.7	3.25	09/16/1985	09/17/1985
2315	P Zone	22637	19436	-90	255	155.6	186.8	31.2	5.13	09/17/1985	09/18/1985
2316	P Zone	22607	19432	-90	260	173.1	188.1	15	5.58	09/19/1985	09/20/1985
2316	P Zone	22607	19432	-90	260	170.3	195.6	25.3	3.67	09/19/1985	09/20/1985
2317	P Zone	22564	19627	-90	280	198.6	232.6	34	3.86	09/21/1985	09/22/1985
2318	P Zone	22594	19635	-90	280	208.6	218.8	10.2	2.37	09/22/1985	09/23/1985
2319	P Zone	22540	19620	-90	280	195.6	223	27.4	2.12	09/23/1985	09/23/1985
2320	P Zone	22495	19813	-90	320	275	280	5	1.29	09/24/1985	09/25/1985
2321	P Zone	22533	19823	-90	320	300.2	303.8	3.6	1.28	09/25/1985	09/25/1985
2322	P Zone	22455	19803	-90	330	301.9	302.9	1	10.38	09/26/1985	09/30/1985
2323	P Zone	22539	19724	-90	295	235.9	240.2	4.3	3.03	09/30/1985	10/02/1985
2324	P Zone	22554	19704	-90	300					10/02/1985	10/03/1985
2325	P Zone	22500	19708	-90	300	235.2	240.2	5	2.87	10/04/1985	10/05/1985
2326	P Zone	22500	19170	-90	170	120.4	121.8	1.4	23.5	10/05/1985	10/07/1985
2327	P Zone	22721	19194	-90	180	145.8	146.8	1	7.73	10/07/1985	10/08/1985
2328	P Zone	22668	19141	-90	168	106.9	116.5	9.6	9.91	10/08/1985	10/08/1985
2328	P Zone	22668	19141	-90	168	106.9	124.6	17.7	5.55	10/08/1985	10/08/1985
2329	P Zone	22639	19101	-90	160	104.9	115.8	10.9	9.05	10/09/1985	10/09/1985
2329	P Zone	22639	19101	-90	160	102.8	145.6	42.8	2.8	10/09/1985	10/09/1985
2330	P Zone	7565	2260	-90	897					10/03/1985	10/07/1985
2331	P Zone	7385	2430	-90	937					10/08/1985	10/10/1985
2332	P Zone	22666	19042	-90	130	66	67	1	2.78	10/10/1985	10/16/1985

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	0:-	Langeth Ch	5	T	1 + -	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_ft	From	10	Length	ΖΠ %	Start Date	End Date
2333	P Zone	22707	19042	-90	130	95	106.3	11.3	1.39	10/16/1985	10/17/1985
2334	C Zone	22074	15370	-90	80	53	54.6	1.6	5.52	10/18/1985	10/19/1985
2335	C Zone	22095	15355	-90	80					10/19/1985	10/19/1985
2336	C Zone	22029	15395	-90	80					10/19/1985	10/20/1985
2337	F Zone	17319	13391	-90	75					10/20/1985	10/20/1985
2338	F Zone	17273	13419	-90	75					10/20/1985	10/20/1985
2339	F Zone	17352	13372	-90	75	16.5	33.7	17.2	10.43	10/20/1985	10/21/1985
2340	Ext. No. 2	9595	6190	-90	670	611	623	12	7.82	10/16/1985	10/18/1985
2340	Ext. No. 2	9595	6190	-90	670	599	632.3	33.3	3.2	10/16/1985	10/18/1985
2341	Ext. No. 2	9705	6355	-90	680	621.4	631.5	10.1	1.9	10/20/1985	10/23/1985
2342	W Zone	15676	12345	-90	75	50.4	53	2.6	3.17	10/21/1985	10/21/1985
2343	W Zone	15634	12370	-90	75	33.4	49.7	16.3	17.08	10/21/1985	10/21/1985
2343	W Zone	15634	12370	-90	75	33.4	60.7	27.3	11.29	10/21/1985	10/21/1985
2344	W Zone	15596	12495	-90	75	38.7	40	1.3	4.09	10/21/1985	10/22/1985
2345	W Zone	15500	12308	-90	100	62.6	63.6	1	2.98	10/22/1985	10/22/1985
2346	W Zone	15497	12310	-90	94	55.7	57.8	2.1	13.01	10/22/1985	10/23/1986
2346	W Zone	15497	12310	-90	94	69.1	74.8	5.7	2.42	10/22/1985	10/23/1986
2347	W Zone	15582	12259	-90	100	18.2	32.7	14.5	2.69	10/23/1985	10/23/1986
2348	W Zone	15519	12295	-90	100	70.2	72.2	2	9.5	10/23/1985	10/23/1986
2349	W Zone	15450	12336	-90	100	50.4	59.8	9.4	13.16	10/24/1985	10/24/1985
2350	Ext. No. 2	9660	6380	-90	675					10/24/1985	11/01/1985
2351	W Zone	15782	12412	-90	60	25.4	27.6	2.2	11.34	10/28/1985	10/28/1985
2352	W Zone	15755	12421	-90	60	32.2	38.2	6	15.57	10/28/1985	10/28/1985
2353	W Zone	15938	12520	-90	60					10/29/1985	10/29/1985
2354	W Zone	15938	12470	-90	70	25.4	29.4	4	7.34	10/29/1985	10/29/1985
2355	W Zone	15938	12420	-90	50	24	30.5	6.5	1.96	10/29/1985	10/29/1985
2356	W Zone	15938	12495	-90	50	25.5	32.9	7.4	16.03	10/29/1985	10/29/1985
2357	NE of Spring Lake	12325	15297	-90	117	58.2	65.4	7.2	3.04	10/30/1985	10/30/1985
2358	NE of Spring Lake	12220	15325	-90	110	84	91.9	7.9	1.09	10/31/1985	10/31/1985
2359	NE of Spring Lake	12350	15285	-90	110					10/31/1985	10/31/1985
2360	V Zone	15469	15338	-90	50	14.2	19.8	5.6	24.01	11/02/1985	11/02/1985
After Tallman, 2010

11-1-10	7	Mine Gr	Mine Grid (feet)		Langeth ft	6	τ.	1 46	7- 0/		
Hole ID	Zone	North	East	ОІР	Lengtn_tt	From	10	Length	ZN %	Start Date	End Date
2361	V Zone	15753	15442	-90	60	52	57.1	5.1	5.37	11/02/1985	11/02/1985
2362	V Zone	15842	15402	-90	60	35.4	40.5	5.1	3.47	11/02/1985	11/02/1985
2363	NE of V Zone	16749	16027	-90	120	74.8	78.8	4	2.87	11/03/1985	11/03/1985
2364	NE of V Zone	16523	16220	-90	150					11/03/1985	11/04/1985
2365	NE of V Zone	16456	16294	-90	190					11/04/1985	11/05/1985
2366	NE of V Zone	16389	16368	-90	230					11/05/1985	11/06/1985
2367	M Zone	17892	17275	-90	270					11/12/1985	11/14/1985
2368	M Zone	17803	17323	-90	280					11/14/1985	11/15/1985
2369	M Zone	17498	17040	-90	300	202.7	218.6	15.9	1.29	11/16/1985	11/17/1985
2369	M Zone	17498	17040	-90	300	249.8	269.7	19.9	2	11/16/1985	11/17/1985
2370	F Zone	17168	13332	-90	45	11.6	33.4	21.8	11.45	11/18/1985	11/18/1985
2371	F Zone	17080	13275	-90	40	16	27.6	11.6	17.71	11/19/1985	11/19/1985
2372	F Zone	16975	13225	-90	30	6.7	9.6	2.9	2.24	11/19/1985	11/19/1985
2373	F Zone	16993	13206	-90	30					11/19/1985	11/19/1985
2374	F Zone	17011	13182	-90	30					11/19/1985	11/19/1985
2375	F Zone	16960	13242	-90	30					11/19/1985	11/19/1985
2376	Ext.No.2	9615	5965	-90	707					02/05/1986	02/08/1986
2377	Ext.No.2	9715	5935	-90	332					02/10/1986	02/12/1986
2378	Ext.No.2	9900	5870	-90	704	622.7	647.2	24.5	9.96	02/13/1986	02/18/1986
2378	Ext.No.2	9900	5870	-90	704	611.0	660.3	49.3	6.02	02/13/1986	02/18/1986
2379	Ext.No.2	9775	6130	-90	711					02/19/1986	02/23/1986
2380	Ext.No.2	9953	5855	-90	710	638.1	651.0	12.9	7.75	02/24/1986	02/27/1986
2380	Ext.No.2	9953	5855	-90	710	656.6	668.3	11.7	4.50	02/24/1986	02/27/1986
2380	Ext.No.2	9953	5855	-90	710	638.1	683.5	45.4	3.64	02/24/1986	02/27/1986
2381	Ext.No.2	9855	5885	-90	690	625.2	637.0	11.8	8.35	03/03/1986	03/06/1986
2381	Ext.No.2	9855	5885	-90	690	652.2	644.8	19.6	6.48	04/03/1986	03/06/1986
2381	Ext.No.2	9855	5885	-90	690	621.3	646.7	25.4	5.50	05/03/1986	03/06/1986
2382	Ext.No.2	9745	6035	-90	717					03/08/1986	03/11/1986
2383	Ext.No.2	9800	5710	-90	700					03/11/1986	03/14/1986
2384	Ext.No.2	9695	5740	-90	687					03/15/1986	03/17/1986
2385	Ext.No.2	9760	6080	-90	712	637.8	648.8	11.0	3.8	03/19/1986	03/21/1986

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	0:-	Langeth ft	5	τ.	1 + -	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_tt	From	10	Length	ZN %	Start Date	End Date
2386	Ext.No.2	7917	1455	-90	910					02/05/1986	02/11/1986
2387	Ext.No.2	7683	1535	-90	917					02/13/1986	02/20/1986
2388	Ext.No.2	8360	2450	-90	866					02/23/1986	02/27/1986
2389	Ext.No.2	8490	2360	-90	827					03/03/1986	03/09/1986
2390	Ext.No.2	9890	5680	-90	700					03/19/1986	03/23/1986
2391	Ext.No.2	9987	5600	-90	676					03/24/1986	03/27/1986
2392	E Zone	23220	15525	-90	50	48.8	50.0	1.2	1.09	11/07/1987	11/07/1987
2393	E Zone	23235	15515	-90	50	23.1	24.2	1.1	9.65	11/07/1987	11/07/1987
2393	E Zone	23235	15515	-90	50	26.5	27.5	1.0	1.05	11/07/1987	11/07/1987
2394	E Zone	23255	15500	-90	50	18.7	25.1	6.4	14.65	07/12/1987	07/12/1987
2395	E Zone	23200	15535	-90	40	13.5	14.5	1.0	16.89	07/12/1987	07/12/1987
2395	E Zone	23200	15535	-90	40	20.7	26.5	5.8	21.83	07/12/1987	07/12/1987
2396	E Zone	23185	15545	-90	30	10.8	12.8	2.0	10.60	07/12/1987	07/12/1987
2397	E Zone	23090	15545	-90	40	11	16.5	5.5	7.3	07/12/1987	07/12/1987
2397	E Zone	23090	15545	-90	40	11.0	20.2	9.2	5.69	07/12/1987	07/12/1987
2397	E Zone	23090	15545	-90	40	34.0	39.3	5.3	11.75	07/12/1987	07/12/1987
2398	E Zone	23075	15560	-90	40	29.3	32.4	2.9	6.8	07/12/1987	07/12/1985
2399	E Zone	23060	15575	-90	40	23.5	38.4	13.1	16.41	07/12/1987	07/12/1985
2400	E Zone	23240	15605	-98	50	20.0	23.0	3.0	5.25	07/13/1987	07/13/1987
2401	E Zone	23270	15585	-90	50	16.0	18.0	2.0	6.47	07/13/1987	07/13/1987
2401	E Zone	23270	15585	-90	50	49.0	50.0	1.0	3.55	07/13/1987	07/13/1987
2402	E Zone	23205	15630	-90	60	21.0	29.2	8.2	6.50	07/13/1987	07/13/1987
2403	E Zone	23170	15640	-90	60	38.0	42.5	4.5	14.69	07/13/1987	07/13/1987
2404	E Zone	23135	15670	-90	60	30.6	33.5	2.9	3.42	07/13/1987	07/13/1987
2404	E Zone	23135	15670	-90	60	33.5	41.7	8.2	13.06	07/13/1987	07/13/1987
2405	E Zone	23120	15680	-90	60	39.0	45.1	6.1	6.95	07/14/1987	07/14/1987
2405	E Zone	23120	15680	-90	60	45.1	50.1	5.0	1.27	07/14/1987	07/14/1987
2406	E Zone	23150	15660	-90	60	30.7	40.0	9.3	15.80	07/14/1987	07/14/1987
2407	E Zone	23100	15696	-90	60	43.5	44.7	1.2	6.58	07/14/1987	07/14/1987
2408	E Zone	23255	15595	-90	50	23.8	27.2	3.4	17.04	07/14/1987	07/14/1987
2409	E Zone	23290	15570	-90	38	24.0	25.0	1.0	0.15	07/14/1987	07/14/1987

After Tallman, 2010

	7	Mine Gr	id (feet)	e.		~	-		7 0/	<u></u>	End Date
Hole ID	Zone	North	East	υιр	Lengtn_ft	From	10	Length	ZN %	Start Date	End Date
2410	E Zone	23570	15735	-90	80	19.0	23.1	4.1	5.98	07/15/1987	07/15/1987
2410	E Zone	23570	15735	-90	80	36.8	41.2	4.4	7.18	07/15/1987	07/15/1987
2410	E Zone	23570	15735	-90	80	58.3	65.6	7.3	4.32	07/15/1987	07/15/1987
2410	E Zone	23570	15735	-90	80	73.4	74.4	1.0	4.99	07/15/1987	07/15/1987
2411	E Zone	25475	15665	-90	60	24.2	28.2	4.0	2.75	07/15/1987	07/15/1987
2411	E Zone	25475	15665	-90	60	30.0	33.7	3.7	2.41	07/15/1987	07/15/1987
2411	E Zone	25475	15665	-90	60	37.3	38.3	1.0	16.40	07/15/1987	07/15/1987
2413	W Zone	15000	12310	-90	140	96.1	97.1	1.0	0.43	07/17/1987	07/17/1987
2414	W Zone	15022	12240	-90	140	41.3	56.0	14.7	2.28	07/18/1987	07/18/1987
2414	W Zone	15022	12240	-90	140	95.3	100.0	4.7	1.24	07/18/1987	07/18/1987
2414	W Zone	15022	12240	-90	140	132.5	133.5	1.0	1.35	07/18/1987	07/18/1987
2415	W Zone	15005	12290	-90	130	76.3	77.3	1.0	0.44	07/18/1987	07/19/1987
2416	W Zone	14768	12215	-90	160	110.0	111.0	1.0	2.30	07/19/1987	07/20/1987
2416	W Zone	14768	12215	-90	160	128.9	130.0	1.1	2.12	07/19/1987	07/20/1987
2416	W Zone	14768	12215	-90	160	145.0	146.0	1.0	1.85	07/19/1987	07/20/1987
2417	W Zone	14775	12195	-90	160	62.8	70.8	8.0	6.87	07/20/1987	07/20/1987
2417	W Zone	14775	12195	-90	160	74.5	78.2	3.7	1.33	07/20/1987	07/20/1987
2417	W Zone	14775	12195	-90	160	78.2	79.5	1.3	1.66	07/20/1987	07/20/1987
2417	W Zone	14775	12195	-90	160	131.0	132.0	1.0	1.78	07/20/1987	07/20/1987
2418	W Zone	14760	12240	-90	160	109.7	120.5	10.6	4.42	07/20/1987	07/21/1987
2419	W Zone	14750	12265	-90	160	89.0	90.0	1.0	0.32	07/21/1990	07/22/1987
2420	W Zone	14495	11810	-90	160	60.6	63.0	2.4	1.87	07/22/1987	07/23/1987
2420	W Zone	14495	11810	-90	160	72.7	76.2	3.5	8.01	07/22/1987	07/23/1987
2420	W Zone	14495	11810	-90	160	124.2	131.8	7.6	4.06	07/22/1987	07/23/1987
	North of Trout Lake										
2421	Breccia	12055	8655	-90	520					07/27/1987	07/29/1987
	North of Trout Lake	12225	0563	00	550					07 (20 (1007	07 (21 (1007
2422	North of Trout Lake	12235	8562	-90	550					07/29/1987	07/31/1987
2423	Breccia	12410	8472	-90	540					08/01/1987	08/03/1987
2424	North of Trout Lake Breccia	12190	8586	-90	540					08/04/1987	08/06/1987

After Tallman, 2010

	7000	Mine Gr	Mine Grid (feet)		Length ft	[Ta	Lagath	7- 0/		End Date
Hole ID	Zone	North	East	р пр	Length_ft	From	10	Length	ZN %	Start Date	End Date
	North of Trout Lake										
2425	Breccia	12275	8540	-90	540					08/10/1987	08/12/1987
2/26	North of Irout Lake	12500									
2426	Breccia	12500	8425	-90	540					08/12/1987	08/14/1987
2427	C Zone	22970	15920	-90	61	14.0	27.8	13.8	17.48	11/19/1987	11/19/1987
2428	S of C Zone	19569	14379	-90	115	52.2	56.2	4.0	12.04	11/21/1987	11/21/1987
2429	S of C Zone	19591	14372	-90	100	49.0	50.5	1.5	1.98	11/22/1987	11/22/1987
2430	S of C Zone	19549	14400	-90	100					11/23/1987	11/23/1987
2431	S of C Zone	19952	14147	-90	100	29.5	36.0	6.5	2.52	11/24/1987	11/24/1987
2431	S of C Zone	19952	14147	-90	100	29.5	56.3	26.8	1.34	11/24/1987	11/24/1987
2432	S of C Zone	19931	14159	-90	70	28.8	30.3	1.5	5.10	11/25/1987	11/25/1987
2433	S of C Zone	19976	14132	-90	70	36.3	40.0	3.7	0.46	11/25/1987	11/25/1987
2434	J Zone	20325	9785	-90	180	119.6	120.6	1.0	1.35	11/30/1987	11/30/1987
2435	J Zone	20351	9740	-90	180	109.9	110.9	1.0	0.22	12/01/1987	12/02/1987
2436	J Zone	20387	9690	-90	190					12/03/1987	12/04/1987
2437	Upper G Zone	17590	15730	-90	90					12/07/1987	12/08/1987
2438	Upper G Zone	17556	15750	-90	90	41.2	68.7	27.5	2.24	12/08/1987	12/08/1987
2438	Upper G Zone	17556	15750	-90	90	41.2	68.7	2.5	18.25	12/08/1987	12/08/1987
2439	NE of 9545 Zone	9334	3825	-90	800	741.3	746.2	4.9	0.72	12/10/1987	12/18/1987
2440	NE of 9545 Zone	9269	3898	-90	820					01/09/1988	01/09/1988
2442	NE of 9545 Zone	9409	3755	-90	770					01/28/1988	01/31/1988
2443	NE of 9545 Zone	9300	3860	-90	800					02/01/1988	02/04/1988
2451	P Zone	22724	19147	-90	170	112.2	116.4	4.2	13.26	02/23/1988	02/24/1988
2451	P Zone	22724	19147	-90	170	123.3	138.8	15.5	6.49	02/23/1988	02/24/1988
2452	P Zone	22723	19123	-90	170	104.9	108.4	3.5	9.50	02/24/1988	02/25/1988
2452	P Zone	22723	19123	-90	170	119.8	139.6	19.8	5.27	02/24/1988	02/25/1988
2453	P Zone	22723	19096	-90	160	101.6	103.3	1.7	7,44	02/25/1988	02/27/1988
2453	P Zone	22723	19096	-90	160	118.2	147.0	28.8	4.27	02/25/1988	02/27/1988
2454	P Zone	22466	19033	-90	150	73.0	74.0	1.0	1.63	02/28/1988	02/29/1988
2455	P Zone	22508	19014	-90	135			-		02/29/1988	02/29/1988
2456	P Zone	22437	19075	-90	160		1			02/29/1988	03/01/1988

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	0'-	Langeth Ch	6	T	1 + -	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_ft	From	10	Length	ΖΠ %	Start Date	End Date
2457	P Zone	22916	19179	-90	170					03/01/1988	03/01/1988
2458	P Zone	22900	19237	-90	200	134.4	135.7	1.3	17.60	03/02/1988	03/02/1988
2459	P Zone	22933	19121	-90	160	70.4	71.5	1.1	19.60	03/03/1988	03/03/1988
2459	P Zone	22933	19121	-90	160	116.2	118.3	2.1	26.61	03/03/1988	03/03/1988
2500	Section 24 W	4909.97	-216.21	-90	1031					04/08/1988	04/11/1988
2501	Section 40 W	4336.67	-1571.67	-90	1060	1018.7	1021.7	2.5	0.52	04/12/1988	04/15/1988
2502	Section 40 W	4962.36	-1981.47	-90	1100	1048.5	1049.5	1	0.7	04/16/1988	04/19/1988
2503	Section 56 W	3539.54	-3074.95	-90	1157					04/20/1988	04/23/1988
2504	Section 56 W	4261.1	-3410.35	-90	1320	1199.1	1200.1	1	1.5	04/28/1988	05/03/1988
2504	Section 56 W	4261.1	-3410.35	-90	1320	1234.1	1235.1	1	4.1	04/28/1988	05/03/1988
2504	Section 56 W	4261.1	-3410.35	-90	1320	1238.8	1240.8	2	4.92	04/28/1988	05/03/1988
2505	Section 72 W	4194	-5232	-90	1526					05/04/1988	05/10/1988
2506	Section 72 W	3493	-4868	-90	1530					05/11/1988	05/20/1988
2507	Section 72 W	3842.45	-5051.34	-90	1532					05/21/1988	05/26/1988
2508	Section 72 W	4548	-5420	-90	1547	1475.1	1476.1	1	4.95	05/27/1988	06/09/1988
2508	Section 72 W	4548	-5420	-90	1547	1479.5	1480.5	1	0.75	05/27/1988	06/09/1988
2509	Section 72 W	4909	-5604	-90	1527					06/11/1988	06/27/1988
2510	Section 72 W	4462	-5323	-90	1541					06/28/1988	07/09/1988
2511	Section 88 W	3385	-6459	-90	1827					07/11/1988	07/19/1988
2512	Section 88 W	4095	-6809	-90	1810					07/21/1988	08/06/1988
2513	Section 72 W	4715	-5509	-90	1520					08/07/1988	08/13/1988
2514	Section 72 W	3673	-4965	-90	1537					08/19/1988	08/24/1988
2515	Section 24 W	3462.2	558.7	-90	1055					04/07/1988	04/10/1988
2516	Section 40 W	1347	-107	-90	1120					04/10/1988	04/14/0988
2517	Section 40 W	2077	-631.14	-90	1126					04/15/1988	04/18/1988
2518	Section 40 W	2763.15	-1028.48	-90	1187	1102.2	1106.4	4.2	1.64	04/19/1988	04/25/1988
2518	Section 40 W	2763.15	-1028.48	-90	1187	1154.8	1155.8	1	0.7	04/19/1988	04/25/1988
2519	Section 40 W	3518.64	-1308.89	-90	1157					04/26/1988	04/29/1988
2520	Section 56 W	2790.18	-2733.32	-90	1330					04/30/1988	05/04/1988
2521	Section 56 W	2068.15	-2404.28	-90	1337	1275.6	1276.6	1	0.56	05/05/1988	05/12/1988
2521	Section 56 W	2068.15	-2404.28	-90	1337	1278.9	1280.4	1.5	0.5	06/05/1988	05/12/1988

After Tallman, 2010

11-1-10	7	Mine Gr	id (feet)	0'-	Langeth Ch	6	T	1 46	7- 0/		
Hole ID	Zone	North	East	UIP	Lengtn_ft	From	10	Length	ZN %	Start Date	End Date
2522	Section 56 W	1340	-2075	-90	1300	1224.9	1226.7	1.8	1.44	05/13/1988	05/17/1988
2523	Section 72 W	1323	-3863	-90	1500					05/18/1988	05/24/1988
2524	Section 72 W	590	-3528	-90	1510	1431.1	1432.1	1	0.55	05/25/1988	06/03/1988
2525	Section 72 W	-823	-3261	-90	1470	1414.3	1419.1	1.8	0.98	06/04/1988	06/17/1988
2526	Section 72 W	312	-3415	-90	1507					06/18/1988	06/24/1988
2527	Section 72 W	2414	-4351	-90	1410					06/26/1988	07/07/1988
2528	Section 72 W	1685	-4029	-90	1450					07/08/1988	07/14/1988
2529	Section 72 W	964	-3705	-90	1510					07/15/1988	07/27/1988
2530	Section 88 W	2570	-6070	-90	1034					04/11/1988	04/17/1988
2531	Section 88 W	2587.11	-6119.49	-90	1912					04/17/1988	04/23/1988
2532	Section 72 W	2773.91	-4515.66	-90	1407	1264.5	1265.8	1.3	2.86	04/25/1988	05/06/1988
2533	Section 72 W	2956.82	-4603.07	-90	1623					05/07/1988	05/15/1988
2534	Section 72 W	2950	-4191	-90	1427	1322.7	1323.7	1	0.74	05/15/1988	05/24/1988
2535	Section 24 W	1777	1443	-90	1017					06/21/1988	06/24/1988
2536	Section 56 W	4440	3500	-90	1320					06/25/1988	06/30/1988
2537	Section 56 W	4079	-3329	-90	1111					07/01/1988	07/04/1988
2538	Section 56 W	2428	-2573	-90	1333					07/05/1988	07/09/1988
2539	Section 56 W	1704	-2239	-90	1320	1264.4	1265.4	1	4.66	07/10/1988	07/14/1988
2540	Section 56 W	2220	-2548	-90	1340	1197.2	1198.2	1	0.87	07/15/1988	07/18/1988
2540	Section 56 W	2220	-2548	-90	1340	1210.2	1211.2	1	2.45	07/15/1989	07/18/1988
2540	Section 56 W	2220	-2548	-90	1340	1264.3	1265.5	1.2	5.01	07/15/1990	07/18/1988
2540	Section 56 W	2220	-2548	-90	1340	1266.2	1269.6	3.4	0.77	07/15/1991	07/18/1988
2541	Section 72 W	135	-3335	-90	1482					07/29/1988	08/18/1988
2542	Section 72 W	771	-3611	-90	1507					08/20/1988	08/28/1988
2543	Section 24 W	2800	818	-90	1067	924.8	925.9	1	1.22	08/30/1988	09/02/1988
2543	Section 24 W	2800	818	-90	1067	931.9	932.9	1	0.78	08/30/1988	09/02/1988
2543	Section 24 W	2800	818	-90	1067	959.2	960.2	1	0.69	08/30/1988	09/02/1988
2543	Section 24 W	2800	818	-90	1067	997.3	998.7	1.4	1.1	08/30/1988	09/02/1988
2543	Section 24 W	2800	818	-90	1067	1000.3	1001.7	1.4	0.63	08/30/1988	09/02/1988
2543	Section 24 W	2800	818	-90	1067	1010	1011.3	1.3	1.11	08/30/1988	09/02/1988
2544	Section 24 W	2315	1081	-90	1060	974.9	978.8	3.9	6.72	09/02/1988	09/07/1988

After Tallman, 2010

	7	Mine Grid (feet)		D'-		[Та	Lagath	70.94		Fod Data
Hole ID	Zone	North	East	UIP	Length_ft	From	10	Length	ZN %	Start Date	End Date
2545	Section 72 W	-45	-3252	-90	1467					04/20/1988	04/26/1988
2546	Section 88 W	-165	-4970	-90	1677					04/27/1988	05/02/1988
2547	Section 56 W	600	-1740	-90	1257					05/04/1988	05/09/1988
2560	Section 40 W	5681.13	-2316.25	-90	1138					04/13/1988	04/17/1988
2561	Section 24 W	6490	-1098	-90	1002					04/19/1988	04/22/1988
2562	Section 40 W	6410	-2644	-90	1078					04/26/1988	04/29/1988
2563	Section 56 W	5717	-4071	-90	1217					05/02/1988	05/09/1988
2564	Section 56 W	4990	-3740	-90	1297	1267.1	1270.5	3.4	0.68	05/11/1988	05/17/1988
2565	Section 56 W	3900	-3245	-90	1107	925	927.2	2.2	4.21	05/20/1988	05/28/1988
2566	Section 72 W	1875	-4101	-90	1440					08/28/1988	09/02/1988
2567	Section 72 W	2263	-4269	-90	1410					09/03/1988	09/08/1988
2568	Section 56 W	3720	-3165	-90	1140	1017.1	1048.1	34.4	0.68	09/13/1988	09/17/1988
2568	Section 56 W	3720	-3165	-90	1140	1026.9	1051.5	24.6	0.92	09/13/1988	09/17/1988
2568	Section 56 W	3720	-3165	-90	1140	1087.8	1088.8	1	1.11	09/13/1988	09/17/1988
2569	Section 24 W	2140	1270	-90	1040	984.7	987.3	2.6	0.95	09/19/1988	09/22/1988
2569	Section 24 W	2140	1270	-90	1040	996.2	997.3	1.1	1.48	09/19/1988	09/22/1988
2569	Section 24 W	2140	1270	-90	1040	1004.6	1005.6	1	0.72	09/19/1988	09/22/1988
1000-1050	Mine Drilling?										
1100-1150	Mine Drilling										
1151-1164	1976 Drilling										
1245A	S.W. of L Zone	7825	5200	-90	176					12/03/1977	12/03/1977
1245B	S.W. of L Zone	7620	5205	-90	179					12/05/1977	12/10/1977
2412A	W Zone	15011	12265	-90	90	Abandoned				07/16/1987	07/16/1987
2412B	W Zone	15011	12265	-90	140	91.3	105.8	14.5	7.40	07/17/1987	07/17/1987
2416A	W Zone	14768	12215	-90	20	Abandoned				07/19/1987	07/19/1987
920A	L Zone	11810.80	11358.00		262					04/14/1975	14/04/1975

APPENDIX V

PHOTOGRAPHS

UBIQUE PRESIDENT LARRY QUINLAN SPLITS DRILL CORE WHILE VP EXPLORATION ROLAND CROSSLEY LOOKS ON

HIGH GRADE CORE SAMPLE FROM 2017 DIAMOND DRILLING PROGRAM

DRILL RIG AT DANIEL'S HARBOUR

BOX OF CORE FROM 2017 DIAMOND DRILLING

DRILL RIG AT DANIEL'S HARBOUR

CORE SAMPLES FROM 2017 DIAMOND DRILLING

SCULPTURE CONTAING ROCKS FROM UBIQUE MINERALS LIMITED'S DANIEL'S HARBOUR PROPERTY ASSAYING 45% ZINC