----- # Ta-Nb-Sn-Ti-REE - Minastyc Property Mining Title LFH-14431X Vereda Guaripa, Puerto Carreño - Vichada Dept., Colombia - # 43-101 Technical Evaluation Report Trenches in oxidized gravels of Area 50. Drone view to the SW Prepared for AUXICO Resources Canada Inc. by André Ciesielski, DSc., P. Geo.& Joel Scodnick, B.Sc., P. Geo., QP Effective Date: March 28, 2022 Amended Date: December 17, 2023 Amended Date: February 8, 2024 # Date and Signature Ta-Nb-Sn-Ti-REE - Minastyc Property Mining Title LFH-14431X Vereda Guaripa, Puerto Carreño Vichada Dept., Colombia 43-101 Technical Evaluation Report This report has been prepared and revised by André Ciesielski, DSc., P. Geo and Joel Scodnick, B.Sc., P. Geo., QP Effective Date: March 28, 2022 Amended Date: December 17, 2023 Amended Date: February 8, 2024 ## Certificates of Authors # I André Ciesielski, P.Geo., hereby certify that - 1. I am a Canadian citizen, living at 1777 Du Manoir Av., Montreal, H2V 1B7, Qc, Canada; - 2. I have a DEA in structural geology and a Doctorate in petrology from Université Pierre & Marie Curie, France. - 3. I am a member of Ordre des Géologues du Québec, with licence # 514. - 4. I have worked as a professional geologist since diploma, 17 years as a research geoscientist with the Geological Survey of Canada and more than 20 years for various mining exploration companies. I have performed field works and completed studies, documents, assessments and reports on precious and base metals, diamond, rare earths, and uranium in various mining properties in eastern Canada, West Africa, Morocco, Mexico, Guyana, Colombia, etc. - 5. I have read the definition of "Qualified Person" set out in National Instrument (NI) 43-101 and certify that given my education, affiliation with a professional association and past relevant work experience, I fulfill the requirements to be a qualified person for the purposes of NI 43-101. - 6. I am co-responsible for all the sections of the Technical Report entitled Ta-Nb-Sn-Ti-REE Minastyc property, Mining Title LFH-14431X, Vereda Guaripa, Puerto Carreno, Vichada Dept., Colombia, 43-101 Technical Evaluation Report with effective date of March 28, 2022. - 7. I did not visit the property. - 8. I am not aware of any material fact or material change with respect to the subject matter of this Technical Report that would make it misleading. - 9. I had no prior involvement with the Minastyc property. - 10. I am independent of the issuer (AUXICO Resources Canada Inc.), applying all of the tests in Section 1.5 of National Instrument 43-101. - 11. This report may be amended only at the discretion of the authors. - 12. I have read National Instrument 43-101 and Form 43-101F1 and the technical Report has been prepared in compliance with that instrument and form. Montreal, February 8, 2024 André Ciesielski, P. Geo. (OGQ # 514) (Signed) I, **Joel Scodnick**, P.Geo., as an author of this Technical Report entitiled "Ta-Nb-Sn-Ti-REE – Minastyc Property, Mining Title LFH-14431X, Vereda Guaripa, Puerto Carreno – Vichada Dept., Colombia- 43-101 Technical Evaluation Report", prepared for AUXICO Resources Canada Inc. and dated March 28, 2022, do hereby certify that: I am the President and CEO of Sierra Geological Consultants Inc.; I am a practicing member of the Association of Professional Geoscientists of Ontario (member # 1065). I have worked as a geologist for a total of 42 years since my graduation. My relevant experience for the purpose of this Technical Report is: Review and report as a consultant on several exploration and mining operations around the world for due diligence, feasibility studies, and resource/reserve estimation; Chief Geologist at the Velardena Polymetallic Mine in Durango, Mexico. Responsible for commissioning the mine and putting it into production at an initial pre-production rate of 500 tpd; I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined by NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101; I graduated in 1982 from Concordia University in Montreal, Quebec, Canada with a B.Sc. in Geology; I graduated in 1978 from Algonquin College in Ottawa, Ontario, Canada with Honors Distinction in Electro-Mechanical Engineering Technology-Drafting; I conducted exploration activities on the Minastyc Property from August to December, 2021 on various occasions; I am a co-author of the Technical Report; I have no prior involvement with the Property that is the subject of the Technical Report; To the best of my knowledge, I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected herein, the omission to disclose which makes the Technical Report misleading. The Technical report contains all scientific information that is required to be discloses to make the Technical Report not misleading in any way; This report may only be amended at the discretion of the authors of this report; I have read National Instrument 43-101, and the Technical Report has been prepared in compliance with National Instrument 43-101 and 43-101F1. Dated in Culiacan, Sinaloa, Mexico, this 8th day of February 2024. (Signed & Sealed) Joel Scodnick, B.Sc., P. Geo. (APGO # 1065), QP # Table of Content | | | | | | | | | PAGE | |---------------------------|-----------|----------|---------|---------|-----|---|--|------| | Date & Signatures . | | • | • | | ě | · | | i | | Certificates of Authors | | | | | | | | ii | | 1. Summary | | | | | | | | 1 | | 2. Introduction . | | | | | | | | 3 | | 3. Reliance on Other E: | xperts | | | | | | | 3 | | 4. Property Description | ı & Loca | ition | | | | | | | | 4.1 Location | • | | | | | | | 4 | | 4.2 Exploration 1 | | | | | | | | 5 | | 4.3 Agreements | | | | | | | | 5 | | 4.4 Environment | Liabilit | У | | | | | | 6 | | 4.5 Surface Right | ts . | | | | | | | 6 | | 5. Accessibility, Climate | e Infrasi | ructur | e, Phys | siograp | hy | | | | | 5.1 Accessibility | | | | | | | | 7 | | 5.2 Climate | | | | | | | | 8 | | 5.3 Physiography | Flora 8 | ε Fauna | a | | | | | 8 | | 5.4 Local Resour | ces & I1 | nfrastru | ictures | | | | | 9 | | 6. History | | | | | | | | 10 | | 7. Geological Setting & | Minera | lization | 1 | | | | | | | 7.1 Regional Geo | ology | | | | | | | 10 | | 7.2 Local & Prop | erty Ge | ology | | | | | | 12 | | 7.3 Property min | | | | | | | | 14 | | 8. Deposit Type . | • | | | | | | | 14 | | 9. Exploration . | • | | | | | | | 15 | | 9.1 Satellite Imag | | | | | | | | 15 | | 9.2 Topography | | | | | | | | 16 | | 9.3 Geophysics | ٠ | | | | | | | 16 | | Seismic Re | efraction | 1 | | | • | | | 18 | | | | | | | | | | 19 | | 9.4 Geology, San | npling & | Analy | ses by | AMCC |) | | | 20 | | Parguaza (| Granite | | | | | | | 20 | | Quaternar | | | | | | | | 22 | | Sampling & | & Analy | tical Re | esults | | | | | 26 | | 9.5 Geology, Sam | npling & | Analy | ses by | CanaM | [ex | | | 27 | | Geology o | | • | • | | | | | 28 | | Mineraliza | tion | | | | | | | 32 | | Sampling | • | | | | | | | 32 | | December | 2021 IF | C-MS | Results | 3 | • | | | 36 | # CanaMex 🕹 | 10. Drilling | | | | | | | 43 | |---|---------------------------------------|--------|----------|------|--------|---|---| | 11. Sample Preparation, Analyses & Sec | curity | | | | | | 43 | | 12. Data Verification | | | | | | | 44 | | 13. Mineral Processing and Metallurgic | al Test | ing | • | • | | • | 45 | | 14. Mineral Resource Estimates | • | • | • | • | | • | 45 | | 23. Adjacent Properties | | • | | | | • | 45 | | 24. Other Relevant Data & Information | 1 | | | | | | 45 | | 24.1 Critical Minerals . | | | | | | | 45 | | 24.2 World REE 2020 productio | n | | | | | | 47 | | 24.3 Environment Liabilities | | | | | | | 48 | | 24.4 AMCO Report | | | | | | | 53 | | 24.5 Vichada Meteorite Impact | | | | | | | 55 | | 24.6 Agualinda Property . | | • | • | • | | • | 55 | | 25. Conclusion | | | | | | | 59 | | 26. Recommendations & Budget | | • | • | • | | • | 60 | | 27. References | | | | | | | 62 | | Appendix I Sample Descriptions | | | | | | | 65 | | Appendix II Analytical Results | | | | | | | 67 | | Appendix III Auger Program . | | | | | | • | 71 | | Appendix IV Alpha 1 Dispersive XRF | - | | | | | | 73 | | 4 1: 11 01 1 1 0 /1/ | | | | | | | | | Appendix V Impact Global Systems (IC | GS) IC | P-MS (| Certific | ate | | • | 101 | | Appendix V Impact Global Systems (IC List of Tables | GS) IC | P-MS(| Certific | ate | | | 101
Page | | | , | | Certific | eate | | | | | List of Tables | | | Certific | ate | | | PAGE | | List of Tables I Property coordinates II Location of pits and trenches | | | | cate | | | PAGE | | List of Tables I Property coordinates II Location of pits and trenches III AMCO analytical results . | | | | :ate | | | PAGE 4 23 26 | | List of Tables I Property coordinates II Location of pits and trenches III AMCO analytical results . IV AMCO 500 g analytical results | | | · . | · . | ·
· | | PAGE 4 23 26 27 | | List of Tables I Property coordinates II Location of pits and trenches III AMCO analytical results . IV AMCO 500 g analytical results V Locations of December 2021 sample | · · · · · · · · · · · · · · · · · · · | · | · . | · . | ·
· | | PAGE 4 23 26 27 34 | | List of Tables I Property coordinates II Location of pits and trenches III AMCO analytical results . IV AMCO 500
g analytical results V Locations of December 2021 sample VIa CanaMex August 2021 analytical results | · · · · s | | · . | · . | ·
· | | PAGE 4 23 26 27 34 38 | | List of Tables I Property coordinates II Location of pits and trenches III AMCO analytical results . IV AMCO 500 g analytical results V Locations of December 2021 sample VIa CanaMex August 2021 analytical revolutions of December 2021 analytical revolutions. | s esults | | | | ·
· | | PAGE 4 23 26 27 34 38 39 | | List of Tables I Property coordinates II Location of pits and trenches III AMCO analytical results . IV AMCO 500 g analytical results V Locations of December 2021 sample VIa CanaMex August 2021 analytical revolution of December 2021 analytical revolutions. VIb CanaMex December 2021 analytical vib CanaMex December 2021 analytical vib CanaMex December 2021 analytical vibration of area 50 monazites. | s esults il resul | | | · . | ·
· | | PAGE 4 23 26 27 34 38 39 41 | | List of Tables I Property coordinates II Location of pits and trenches III AMCO analytical results IV AMCO 500 g analytical results V Locations of December 2021 sample VIa CanaMex August 2021 analytical re VIb CanaMex December 2021 analytical VII Geochemistry of area 50 monazites VIII Geochemistry of Au, Ag, Pt, Pd se | s esults ul resul s amples | | | | ·
· | | PAGE 4 23 26 27 34 38 39 41 43 | | List of Tables I Property coordinates II Location of pits and trenches III AMCO analytical results IV AMCO 500 g analytical results V Locations of December 2021 sample VIa CanaMex August 2021 analytical re VIb CanaMex December 2021 analytical VII Geochemistry of area 50 monazites VIII Geochemistry of Au, Ag, Pt, Pd salix IX Presence of critical metals on Minas | s esults il resul s amples | | | | ·
· | | PAGE 4 23 26 27 34 38 39 41 43 48 | | List of Tables I Property coordinates II Location of pits and trenches III AMCO analytical results IV AMCO 500 g analytical results V Locations of December 2021 sample VIa CanaMex August 2021 analytical re VIb CanaMex December 2021 analytical VII Geochemistry of area 50 monazites VIII Geochemistry of Au, Ag, Pt, Pd se | s esults il resul s amples | | | | ·
· | | PAGE 4 23 26 27 34 38 39 41 43 | | List of Tables I Property coordinates II Location of pits and trenches III AMCO analytical results IV AMCO 500 g analytical results V Locations of December 2021 sample VIa CanaMex August 2021 analytical re VIb CanaMex December 2021 analytical VII Geochemistry of area 50 monazites VIII Geochemistry of Au, Ag, Pt, Pd salix IX Presence of critical metals on Minas | s esults il resul s amples | | | | ·
· | | PAGE 4 23 26 27 34 38 39 41 43 48 | | List of Tables I Property coordinates II Location of pits and trenches III AMCO analytical results IV AMCO 500 g analytical results V Locations of December 2021 sample VIa CanaMex August 2021 analytical re VIb CanaMex December 2021 analytical VII Geochemistry of area 50 monazites VIII Geochemistry of Au, Ag, Pt, Pd sa IX Presence of critical metals on Minas X World REE 2020 production | esults of results amples styc | | | | ·
· | | PAGE 4 23 26 27 34 38 39 41 43 48 | | List of Tables I Property coordinates II Location of pits and trenches III AMCO analytical results IV AMCO 500 g analytical results V Locations of December 2021 sample VIa CanaMex August 2021 analytical re VIb CanaMex December 2021 analytical VII Geochemistry of area 50 monazites VIII Geochemistry of Au, Ag, Pt, Pd so IX Presence of critical metals on Minas X World REE 2020 production List of Figures | s esults ul resul s amples styc . | | | | | | PAGE 4 23 26 27 34 38 39 41 43 48 49 PAGE | # CanaMex 🕹 | 4 | Grassy plains . | • | • | • | • | • | | 8 | |-----|-------------------------|---------|--------|------|---|---|--|----| | 5 | Inselberg . | • | • | • | • | • | | 8 | | 6 | Rio Orinoco satellite | image | | | | | | 9 | | 7 a | Location of section | | | | | | | 11 | | 7b | Section of Llanos Ori | entales | • | • | • | • | | 11 | | 8 | Geology of Guiana Sh | ield | • | • | • | • | | 12 | | 9 | Local satellite image | | • | • | • | • | | 13 | | 10 | Property topography | | • | • | • | • | | 16 | | 11 | Location of IP & seiss | mic sec | ctions | • | • | • | | 17 | | 12 | -16 P wave seismic sec | tions | • | • | • | • | | 18 | | 17 | -20 IP sections . | | • | • | • | • | | 19 | | 21 | Granite inselberg | | | | | | | 20 | | 22 | Pegmatite vein . | | | | | | | 20 | | 23 | Coarse grain granite. | | • | • | • | • | | 21 | | 24 | Stratified ferricrete. | | | | | | | 21 | | 25 | Granite alteration sec | tion | | | | | | 21 | | 26 | Inselberg section | | | | | | | 22 | | 27 | Location of AMCO tr | enches | & IP 1 | ines | | | | 23 | | 28 | Deposit section | | | | | | | 24 | | 29 | Deposit section | | | | | | | 25 | | 30 | Deposit section | | • | | • | • | | 25 | | 31 | Deposit section | | | | • | • | | 25 | | 32 | Deposit section | | | | • | • | | 26 | | 33 | Location of 2021 Can | aMex s | amples | 3 | • | • | | 27 | | 34 | Deposit section S0035 | 57753 | • | • | • | • | | 28 | | 35 | Parguaza granite | • | • | • | • | • | | 28 | | 36 | Sediment 1 . | • | • | • | • | • | | 29 | | 37 | Sediment 2 . | • | • | • | • | • | | 29 | | 38 | Lithified sediment 1 in | n sedin | nent 2 | • | • | • | | 30 | | 39 | Sediment 2 & 1 | | | | | | | 31 | | 40 | Sediment 3 & 4 | | | | | | | 31 | | 41 | Sediment 3 & 4 | • | • | • | • | • | | 32 | | 42 | Heavy minerals | | | | | | | 32 | | 43 | Compilation Map | | | | | | | 37 | | 44 | 2021 sample locations | | | | | | | 38 | | 45 | Geobotany spectral m | ap | | | | | | 45 | | 46 | World REE 2020 prod | luction | | | | | | 49 | | 47 | Section of channels | | | | | | | 53 | # CanaMex 🛦 | 48 Hydraulic tanks | | | | | 54 | | |-----------------------------|--|---|--|---|----|--| | 49 Vichada meteorite impact | | | | | 57 | | | 50 Minastyc South location | | • | | • | 58 | | # 1. Summary Following agreements dated September 9th and December 17th 2020, between U.B. Climaco Silvestre and AUXICO Resources Canada Inc. concerning the Minastyc property covering 189 ha., south of Puerto Carreño, Colombia, exploration in Quaternary alluvial deposits took place for Ta, Nb, Zr, Sn and Rare Earth Elements (REE's). This amended report was done to include newly received information regarding the ICP-MS results of the December 2021 sampling program conducted by Servicios de Mineria CanaMex S.A. de C.V. In Colombia, historically, alluvial mining has been carried out mostly for gold and is concentrated in both cordilleras in the western part of the country and is related to the proximity of gold sources. Exploration for alluvial heavy minerals, mainly magnetite and ilmenite, took place offshore in northern Colombia, along the Caribbean Sea. Inland, artisanal alluvial mining and exploration for heavy minerals (Ta, Nb and REE) are limited in the Vichada and Guaiana Departments and further south in the Rio Guaiana watershed and in Brazil and Venezuela border areas. Exploration on the Minastyc property was carried out in 2020 and 2021 by AMCO Consultores (AMCO) and comprises topographic and photo-mosaic surveys, induced polarization (IP) and seismic refraction sections, pit and trench digging, geology, sampling, and geochemical analyses. A satellite imagery analysis was produced by JAPOSAT Satellite Mapping. Further exploration was carried out in August and December 2021 by Servicios de Mineria CanaMex S.A. de C.V. (CanaMex). Joel Scodnick, one of the authors of the present report is the Qualified Person (QP) for AUXICO. Mapping and geology, sampling and geochemical analyses were carried out in the various existing pits and trenches. The Minastyc property is located along the west side of Rio Orinoco, 12 km south of Puerto Carreño. It shows a flat relief and comprises Quaternary alluvial deposits made of thin soil, iron-rich horizons, oxidized silt, sand and grit, gravel, clay, and lateritic material. The alluvial deposits are underlain by Proterozoic Parguaza granite, locally showing as inselbergs on which a ferricrete alteration horizon is described. Seismic line surveys show a 3-5 m thick low speed P-wave surficial horizon. Only one IP line shows a 7 m thick high resistive continuous horizon. Geological mapping of pits and trenches by CanaMex show a 50 cm thick iron and clayrich fine to coarse grain horizon at surface underlain by 2 m of oxidized silt, sand, clay, and grit (sediment 3 and 4) followed by a lithic and conglomeratic oxidized sandy horizon showing rounded quartz, altered feldspars and heavy minerals (sediment 1 and 2). At the base, the Parguaza granite is overlain by 1 m or more of saprock and saprolite in which cm size layered iron concretions (ferricrete) are found. AMCO's samples were taken from vertical channels or from adjacent stockpiles and washed to produce concentrates. XRF analytical results from 500 g concentrates shows Ta-Nb-Sn values above 2%. Given the lack of detailed information the AMCO results are considered only qualitative showing the presence of columbo-tantalite, cassiterite, possibly Ta-rutile and zircon in the heavy mineral concentrates. Sampling of the various pits and trenches by CanaMex in August 2021 was done in the vicinity of the granite inselbergs, to the southeast and in the center of the property where a bulk sample was taken on two close pits in Area 50. The fine concentrate showed total rare earth oxides (TREO) of 65.57% and the coarser fraction returned 68.25%. Coarse fraction of another sample at the same location, area 50, returned 60.90% TREO and a pulverized duplicate returned 63.18% TREO. Other samples were taken on the property along vertical channels and in adjacent stockpiles and washed to produce concentrates. XRF analytical results from fine-grained concentrates show high TiO₂ and ZrO₂ values between 16-30% and 3-26% respectively. Various element concentrations suggest the presence of ilmenite, rutile and possible Tarutile, zircon and / or baddeleyite, cassiterite and
limited amounts of native Pt, Au, Pd and Ag. The bulk sample concentrate from Area 50 shows high P₂O₅ and ThO₂ values along with high Ce, Nd, La, Pr and Sm values. The composition is compatible with the presence of REE-rich monazite, columbo-tantalite, cassiterite and iron hydroxides in the concentrates. The geological description and sampling by CanaMex in December 2021 resulted in a more precise understanding of the Minastyc stratigraphy and shows a concentration of fertile heavy minerals above the granite saprolite in conglomeratic sediment 1 and 2. The distribution of the stratigraphic sections being limited, an auger program for 2022 is proposed to cover the center and eastern parts of the property at 100 x 100 m grid. In a world favorable context for critical metals and minerals, the exploration of the Minastyc property by AMCO and CanaMex in 2020 and 2021 in Eastern Colombia, shows high Ta, Nb, Zr, Sn, and REE values in heavy mineral concentrates. It suggests potential for at least three alluvial deposits that should be fully evaluated following recommendations in 2022. Given all the results presented in this report, the authors conclude that the alluvial deposits of the Minastyc Property show anomalous concentrations of Sn, Ti, Ta, Nb and REE, Au and Pt, and that with further detailed work, there is an opportunity of outlining a deposit of economic worth, should enough material, grade, and continuity of the alluvial's be established. Further exploration is required to fully assess the economic potential for Sn, Ti, Ta, Nb and REE, Au and Pt of the alluvial deposits of the Rio Orinoco in Colombia. Following the analytical results and the stratigraphic works carried out on the Minastyc property in 2020 and 2021 and based on the positive results obtained in these field seasons, it is recommended to engage in a detailed bulk sampling program for 2024. A budget of USD 797,880 is recommended. ## 2. Introduction The following provides an NI 43-101 compliant report of the REE Ta and Nb heavy minerals of the Minastyc property, Vichada department, Colombia. Major interest in the project was acquired by AUXICO Resources Canada Inc. following *purchase agreements* dated September 9th and December 17, 2020, with Climaco Silvestre Unda Barrios, owner of the property. Recent exploration on the property was carried out by AMCO Consultores and Servicios de Mineria CanaMex S.A. de C.V. The present Technical Report describes historic works, mineralization types and metal potential of the property. Information has been gathered from a number of government maps, independent scientific papers and technical reports, unpublished internal studies, maps, and various geological sources. The author, Joel Scodnick, P. Geo., qualified person (QP) for AUXICO visited the Minastyc property on 3 occasions from August to December 2021. AUXICO Resources may use this Technical Report to satisfy disclosure and filing requirements of Canadian securities regulators. This report has an effective date of March 28, 2022. Units of measurement used in this report conform to the SI (metric) system. REE, Ta and Nb values are reported in percent (%). Some metals may be reported in ppm or g/t and as ppb. All currencies are US dollars (US \$) unless otherwise noted. #### LIST OF ABBREVIATIONS m, km meter, kilometer mm, cm millimeter, centimeter ha hectare g, g/t grams, gram/ton (equivalent to ppm) GPS geographical positioning system ppm, ppb parts per million, parts per billion a.s.l. above sea level°C degree CelsiusREE's Rare Earth ElementsEM Electro-magneticIP Induced Polarization UTM Universal Transverse Mercator (projection) WGS84 World Geodetic System (datum) # 3. Reliance on Other Experts The authors did not rely on any other experts to carry out the present technical report. # 4. Property Description and Location ## 4.1 Location The Minastyc property is located in the department of Vichada in eastern Colombia, 870 km by road east of Bogota via Villavicencio and Puerto Carreño at the junction of the Rio Meta and the Rio Orinoco. The property is located 12 km south of Puerto Carreño immediately west of the Rio Orinoco near the Casuarito village and covers 188,74 ha. It is limited by the following zone 19N UTM coordinates, Table I, Figure 1. Figure 1 : Location of the Minastyc property 870 km east of Bogota, Colombia. Table I : Minastyc property coordinates. | Id | Χ | Υ | |---------|--------|--------| | 1 | 666893 | 670509 | | 2 | 667444 | 670513 | | 3 | 667445 | 670403 | | 4 | 667885 | 670398 | | 5 | 667886 | 670293 | | 6 | 668217 | 670290 | | 7 | 668223 | 670179 | | 8 | 668655 | 670184 | | 9 | 668665 | 670079 | | 10 | 668995 | 670070 | | 11 | 668993 | 669855 | | 12 | 668881 | 669854 | | 13 | 668884 | 669637 | | 14 | 668775 | 669631 | | 15 | 668776 | 669304 | | 16 | 668666 | 669300 | | 17 | 668664 | 669192 | | 18 | 668556 | 669191 | | 19 | 668553 | 669301 | | 20 | 668223 | 669305 | | 21 | 668217 | 669411 | | 22 | 667781 | 669407 | | 23 | 677771 | 669516 | | 24 | 667448 | 669519 | | 25 | 667442 | 669625 | | 26 | 667005 | 669628 | | 27 | 667002 | 669732 | | 28 | 666672 | 669742 | | 29 | 666666 | 669844 | | 30 | 666557 | 669850 | | 31 | 666553 | 669955 | | 32 | 666667 | 669961 | | 33 | 666669 | 670176 | | 34 | 666776 | 670182 | | 35 | 666780 | 670399 | | 36 | 666889 | 670401 | | WGS84 L | | | # 4.2 Exploration Rights # Promise of contract for the assignment of rights derived From the request for mining legalization identified with Plate No. LFH-14431X before the National Agency of Mining that is regulated by the following clauses: Ninth: Object of the contract: The promising assignor agrees to transfer in favor of the promising assignee by way of assignment of all the rights emanating from the mining transfer contract that results from the mining legalization process identified with the Plate No. LFH-14431X that is in the process evaluation at the National Mining Agency, headed by the promisor cedent Mr. Climaco Silvestre Unda Barrios (Climaco) identified with citizenship card no. 18.260.655, understanding that there are still some procedural stages missing in the legalization process that is being carried out at the National Agency for Mining and that through this document Mr. Climaco assigns in advance the future rights emanating from the mining title granted by the Mining Authority in this process of mining legalization, that is, through this document a clear obligation arises and expresses in the head of Mr. Climaco as assignor so that, once he is registered the mining concession contract that arises from the process of evaluation of the request for legalization identified with the plate LFH-14431X and is registered in the National Mining Registry, it will proceed immediately before the ANM with its position, as established by the Article 22, 23 and 24 of Law 685 of 2001, who will initiate the corresponding procedures to carry out the Assignment of Rights that emanate from the mining concession contract. # 4.3 Agreements On December 14, 2020 AUXICO Resources Canada Inc. entered into a Promise of Sale of Property and Possession of Property Denominated as Minastyc with Mr. Climaco, a resident of the municipality of Puerto Carreño, Vichada, Colombia. Under the Agreement, Mr. Climaco undertakes to transfer to AUXICO the rights of possession of Minastyc for a period of sixty-years through a request for title clearance with the National Mining Agency. The legal title of the property is identified with Plate No. LFH-14431X by the National Mining Agency. AUXICO has agreed to pay Mr. Climaco a total of COP 750,000,000 equivalent to CAD 242,457 for Minastyc as follows: - COP 150,000,000 on signing the Promise of Sale Contract PAID - COP 300,000,000 to be transferred at 4 (four) business days after signing the Promise of Sale Contract PAID - COP 150,000,000 to be transferred after the PTO has been completed and the Temporary Mining Licence having been issued by the National Mining Agency- PAID - COP 150,000,000 to be transferred after signing the mining concession contract that arises from the legalization process and the request approved by the National Mining Agency in favor of AUXICO, and the signature of the public deed that recognizes the Promise of Sale Contract in relation to the sale of real estate PAID Due to exchange rates, Auxico owes a balance of USD to Climaco. AUXICO Resources Canada Inc. signed an Operational Contract with Minampro Asociados S.A.S. (Minampro) for the Minastyc Property. Minampro is a Colombian company dedicated to the exploration, exploitation, and commercialization of minerals. The company has extensive experience in the mineral sector and especially in the development of activities with several indigenous communities in Puerto Carreño, Vichada. Under the Operational Contract, Minampro will undertake the geological prospecting and exploration activities necessary for the identification, feasibility, and development (including construction of underground and surface infrastructure) of any possible mineral resources to be developed in the future, should they be proven to exist, located in the areas of the Application and/or the Property. AUXICO undertakes to pay the consideration provided in the Operation Contract. Minampro will carry out the above-mentioned activities in accordance with the technical document as provided in the Operation Contract at its own risk with its own resources with full managerial, technical, and administrative autonomy. Any mineral or resource that may be extracted by Minampro in execution of the Operational Contract, and/or in the area of the Application and/or the Property, is the exclusive property of AUXICO. According to the Operational Contract Minampro will issue an invoice to AUXICO on a monthly basis and AUXICO must pay the invoice within fifteen (15) days by electronic funds transfer (EFT). On July 15, 2022, Auxico notified Minampro and terminated the agreement. #### 4.4 Environmental
Liabilities The Minastyc property is located on the west side of the Orinoco River. AMCO Consultores (AMCO) out of Bogota, Colombia have conducted numerous technical and environmental studies within the subject area and have just produced a very detailed document call a "PTO", translated into English is a Program of Work and Exploitation Work for the legalization of Mining on title LFH-14431X – Mining Project Minastyc. AMCO have outlined a series of steps required in order to help mitigate environmental liabilities in the future once the project will the small-scale mining permit issued by the National Mining Agency and work can commence (AMCO, 2022). Outlined in detail in section 24 below are the environment mitigations as described by AMCO in their report dated December, 2021. AUXICO's QP Joel Scodnick, P. Geo., was onsite on various occasions in 2021 and have seen AMCO consultants in the field carrying out different environmental tests. There is currently a camp onsite which houses approximately 17 employees including technical assistants, cook, helper, and administration. There are two washrooms with toilets and a shower. There is one building constructed out of wood and a shanty type of kitchen area. # 4.5 Surface Rights The Minastyc property is subjected to surface rights or obligations as defined by regulations of the National Mining Agency (NMA) and Ministerio de Ambiante of Colombia. # 5. Accessibility, Climate, Physiography, Local Resources, and Infrastructures # 5.1 Accessibility The Minastyc property is located 870 km east of Bogota, Colombia, at the eastern end of the *Llanos Orientales* and can be reached via commercial daily flight from Bogota to Puerto Carreño or by using Highway 40 through Villavicencio to Puerto Carreño located at the junction of the Rio Meta and the Rio Orinoco, Figure 1. Eastern Highway 40 may be hazardous especially during intense precipitations. From Puerto Carreño, the property can be reached by boat on the Rio Orinoco some 14 km to the south or by road, 60 km from Highway 40 to the south and to NNE on dirt roads and tracks in grassy flat lands, Figure 2. Figure 2: Location of the Minastyc property on a satellite image also showing the main town, Puerto Carreño at the end of Highway 40, to the north, the Orinoco River and dirt roads and tracks. Image after Google Earth. #### CanaMex 🛦 Figure 3: Precipitations in the Minastyc property area. Figure 4: Grassy plains of the Colombia Llanos Orientales. Photo AMCO. Figure 5: Granite inselberg surrounded by gallery forest. Photo AMCO. #### 5.2 Climate The property area shows a wet tropical climate with temperatures averaging 19 to 21° C at night and 30 to 33° C during the day. Temperatures may reach near 45° C between January and April before the rains. Humidity is normally above 77% and precipitations vary from 80 mm in 22 days in March to 390 mm in 30 days in August for an average of 2.5 m per year, Figure 3 # 5.3 Physiography, Flora & Fauna The Minastyc property is located along the Rio Orinoco on the Colombian side in grassy flat lands with elevation averaging 55 m a.s.l. It is located at the limit between heavy forest high lands of the Guiana Shield on the eastern Venezuela side and the grassy savanna plains, Figure 4, and gallery forests (along streams) of the Llanos Orientales to the west, Figure 6. The property area shows barren white light brown color on the satellite image distributed on both sides of the river related to sandy quaternary deposits accumulated over the millennials along the Rio Orinoco, specific grass vegetation and limited forest cover along streams. concentration of forest exists around number of granite inselbergs distributed all along and on both sides of the Rio Orinoco, Figure 5. The eastern savanna of Colombia shows one of the richest tropical flora and fauna of South America locally threaten by cattle farming, deforestation, and other human activities. More than 2000 species of plants are reported belonging to more than 800 genera and 180 families. With respect to fauna and as example roughly 35% of the 1700 bird species of Colombia and 28 amphibian, 119 reptile and number of mammal species are found in the *Llanos Orientales*. It comprises Orinoco crocodile, python, and other snakes, capybara, large felidae, rodents, etc. Further details can be found in Parra-O. (2006), AMCOa (2021) and AMCOb (2021). Figure 6: Physiography of the property area along the Rio Orinoco at the limit between higher relief and forest cover of the Guiana Shield to the east and grassy flat plains of the Llanos Orientales to the west. Image after Google Earth. #### 5.4 Local Resources & Infrastructures Limited resources and infrastructures do exist in Puerto Carreño, 15 km north of the property. The accessibility of supplies necessary for exploration is hampered by the lack of direct connection between the property area and the nearest town. For example, electricity generator and heavy machinery should be supplied from Villavicencio and Bogota, 870 km to the west. Some of the mining personnel may be hired locally. # 6. History In Colombia, historically, alluvial mining has been carried out mostly for gold and is concentrated in both cordilleras in the western part of the country and is related to the proximity of gold sources. See Rodriguez and Warden (1993) and UNODC (2020) for more details. Exploration for alluvial heavy minerals, mainly magnetite and ilmenite, took place offshore in northern Colombia, along the Caribbean Sea (Volp et al., 2009). Inland, artisanal alluvial mining and exploration for heavy minerals (Ta, Nb and REE) are limited in the Vichada and Guaiana Departments and further south in the Rio Guaiana watershed and in Brazil and Venezuela border areas. See Franco Victoria et al., (2021). Prior to any work conducted by CanaMex on behalf of Auxico, the only activities on Minastyc comprised several exploration pits dug in two general areas of the property. The results are unreliable as there was no supervision of any qualified geologist, nor were the coordinates of the pits measured using a GPS unit. The camp manager was responsible for hiring staff in the field, whom in turn dug up the pits using shovels and pics. No machines were used during this program as there was no environmental permit issued at that time. In Colombia, without an environmental permit it is prohibited to utilize any machinery on mining property. There is no other work having been recorded on the Minastyc Property. # 7. Geological Setting & Mineralization # 7.1 Regional Geology The Minastyc property is located in fluviatile Quaternary deposits on the west side of the Rio Orinoco. Further west, the flat lands are underlain by Cenozoic and Mesozoic (Cretaceous) deposits. A W-E section through the Llanos Orientales from the Front Thrust of the Eastern Colombian Cordillera to the Rio Orinoco, Figure 7a shows change of altitude from Yopal, 350 m a.s.l. to Puerto Carreño on the Venezuela border, 55 m a.s.l. It shows a sub-horizontal succession of to Neogene Cretaceous sequences, favorable for hydrocarbons Figure 7b (see Barrero et al., 2007). At the east end of the Mesozoic to Cenozoic successions, the contact must discordant on and / or in faulted position with the Mesoproterozoic granite that forms the western portion of the Guiana Shield in the Rio Orinoco large area, Figure 7b. Figure 7a: Location of W-E section through the Llanos Orientales from Yopal to Puerto Carreño on the Rio Orinoco. Modified from Barrero et al. (2007). Figure 7b : Section through the Meso to Cenozoic cover of the Llanos Orientales to the Mesoproterozoic granite of the western Guiana Shield. Modified from Barrero et al. (2007). The eastern plains of Colombia (Llanos Orientales) Neogene and Quaternary deposits are mostly composed of proximal and more distal sedimentation originating from the Eastern Cordillera (molasses) and higher grounds to the west. It also originates from slow dismantling of the Guiana Shield high grounds to the east and south and from aeolian processes, Figure 7b. Along the Venezuela / Colombia border, further east in the Rio Meta and the Rio Orinoco area, recent deposits are mostly fluviatile, composed of grit, gravel, sand, iron oxide and hydroxide, clay, etc. See Goosen (1971) for more details. The western part of the Guiana Shield shows Mesoproterozoic age (Calymmian) anorogenic granitoids intruding the Paleoproterozoic migmatitic and metasedimentary Rio Negro Terrane, Figure 8. The largest magmatic unit, the Parguaza rapakivi granite stands across the Rio Orinoco and further west and east and southeast and covers more than 30 000 square km. It also intrudes older Trans-Amazonian granites and volcanic sequences and shows ages from 1.55 to 1.40 Ga. Non mineralized anorogenic megacryst biotite granite intrusions with ages around 1.55 Ga abound in the Rio Negro succession block (Bonilla-Pérez et al., 2013, Kroonenberg et al., 2016, 2019a and 2019b, Ibanez-Mejia and Cordani, 2020). Figure 8: Western portion of the Guiana Shield showing the location of the Minastyc property with respect to Mesoproterozoic anorogenic granites intruding the Rio Negro sequences and older granites. The Trans-Amazonian Domains are older from Mesoproterozoic to Archean ages. After Kroonenberg et al. (2016 and 2019). 1a: 1.3-1.2 Ga platform sandstones, 1b: 1.6-1.5 Ga Parguaza rapakivi granites, 1c: 1.8-1.72 Ga Rio Negro magmatic basement, 1d: Rio Negro high grade paragneisses, 1e: 2.0-1.95 Ga felsic volcanics and granitoids, 1f: felsic metavolcanics # 7.2 Local & Property Geology The Minastyc property is located within the Parguaza rapakivi granite showing local ages from 1.392 to 1.402 Ga and represents one of the largest anorogenic granite lacking tectonic deformation (Bonilla-Pérez, 2013, Kroonenberg, 2019b). The property is located at least 100 km east of the western border of an anorogenic large batholith, see section in Figure 7b. The property also lies in
recent Holocene detrital mostly alluvial and coluvial deposits formed along the Rio Orinoco and the tributary rivers. Limited contemporary aeolian dune and loess deposits are also recorded in the property area (Gomez and Montes, 2020). It is possibly underlain by older Pleistocene and Neogene deposits. The property also shows high relief windows of Parguaza rapakivi granite (inselberg), Figure 5 and Figure 9. The inselbergs are all surface expression of the Parguaza anorogenic rapakivi granite forming the basement to the alluvial deposits of the Rio Orinoco watershed basins and plains (see below). Figure 9: Distribution of the Parguaza granite inselbergs in the Minastyc property area forming high relief windows (light brown closed surfaces) in extended Holocene detrital sediments, local aeolian deposits and soils. Image after Google Earth. The anorogenic granites of the western Guiana Shield have long been studied for geochemistry and geochronology. See Sidder and Mendoza (1995) for extended references. More recent works by Bonilla-Pérez et al., (2013) on the geochemistry of the granite in Colombia showed 66.7 to 75% SiO2, 11.1 to 14.5% Al2O3, 5 to 7.5% K2O and 2.9 to 5.4% Na2O, etc. falling in the syeno and monzo-granite fields of Streckeisen classification. It shows granoblastic texture, with mm to cm crystal sizes, well developed rapakivi textures, biotite-hornblende, Na amphibole and aplite internal phases and late aplite, granodiorite, pegmatite and quartz dykes and veins. The Parguaza granite fall into late to anorogenic geochemistry field in the R2-R1 diagram of Batchelor and Bowden (1985) cited in Bonilla-Pérez et al., (2013). # 7.3 Property Mineralization The property mineralization is located within the Neogene alluvial sediment horizons underlying the topsoil and composed of lithic fragments of granite and pegmatite, gravel, grit, conglomeratic sand, iron oxide and hydroxide, silt, and clay. According to recent studies in the property area, it is mostly composed of Ti, Nb, Ta, Sn, \pm Zr \pm V and REE minerals like Ilmenite (Fe2TiO3), Columbo-Tantalite (Mn,Fe)4(Nb,Ta)8O24, Cassiterite (Sn±(Ta,Nb,W,Mn,Sc)O2), Monazite (Ce,La,Nd,Th)PO4), Ta-Rutile (Ti,Ta,Fe)O2), etc. showing variable alteration and dissemination in detrital alluvial horizons below the top soil (AMCOa, 2021). These minerals are known to be contained in the Parguaza rapakivi granite mostly concentrated in the late pegmatitic and aplitic phases and in greisen zones related to hydrothermal alteration (see also Cramer et al. 2011, Franco et al., 2021 and below). # 8. Deposit Types Ta, Nb, Sn and REE mineralization area known to be found in various magmatic Precambrian and younger environments and associated with HFSE (high field strength element) U, Th, Ti, Cs, Be, Li, Zr, V, W, etc. Rare-element or metal producing districts of the world are dominantly associated with peralkaline and peraluminous granitoids. See Linnen and Cuney (2005), Schulz et al. (2017) and Van Gosen et al. (2017) for a review and details on mineral geochemistry and mining. Various deposit types can be classified as - pegmatite-related Ta, - peraluminous granite-related $Ta \pm Nb$, - carbonatite-related Nb and - peralkaline complex-hosted Nb-Ta-REE (Mackay and Simandl, 2015). Comparable mineralization is also known in various anorogenic granite of Proterozoic ages in shields of Finland, India, and Guiana. The Parguaza granite is located in the western parts of the Precambrian Guiana Shield straddling Venezuela and Colombia and shows Sn, Ta, Nb, W, Zr, Hf, Ga, Ge, Re and REE (± U, Th, Mn) mineralization expressed as cassiterite, columbo-tantalite, monazite, rutile, pyrochlore, ilmenite and other complex minerals. It should be mentioned that the important Pitinga tin (Sn) mine is located in the Agua Boa granite in Brazil. It can be correlated with rapakivi anorogenic granite of Mesoproterozoic ages like the Surucucus granite also in northern Brazil. Moreover, the major Pijiguaos bauxite deposit is developed in the laterite profile of the Parguaza granite in Venezuela (see Sidder, 1990, 1995, Cramer et al., 2010, Mackay and Simandl, 2015 and Kroonenberg et al., 2019a). Sn, Ta, Nb, REE, W, Ti and Zr mineralization are known to exist in quartz pegmatite, aplite veins and greisen zones (quartz-muscovite-fluorite, tourmaline, etc.) of the Parguaza granite (Pérez et al., 1985, Sidder, 1990, 1995, Kamilli et al., 2017). It follows that local mineral concentrations do exist all along the alluvial and coluvial sedimentation of the Rio Orinoco and Rio Negro watersheds in the Vichada and Guainia Departments. It shows the same minerals as above with various alteration, presence of iron oxide and hydroxide and possibly local pure metal concentrations due to the destruction of the various phosphate and oxides (Bonilla Pérez et al. 2013a and Franco et al., 2021). # 9. Exploration Exploration works took place on the Minastyc property from 2020 to 2021 and was carried out by Jaramillo (2021), JAPOSAT Satellite Mapping, AMCO Consultores and Servicios de Mineria CanaMex S.A. de C.V. Following works done in 2019 by Juan Guillermo Garcia and JAPOSAT remote sensing analyses, geologist, M. Jaramillo visited the property in late 2020 and early 2021 while working on the Venezuelan side of the Rio Orinoco in similar mineralized Parguaza granite, saprolite and alluvial deposits. The author claims coltan (Ta2O5) mineralization in Minastyc but the information remains qualitative as he does not provide sample coordinates or certificates of analyses (Jaramillo, 2021). AMCO Consultores carried out various exploration works in 2020 and 2021, including drone photo-mosaic surveying and topography, hydrology and pedology works, surface geology, geophysics, surface sampling, geochemistry, mining geology and engineering and environmental and social baseline study (AMCOa, 2021). Servicios CanaMex carried out surface geology, sampling, and analytical works in 2021 (Pelletier and Scodnick, 2022). # 9.1 Satellite Imagery / Remote Sensing JAPOSAT produced various images of the Minastyc property area based on satellite data as follow (Popiela, 2020). - **1-Multispectral geobotany** and litho-structural mineral targeting was applied to map the spectral anomalies of the vegetation and the surface geochemistry, to map the lithostructural features in the rock types, to combine the geobotanical and soil results with the litho-structural interpretation and to identify mineral exploration target areas. - 2- 50 cm resolution images were produced using Pleiade's bands 1, 2, 3 enhanced for geology to produce a natural color composite image- Pleiade's bands 1, 2, 4 used to produce a false infrared color composite image Landsat's band 10 and 11 used to produce a radiance image. Note that these images were produced on the property area, AOI-1 and in the area adjacent to the southwest, AOI-2. 50 cm AOI-1 natural color image is used in the present report. Fracture lineament map was produced using the radiance image and lithological and sampling target maps were produced from the geobotany spectral data. Such a map is presented along with 2021 analytical results at the end of section 9.5 below. JAPOSAT produced a similar report on areas surrounding the Minastyc property with lineament, spectral analytical, recommended sampling, and flow accumulation maps using high resolution satellite and radar images (Popiela, 2021). Note that the various satellite images were referenced using datum WGS84 in UTM zone 19 projection. # 9.2 Topography The topography of the property area was carried out by AMCO through photomosaic and land surveying. The following map gives detail information on the variation of relief on the property outlining the presence of granite inselbergs, Figure 10 (See also Figure 5). Note the general flatness of the property all around the inselbergs, the light slope toward the Rio Orinoco from 93 m to 79 m a.s.l. from south to north of the property, the proximity of the Rio Orinoco, less than one kilometer and the presence of NNE oriented streams on the property, the Caño Panuelo, Caño NN and Caño San José. Note that the maps produced by AMCO Consultores (AMCOa, 2021) were projected using Magna-Sirgas CMT12 datum in Traverse Mercator projection with 4° N, 73° W reference coordinates. Also, a photo-mosaic quality report does exist in the database for the Minastyc property, but no data was provided to the authors of the present report. Figure 10: Topography of the Minastyc area showing the flatness of the property around the granite inselbergs and the proximity of the Rio Orinoco. After AMCOa (2021). # 9.3 Geophysics Two different geophysical surface techniques were applied on the Minastyc property by AMCO Consultores. In order to assess the nature and stratigraphy of the alluvial and coluvial sedimentation at shallow depth, 5 seismic refraction lines and 4 IP lines were tested on the Minastyc property, Figure 11. Results from Figure 12 to 16 show consistency in the thickness of the top deposit from line LS1 to LS2, a decrease toward line LS3 and increase again from line LS4 and LS5. The top of the lines shows the following wave velocity characteristics (in meter per second, m/s): | Line | $\mathbf{V}\mathbf{p}$ | Line Vp | Line Vp | |------|------------------------|--------------|-------------| | LS1: | 245 m/s | LS3: 271 m/s | LS5:331 m/s | LS2: 292 m/s LS4: 229 m/s According to AMCOa (2021) these low P wave velocities are related to a sterile top horizon of about 5 m thickness mostly composed of quartz grit and gravel sands. It could be confirmed by resistivity line T1 although the top resistive horizon seems much thicker. Line T3 also shows a thin resistive top horizon that could be correlated with line T1, Figure 17 to 20. P and S wave velocities do vary a lot in the same alluvial or detrital horizon and is dependent upon density, porosity, granulometry, water and mineral oxide and hydroxide content, etc.
Similarly, it should be noted that the conductivity of alluvial or detrital sedimentation does increase with water and electrolyte content and porosity. It should be noted that if the resistivity images provided by AMCOa (2021) are pseudo-sections, data should be reprocessed to get inversion sections. Shallow probing of alluvial sediments using seismic refraction and IP methods should be accompanied with direct access to nearby grounds by means of pits or trenches parallel to the IP or seismic lines and used as comparative tools to make precise geological descriptions and sampling, describe precise stratigraphy and ground structures and make sound correlations. Figure 11: Detail satellite image with the distribution of pits and trenches, seismic and IP lines carried out by AMCO Consultores on the Minastyc property. Note the presence of the granite inselbergs. #### CanaMex & # Seismic Refraction (P wave) Figure 12: Refraction line LS1 showing wave speed of 245 m/s over 3.75 m defining a relatively homogeneous top layer, with variations in lower units. Figure 13: Refraction line LS2 showing wave speed of 292 m/s over 4 m defining a relatively homogeneous top layer and thickness increase in lower units from NW to SE. Figure 14: Refraction line LS3 showing wave speed of 271 m/s over 3 m defining a relatively homogeneous top layer. Figure 15 : Refraction line LS4 showing wave speed of 229 m/s over 2.5 m defining a constant top layer. Figure 16: Refraction line LS5 showing wave speed of 331 m/s. It defines a top layer varying from 3 to 5m. #### IP Lines Figure 17: Resistivity pseudo-section T1 showing higher conductivity below 15 m and homogeneous top high resistive top unit 7 m thick. Figure 18: Resistivity pseudo-section T2 showing medium resistivity in the top 10 m decreasing at depth. Figure 19: Resistivity pseudo-section T3 showing higher resistivity in the top 5 to 7 m decreasing between 15 to 25 m depth. Figure 20: Resistivity pseudo-section T4 showing heterogeneous high resistivity in the top 15 m decreasing locally at depth to 25 m depth. # 9.4 Geology, Sampling & Analyses by AMCO Surface geological mapping of the property was carried out by AMCO Consultores and most of the results can be found in AMCOa (2021) and in separate maps. The property carries only three geological units at surface. The Parguaza granite forming inselbergs, surrounding ferricrete and topsoil covering the alluvial Quaternary deposits of the rest of the property ## Parguaza Granite Inselberg The Parguaza granite forms hectometric and kilometric size inselbergs along the west side of the Rio Orinoco. It forms high relief windows popping out of the alluvial Quaternary deposits, Figure 5, 9, 10 and 21. The rock is homogeneous, coarse-grained with late aplite, pegmatite and greisen phases or dykes and late quartz veining, Figure 22. Figure 21 : Parguaza granite inselberg and flat lying outcrop west of the Rio Orinoco. Photo AMCO. Figure 22: Coarse grained Parguaza granite showing cm size pegmatite dyke. Photo AMCO. The rock is equigranular with mm to cm size granulometry showing quartz, feldspar, orthoclase, biotite, amphibole mineralogy, Figure 23. The Parguaza granite belongs to the Mesoproterozoic anorogenic granite of the western Guiana Shield that have been studied since the 1980's their geochronology, geochemistry, and Sn, Ta-Nb-REE mineralization. See sections above. A study of brittle deformation in the granite shows predominance of WNW-ESE, NW-SE and SW-NE-trending fracture pattern (AMCOa, 2021). Figure 23 : Coarse grained pegmatoid Parquaza granite. Photo AMCO. #### Ferricrete Hard, fine grain stratified ferricrete (iron duricrust alteration) composed of limonite-hematite-goethite with local granular porous texture is described by AMCOa (2021), Figure 24. It is said to lie directly on the granite suggesting strong alteration and iron precipitation on the paleosurface. Later the duricrust was covered by Neogene fluviatile sedimentation, Figure 26 below. Figure 24 : Ferricrete formed on granite paleosurface. Photo AMCO. In arid tropical terrain ferricrete is related to an aluminum and silica leaching of the basement, an upward migration and precipitation of iron \pm manganese oxides and hydroxides at surface related to the cyclic variation of the water table height and intensive evaporation. In Minastyc, the duricrust seems to be related to the alteration and precipitation of iron hydroxides on granite paleosurfaces implying the possible presence of saprolite and saprock below the ferricrete. Ferricrete and iron duricrust have been largely studied. Experiments quoted by Nahon and Tardy (1992) shows the precipitation of clay, calcite, kaolin, and upward iron hydroxides enrichment in artificial weathering zones under seasonally humid climates, Figure 25. One would find more reviews and details on iron-rich soils and laterites in Legros (2013). Figure 25: Upward Al-Si leaching and iron enrichment section in granite alteration zone. After Nahon and Tardy (1992). A recent study of a lateritic profile overlying the Parguaza granite shows a well-developed pisolithic ferricrete alteration composed of goethite, hematite, limonite and quartz fragments. The profile is 1.5 m thick or so and located in Cachicamo south of Puerto Ayacucho on the west side of the Rio Orinoco. It is located on Parguaza granite and shows the presence of tantalo-rutile or strüverite (Ti,Ta,Nb)O2, columbite and cassiterite mineralization, Franco et al., (2021). Figure 26: Formation of a ferricrete above the Parguaza granite during Neogene seasonally humid tropical climate followed by the deposition of Quaternary alluvial sediments in the Rio Orinoco watershed. After AMCO Consultores map and sections, 2021. #### Quaternary Alluvial Deposits The surficial study of alluvial deposits was carried out by AMCO Consultores by digging pits and trenches on the Minastyc property, Figure 27, with the following coordinates, Table II (AMCOa, 2021). It shows test pitting done to the west outside of the property in the Caño Pañuelo area. Description, pictures, and drawings are provided by the author, but no location or coordinate are given to refer the pictures to the distribution map. Figure 27 : Distribution of AMCO pits and trenches in the Minastyc property (AMCOa, 2021). Table II : Pit and trench coordinates by AMCO Consultores | Tr Id | E z19 | N z19 | Prof m | Sample Id | N cmt12 | E cmt12 | |-------|--------|--------|------------|-----------|---------|---------| | T1 | 668600 | 669503 | 1,6 | CCET01R | 2230167 | 5611903 | | T2 | 668609 | 669504 | 1,7 | CCET02R | 2230168 | 5611912 | | T3 | 668614 | 669485 | 1,8 | CCET03R | 2230149 | 5611917 | | T4 | 668575 | 669507 | 2 | CCET04R | 2230170 | 5611878 | | T5 | 668534 | 669505 | 2 | CCET05R | 2230168 | 5611837 | | T6 | 668530 | 669539 | 2,1 | CCET06R | 2230202 | 5611832 | | T7 | 668213 | 669484 | 0,3 | CCET07R | 2230415 | 5611514 | | T8 | 661406 | 669687 | 0,25 | CCET08R | 2230298 | 5604680 | | T9 | 668260 | 669834 | 2 | CCET09R | 2230496 | 5611559 | | T10 | 668299 | 669903 | 2 | CCET010R | 2230566 | 5611598 | | T11 | 668340 | 669974 | 2 | CCET011R | 2230638 | 5611638 | | T12 | 667873 | 670160 | 6 | CCET012R | 2230821 | 5611168 | | T13 | 666284 | 669855 | 2 | CCET013R | 2230503 | 5609575 | | T14 | 666861 | 669698 | 2,1 | CCET014R | 2230349 | 5610156 | | T15 | 667532 | 669543 | 2,2 | CCET015R | 2230199 | 5610830 | | P1 | 666527 | 671039 | Activ seds | CCEB01 | 2231693 | 5609810 | | P2 | 668582 | 670103 | Activ seds | CCEB02 | 2230769 | 5611880 | | T16 | 666327 | 670258 | 2 | CCET016R | 2230908 | 5609617 | | T17 | 666485 | 670363 | 2 | CCET017R | 2231014 | 5609773 | | T18 | 666624 | 670467 | 2 | CCET018R | 2231120 | 5609912 | #### CanaMex & Figure 28 shows the Quaternary surficial deposit composed of thin soil underlain by coarse grained hematite-rich horizon going down to 50 cm followed mostly by gravel and sand with limonitic matrix, iron-rich remnants, and local concentrations of clays. Supplementary photographs show - a hematite-rich dark brown coarse grain horizon about 30 cm thick underlain by stratified limonitic gravel and sand thick horizon, Figure 29, - a hematite-rich dark brown coarse grain horizon about 50 cm thick underlain by orange homogeneous limonitic gravelly sand, Figure 30, - a hematite-rich dark brown grit horizon about 25 cm thick underlain by quartz and plagioclase bearing iron-rich sand and grit and limonitic sand, Figure 31, - a hematite-rich dark brown grit horizon about 40 cm thick underlain by limonitic sand with plagioclase and sericite alteration and iron-rich crust, Figure 32. Figure 28 : Section in surficial alluvial deposit in the Minastyc property. Photo ${\tt AMCO}$ arenitic soils iron-rich crust sand, gravel with iron-rich matrix remnant of iron-rich crust sand, gravel and iron-rich matrix clays #### CanaMex 🛦 Figure 29 : Section in surficial Quaternary deposits. Photo ${\sf AMCO}\,.$ Figure 31 : Section in surficial Quaternary deposit. Photo AMCO. Figure 30 : Section in surficial Quaternary deposits. Photo AMCO. - -- hematite-rich coarse grain horizon -30 cm - -- sand and gravel w iron crust, quartz & plagioclase fragments - -- orange red limonitic sand - -- limonitic sand w quartz & plagioclase #### CanaMex & Figure 32 : Section in surficial Quaternary deposit. Photo AMCO. - top soil - hematite-rich coarse grain horizon - 40 cm - limonitic sand w clay, plagioclase grain & sericite alteration - hematite-rich crust ## Sampling & Analytical Results AMCO Consultores carried out sampling of the pits and trenches and produced heavy mineral concentrates that were sent for XRF analysis. The sample locations are listed in Table II and appear in Figure 27. The analytical results appear in Table III. Note that AMCOa (2021) do not provide sampling details, provenance of the concentrates, QAQC nor any detail on the laboratory that carried out the analyses. Anyhow and in spite of the lack of information
on the whole sampling and analytical process, results remain qualitative and suggest the presence of columbo-tantalite, cassiterite, rutile and possibly ilmenite or pyrochlore in the heavy mineral concentrates. Table III: AMCO analytical XRF results | Id | TiO2 % | Nb2O5 % | Fe2O3 % | Ta205 % | SiO2 % | SnO2 % | |-----------|--------|---------|---------|---------|--------|--------| | Auxico 1 | 42,85 | 25,44 | 13,32 | 8,28 | 3,3 | 0,58 | | Auxico 4 | 0,83 | 53 ppm | 8,82 | - | 63,49 | - | | Auxico 5 | 0,48 | 40 ppm | 47,56 | - | 45,5 | - | | Auxico 8 | 0,64 | 0,26 | 83,8 | 0,21 | 6,71 | 4,29 | | Auxico 11 | 2,78 | 0,81 | 17,6 | 0,66 | 39,72 | 1,49 | | Auxico 13 | 0,27 | 0,03 | 68,02 | 0,04 | 27,04 | 0,13 | | Auxico 16 | 0,12 | - | 0,9 | - | 94 | - | | Auxico 18 | 0,07 | 0,33 | 5,62 | 0,33 | 5,85 | 0,57 | | Auxico 21 | 0,03 | 18 ppm | 0,09 | - | 99,3 | - | | Auxico 23 | 18,91 | 3,24 | 9,71 | 9,29 | 6,71 | 47,2 | AMCO Consultores provided analytical results performed on 500 g of 5 concentrates of undisclosed provenance analyzed by XRF. The following results, Table IV, also suggest the presence of columbo-tantalite, cassiterite and possibly pyrochlore and zircon in the concentrates. Table IV: AMCO 500 g analytical results | ΕI | Conc | Sample (g) | Result (%) | ΕI | Conc (g) | Sample (g) | Result (%) | |----|------|------------|------------|----|----------|------------|------------| | Та | 500 | 14.22 | 2.84 | Nb | 500 | 11.29 | 2.26 | | Sn | 500 | 14.67 | 2.93 | V | 500 | 0.33 | 0.07 | | | | | | Zr | 500 | 2.35 | 0.47 | # 9.5 Geology, Sampling & Analyses by CanaMex As a consultant for CanaMex and Qualified Person for AUXICO Resources on the project, Joel Scodnick (JS) P. Geo., spent time from August to December 2021 on the Minastyc property and carried out mapping and sampling of the various pits and trenches. The distribution of the stations and samples differs notably from the AMCO program. The ground works are concentrated to the southeast around small granite outcrops, in the center of the property in Area 50 and around the granite inselbergs, Figure 33. Figure 33: Distribution of the station sites on the Minastyc property and samples taken in August and December 2021 by CanaMex with the location of the camp, the disembarking site along the Caño NN, a washing site in the centre of the property and **area 50** where a bulk sample was taken. See below. ### Geology of Granite & Alluvial deposits As already shown by AMCO Consultores, the alluvial deposits of the Minastyc property are mostly composed of a thin soil with organic components, a 25-50 cm dark brown or red iron-rich coarse-grained horizon, a 1 to 2 m yellow or brown sand and a lower fine to coarse-grained unit containing quartz, plagioclase, lithic fragments and heavy minerals, Figure 34. Figure 34: Section through the Quaternary alluvial deposits in area 50, at sample site S00357753 showing an iron-rich coarse-grained horizon underlain by dominant yellow brown sand and gravel. Photo JS. Parguaza granite - At the base, it comprises a rapakivi granite showing medium to coarse grain orbicular like textures, Figure 35. The granite also shows coarse grain pegmatoid textures and forms large inselbergs (see Figure 23, 26 and above). Saprolite - The granite is overlain by variable thickness of saprock saprolite, a tropical alteration resulting in transformed but autochthonous unit clay, quartz, hematite, iron hydroxides, manganese oxide, etc. preserving the rock textures and structures. Figure 35: Parguaza rapakivi granite showing medium to coarse grain orbicular texture. After Pelletier & Scodnick (2022). **Sediment 1** - The first detrital unit overlying the Parguaza granite saprolite is a medium to coarse grain conglomeratic more or less consolidated sand showing sub-rounded centimeter size quartz pebbles, mm to sub-mm size quartz and heavy minerals, limonite and iron hydroxides, Figure 36. Figure 36: Sediment 1 - Quartz pebble and heavy mineral conglomeratic sand. After Pelletier & Scodnick (2022). **Sediment 2** - The second overlying detrital unit is a clay and kaolinite-rich conglomeratic sand showing cm size sub-rounded quartz pebbles, heavy minerals, iron hydroxides and limonite, Figure 37. Sediment 1 and 2 are fertile for heavy minerals and are mostly found close to the granite inselbergs preferably on the northeastern side, Figure 26 and 33. Figure 37 : Sediment 2 - clay-rich and quartz pebble conglomeratic sand. After Pelletier & Scodnick (2022). In the southeast side of the property, in the vicinity of the granite outcrop, Figure 26, lithified quartz-rich sediment 1 is in contact with the bedrock. Both granite and sediment 1 show irregular surface and gaps are filled with conglomeratic clay-rich sediment 2. Further up the later shows angular fragment of lithified sediment 1, Figure 38. According to the descriptions by Pelletier & Scodnick (2022) sediment 1 and 2 are possibly genetically related. The presence of sub-rounded quartz pebbles in both units and the fact that sediment 2 locally contains sediment 1 inclusions of various sizes suggest that sediment 1 and 2 are different results of the same process occurring immediately above the Parguaza granite saprolite. It also suggests that sediment and are partly parautochthonous and related to proximal sedimentation and "lateritization" processes. Due to differential actions of water and variations in mineral migration and alteration, in sediment 1 there is a higher concentration of heavy mineral and iron oxides and hydroxides. Figure 38 : Angular clast of hematite-rich lithified sediment 1 in sediment 2. After Pelletier & Scodnick (2022). In sediment 2 there is a higher clay and layered kaolinite content and more scattered heavy minerals related to higher original concentration of feldspars, in the sediment, Figure 37. By analogy with standard lateritic profiles in tropical terrain, the presence of a ferricrete or iron concretion horizon immediately above the granite saprolite horizon, Figure 39, suggests a peneplanation at the time, a dry climatic episode, seasonal variations of the water table and a migration of iron oxides and hydroxides and a layered precipitation of iron at surface. Sediment 3 - The third overlying alluvial unit, is mostly composed of a layered sand containing iron oxides and hydroxides and limonite and cm size kaolinite-rich horizons, Figure 40. The presence of kaolinite-rich horizons suggests an original high feldspar content during sedimentation and later lateritic processes transforming the feldspars into clay and kaolinite. **Sediment 4** – The fourth and last overlying alluvial unit is composed of microconglomeratic lithic sand with minor hematite, iron hydroxide and limonite content, Figure 41. It possibly originates from a mixture of sediment 1 and 2 and layered sediment 3. ## CanaMex & Figure 39: Sediment 2 conglomeratic and clay-rich unit with inclusions of conglomeratic sediment 1. Note the presence of a 50 cm iron concretion (ferricrete) horizon and granite saprolite at the bottom of the pit. After Pelletier & Scodnick (2022). Figure 40 : Sediment 3 - hematitic, kaolinite-rich and limonitic layered sand. After Pelletier & Scodnick (2022). Figure 41: Sediment 4 - micro-conglomeratic sand with minor iron oxides or hydroxides. After Pelletier & Scodnick (2022). #### Mineralization The mineralization is represented by the heavy fraction present in the various alluvial deposits, principally in the lower conglomeratic units. The fraction mostly contains euhedral, subhedral or rounded and cm size ilmenite, columbotantalite, monazite, cassiterite, zircon and possibly xenotime, rutile and magnetite, Figure 42. The analyses carried out in the field are only qualitative and suggest that columbo-tantalite and ilmenite are concentrated sediment the southeast of the property (TA area) in the vicinity of a granite outcrop and monazite more present in sediment 4 in the center of the property in area 50 (see Figure 26, 33 and below). To the southeast in the TA zone, a 10 cm quartz pebble bed 1 m above a hematite-rich saprolite shows a concentration of interpreted columbotantalite mineralization (Pelletier & Scodnick, 2022). Figure 42: Heavy minerals found in sediment 2 in the southeast of the property. After Pelletier & Scodnick (2022). A stratigraphy was established were possible and a report on heavy mineral alluvial deposit was produced in February 2022 (Pelletier and Scodnick, 2022). The report synthesized the stratigraphy of the alluvial deposits on the Minastyc property and defined 6 different superposed units. ## Sampling In August 2021, the various existing pits and trenches were described, photographed and sampled. A stratigraphy was established where possible. The details are given in Appendix I and show that most of the available surfaces in pits or trenches were vertically sampled along channels or on wider surfaces and large quantity of sample material was collected weighting between 6 to 24 kg. Some of the samples were taken directly from adjacent stockpiles. The sample weight and sample/concentrate ratio are given in Appendix V. In area 50, a bulk sample was excavated weighting 3.2 tons. The samples, mostly composed of fine to coarse grain limonitic or hematitic material were washed and sieved to obtain a quantity of concentrate, proper for analysis Concentrates of 38 samples were sent to Bogota at the Alpha1 Servicios Analiticos laboratories and analyzed via XRF for major, trace and RE elements. See section below. Samples were washed and heavy minerals separated and prepared for analysis, Table V. Following dispersive XRF results from Alpha 1 lab, the pulps were sent to Impact Global Systems laboratory (IGS) in Denton Quebec for ICP-MS analysis. See the results below and the geological descriptions and certificate in Appendix V. Table V: Locations and descriptions of December 2021 samples on the Minastyc property. | Id | Sample no. | Easting | Northing | El |
From | То | I | Summary | Kg | Description | Litho | |----------------|------------|---------|----------|----|------|-----|-----|--------------------------------|----------|---|---------| | Pit-Zona50 | S00357820 | 667851 | 670210 | 97 | 0 | 1 | 1 | IC hm+ | | Iron oxides concretion (surface) + sand | Sed 3 | | Pit-Zona50 | S00357821 | 667851 | 670210 | 96 | 1 | 2 | 1 | Sand hm+ | | Sand quartz rich fine (platform) | Sed 3 | | Pit-Zona50 | S00357822 | 667853 | 670209 | 95 | 2 | 3 | 1 | Sand hm+ | <u> </u> | Sand quartz rich fine (platform) | Sed 3 | | Pit-Zona50 | S00357823 | 667853 | 670209 | 94 | 3 | 4 | 1 | Sand hm+ 20% Con hm+ | | Sand quartz rich fine (platform) | Sed 4 | | Pit-Zona50 | S00357824 | 667853 | 670209 | 93 | 4 | 5 | 1 | Sand hm+/- | | Sand quartz rich fine (platform) | Sed 3 | | Pit-Zona50 | S00357825 | 667853 | 670209 | 92 | 5 | 6 | 1 | Sand hm+/- | | Sand quartz rich fine (platform) | Sed 3 | | Pit-Zona50 | S00357826 | 667853 | 670209 | 91 | 6 | 7 | 1 | Sand hm+/- | | | Sed 3 | | Min21-PCC0004a | S00357827 | 667838 | 670185 | 95 | 0 | 1 | 1 | IC Sand clay+/- hm+ | 13,5 | Iron oxides concretion (surface) + hematite rich sand, important variation of clay, from surface to 1m. | Sed 3 | | Min21-PCC0004b | S00357828 | 667838 | 670185 | 94 | 1 | 2 | 1 | Sand hm- clay++ | 15 | Sand with hem spots, clay rich zone. 1 to 2m deep, = sample is 1m below PCC0004a | Sed 3 | | Min21-PCC0004c | S00357829 | 667830 | 670204 | 95 | 0 | 1 | 1 | IC Sand clay+/- hm+ | 15 | Iron oxides concretion (surface) + hematite rich sand, important variation of clay, from surface to 1m. | Sed 3 | | Min21-PCC0004d | S00357830 | 667830 | 670204 | 94 | 1 | 2 | 1 | Sand hm- clay++ | 14,8 | Sand with hem spots, clay rich zone. (1 to 2m deep, = samples is 1m below PCC0004c | Sed 3 | | Min21-PCC0005 | S00357831 | 667821 | 670224 | 95 | 0 | 2 | 2 | IC Sand clay+/- hm+ | 16 | Iron oxides concretion (surface) + hematite rich sand, important variation of clay | Sed 3 | | Min21-PCC0006a | S00357832 | 667865 | 670298 | 55 | 0 | 2 | 2 | IC ARN clay+/- hm+ | 15 | | Sed 3 | | Min21-PCC0006b | S00357833 | 667865 | 670298 | 54 | 2 | 3 | 1 | Sand 40% Con | 15,2 | | Sed 4 | | Min21-PCC0006c | S00357834 | 667865 | 670298 | 53 | 3 | 4 | 1 | Sand 10% Con | 15,8 | | Sed 4 | | Min21-PCC0007a | S00357835 | 667743 | 670258 | 49 | 0 | 1 | 1 | IC clay+ | 15,7 | | Sed 3 | | Min21-PCC0007b | S00357836 | 667743 | 670258 | 48 | 1 | 3 | 2 | Sand hm+/- | 15,8 | | Sed 3 | | Min21-PCC0008a | S00357837 | 667156 | 670311 | 51 | 0 | 1,2 | 1,2 | Sand hm- | 16 | | Sed 3 | | Min21-PCC0008b | S00357838 | 667156 | 670311 | 49 | 1,2 | 3,8 | 2,6 | IC hm+ Sand hm- | 16 | | Sed 3 | | Min21-PCC0009 | S00357839 | 667565 | 670110 | 51 | 0 | 1,3 | 1,3 | Sand hm- | 16 | | Sed 3 | | Min21-PCC0010a | S00357840 | 667897 | 670029 | 54 | 0 | 1,4 | 1,4 | IC hm + Sand hm- | 16,2 | | Sed 3 | | Min21-PCC0010b | S00357841 | 667897 | 670029 | 52 | 1,2 | 3 | 1,8 | IC Sand 10% Con | 16 | | Sed 4 | | Min21-PCC0011 | S00357842 | 667946 | 670100 | 48 | 0 | 2 | 2 | IC clay+ Sand hm- | 16 | | Sed 3 | | Min21-PCC0012a | S00357843 | 667890 | 669891 | 50 | 0 | 1 | 1 | Sand lim- 10% Con | 16 | | Sed 4 | | Min21-PCC0012b | S00357844 | 667890 | 669891 | 49 | 1 | 2,6 | 1,6 | IC Sand hm+ SandP 40% ConP | 16 | | Sed 4c | | Min21-PCC0013 | S00357845 | 668089 | 669899 | 52 | 0 | 2 | 2 | Sand clay+ lim- SandP 30% ConP | 16 | | Sed 4c | | Min21-PCC0014w | S00357846 | 668626 | 669460 | 55 | 0 | 1 | 1 | Sand hm+ clay+ | 16 | | Sed 2 | | Min21-PCC0014x | S00357847 | 668626 | 669460 | 54 | 1 | 2 | 1 | Sand hm- clay++ | 16 | | Sed 2 | | Min21-PCC0014y | S00357848 | 668626 | 669460 | 53 | 2 | 3 | 1 | Sand hm- clay++ 10% Con | 16 | | Sed 2a | | Min21-PCC0014z | S00357849 | 668626 | 669460 | 52 | 3 | 4 | 1 | Grd Rap | 16 | Bedrock: Saprock of the granite rapakivi texture. | Bedrock | | Min21-PCC0015v | S00357850 | 668633 | 669467 | 51 | 0 | 1,5 | 1,5 | Sand hm- 30% Con | 16,1 | Sed 2a | |----------------|-----------|--------|--------|----|-----|-----|-----|-------------------------|------|--------| | Min21-PCC0015w | S00357851 | 668633 | 669467 | 49 | 1,5 | 2,5 | 1 | Sand hm- 15% Con | 16,2 | Sed 2a | | Min21-PCC0015x | S00357852 | 668633 | 669467 | 48 | 2,5 | 3,5 | 1 | Sand hm- clay++ 10% Con | 16,1 | Sed 2b | | Min21-PCC0015y | S00357853 | 668633 | 669467 | 47 | 3,5 | 4,5 | 1 | Sand hm- clay++ 10% Con | 16,5 | Sed 2b | | Min21-PCC0016w | S00357854 | 668625 | 669440 | 51 | 0 | 1 | 1 | Con sand hm+ | 16,1 | Sed 2a | | Min21-PCC0016x | S00357855 | 668625 | 669440 | 50 | 1 | 2 | 1 | Con sand hm+/- | 16,3 | Sed 2a | | Min21-PCC0016y | S00357856 | 668625 | 669440 | 49 | 2 | 3 | 1 | Con Sand hm++ | 16,1 | Sed 2a | | Min21-PCC0016z | S00357857 | 668625 | 669440 | 48 | 3 | 4,6 | 1,6 | Sand 10% Con clay+ | 16 | Sed 2c | SandP: Polymictic sand. Con: Conglomerate, ConP: Polymictic conglomerate, IC: Iron oxide concretion, Grd: Granitoid, Rap: Rapakivi texture, lim: limonite, hm: hematite, -: trace, +: weak, ++: moderate, +++: strong Following dispersive XRF results from Alpha 1 lab, the pulps were sent to Impact Global Systems laboratory (IGS) in Denton Quebec for ICP-MS analysis. See the results below and the geological descriptions and certificate in Appendix V. In December 2021, systematic sampling was carried out in the pits of interest. Vertical channels were dug over 1 to 2 m on clean surfaces from bottom to surface to avoid contamination. Longer samples were taken to evaluate different units. A total of 38 samples were taken. Fifteen kg of material was extracted, 3 kg was sent for multi-element analyses and 12 kg was washed and heavy mineral coarse and fine concentrate was produced and analyzed via portable XRF. The XRF analytical results are provided in Appendix IV, Alpha 1 Laboratory. The following map, Figure 43, shows the locations of the best results obtained from the sampling campaign in December 2021. Most of the excavations are 2 x 2 m with a water table between 2 to 8 m. In area 50 in the center of the property, the main quarry is 8 x 8 m and 6 m deep, Figure 34. All of the samples from the December, 2021 campaign were sent for Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) analysis method to IGL laboratory in Denton, Quebec. The related certificate of analysis was only recently received hence the present amended report in order to provide an update of the results. The samples highlighted below weighed between 3 kg to 12.209 kg. The results further demonstrate the pervasive nature of the mineralization within the TA Area and Area 50, as well as outside of those areas. The samples were taken from 8 pits spanning a distance of approximately 1.8 km, from east to west (refer to Figure 1). The samples were selected and channeled within the TA Area, Area 50, and in December 2021, new pits were established and sampled as well. All the results contain rare earth elements (REE) as well as other critical minerals, therefore further demonstrating the potential of the Minastyc property as a strategic source of critical minerals that are key to the energy transition and a focal point of public policy. Only the results of some of the more valuable REE findings are highlighted as follows: ## AREA 50 A 3 kg sample (#S00357835A) yielded 139.6 g/t Nb, 26.4 g/t Ga, and 73.6 g/t Rb (channel sample from surface to a depth of 1.0 metre). A 3.2 kg sample (#S00357841A) yielded 34.4 g/t Nb, 165.6 g/t Pr, 14.4 g/t Dy, 22.7 g/t Ge, 1.022 kg/t Ce, and 98.3 g/t Sm (channel sample from a depth of 1.2 metres to 3.0 metres). #### TA AREA A total of 11.6 kg (average) from samples #S00357846 to #S00357850, included, returned grades of 18.1 to 36.5 g/t Ga and 11.9 to 24.9 g/t Rb (sample #S00357846 to #S00357849 channeled from surface to a depth of 3.5 metres, and sample #S00357850 channeled from surface to a depth of 1.5 metres, just above #S00357851). A 10.6 kg sample (#S00357851) yielded 2.90 kg/t Nb, 1.63 kg/t Ta, 36.6 g/t Ga, and 23.9 g/t Rb (channel sample from taken from a depth of 1.5 metres to 2.5 metres). Figure 43: Compilation map giving the locations of the best analytical results. ## August and December 2021 Analytical Results XRF analytical results for 37 samples taken by CanaMex in August and December 2021 are shown on Table VIa and locations of samples are shown on Figure 44. Only significant element values are being discussed in the following and complete tables of results are available in Appendix IV. Table VIb shows selected results, mainly REE for 30 ICP analytical results taken in Area 50 and TA Area. Figure 44: Location of 2021 samples on the eastern side of the property showing coincident samples returning different TiO2, ZrO2, Al2O3 and LOI related to the granulometry of the concentrate. The following results in percent show a distinct variation in the element mean content related to the granulometry of the concentrate sample. | Conc. Size | Sample w. g | SiO2 | Al203 | TiO2 | Fe2O3 | | LOI | ZrO2 | MnO | |------------|-------------|------|-------|------|-------|-----|-----|------|------| | Fine | 30 | 39,8 | 2,64 | 24,5 | 23,1 | 0,2 | 0,3 | 8 | 0,08 | | Coarse | 3800 | 48,3 | 16 | 0,5 | 26,9 | 0,9 | 7 | 0,07 | 1 | Table VIa : CanaMex selected XRF analytical results from August 2021 samples | Lab Id | X z19 | Y z19 | SiO2 | Al203 | TiO2 | Fe2O3 | K20 | P205 | LOI | ZrO2 | MnO | SnO2 | Nb205 | HfO2 | Wt g | |-----------|--------|--------|-------|-------|-------|-------|------|------|------|-------|------|------|-------|------|------| | S00357751 | 668625 | 669464 | 56,19 | 2,19 | 19,51 | 14,17 | | 0,40 | 0,34 | 3,94 | 0,64 | 1,14 | 0,24 | 0,17 | 44 | | S00357752 | 668635 | 669463 | 47,72 | 1,88 | 23,24 | 19,54 | | 0,11 | | 5,33 | 0,82 | 0,86 | 0,15 | 0,08 | 32 | | S00357753 | 668622 | 669435 | 33,55 | 2,60 | 28,01 | 26,49 | | 0,07 | | 7,58 | 1,16 | 0,06 | 0,16 | 0,16 | 23 | | S00357754 | 668622 | 669435 | 18,31 |
1,12 | 33,16 | 31,84 | 0,14 | 0,18 | | 12,36 | 1,34 | 0,13 | 0,78 | 0,39 | 9 | | S00357756 | 668616 | 669420 | 33,84 | 2,30 | 28,75 | 26,00 | | 0,09 | | 7,34 | 1,21 | | 0,17 | 0,14 | 3 | |-----------|--------|--------|-------|-------|-------|-------|------|-------|-------|-------|------|------|------|------|------| | S00357757 | 668655 | 669430 | 40,08 | 2,01 | 26,38 | 24,66 | | 0,06 | | 5,45 | 0,93 | | 0,15 | 0,10 | 43 | | S00357758 | 668682 | 669423 | 23,76 | 1,13 | 30,22 | 31,25 | | 0,11 | | 11,55 | 1,26 | | 0,16 | 0,41 | 12 | | S00357759 | 668682 | 669423 | 47,57 | 1,78 | 23,32 | 20,36 | | 0,04 | | 5,61 | 0,91 | | 0,13 | 0,13 | 49 | | S00357760 | 668738 | 669466 | 26,87 | 0,77 | 18,62 | 25,32 | | 0,09 | | 26,06 | 1,26 | | 0,22 | 0,67 | 5 | | S00357762 | 668153 | 669747 | 53,57 | 2,17 | 19,20 | 18,16 | 0,19 | 0,04 | | 5,46 | 0,80 | | 0,12 | 0,28 | 26 | | S00357763 | 668142 | 669692 | 36,63 | 9,28 | 22,30 | 22,65 | 0,40 | 0,12 | | 7,09 | 0,82 | | 0,15 | 0,24 | 34 | | S00357764 | 668146 | 669605 | 42,91 | 6,12 | 23,61 | 17,91 | | 0,09 | | 8,01 | 0,72 | | 0,15 | 0,27 | 23 | | S00357765 | 668096 | 669646 | 33,20 | 1,94 | 29,31 | 28,11 | | 0,05 | | 5,59 | 1,18 | | 0,18 | 0,28 | 76 | | S00357766 | 668074 | 669689 | 42,23 | 1,94 | 26,03 | 23,13 | | 0,03 | | 5,15 | 0,97 | | 0,16 | 0,19 | 36 | | S00357767 | 667585 | 669499 | 60,06 | 2,45 | 16,36 | 16,76 | 0,06 | 0,07 | | 3,09 | 0,65 | | 0,10 | 0,08 | 35 | | S00357774 | 668635 | 669463 | 65,19 | 8,90 | 0,30 | 20,50 | 0,18 | 0,10 | 4,72 | 0,03 | | | | | 1900 | | S00357776 | 668622 | 669435 | 61,62 | 7,60 | 0,29 | 25,18 | 0,07 | 0,17 | 5,01 | 0,05 | | | | | 5700 | | S00357777 | 668616 | 669420 | 52,57 | 12,61 | 0,37 | 26,85 | 0,07 | 0,13 | 7,21 | 0,08 | | | | | 5400 | | S00357778 | 668655 | 669430 | 42,42 | 18,33 | 0,53 | 29,79 | 0,06 | 0,11 | 8,53 | 0,12 | | | | | 7100 | | S00357779 | 668682 | 669423 | 57,04 | 7,92 | 0,29 | 28,71 | 0,10 | 0,22 | 5,66 | 0,04 | | | | | 7700 | | S00357780 | 668682 | 669423 | 36,71 | 20,46 | 0,52 | 32,06 | 0,03 | 0,14 | 9,77 | 0,07 | 0,14 | | | | 5700 | | S00357781 | 668738 | 669466 | 49,52 | 10,92 | 0,30 | 32,62 | 0,38 | 0,19 | 5,92 | 0,05 | | | | | 6900 | | S00357782 | 668153 | 669747 | 47,58 | 23,35 | 0,91 | 16,35 | 2,39 | 0,21 | 8,85 | 0,11 | 0,03 | | 0,00 | | 2700 | | S00357783 | 668142 | 669692 | 65,91 | 19,48 | 0,34 | 3,51 | 6,18 | 0,11 | 3,78 | 0,05 | 0,09 | | | | 2700 | | S00357784 | 668146 | 669605 | 89,53 | 6,54 | 0,11 | 1,57 | | 0,02 | 2,13 | 0,03 | | | | | 1600 | | S00357785 | 668096 | 669646 | 17,62 | 19,72 | 0,77 | 51,25 | 0,24 | 0,22 | 10,02 | 0,10 | | | | | 2600 | | S00357786 | 668074 | 669689 | 37,78 | 23,33 | 1,13 | 26,93 | 0,21 | 0,21 | 10,05 | 0,15 | | | | | 1800 | | S00357787 | 667585 | 669499 | 45,00 | 30,59 | 0,59 | 11,56 | 1,90 | 0,22 | 9,54 | 0,07 | | | 0,00 | | 1800 | | S00357789 | 667155 | 669776 | 50,87 | 17,78 | 0,58 | 23,59 | 0,78 | 0,12 | 6,07 | 0,04 | | | | | 3000 | | S00357790 | 667663 | 670030 | 33,82 | 13,86 | 0,50 | 44,55 | 0,67 | 0,09 | 6,38 | 0,05 | | | | | 4200 | | S00357791 | 667864 | 670197 | 41,46 | 11,83 | 0,53 | 38,22 | 0,68 | 0,40 | 6,62 | 0,04 | | | | | 1800 | | S00357792 | 667834 | 670199 | 26,11 | 19,38 | 0,71 | 43,87 | 0,78 | 0,14 | 8,90 | 0,04 | | | | | 1800 | | S00357793 | 667857 | 670189 | 2,72 | 1,06 | | 4,11 | | 13,99 | 4,16 | 0,73 | 3,55 | 0,19 | 0,62 | 0,21 | 7700 | LOI : loss-on-ignition = water content ## Coarse grain concentrate The high mean values in silica, alumina, LOI (loss-on-ignition) and manganese in coarse grain concentrate reflects the content of detrital quartz, iron hydroxide, manganese oxide and alumina produced by the alteration during lateritic processes like transformation of plagioclase and feldspar into kaolinite and clay, iron and manganese migration and enrichment in upper horizons of the profile and the absorption of water in iron oxides producing various hydroxide (goethite) and limonite (see Figure 25 and above). Table VIb: CanaMex selected ICP analytical results from December 2021 sampling | Id | Xz19 | yz19 | Nb | La | Ce | Nd | Sm | Eu | Gd | Tb | Dy | Er | Yb | Th | Υ | |------------|--------|--------|-------|-------|-------|-------|-------|------|------|------|-------|------|-------|-------|-------| | S00357832A | 667865 | 670298 | 19,8 | 18,9 | 29,2 | 13,0 | 2,12 | 0,71 | 1,95 | 0,86 | 2,20 | 1,37 | 2,09 | 7,7 | 13,8 | | S00357832C | | | 127,3 | 47,5 | 84,2 | 43,7 | 7,98 | 1,31 | 6,40 | 1,69 | 7,67 | 6,02 | 8,83 | 110,7 | 61,1 | | S00357833A | 667865 | 670298 | 11,0 | 15,0 | 29,5 | 12,8 | 2,16 | 0,68 | 1,78 | 0,83 | 1,79 | 1,12 | 1,75 | 5,3 | 11,5 | | S00357833C | | | 78,2 | 112,0 | 79,2 | 37,6 | 4,46 | 1,10 | 4,10 | 1,15 | 4,67 | 3,47 | 4,52 | 9,2 | 37,7 | | S00357834A | 667865 | 670298 | 20,3 | 13,3 | 37,7 | 11,6 | 1,82 | 0,64 | 1,50 | 0,79 | 1,59 | 0,95 | 1,59 | 8,1 | 8,8 | | S00357834C | | | 134,6 | 118,0 | 210,3 | 117,0 | 17,10 | 1,43 | 7,37 | 1,78 | 7,77 | 4,73 | 5,77 | 30,7 | 57,0 | | S00357835A | 667743 | 670258 | 139,6 | 99,5 | 101,8 | 45,4 | 6,72 | 1,26 | 5,01 | 1,31 | 4,84 | 3,03 | 3,68 | 44,2 | 30,3 | | S00357835C | | | 205,8 | 78,5 | 115,9 | 58,9 | 10,56 | 2,07 | 9,40 | 2,21 | 12,32 | 9,69 | 12,42 | 31,6 | 115,6 | | S00357836A | 667743 | 670258 | 14,7 | 29,2 | 59,9 | 25,5 | 4,53 | 1,13 | 3,94 | 1,12 | 3,64 | 2,25 | 2,76 | 7,8 | 23,9 | | S00357836C | | | 45,4 | 19,0 | 29,9 | 14,1 | 2,19 | 0,75 | 2,35 | 0,91 | 2,79 | 2,17 | 3,49 | 6,7 | 22,5 | | , | , | | ; | , | , | , | , | ; | | , | , | , | , , | ,, | , | |------------|--------|--------|--------|-------|--------|-------|-------|------|-------|------|-------|--------------|----------------|----------------|-------| | S00357837A | 667156 | 670311 | 30,7 | 21,7 | 39,0 | 16,9 | 2,96 | 0,45 | 1,19 | 0,74 | 1,08 | 0,49 | 1,15 | 32,6 | 4,0 | | S00357837C | | | 90,0 | 31,7 | 31,2 | 22,6 | 3,88 | 1,20 | 4,97 | 1,39 | 8,01 | 6,73 | 9,58 | 15,8 | 72,9 | | S00357838A | 667156 | 670311 | 22,7 | 17,4 | 31,0 | 15,2 | 2,38 | 0,72 | 2,14 | 0,92 | 2,64 | 1,76 | 2,49 | 65,4 | 19,0 | | S00357838C | | | 64,3 | 30,5 | 39,1 | 26,6 | 5,65 | 1,31 | 5,64 | 1,46 | 7,36 | 5,77 | 7,57 | 9,8 | 63,7 | | S00357839A | 667565 | 670110 | 28,6 | 7,1 | 12,6 | 5,0 | 0,71 | 0,48 | 1,01 | 0,76 | 1,49 | 1,03 | 1,90 | 6,1 | 10,7 | | S00357839C | | | 273,0 | 43,9 | 58,4 | 25,0 | 4,49 | 1,23 | 7,22 | 2,13 | 13,35 | 12,46 | 17,33 | 42,8 | 138,4 | | S00357840A | 667897 | 670029 | 26,3 | 16,2 | 24,2 | 10,9 | 1,66 | 0,69 | 1,84 | 0,90 | 2,52 | 1,70 | 2,41 | 8,9 | 17,5 | | S00357840C | | | 96,8 | 49,8 | 58,4 | 41,2 | 8,11 | 1,99 | 11,57 | 2,61 | 16,27 | 12,96 | 16,78 | 13,7 | 150,8 | | S00357841A | 667897 | 670029 | 34,4 | 241,4 | 1022,0 | 456,9 | 98,35 | 0,77 | 21,73 | 3,97 | 14,45 | 4,51 | 6,86 | 922,9 | 16,9 | | S00357841C | | | 116,5 | 111,0 | 82,3 | 47,7 | 6,78 | 1,50 | 6,12 | 1,45 | 7,33 | 6,09 | 8,39 | 9,7 | 66,1 | | S00357846 | 668626 | 669460 | 91,2 | 50,7 | 49,0 | 19,2 | 2,83 | 0,57 | 2,23 | 0,92 | 2,20 | 1,33 | 2,21 | 54,0 | 12,5 | | S00357847 | 668626 | 669460 | 66,1 | 25,9 | 24,2 | 12,3 | 2,13 | 0,55 | 1,70 | 0,83 | 1,74 | 0,98 | 1,79 | 17,2 | 7,6 | | S00357848 | 668626 | 669460 | 65,2 | 97,9 | 54,6 | 26,6 | 3,20 | 0,82 | 3,05 | 0,95 | 2,40 | 1,25 | 1,92 | 25,3 | 11,7 | | S00357849 | 668626 | 669460 | 167,1 | 47,2 | 38,9 | 16,3 | 2,15 | 0,64 | 2,29 | 0,87 | 2,15 | 1,30 | 2,07 | 36,4 | 14,1 | | S00357850 | 668633 | 669467 | 75,6 | 25,9 | 42,5 | 13,8 | 2,10 | 0,63 | 2,04 | 0,91 | 2,44 | 1,72 | 2,74 | 24,1 | 14,8 | | S00357851 | 668633 | 669467 | 2901,2 | 89,2 | 69,4 | 38,5 | 7,35 | 1,14 | 6,50 | 1,62 | 6,01 | 2,41 | 3,82 | 36,2 | 34,3 | | S00357852 | 668633 | 669467 | 128,0 | 55,4 | 47,0 | 20,9 | 2,74 | 0,70 | 2,34 | 0,85 | 1,97 | 1,02 | 1,85 | 36,8 | 8,6 | | S00357853 | 668633 | 669467 | 217,7 | 51,9 | 44,3 | 19,4 | 2,73 | 0,59 | 2,41 | 0,92 | 2,62 | 2,04 | 3,10 | 23,6 | 18,0 | | S00357855 | 668625 | 669440 | 73,7 | 30,9 | 23,8 | 12,1 | 1,88 | 0,48 | 1,68 | 0,79 | 1,54 | 1,10 | 2,13 | 14,8 | 10,4 | | S00357856 | 668625 | 669440 | 66,7 | 28,9 | 19,4 | 11,2 | 1,20 | 0,49 | 1,19 | 0,76 | 1,43 | 0,99 | 1,70 | 12,4 | 9,1 | All results in ppm – Samples A and C have the same coordinates - A is a coarse concentrate, B is fine concentrate taken from the 12 kg sample, after a representative 3kg was selected from the original 15kg sample in the field. ## Fine grain concentrate The high Ti (titanium) and Zr (zirconium) values in fine grain concentrate reflect the presence of heavy minerals like ilmenite, possibly rutile (TiO2), struverite, a tantalorutile (Ti,Ta,Nb,Fe)O2, zircon and / or baddeleyite (ZrO2) (see Cramer et al., 2011 and Linnen, Cuney, 2005, Schulz et al., 2017 and Jones et al., 2017 for details on Ta, Nb, Zr, Hf behavior in mineral geochemistry). Limited amounts of Sn also suggest presence of cassiterite. The fine concentrate also contains values in niobium (Nb) and hafnium (Hf). A study describes Zr and Hf present in columbo-tantalite and in wodginite (Mn(Sn,Ta)(Ta, Nb)2O8 found in various Archean and Proterozoic pegmatites of the Canadian Shield (Cerny at al., 2007). Zirconium (Zr) is said to be concentrated in pegmatitic or greisen phases of Proterozoic anorogenic granites in northwest Brazil ((Macambira et al., 1987). On the Minastyc property, the samples composed of fine concentrate are located in the vicinity of the inselbergs and may reflect mineralization originating from aplitic, pegmatitic or greisen phases of the Parguaza anorogenic granite, already known to contain tin-related mineralization east of Rio Orinoco in Venezuela. Tin-related mineralization is also found in alluvial deposit further south in Colombia, along the Rio Guaviare and Rio Inirida both NE-trending tributaries of the Rio Orinoco (see Franco Victoria et al., 2021 and section 7.3 and 8 above). #### Area 50 analytical results Large samples were taken from trenches of area 50, Figure 33 and 43. Two samples weighing 1.64 teach where taken 35 m apart with the following UTM z 19 coordinates: A 670189E/667857N, B
670196E/667894N. Washing and sieving produced 7.7 kg of heavy mineral and particles with a 425 : 1 concentration ratio. Representative 736 g of fine and 706 g of coarse particles (357793A and B) were sent for analysis at Alpha1 lab. A blended sample 357793-AUX 26213 was sent for REE and 357793-AUX 26248 was sent for Au, Ag, Pt and Pd analysis. For comparison only, two other samples presented below, 357795, coarse fraction and 337796, same fraction pulverized, were collected from the same location area 50, but during a previous exploration program. Although the sample was not taken by the project QP, Joel Scodnick verified that the material was well sampled, preserved and could be utilize in confidence. Assay certificates are located in Appendix IV. Area 50 is the only location where samples show high P2O5 and ThO2 values along with high Ce, Nd, La, Pr and Sm values. The chemistry is compatible with the composition of monazite (Ce,Nd,La,Th)PO4, although phosphorus is depleted and only half normal monazite value. Table VII compares the stoichiometry of monazite from alluvial heavy mineral concentrate in Location 4 taken by Franco Victoria et al., (2021) along the Rio Inirida in the Guainia Department in Colombia, 200 km south of the property. Minastyc monazite shows higher Ce and lower La and Y values. The table also compares the chemistry of eluvial and magmatic monazite collected from pegmatite in Brazil (Overstreet, 1967). On the Minastyc property, low P, higher values for Fe, Mn and LOI and the presence of Sn, Nb and Ta suggest that iron hydroxide, columbotantalite and cassiterite are present in small quantities in the concentrate. Low phosphorous may also result from the high mobility in the leaching process during alteration. For its part, constant Th is attributed to a relative immobility during alteration. Table VII: Geochemistry of area 50 samples & monazites | El | 357793 | 357793 | 357793A | 357793B | 357795 | 357796 | Loc4 | Eluv | pegm | |-------|-----------|--------|---------|---------|--------|--------|----------------|----------|-------| | | | AUX | | | | | | _ | _ | | | AUX 26123 | 26248 | | | | | FV et al. 2021 | mon Braz | Braz | | SiO2 | 2,72 | 2,39 | 2,9 | 2 | 2,9 | 2,7 | 1,21 | 1,09 | 1,32 | | Al2O3 | 1,06 | 0,85 | 1,1 | 0,8 | 1,3 | 1,1 | _ | 0,49 | 0,88 | | Fe2O3 | 4,11 | 3,38 | 4,4 | 3,7 | 7,2 | 4,8 | | 2,07 | 0,48 | | CaO | 0,4 | 0,27 | 0,3 | 0,4 | 0,4 | 0,4 | 1,21 | 0,02 | 0,02 | | P2O5 | 13,98 | 15,12 | 13,4 | 14,6 | 14 | 14 | 26,52 | 25,75 | 25,43 | | LOI | 4,16 | | 1,4 | 1,2 | 1,5 | 1,5 | | 0,4 | 0,58 | | ZrO2 | 0,73 | 0,78 | 0,7 | 0,4 | 0,5 | 0,1 | | tr | | | MnO | 3,55 | | | | | | | 0,29 | 0,03 | | PbO | 0,41 | 0,58 | 0,5 | 0,4 | 0,5 | 0,6 | 0,54 | 0,16 | 0,16 | | SnO2 | 0,19 | 0,19 | 0,2 | | 0,2 | 0,3 | | 0,33 | | | Nb2O5 | 0,62 | 0,73 | 0,6 | | 1,2 | 1 | | 4,72 | | | Ta205 | 0,72 | 0,72 | 0,7 | 0,1 | 1,3 | 1,3 | | 0,64 | | | HfO2 | 0,21 | 0,18 | 0,3 | 0,1 | 0,3 | 0,3 | | | | | ThO2 | 7,27 | 7,97 | 7,4 | 7,9 | 7,1 | 7 | 8,42 | 6,22 | 8,88 | | UO2 | 0,18 | 0,23 | 0,2 | 0,2 | 0,2 | 0,2 | 0,22 | tr | 0,07 | | CeO2 | 38,66 | 43,86 | 40,74 | 43,93 | 36,75 | 38,82 | 30,1 | 38,08 | 32,6 | | Nd2O3 | 7,27 | 8,24 | 7,84 | 8,44 | 7,38 | 8,39 | 11,22 | | | | La2O3 | 6,91 | 7,95 | 8,56 | 7,77 | 9,37 | 6,8 | 10,95 | 9,53 | 28,77 | | Pr2O3 | 2,06 | 2,33 | 2,13 | 2,25 | 1,82 | 2,74 | 3,1 | | | | Sm203 | 2,2 | 2,12 | 2,12 | 2,37 | 2,08 | 2,59 | 2,78 | | | | Eu2O3 | | | | | | | | | | | Gd2O3 | 1,1 | 0,91 | 2,46 | 2,67 | 2,17 | 2,39 | 1,23 | tr | | | Dy203 | 0,43 | 0,65 | 0,91 | 0,49 | 0,7 | 0,96 | 0,57 | | | | Y2O3 | 0,04 | 0,05 | 0,1 | 0,07 | 0,12 | 1,03 | 1,42 | 10,15 | 0,98 | #### CanaMex 🛦 | Υl | 203 | 0,95 | 0,44 | 0,61 | 0,22 | 0,38 | 0,4 | | | | į | |----|------|-------|-------|-------|--------|-------|-------|-------|-------|-------|---| | Eı | 203 | 0,01 | 0,01 | 0,2 | 0,11 | 0,25 | 0,09 | | | | į | | Т | otal | 99,94 | 99,95 | 99,77 | 100,12 | 99,62 | 99,51 | 99,47 | 99,94 | 100,2 | i | Tr : trace ## Au, Ag, Pt & Pd analytical results Number of samples were analyzed for precious metal by XRF at Apha1 lab. Results show up to 63 ppm Au and 53 ppm Pt in the various concentrates, Table VIII. The presence of platinoids and Au-Ag is documented in placers of Russia (Ural), Brazil, Alaska, Guaiana and Sierra Leone among others. Russian placers were the main producers of platinum in the 19th century, replaced by Sudbury and the Bushweld in the mid 20th century. In placers, platinoids appear as rounded, dendritic, botryoidal, or euhedral (polyhedra, pyritohedra) fine nuggets. Most of the platinum is present as native alloys like PtFe(NiIrPdCu), PtFeCu, PtPd or PtHg, locally associated with Te, Bi, Sn or S. Other platinoids may be present as alloys (OsIrRu) or sulfides (OsRu)S2. Gold and silver may be present as electrum in platinoid nuggets. Gold can also be found as platinum or palladium alloy (PtAu, PdAu). The origin of detrital platinoid alloys is related to the presence in the various upstream basements of serpentinite or olivine or pyroxene-rich ultramafic units (ophiolites, olivine gabbros, dunites, komatiites, etc.). Table VIII : Geochemistry of Au, Ag, Pt, Pd samples | Lab Id | E z19 | N z19 | InWt | Conc | Al203 | SiO2 | P2O5 | K20 | TiO2 | Fe2O3 | ZrO2 | LOI | Au | Pt | Ag | Pd | |-----------|--------|--------|------|-------------|-------|------|------|------|------|-------|------|------|-----|-----|-----|-----| | | |
 | g | !
!
! | % | % | % | % | % | % | % | % | ppm | ppm | ppm | ppm | | S00357755 | 669435 | 668622 | 5200 | 125 | 2,29 | 86,1 | 0,05 | 0,08 | 0,19 | 9,5 | 0,09 | 1,67 | 15 | 38 | - | - | | S00357774 | 669463 | 668635 | 1200 | 31 | 8,17 | 80,9 | 0,08 | 0,09 | 0,23 | 10,5 | 0,05 | | - | - | - | - | | S00357775 | 669435 | 668622 | 3560 | 79 | 17,6 | 61,3 | 0,09 | 0,07 | 0,63 | 15 | 0,26 | 5,04 | 13 | 53 | - | - | | S00357776 | 669435 | 668622 | 5100 | 81 | 4,22 | 76,9 | 0,14 | 0,07 | 0,23 | 15,1 | 0,13 | 3,14 | 13 | 38 | - | - | | S00357777 | 669420 | 668616 | 4655 | 126 | 4,31 | 77,2 | 0,08 | | 0,93 | 13,7 | 0,36 | 3,37 | 23 | 20 | 19 | 19 | | S00357778 | 669430 | 668655 | 6730 | 522 | 16,8 | 53,9 | 0,1 | 0,07 | 0,3 | 22,2 | 0,12 | 6,59 | 46 | 31 | - | - | | S00357779 | 669423 | 668682 | 7250 | 388 | 2,21 | 82,9 | 0,09 | 0,07 | 0,19 | 11,7 | 0,08 | 2,67 | 63 | 15 | - | - | | S00357780 | 669423 | 668682 | 5110 | 78 | 18 | 55,2 | 0,12 | 0,09 | 0,89 | 21,8 | 0,3 | 3,37 | 56 | 25 | - | - | | S00357781 | 669466 | 668738 | 6650 | 116 | 5,3 | 73,2 | 0,17 | 0,19 | 0,28 | 17,4 | 0,01 | 3,37 | 19 | - | - | - | | S00357782 | 669747 | 668153 | 2044 | 158 | 17,3 | 70,5 | 0,1 | 3,68 | 0,93 | 6,9 | 0,23 | - | 32 | - | 32 | - | | S00357783 | 669692 | 668142 | 2440 | 106 | 21 | 64,1 | 0,12 | 7,69 | 0,28 | 2,82 | 0,05 | | - | - | - | - | | S00357784 | 669605 | 668146 | 895 | 14 | 8,91 | 87,5 | 0,02 | 0,05 | 0,66 | 2,47 | 0,28 | | - | - | - | - | | S00357785 | 669646 | 668096 | 1990 | 114 | 3,92 | 91,7 | 0,05 | | 0,44 | 3,7 | 0,12 | | 2 | - | - | - | | S00357786 | 669689 | 668074 | 830 | 13 | 9,25 | 83 | 0,12 | 0,09 | 0,5 | 6,9 | 0,13 | | - | - | - | - | | S00357787 | 669499 | 667585 | 1380 | 99 | 21,6 | 64,3 | 0,19 | 0,56 | 0,65 | 6,67 | 0,14 | 5,49 | 63 | 15 | - | - | | S00357789 | 669776 | 667155 | 2505 | 134 | 9,03 | 77 | 0,06 | 0,95 | 0,34 | 9,85 | 0,02 | 2,5 | 11 | - | - | - | | S00357790 | 670030 | 667663 | 3585 | 112 | 7,64 | 69 | 0,09 | 0,45 | 0,4 | 18,8 | 0,04 | 3,52 | - | - | - | - | | S00357791 | 670197 | 667864 | 1105 | 55 | 8,82 | 61,1 | 0,22 | 0,3 | 0,36 | 24,5 | 0,05 | 4,55 | 15 | - | - | - | | S00357792 | 670199 | 667834 | 1250 | 74 | 15,6 | 34,8 | 0,17 | 0,82 | 0,71 | 40,2 | 0,06 | 7,43 | 13 | - | - | - | | S00357793 | 670189 | 667857 | 2315 | 31 | 0,85 | 2,39 | 15,1 | | | 3,38 | 0,78 | | 9 | - | - | - | Table VIII give the location and concentration ration of the various samples analyzed for Au, Ag, Pt, Pd. It shows the same distribution on the Minastyc property, Figure 33 and 43. The concentration factor has an influence on the sensibility of the XRF procedure, the more one concentrates, the more one is susceptible to find highly diluted precious metals. The results also show the presence of detrital quartz, kaolinite, and iron hydroxides in most of the samples with exception of 357793 that has been discussed above. Detrital platinoid alloys are related to ultramafic rocks, detrital gold and silver are ubiquitous in most Quaternary alluvial deposits found in Precambrian basements. The distribution and the importance of precious metals like Pt and Au in the economic potential of the Minastyc property should be clarified during the next exploration program. ## Spectral analysis vs REE & Sn content Spectral analysis was used to create geobotany maps of the Minastyc property and surrounding areas, using various filters and algorithms (Popiela, 2021). The following map show the variation of spectral responses on the Minastyc property and the location of the 2021 analytical results, Figure 45. The various spectral responses are related to variations at surface like concentration and variety of grass, plants, scrubs and trees, gallery forest, percentage of sand, alteration and concentration of iron oxides or hydroxides at surface or altered granite surface. Figure 45 shows a definite signature for gallery forest along the various streams and around the inselbergs, a false blue to violet response of the granite surfaces and white sands, a red response at the limit of forest and grass related to water content, etc. Area 50 shows RE oxides near 60% in the concentrates of sample 357793 possibly related to a spectral response. To the SE, samples contain tin content up to 1.14% with no specific spectral signature. Given that the spectral responses have multi factorial origins, Minastyc should be verified in the field with detailed control points, vegetation, and soil description, geochemistry, and radiometric readings, etc. Figure 45 : Spectral geobotany map of Minastyc with
2021 analytical results. See also Figure 44. After Popiela (2021). # 10. Drilling No drilling was described in this report. # 11. Sample Preparation, Analyses and Security The following describes the procedures applied during the exploration programs detailed in sections above. ## 11.1 Sample Preparation and Field Quality Control Measures The co-author of this report Joel Scodnick (JS), P. Geo. and QP, personally selected all of the samples as provided in Table V, VI and VII. He has reviewed all of the assay certificates provided in Appendix IV, the sample descriptions and sample database. All of the procedures for sample collection were carried out by trained personnel according to industry standards. On the Minastyc property, samples were taken directly from vertical channels in pits and trenches or taken from stockpiles near the pits where water prevented access. Most of the gravel samples were dried and sieved by experienced personnel working at artisanal mining operations. The samples were then separated into two fractions, a coarse concentrate, and a fine concentrate of heavy minerals. The bulk of the sample being mostly lighter material such as quartz and feldspars were discarded, however, all of the original weights of each sample were recorded as well as each fraction of coarse and fine material so that a concentration ratio could be determined. No field standards or blanks were used in the programs, however, the laboratory which did the bulk of the analyses have their own reliable quality control procedures. A visit to the lab in Bogota was performed and a very detailed tour was done. The database includes a description of the samples, sample weight, sample type, GPS coordinates, area selected, and analyses, as well as concentration ratios. ## 11.2 Assaying and Analytical Procedures Rock chip and gravel samples were collected and delivered personally to Alpha1 laboratory in Bogota, Colombia where the bulk of the samples will be submitted to XRF analyses. One sample, S00357793, was taken by JS and delivered personally to Impact Global Solutions (IGS) in Denton, Qc, Canada for further verification, recovery, and metallurgical tests. Pulps and samples were all processed at Alpha1 as well as analyses. Some pulps were also sent to Coalia laboratory in Thetford Mines, Quebec for additional metallurgical and mineralogical work. ## 11.3 Analyses of Gravel and Rock Samples Sample preparation was carried out by crushing more than 70% of the sample to -10 mesh (2 mm grain size), then using a riffle splitter taking a 1 kg split and pulverizing this sub-sample to -200 mesh (74 microns grain size). A portable XRF was used to determine the chemistry of the sample by measuring the florescent or secondary X-ray emitted from the sample when submitted to a primary X-Ray source. ## 11.4 Security of the Samples All of the samples were zip tied onsite at the property, transported by boat to Puerto Carreño and taxied to a secure storage by JS. The facility has a main gate under lock and a security guard living onsite. Once in the secure room, JS took pictures of the samples to make sure that they were all exactly in the same position. Shortly thereafter all of the samples were put into 50l plastic containers to be shipped to Bogota via air transport. The samples were picked at the airport and delivered personally to Alpha1 laboratory in Bogota. A secure chain of custody was applied all along the process. ## 12. Data Verification The scale of sampling on the Minastyc property is limited and no reference material was introduced in the sample batch. Data verification is limited to the accuracy of the analytical results when compared to the certificates provided by Alpha1-Servicios Analiticos S.A.S. See Appendix IV. All of the onsite work was under the supervision of Joel Scodnick, the Qualified Person (QP). It is of the opinion of the QP that all of the work performed was within industry standards and can be fully relied upon. It is also the QP's opinion that adequate cross-section and representative samples were collected and in adequate number. # 13. Mineral Processing and Metallurgical Testing No mineral processing is presented in this report. For information, it should be noted that AUXICO initiated a project with Central America Nickel (CAN) to develop a metallurgical process using specific geochemistry and ultrasound (UAEx) technology. The ongoing project aims at reducing the cycle leaching times, obtain above 80% of recoveries of most of REE and other critical metals, reduce by two order of magnitude the radiometric readings related to the presence of thorium and to reduce the operating and capital costs. AUXICO is also involved with IGS Impact Global Solutions laboratories in REE extraction process. It involves acid bake testing and dissolution of REE sulfates and selective precipitation of Th and U from monazite ((REE, Th, U)PO4) concentrates. Results are positive but preliminary. It demonstrates that 99.9% of the radioactive thorium (Th) can be precipitated and therefore complies to the industry norm of transportation. Further research will establish if the process is applicable to pilot plant scale. Please refer to AUXICO July 30, 2021 press release. ## 14. Mineral Resource Estimate No mineral resource estimate was carried out in this report, nor was any mineral resource estimate produced for the Minastyc Property. # 23. Adjacent Properties To the knowledge of the authors there is no adjacent property to Minastyc. ## 24. Other Relevant Data and Information Relevant information and data are listed and detailed below. It comprises descriptions and summaries of critical metals/minerals present on Minastyc, world REE production and environment liabilities, summary of AMCO exploration report on the Minastyc property, the Vichada Meteorite Impact and the Agualinda Property. ## 24.1 Critical minerals / metals Sn, Ta, Nb, Zr, Hf, REE and other critical metals were found on the Minastyc property. In February 2022, the USGS listed the first 50 most important metals/elements with their use in the world economy. See the web address below. The following Table shows the USGS list and the presence of the various critical metals / minerals on Minastyc. https://www.usgs.gov/news/national-news-release/us-geological-survey-releases-2022-list-critical-minerals Table IX : Presence of critical metals on Minastyc | El / Min | Industrial use | on Minastyc | |---------------|--|-------------| | Antimony | conductors, construction & electronics | | | Antimony | lead-acid batteries & flame retardants | | | Arsenic | semi-conductors | | | Barite | hydrocarbon production | | | D III | alloying agent in aerospace & defense | | | Beryllium | industries | | | Bismuth | medical & atomic research | | | | catalytic converters, ceramics, glass, | | | Cerium | metallurgy & polishing compounds | X | | Cesium | research & development | | | Chromium | stainless steel & other alloys | | | Cobalt | rechargeable batteries & superalloys | | | Dysprosium | permanent magnets, data storage & lasers | X | | | fibre optics, optical amplifiers, lasers & glass | | | Erbium | colorants | Χ | | Europium | phosphors & nuclear control rods | | | Luiopiuiii | aluminum cement, steel gasoline & fluorine | | | Fluorspar | chemicals | | | aopui | medical imaging, permanent magnets & | | | Gadolinium | steelmaking | Х | | Gadolillulli | | ^ | | | integrated circuits, optical devices & LEDs | | | Germanium | fibre optics & night vision applications | | | Graphite | lubricants, batteries & fuel cells | | | Hafnium | nuclear control rods, alloys & high-T ceramics | Χ | | | permanent magnets, nuclear control rods & | | | Holmium | lasers | | | Indium | liquid crystal display screens | | | 111010111 | coating of electrochemical anodes & chemical | | | Iridium | catalyst | | | IIIuiuiii | catalyst ceramics, glass polishing, metallurgy | | | Lanthanum | & batteries | Х | | | å | ^ | | Lithium | rechargeable batteries | | | Lubablium | scintillators for medical imaging & cancer | | | Lutetium | therapies | | | Magnesium | alloys & reducing metals | | | Manganese | steelmaking & batteries | ļ | | | permanent magnets, rubber catalysts, | | | Neodymium | medical & industrial lasers | X | | Nickel | stainless steel, superalloys & batteries | | | Niobium | steel & superalloys | Χ | | Palladium | catalytic converters & catalyst agent | X | | Platinum | catalytic converters | Χ | | | permanent magnets, batteries, aerospace | | | Praseodymium | alloys, ceramics & colorants | X | | | catalytic converters, electrical components & | | | Rhodium | catalyst | | | Rubidium | research & development in electronics | | | Tablalall | catalysts, electrical contacts & chip resistors | <u> </u> | | Ruthenium | in computers | | | Nutriciliulii | \$ | <u> </u> | | Camaani | permanent magnets, absorber in nuclear | V | | Samarium | reactors & cancer treatments | X | | Scandium | alloys ceramics & fuel cells | | | Tantalum | electronic components & superalloys | X | | Tellurium | solar cells, thermoelectric devices & alloys | | | | permanent magnets, fibre optics, lasers & | | | Terbium | solid-state devices | | | Thulium | various metal alloys & lasers | | | Tin | protective coatings & alloys | X | | | white pigment & metal alloys | X | | CanaMex 🛦 | |-----------| |-----------| | Tungsten | wear-resistant metals | | |-----------|---|---| | Vanadium | alloying agent for iron & steel | | | Ytterbium | catalysts, scintillometers, lasers & metallurgy | Χ | | | ceramic, catalysts, lasers, metallurgy & | | | Yttrium | phosphors | Χ | | Zinc | primarily metallurgy & galvanized steel | | | Zirconium | high-T ceramics & corrosion-resistant alloys | Χ | ## 24.2 World REE 2020 production Until 2010, rare earth elements (REE) have been produced mainly by China. In 1985, China created incentives for domestic production. In
1998, Mountain Pass mine, the only US producer ceased large-scale operations. In 2002 Mountain Pass stopped operations due to environment issues and increased Chinese competition. In 2010, China imposed restrictions on exports, provoking higher prices and easing exploration in other countries. In 2010, China produced 92% of the world REE, in 2020 it represents 58%. Figure 46 gives the past production and future tendencies and Χ the world production by country and reserves. Figure 46 : World REE production 1985-2020. Table X: 2020 World REE production and reserves | Country | 2020 Production t | Reserves t | % of Word Reserves | |-----------------|-------------------|------------|--------------------| | China | 140,000 | 44,000,000 | 38 | | Vietnam | 1,000 | 22,000,000 | 19 | | Brazil | 1,000 | 21,000,000 | 18.1 | | Russia | 2700 | 12,000,000 | 10.4 | | India | 3,000 | 6,900,000 | 6 | | Australia | 17,000 | 4,100,000 | 3.5 | | U.S. | 38,000 | 1,500,000 | 1.3 | | Greenland | - | 1,500,000 | 1.3 | | Tanzania | - | 890,000 | 0.8 | | Canada | - | 830,000 | 0.7 | | South Africa | - | 790,000 | 0.7 | | Other countries | 100 | 310,000 | 0.3 | #### CanaMex 🛦 | Burma | 30,000 | - | - | |------------|---------|-------------|-----| | Madagascar | 8,000 | - | - | | Thailand | 2,000 | - | - | | Burundi | 500 | - | - | | Total | 243,300 | 115,820,000 | 100 | t: imperial ton source: USGS Mineral Commodity Summaries ## 24.3 Environment Liabilities (continuation of section 4.4) ## **ENVIRONMENTAL ASPECTS** ## Protection of Water Rounds Starting from the definition of Water Round which includes the belt parallel to the maximum tidal line or to that of the permanent channel of rivers and lakes, up to 30 m wide, it is emphasized that for no reason the phases of the project or the areas arranged for the construction of locations and / or benefit plant, intervene or invade these isolation zones corresponding to the water currents present in the area of influence of the mining project (Ministry of Environment and Sustainable Development, 2017). #### Domestic & industrial wastewater The treatment and disposal of domestic and industrial wastewater for the exploitation areas contemplate the following measures which will be implemented once the activities begin: - 1. Water treatment for domestic and industrial consumption; - 2. Update, maintain and control the water flow capacity systems used in the washing process, which includes the wastewater of the beneficiation plant, in order to comply with article 73, Decree 1594 of 1984 and Law 373 of 1997 on saving and efficient use of water or that environmental legislation that replaces or modifies it; - 3. Use the water strictly necessary in the different stages of operation of the industrial process. That is why a closed water circulation system is projected, in order to use smaller amounts; - 4. Implement water reduction systems in urinals and sinks. ## Disposal of domestic wastewater Structure and implement a schedule of inspection activities and, if necessary, update the project's domestic wastewater management system, in such a way that they comply with the current environmental standard for domestic wastewater discharges. - 1. Implement systems and/or mechanisms that allow effective monitoring of domestic wastewater treatment systems; - 2. Carry out periodic monitoring of the discharges of domestic wastewater generated for the verification of compliance with current environmental standards; - 3. Avoid increasing the contamination of existing water sources (possible recipients of domestic wastewater discharges) and promote the improvement of the quality conditions of these water sources. ## Disposal of industrial wastewater - 1. Monitor and maintain the efficiency in the sedimentation systems of the suspended solids of the sandblaster and / or sedimentation pool; - 2. Inspect and perform periodic maintenance to the pipes, equipment and elements associated with the process of conduction of industrial waters (of the process of benefit and areas of exploitation); - 3. Periodically monitor the industrial discharges generated by the project; - 4. Minimize the generation of suspended solids by implementing irrigation systems on the roads and vehicle cover; - 5. Implement a system of management and treatment of wastewater resulting from the washing of the ore, in order to guarantee a closed circuit of conduction to a single sedimentation system. Likewise, the sedimentation time of the waters must be the minimum necessary to remove the suspended solids, in order to comply with the environmental standard at the dumping site; - 6. Form drainage channels inside the internal routes of circulation of the FM, with cant towards the slope of 1% so that the runoff waters drain into the perimeter channels to be led to the drainage and treatment circuit of the project. # Handling, Treatment, Transport & Final Disposal of Domestic & Industrial Solid Waste The handling, treatment, transport, and final disposal of solid, domestic, and industrial waste for the project includes the following measures: - 1. Adopt guidelines for a rational use of products and promote the program for separation at source of waste; managing with companies in the sector endorsed by the municipality, the delivery of the same. - 2. Manage the delivery of hazardous waste with authorized companies that have the corresponding permits and licenses. In particular, the delivery to an authorized manager of 100% of the hazardous waste generated. - 3. Implement and maintain ecological points with colored containers labeled that allow classification in the generation source. Emphasis will be placed on the delivery of 100% of recyclable waste for use. - 4. Develop training and sensitization to staff in order to reduce the generation of solid waste and reuse those likely to be. ## Air Emissions Control & Noise Management Control measures are made up of specific activities and procedures to prevent or mitigate environmental impacts from atmospheric emissions and noises. ## Control of atmospheric emissions The objective of these measures is to avoid air pollution generated by the mobilization of machinery and equipment. The control of atmospheric emissions includes the development of the following activities: - 1. The goal of air emissions control is to comply with the Colombian regulations for emissions established in Resolution 1377 of 2015 and/or that which modifies and/or replaces it. - 2. Comply with Colombian regulations for air quality and / or that which modifies and / or replaces it. - 3. All vehicles must have gas emission certificates in accordance with current standards. - 4. Vehicle traffic in work areas should be subject to speed limits to ensure not only safety, but also to prevent the entrainment of particles. For all types of vehicles, the limit allowed in internal accesses is 20 km / h. In the access roads to the area to be recovered, the restrictions established by the competent authorities must be considered. - 5. Information signs should be installed in vehicular traffic areas to indicate the permitted speeds. - 6. The internal accesses and recovery areas must be moistened to avoid the dragging of particles by the action of the wind or the movement of vehicles and machinery. - 7. Drivers should participate in an introductory talk on safety regulations, authorized roads, schedules, and speed limits. The time of application of these measures will be throughout the mining cycle of the project (exploitation, profit, and transformation, closure, and recovery). ## Noise management The goal is to avoid inconvenience in neighboring communities. Noise management requires considering the following actions: - 1. Comply with environmental noise levels in accordance with Resolution 627 of 2006 and / or current regulations. - 2. Perform semi-annually the respective measurements of sound pressure levels. - 3. Follow up on complaints from communities in the area of influence of the project that they establish when they are affected by noise. - 4. Perform periodic maintenance of all machinery, equipment, and vehicles of the project. - 5. Vehicles and machinery must ensure the proper functioning of silencers to control the noise levels emitted. - 6. The use of bugles or whistles that emit high levels of noise should be prohibited. The time of application of this measure will be throughout the mining cycle of the project (exploitation, benefit, and transformation, closure, and recovery). ## Management & measures for runoff water The efficient management where required of runoff and subsurface waters is one of the most reliable measures to guarantee the stability of cuts made in the extraction areas. When a balance is achieved between the flow velocities and its dragging capacity, the conditions conducive to the growth of vegetation are generated, providing an additional measure of erosion control. #### Management measures for runoff water The measures for the management and disposal of runoff water in the project areas are: - 1. A collector channel must be designed so that all the waters that may occur on the starting front can be captured, thus, the waters received by the ditches of the internal track. - 2. The ditches must be placed on the inside of each berm and built in such a way that they resist the erosion of the solids that the water drags and facilitate the cleaning work. - 3. The structure of the sandblaster or sedimentation pool should be cleaned periodically and more frequently during rainy seasons; therefore, they should be located in places that facilitate access and transport of sedimented solids. Some recommendations for designing ditches, channels and sandblasters are presented. ## Design of channels& ditches Since the drainage works required to collect and conduct runoff water reaching the areas of mining excavations are relatively small. The most commonly used sections in the canals and ditches are trapezoidal and triangular,
Figure 47. In each case, the expressions for the hydraulic radius, R, are used, which are indicated in the Colebrooke-White and Manning equations. Figure 47: Typical sections of channels and ditches. ## Design of sandblasters Sandblasting tanks are built for the purpose of retaining solids that runoff water can carry away before it is delivered to the sewer system. As the recovery processes of the extraction area progress, these structures will lose importance, and the areas will be protected by vegetation. The hydraulic design of the sandblasting tanks is carried out for a flow rate equal to 75% of the estimated rainfall of the return period of 10 years. The large particles carried by the water are deposited at the bottom of the tank, where the speed of the water decreases and loses its greatest transport capacity. The sandblaster is composed of four zones: inlet, sedimentation, sludge, and outlet, as shown in Figure 48. Figure 48: Hydraulics of sandblasting tanks The entrance area of the sandblaster serves to reduce the speed of the water and return excess water. It consists of a side landfill, dissipation chamber and perforated partition. The dissipation chamber slows the rate of entry of water into the sedimentation zone, while the perforated septum distributes it throughout the section. The sedimentation tank must have dimensions such that a theoretical retention time is met, so that the larger solids are deposited at the bottom, which is the sludge zone. The exit zone is made up of a landfill that connects to a channel or pipeline. #### MINING ENVIRONMENTAL TECHNICAL GUIDES In accordance with the provisions of the Ministry of Mines and Energy, the miningenvironmental technical guides that will be used in the different environmental components affected, and in the development of the construction, assembly and exploitation works of this project, giving way to the planning, execution and monitoring of the environmental activities that will be carried out according to the mining activity. It is highlighted that within the Environmental Management Plan contained in the Environmental Impact Study that is delivered to CORPORINOQUIA, a detailed description of the control measures is made, with their respective files to be applied, in addition to the effects to be mitigated, causes of them, time and time of execution, costs of the works, follow-up, control and monitoring and responsible for the auditing The following are the specific management sheets to be considered in the development of the project: ## Water Component CME 07-03 Rainwater management: Perimeter ditches built on land are proposed for the treatment of the same, preventing runoff waters from causing erosion in the areas destined as patios for the disposal of material of interest. CME 07-04 Management of domestic wastewater: It will be used to treat domestic water from the camps located in the area, through the implementation of septic tanks. CME 07-07 Management of water bodies: Although no type of intervention will be carried out in channels and / or water rounds, the protection measures that are convenient when the exploitation process is in nearby areas will be advanced, in order to avoid at all times any type of contamination in the water resource. ## Air Component CME 07-09 Noise Management: It is developed to mitigate negative impacts on environmental factors due to the use of machinery and transport vehicles. ## Soil Component CME 07-10 Fuel Management: It is developed in order to establish the loading, transport and handling of fuels used for machinery and vehicles, in order to avoid spills that may generate environmental damage. CME 07-11 Soil management: These activities are intended to give adequate management to the soil that may be found covering the areas to be exploited and adapted for collection yards and other infrastructure, so that it can be reused in the subsequent process of morphological and landscape restoration of the areas affected by said infrastructure required for the development of the project. CME 07-15 Management of Sterile and Debris: The objective is to give the correct handling to the sterile material resulting from the same exploitation fronts, which as explained in previous chapters, will be deposited in the areas already exploited for the morphological restoration of the land. CME 07-16 Track Management: It is proposed to maintain the access roads to the operating fronts and the facilities, mainly developing ditches for the correct treatment of rainwater. CME 07-17 Solid waste management: It is about giving proper management to garbage through the strategic location of baskets in the operation sites and the recycling of them to be delivered to the municipality's cleaning service. CME 07-18 Management of fauna and flora: This includes the proper management of existing fauna and flora communities, conserving forested areas. Likewise, reforestation of a sector and maintenance of the existing flora. CME 07-24 Landscape management: Includes reforestation, restoration, maintenance and conservation of existing forest areas, enrichment with herbaceous species of areas affected by mining and the installation of live fences. CME 07-25 Plan de Recuperación: Conforma el plan de obras de recuperación morfológica, paisajística y forestal establecido en el capítulo 7. ## 24.4 AMCO Report Following the August 2021 report (AMCOa, 2021), a voluminous report was produced by AMCO Consultores in September 2021 on the Minastyc property for AUXICO Resources (AMCOb, 2021). The report entitled "Estudio de impacto ambiental (EIA) para el tramite de licencia ambiental temporal de la solicitud de formalizacion minera LFH-14431X, en el municipio de Puerto Carreño" was partly translated by the authors of the present report. It comprises 8 chapters. - 1- Objectives - 2- Description of the mineral activities - 3- Characterization of the area of influence of the mineral activities - 4- Socio-economic environment - 5- Environment permit and authorization of natural resource exploitation, for the mineral activities - 6- Environment evaluation - 7- Management of the environment of the mineral activities - 8- Dismantlement and abandonment of the mining activities The objectives of the report are as follow. - Description of the technical characteristics of the mineral exploitation of permit LFH-14431X, Minastyc project, in order to get a temporary environmental permit. - Describes the area of environment influence and describes the abiotic, biotic, and socio-economic environment. - Identify, quantify, valorize, and describe the possible impacts at present (scenario without project) and the one that could arise following the onset of the project (scenario with project). - Request and obtain permit for exploitation of natural resources necessary and essential for the execution of the project as well as atmospheric emissions and impacts on forestry. - From the sensitivity of the abiotic, biotic, and socio-economic milieu, determine the zoning of environment management resulting in identification of exclusion zones, and intervention with restrictions of the mineral exploitation. - Formulate different programs, environment management activities and social needs to prevent and mitigate the negative environment impacts resulting from the mineral exploitation and associated activities and identify the positive impacts of the mining exploitation. - Ensure the fulfillment of the environment management plan (EMP) using the program follow-up and monitoring of the abiotic, biotic, and socio-economic milieu. The report contains valuable information on topography, photo-mosaic surveying, hydrography and drainage and water quality. It also contains a thorough description of flora, fauna, biotic milieu, socio-economic status, and land occupation of the people living in the Minastyc project area. The report contains a detailed mining plan and engineering chronograms, etc. The geological section of the report is not detailed and non-compliant to 43-101 guidelines. A more recent Documento_PTO entitled Programa de Trabajos y Obra de Explotacion para la Legalizacion de Mineria de Hecho LFH-14431X- Proyecto Minero Minastyc was produced by AMCO in February 2022. It is the same document as the one described above with additions to satisfy the NMA and Ministerio de Minas y Energia de Colombia requirements (AMCO, 2022). ## 24.5 Vichada Meteorite Impact ## Vichada Meteorite Impact A probable meteoritic impact of importance discovered in 2004, is located 248 km SW of Puerto Carreño. It forms a large curvature, along the Rio Vichada, 150 km west of the Rio Orinoco. The circular structure is 50 km wide and at least 30 million years old. It has affected the Neoproterozoic granitic basement and the Cenozoic cover and possibly the granite Ta-Nb-REE Parguaza mineralization, like in the Sudbury case. Simulation by Hernandez et al. (2018) showed up to 1 m of ejecta thickness in the Minastyc property area, Figure 49. Much work still remains to be done to assess the likelihood of the impact and its influence on the basement mineralization. Figure 49: Ejecta thickness simulation for the Vichada impact located 248 km SW of the Minastyc property immediately south of Puerto Carreño, to the NE of the map. ## 24.6 Agualinda Property On December 8, 2021, AUXICO announced the acquisition of the surface rights covering 1293 ha of a land titled Agualinda, also referred to as Minastyc South, located south of Puerto Carreño and adjoining the Minastyc property. The only preliminary exploration work done in the surrounding areas is a satellite imagery study carried out by Popiela (2021). Target priority maps were produced using spectral analysis and radar within the Minastyc South perimeter. Figure 50 shows an approximate position of Minastyc South adjacent or near the Minastyc property since AUXICO did not publish the exact coordinates of Agualinda. If, in the future a resource is completed on
Minastyc, and exploration work conducted on Agualinda would indicate a sufficient amount of material to be exploited and a resource established, then if a processing facility were built on Minastyc, it would be able to process material from Agualinda as well since it is just adjacent to the south. There is already a road going through Agualinda and north onto Minastyc, so that the transportation of material from Agualinda to Minastyc would be quite simple and at a very low cost. Figure 50 : Approximate location of the AUXICO Minastyc South property. ## 25. Conclusion The Minastyc property covers 188,74 ha. and is located on the west side of the Rio Orinoco south of Puerto Carreño in Colombia. Exploration works were carried out in 2020 and 2021 by AMCO Consultores and CanaMex. It comprises topographic and photo-mosaic surveys, induced polarization (IP) and seismic refraction line surveys, pit and trench digging, geology, sampling, and geochemical analyses. The satellite imagery analyses were carried out by JAPOSAT Satellite Mapping. The Minastyc alluvial deposits are overlying the Parguaza rapakivi granite showing as inselbergs on the property. From bottom to top the stratigraphy shows, granite, granite saprock or saprolite (50 cm to 1 m), iron concretion (ferricrete) (50 cm to 1 m), sediment 1 and 2, conglomeratic oxidized sands with quartz pebbles, heavy minerals, and clays (2 m +), sediment 3, oxidized layered sand with kaolinite layers (1 m) and sediment 4 gritty oxidized sands (1 m). The various alluvial horizons were described and sampled along vertical channels and from adjacent stockpiles. A heavy bulk sample was taken in the centre of the property. All samples were analyzed using XRF at Alpha1 lab in Bogota. The AMCO results are only qualitative and suggest the presence of columbotantalite, cassiterite, rutile and possibly ilmenite or pyrochlore in the heavy mineral concentrates. The analytical results from the first AUXICO exploration program in August 2021 show a relation between the mean values of specific elements and the size of the concentrate. The fine-grained particles show high Ti and Zr possibly related to the presence of heavy minerals like ilmenite, possibly rutile or tantalo-rutile and zircon. Sn, Nb and Hf values may be related to cassiterite, columbo-tantalite or wodginite. The coarse concentrate shows high Al, Si, Mn and LOI (loss-on-ignition) related to processes like feldspar alteration, iron and manganese migration and enrichment in upper horizons of the alteration zones and absorption of water by the iron oxides. Area 50 bulk sample shows high concentrations of P2O5, ThO2 and REE oxides compatible with the presence of monazite. Fe, Sn, Nb and Ta values suggest that iron hydroxide, columbo-tantalite and cassiterite are present in small quantities in the concentrate. The analytical results from the second AUXICO sampling program in December 2021 demonstrate the potential of the Minastyc property as a strategic source of critical minerals that are key to the energy transition and a focal point of public policy. The results also show that the radioactive minerals containing Thorium and Uranium can be successfully precipitated. This is necessary in order to be able to transport rare earth concentrates to North American and European refineries. The ICP-MS results demonstrate the pervasive nature for the occurrence of critical minerals in virtually all of the samples taken. The exploration on the Minastyc property shows that the lower horizons immediately above the granite saprock or saprolite show heavy minerals containing cassiterite, ilmenite and columbo-tantalite possibly originating from the pegmatitic or greisen phases of the underlying Parguaza granite. South of the property on the west side of the Rio Orinoco, Ti, Ta, Nb heavy minerals were found in the ferricrete alteration of the Parguaza granite inselbergs. Au, Ag, Pt and Pd were detected in concentrates of 20 samples distributed on the property. Given the world market need for critical and REE metals and minerals, section 24, the presence of Ta. Nb, Ti, Sn, , Zr, REE, Au and Pt opens the exploration in Eastern Colombia not only in the alluvial deposits along the rivers but also around the granite inselberg alteration zones that extend tens of kilometers to the west. The authors conclude that given all the results presented in this report, the alluvial deposits of the Minastyc Property show anomalous concentrations of Sn, Ti, Ta, Nb and REE, Au and Pt, and that with further detailed work, there would be opportunity of outlining a deposit of economic worth, should enough material, grade, and continuity of the alluvial's be established. Further exploration is required to fully assess the economic potential for Sn, Ti, Ta, Nb and REE, Au and Pt of the alluvial deposits of the Rio Orinoco in Colombia. # 26. Recommendations & Budget Following the analytical results and the stratigraphic works carried out on the Minastyc property in 2020 and 2021 and based on the positive results obtained in these field seasons, it is recommended to engage in a detailed bulk sampling program utilizing a small-scale pilot plant to produce a Nb-Ta concentrate and a separate rare earth concentrate. The radioactive elements U-Th would be precipitated and form a third concentrate which would allow shipment of the rare earth concentrate for commercial sale. A budget of USD 1,952,000 is recommended as per the following table. It is described as follow: - Additional trenches may be excavated in specific areas in order to carry out detail descriptive or sampling works. Machinery could be used to get to 5 m depth or more. A detail stratigraphy of the various fertile horizons should be established, and correlations done across the property. - The granite saprolite, the iron concretion (ferricrete) and the overlying conglomeratic sediments should be mapped and sampled in detail as they seem to be the primary source of heavy minerals. - Sampling should be carried out very carefully as well as the preparation of the concentrates, with detailed mineralogical descriptions using portable XRF device, dilution factors, granulometry, etc. - Microscopic and ICP-MS analyses of heavy mineral concentrates should be requested to identify the various mineral phases. - Referenced material (standards) and blanks should be intercalated every 20 samples and duplicates should be inserted every 40 samples when submitting large batches to the XRF laboratory. - Bulk sampling using a small-scale 300 tpd pilot plant, - Updating the NI 43-101 upon completion of the above, - Resource calculation for Area 50 and the TA Area. # CanaMex & # Budget 2024 | No. | Description | Unit (USD) | Days/sples | Total (USD) | |---------------------------|---|------------|------------|-------------| | 1 | Excavator Rental for 30 days | 5000 | 30 | 150000 | | 2 | Purchase of 4 x 4 vehicle | 40000 | 1 | 40000 | | 3 | Front End Loader - Backoe | | | 100000 | | 4 | Purchase of All Terrain Vehicle | 40000 | 1 | 40000 | | 5 | Geological Supervision - 2 prof. geologists | | | 150000 | | 6 | Assays | 100 | 500 | 50000 | | 7 | Metallurgical testing | 4000 | 4 | 16000 | | 8 | Room & Board for 2 Geologists (Puerto Carreno) | 150 | 60 | 9000 | | 9 | Travel (Flights, hotels, Meals) | | | 10000 | | 10 | Updating NI 43-101 Technical Resource
Report | | | 35000 | | 12 | Plant | | | 1000000 | | Subtotal Estimated Budget | | | | 1,600,000 | | Contingencies | | 0,15 | | 240,000 | | Administration | | 0,07 | | 112,000 | | Tota | l Estimated Budget Phase 1 | | | 1,952,000 | ## 27. References AMCOa, 2021: Programa de Trabajos y Obra de Exploitacion para la Legalizacion de Minera de Hecho LFH-14431X - Proyecto Minero Minastyc; Unpublished report for AUXICO Resources by AMCO Consultores, August 2021, 147 p. **AMCOb**, 2021 : Estudio de impacto ambiental (EIA) para el tramite de licencia ambiental temporal de la solicitud de formalizacion minera LFH-14431X en el minucipio de Puerto Carreño; Unpublished report for AUXICO Resources, by AMCO Consultores, September 2021, 8 chapters, 375 p. **AMCO**, 2022: Programa de Trabajos y Obra de Explotacion para la Legalizacion de Mineria de Hecho LFH-14431X - Proyecto Minero Minastyc; Unpublished report for AUXICO Resources by AMCO Consultores, February 2022, 213 p. **Barrero**, D., Pardo, A., Vargas, C.A. and Martinez, J.F., 2007: Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology, a New Proposal; Agencia Nacional de Hydrocarburos, 91 p. Bonilla-Pérez, A., Frantz, J.C., Charão-Marques, J., Cramer, T., Franco-Victoria, J.A., Mulocher, E. and Amaya-Perea, Z., 2013: Petrografia, Geoquimica y Geochronologia del granito de Parguaza en Colombia; Boletin de Geologia, Vol 35 No 2, p. 83-104. **Bonilla-Pérez**, A., Franco Victoria, J.A., Carlos, F.J., Cramer, T. and Amaya Perea, Z., 2013a.: Tantalum and Niobium Mineralization in the NW Guiana Shield; Oral Presentation; https://studyres.com/doc/7923417/. Cerný, P., Ercit, T.S., Smeds, S-A., Groat, L.A. and Chapman, R., 2007: Zirconium and Hafnium in minerals of the columbite and wodginite groups from granitic pegmatites; Canadian Mineralogist Vol. 45, p. 185-202. Cramer, T., Bonilla Perez, A., Franco Victoria, J.A., Amaya Perea, Z. and Iregui, I., 2010: Mineralization of Tantalum and Niobium in Vichada and Guainía, Eastern part of Colombia-Acta Mineralogica-Petrographica, Abstract Series, 6. Cramer, T., Franco, J.A., Amaya Perea, Z., Bonilla Pérez, A., Poveda, A.P. and Celada Arango C.M., 2011: Caracterización de depósitos aluviales con manifestaciones de tantalio y niobio ("coltán") en las comunidades indígenas de Matraca y Caranacoa en el Departamento del Guainía. Contrato 021 de 2010, Ingeominas-Universidad Nacional de Colombia, Bogota, 63 p. Franco Victoria, J.A., Cramer, T., de Oliveira Chaves, A., Horn, H.A., and Poujol, M., 2021: Geochronology of monazite related to
REE, Nb-Ta and U-Th bearing minerals from Meso - Proterozoic anorogenic magmatism in the E-Colombian Amazonian Craton: links to mantle plume activity in the Columbia (Nuna) supercontinent; Journal of South American Earth Sciences, Elsevier, 2021, 109, pp.103228. Franco, J.A., Cramer, T., Bonilla, A., Castañeda, A.J., Poujol, M. and Amaya, Z., 2021 : Mineralogia y geocronologia, de rutilo-(Nb,Ta) relacionado a casiterita y columbita-tantalita provenientes de rocas Mesoproterozoicas del Craton Amazonico cerca de Cachicamo, Colombia; Boletin de Geologia, 43 (1), p. 99-126. Gomez, J. and Montes, N.E., 2020: 5-11 Sheet of the Colombia Geological Atlas, 1: 500 000 scale, Colombian Geological Service, Bogota. Goosen, D., 1971: Physiography and Soils of the Llanos Orientales, Colombia; International Institute for Aerial Survey and Earth Sciences (ITC) - Enschede - The Netherlands, Series B, number 64, 198 p. Hernandez, O., and Alexander, G.C., 2018: Vichada asteroid impact effects from simulation of regional environment consequences of meteoroid impact on Earth; Earth Sciences Research Journal, 22(1), p. 7-12. **Ibañez-Mejia**, M. & Cordani, U.G. 2020. Zircon U-Pb geochronology and Hf-Nd-O isotopegeochemistry of the Paleo – to Mesoproterozoic basement in the westernmost Guiana Shield.**In**: Gómez, J. & Mateus-Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic –Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 35, p. 65-90. **Jaramillo**, M., 2021: Report on the sampling program in the areas of Pijiguaos (Cedeño Municipality, State of Bolivar, Venezuela) and Puerto Carreño, Colombia in the Orinoco River region; Unpublished report for AUXICO Resources, January 2021, 36 p. Jones, J.V., III, Piatak, N.M., and Bedinger, G.M., 2017: Zirconium and Hafnium, chapter V of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States-Economic and environmental geology and prospects for future supply; U.S. Geological Survey Professional Paper 1802, p. V1–V26. **Kamilli**, R.J., Kimball, B.E., and Carlin, J.F., Jr., 2017: Tin, chapter S of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States-Economic and environmental geology and prospects for future supply; U.S. Geological Survey Professional Paper 1802, p. S1–S53. **Kroonenberg**, S.B., de Roever, E.W.F., Fraga, L.M., Reis, N.J., Faraco, T., Lafon, J.-M., Cordani, U. and Wong, T.E., 2016: Paleoproterozoic evolution of the Guiana Shield in Suriname: A revised model; Netherlands Journal of Geosciences, 95-4, p. 491-522. **Koonenberg**, S.B., Mason, P.R.D., Kriegsman, L., de Roever, E.W.F. and Wong, T.E., 2019a : Geology and mineral deposits of the Guiana Shield; Mededeling Geologisch Mijnbouwkundige Suriname, 29, p. 111-115. **Kroonenberg**, S.B., 2019b: The Proterozoic Basement of the Western Guiana Shield and the Northern Andes; in Cediel, F. and Shaw, R.P., eds, The Geology and Tectonics and Northwestern South America, p. 115-192, Springer, 2019 **Legros**, J.P., 2013 : Latérites et autres sols des régions intertropicales; Académie des Sciences et Lettres de Montpellier, Bulletin no. 44, p. 369-382. Linnen, R.L. and Cuney, M., 2005: Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization; in Linnen, R.L. and Samson, I.M., eds., Rare-Element Geochemistry and Mineral Deposits. Geological Association of Canada, GAC ShortCourse Notes 17, p.45-68. Macambira, M.J.B., Teixeira, J.T., Daoud, W.K. and Costi, H.T., 1987: Geochemistry, mineralizations and age of tin-bearing granites from Pitinga, NW Brazil; Revista Basileira de Geociencias, 17 (4), p. 562-570. Mackay, D.A.R. and Simandl, G.J., 2015: Niobium and Tantalum: Geology, markets, and supply chains. British Colombia Geological Survey Paper 2015-3, p. 13-22 Nahon, D.and Tardy, Y., 1992: The Ferruginous Laterites; in .C.R.M. Butt and H. Zeegers (eds.), Regolith Exploration Geochemistry in Tropical and Subtropical Terrains; Handbook of Exploration Geochemistry, Elsevier 1992, p. 41-55 Overstreet, W.C., 1967: The Geologic Occurrence of Monazite; USGS Professional Paper 530, 327 p. **Pelletier,** J. and Scodnick, J., 2022: Preliminary metallogeny report & work program on the Minastyc deposit, Puerto Carreño District, Vichada, Colombia; Servicios Mineria CanaMex unpublished report for AUXICO Resources, 38 p. **Perez**, H., Salazar, R., Penaloza, A., and Rodriguez, S., 1985, Evaluation preliminar geoeconomica de los aluviones presentando minerales de Ti, Sn, Nb y Ta del area de Boquerones y Aguamena, Distrito Cedeno, Estado Bolivar y Territorio Federal Amazonas: I Simposium Amazonico, Venezuela, Boletin de Geologia, Publicacion Especial No. 10, p. 587-602. **Popiela**, B., 2020 : Satellite Study, Coltan prospect AOI-1 & AOI-2, Colombia. Unpublished report to AUXICO Resources by JAPOSAT Satellite Mapping, 30 p. **Popiela**, B., 2021: Remote Sensing Study, REE Prospect Minastyc South, Colombia; Multispectral surface signature targets similar to known REE sites Minastyc North; Unpublished report to AUXICO Resources by JAPOSAT Satellite Mapping, 32 p. **Schulz**, K.J., Piatak, N.M., and Papp, J.F., 2017, Niobium and Tantalum, chapter M of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States-Economic and environmental geology and prospects for future supply; U.S. Geological Survey Professional Paper 1802, p. M1–M34. **Sidder**, G.B., 1990: Mineral Occurrences of the Guiana Shield, Venezuela; U.S. Geological Survey, Open-file Report 90-16, 28 p. **Sidder,** G.B. 1995: Mineral Deposits of the Venezuelan Guayana Shield; USGS Bulletin 2124-O, p. O1-O20. **Sidder**, G.B. and Mendosa-S. V., 1995: Geology of the Venezuelan Guyana Shield and Its Relation to the Geology of the Entire Guyana Shield; U.S. Geological Survey Bulletin 2124-B, p. B1-B41. **UNODC**, 2020: Colombia Alluvial Gold Exploitation; Evidence from remote sensing 2019; United Natons Office on Drugs and Crime, 229 p. Van Gosen, B.S., Verplanck, P.L., Seal, R.R., II, Long, K.R., and Gambogi, J., 2017, Rare Earth elements, chapter O of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States-Economic and environmental geology and prospects for future supply; U.S. Geological Survey Professional Paper 1802, p. O1–O31. # $\label{eq:Appendix I} \textbf{Appendix I : Sample Locations \& Descriptions}$ Locations and descriptions of samples taken on the Minastyc property by AUXICO in August 2021 | Id | E z19 | N z19 | El m | WP | Pit No. | Description | Sple Type | Sple-Wt g | Conc-Ratio | Date | |-----------|--------|--------|------|------|---------|---|---------------|-----------|------------|--------| | S00357751 | 669464 | 668625 | 105 | 0030 | MIN-01 | siliceous material with Clay alteration | fine conc. | 44 | 201 | Aug 23 | | S00357752 | 669463 | 668635 | 90 | 0021 | | sample with obsidian, in a breccia 2m wide | fine conc. | 32 | 519 | Aug 21 | | S00357753 | 669435 | 668622 | 89 | 0020 | MIN-02 | TA Zone Main Trench, channel sample 6" wide x 2-3" deep x 2.5mL, 1.8m sand OB | fine conc. | 23 | 513 | Aug 23 | | S00357754 | 669435 | 668622 | | | | red gravel, vertical channel sample 2.3m (TW) | fine conc. | 9 | 1435 | Aug 23 | | S00357755 | 669435 | 668622 | | | | mafic bands in lateritic soil, rock samples | rock sample | | | Aug 23 | | S00357756 | 669420 | 668616 | 134 | 0031 | MIN-03 | sample taken across 1.9m (TW) | fine conc. | 3 | 5182 | Aug 23 | | S00357757 | 669430 | 668655 | 135 | 0037 | MIN-08 | channel sample taken vertically for 2.10m (TW) | fine conc. | 43 | 411 | Aug 23 | | S00357758 | 669423 | 668682 | 135 | 0038 | MIN009 | channel sample taken vertically for 0.80m (TW) | fine conc. | 12 | 1440 | Aug 23 | | S00357759 | 669423 | 668682 | 135 | 0038 | MIN009 | channel sample taken vertically for 1.20m (TW) | fine conc. | 49 | 486 | Aug 23 | | S00357760 | 669466 | 668738 | 90 | 0023 | MIN010 | 5 grams of fines | fines 5 g | 5 | | Aug 23 | | S00357762 | 669747 | 668153 | 97 | 0040 | MIN011 | 4 shovels full from each pile, pit filled with water,
Juan did not send a sample from this location | fine conc. | 26 | 261 | Aug 24 | | S00357763 | 669692 | 668142 | 100 | 0041 | MIN012 | 80cm (TW) channel sample | fine conc. | 34 | 199 | Aug 24 | | S00357764 | 669605 | 668146 | 102 | 0042 | MIN-013 | 60cm (TW) channel sample, 1m sand OB | fine conc. | 23 | 416 | Aug 24 | | S00357765 | 669646 | 668096 | 104 | 0043 | MIN-014 | rocks are lateritic, semi-massive to massive sulphides (Fe), took a composite sample from 4 locations at pit, dug down to an average of 35cm, very oxidized | fine conc. | 76 | 217 | Aug 24 | | | | | | | | cannot sample in the pit, too much water, took 2 | _ | | | | | S00357766 | 669689 | 668074 | 108 | 0044 | MIN-015 | shovel fulls from different locations sand OB, red gravels, yellow alteration, then | fine conc. | 36 | 293 | Aug 24 | | S00357767 | 669499 | 667585 | 114 | 0046 | MIN-017 | pegmatitic laterite | fine conc. | 35 | 233 | Aug 24 | | S00357768 | 669543 | 667530 | 116 | 0047 | MIN-018 | no fines present | | | | Aug 24 | | S00357769 | 669776 | 667155 | 118 | 0048 | MIN-019 | no fines present | no fines | | | Aug 24 | | S00357770 | 670030 | 667663 | 117 | 0049 | MIN-020 | no fines present | no fines | | | Aug 24 | | S00357771 | 670197 | 667864 | 123 | 0050 | MIN-021 | no fines present | no fines | | | Aug 24 | | S00357772 | 670199 | 667834 | 125 | 0051 | MIN-022 | no fines present | no fines | | | Aug 24 | | S00357773 | 669464 | 668625 | 105 | 0030 | MIN-01 | siliceous material with clay alteration | coarse gravel | 1000 | 9 | Aug 23 | | S00357774 |
669463 | 668635 | 90 | 0021 | | sample with obsidian, in a breccia 2m wide | coarse gravel | 1900 | 9 | Aug 23 | | S00357775 | 669435 | 668622 | 89 | 0020 | MIN-02 | TA Zone Main Trench, channel sample 6" wide x 2-3" deep x 2.5mL, 1.8m sand OB | coarse gravel | 4200 | 3 | Aug 23 | | S00357776 | 669435 | 668622 | | | | red gravel, vertical channel sample 2.3m (TW) | coarse gravel | 5700 | 2 | Aug 23 | | S00357777 | 669420 | 668616 | 134 | 0031 | MIN-03 | sample taken across 1.9m (TW) | coarse gravel | 5400 | 3 | Aug 23 | | , | | | | | | | | | | | |-----------|--------|--------|-----|------|----------------|---|---------------|------|-----|--------| | S00357778 | 669430 | 668655 | 135 | 0037 | MIN-08 | channel sample taken vertically for 2.10m (TW) | coarse gravel | 7100 | 3 | Aug 23 | | S00357779 | 669423 | 668682 | 135 | 0038 | MIN009 | channel sample taken vertically for 0.80m (TW) | coarse gravel | 7700 | 2 | Aug 23 | | S00357780 | 669423 | 668682 | 135 | 0038 | MIN009 | channel sample taken vertically for 1.20m (TW) | coarse gravel | 5700 | 4 | Aug 23 | | S00357781 | 669466 | 668738 | 90 | 0023 | MIN010 | channel sample taken vertically for 1.30m (TW) | coarse gravel | 6900 | 3 | Aug 23 | | S00357782 | 669747 | 668153 | 97 | 0040 | MIN011 | 4 shovel fulls from each pile, pit filled with water,
Juan did not send a sample from this location | coarse gravel | 2700 | 3 | Aug 24 | | S00357783 | 669692 | 668142 | 100 | 0041 | MIN012 | 80cm (TW) channel sample | coarse gravel | 2700 | 3 | Aug 24 | | S00357784 | 669605 | 668146 | 102 | 0042 | MIN-013 | 60cm (TW) channel sample, 1m sand OB | coarse gravel | 1600 | 6 | Aug 24 | | S00357785 | 669646 | 668096 | 104 | 0043 | MIN-014 | rocks are lateritic, semi-massive to massive sulphides (Fe), took a composite sample from 4 locations at pit, dug down to an average of 35cm, very oxidized | coarse gravel | 2600 | 6 | Aug 24 | | S00357786 | 669689 | 668074 | 108 | 0044 | MIN-015 | cannot sample in the pit, too much water, took 2 shovel fulls from different locations | coarse gravel | 1800 | 6 | Aug 24 | | S00357787 | 669499 | 667585 | 114 | 0046 | MIN-017 | sand OB, red gravels, yellow alteration, & pegmatitic laterite | coarse gravel | 1800 | 5 | Aug 24 | | S00357788 | 669543 | 667530 | 116 | 0047 | MIN-018 | sample taken from stockpile due to excessive water in the pit, 2.20m sand OB, then the bottom 0.40m sulphide zone | rock sample | | | Aug 24 | | S00357789 | 669776 | 667155 | 118 | 0048 | MIN-019 | pit full of water, 2 shovel fulls taken from stockpile | coarse gravel | 3000 | 5 | Aug 24 | | S00357790 | 670030 | 667663 | 117 | 0049 | MIN-020 | pit full of water, 3 shovel fulls taken from stockpile | coarse gravel | 4200 | 3 | Aug 24 | | S00357791 | 670197 | 667864 | 123 | 0050 | MIN-021 | channel sample 3.60m (TW) | coarse gravel | 1800 | 9 | Aug 24 | | S00357792 | 670199 | 667834 | 125 | 0051 | MIN-022 | channel sample 1.35m (TW) | coarse gravel | 1800 | 7 | Aug 24 | | S00357793 | 670189 | 667857 | 85 | 0052 | Area50-
ptA | Bulk Sample Area 50 - Point A, 13 wheelbarrows at 128 kg / wheelbarrow | fine conc. | 7700 | 425 | Aug 26 | OB: overburben TW: true width WP: way point # Appendix II : Analytical Results XRF Analytical results from AUXICO samples taken in August 2021, all in wt % unless specified | Lab Id | E z19 | N z19 | SiO2 | Al203 | TiO2 | Fe2O3 | MgO | CaO | Na2O | K20 | P205 | LOI | ZrO2 | MnO | PbO | ZnO | WO3 | SnO2 | |-----------|--------|--------|-------|-------|-------|-------|------|------|------|------|-------|-------|-------|------|----------|------|------|------| | S00357751 | 669464 | 668625 | 56,19 | 2,19 | 19,51 | 14,17 | 0,02 | 0,03 | | | 0,40 | 0,34 | 3,94 | 0,64 | 0,03 | | 0,04 | 1,14 | | S00357752 | 669463 | 668635 | 47,72 | 1,88 | 23,24 | 19,54 | 0,02 | 0,07 | | | 0,11 | | 5,33 | 0,82 | | 0,13 | | 0,86 | | S00357753 | 669435 | 668622 | 33,55 | 2,60 | 28,01 | 26,49 | 0,03 | 0,05 | | | 0,07 | | 7,58 | 1,16 | | 0,08 | | 0,06 | | S00357754 | 669435 | 668622 | 18,31 | 1,12 | 33,16 | 31,84 | | | | 0,14 | 0,18 | | 12,36 | 1,34 | 0,06 | 0,06 | | 0,13 | | S00357755 | 669435 | 668622 | | | | | | | | | | | | | | | | | | S00357756 | 669420 | 668616 | 33,84 | 2,30 | 28,75 | 26,00 | 0,02 | 0,06 | | | 0,09 | | 7,34 | 1,21 | | 0,09 | | | | S00357757 | 669430 | 668655 | 40,08 | 2,01 | 26,38 | 24,66 | 0,02 | | | | 0,06 | | 5,45 | 0,93 | | 0,07 | | | | S00357758 | 669423 | 668682 | 23,76 | 1,13 | 30,22 | 31,25 | 0,06 | | | | 0,11 | | 11,55 | 1,26 | | 0,08 | | | | S00357759 | 669423 | 668682 | 47,57 | 1,78 | 23,32 | 20,36 | | | | | 0,04 | | 5,61 | 0,91 | | 0,15 | | | | S00357760 | 669466 | 668738 | 26,87 | 0,77 | 18,62 | 25,32 | 0,02 | | | | 0,09 | | 26,06 | 1,26 | | 0,08 | | | | S00357762 | 669747 | 668153 | 53,57 | 2,17 | 19,20 | 18,16 | | | | 0,19 | 0,04 | | 5,46 | 0,80 | | 0,01 | | | | S00357763 | 669692 | 668142 | 36,63 | 9,28 | 22,30 | 22,65 | 0,04 | 0,15 | 0,03 | 0,40 | 0,12 | | 7,09 | 0,82 | | | | | | S00357764 | 669605 | 668146 | 42,91 | 6,12 | 23,61 | 17,91 | | 0,11 | 0,02 | | 0,09 | | 8,01 | 0,72 | | 0,03 | | | | S00357765 | 669646 | 668096 | 33,20 | 1,94 | 29,31 | 28,11 | | 0,12 | | | 0,05 | | 5,59 | 1,18 | 0,02 | 0,04 | | | | S00357766 | 669689 | 668074 | 42,23 | 1,94 | 26,03 | 23,13 | | | | | 0,03 | | 5,15 | 0,97 | | 0,03 | | | | S00357767 | 669499 | 667585 | 60,06 | 2,45 | 16,36 | 16,76 | 0,03 | 0,26 | | 0,06 | 0,07 | | 3,09 | 0,65 | 0,02 | | | | | S00357773 | 669464 | 668625 | | | 0,37 | | | | | | | | | | | | | | | S00357774 | 669463 | 668635 | 65,19 | 8,90 | 0,30 | 20,50 | 0,01 | 0,03 | 0,02 | 0,18 | 0,10 | 4,72 | 0,03 | | | | | | | S00357775 | 669435 | 668622 | | | | | | | | | | | | | | | | | | S00357776 | 669435 | 668622 | 61,62 | 7,60 | 0,29 | 25,18 | | | 0,01 | 0,07 | 0,17 | 5,01 | 0,05 | | | | | | | S00357777 | 669420 | 668616 | 52,57 | 12,61 | 0,37 | 26,85 | | 0,09 | | 0,07 | 0,13 | 7,21 | 0,08 | | 0,01 | | | | | S00357778 | 669430 | 668655 | 42,42 | 18,33 | 0,53 | 29,79 | | 0,08 | | 0,06 | 0,11 | 8,53 | 0,12 | | 0,02 | 0,02 | | | | S00357779 | 669423 | 668682 | 57,04 | 7,92 | 0,29 | 28,71 | 0,01 | | | 0,10 | 0,22 | 5,66 | 0,04 | | | 0,02 | | | | S00357780 | 669423 | 668682 | 36,71 | 20,46 | 0,52 | 32,06 | | 0,08 | | 0,03 | 0,14 | 9,77 | 0,07 | 0,14 | | 0,02 | | | | S00357781 | 669466 | 668738 | 49,52 | 10,92 | 0,30 | 32,62 | 0,03 | 0,06 | 0,03 | 0,38 | 0,19 | 5,92 | 0,05 | | | | | | | S00357782 | 669747 | 668153 | 47,58 | 23,35 | 0,91 | 16,35 | 0,03 | 0,08 | 0,04 | 2,39 | 0,21 | 8,85 | 0,11 | 0,03 | | | | | | S00357783 | 669692 | 668142 | 65,91 | 19,48 | 0,34 | 3,51 | 0,06 | 0,27 | 0,23 | 6,18 | 0,11 | 3,78 | 0,05 | 0,09 | | | | | | S00357784 | 669605 | 668146 | 89,53 | 6,54 | 0,11 | 1,57 | | | | | 0,02 | 2,13 | 0,03 | | | | 0,07 | | | S00357785 | 669646 | 668096 | 17,62 | 19,72 | 0,77 | 51,25 | 0,02 | 0,05 | | 0,24 | 0,22 | 10,02 | 0,10 | | | | | | | S00357786 | 669689 | 668074 | 37,78 | 23,33 | 1,13 | 26,93 | 0,02 | 0,13 | | 0,21 | 0,21 | 10,05 | 0,15 | | | | | | | S00357787 | 669499 | 667585 | 45,00 | 30,59 | 0,59 | 11,56 | 0,04 | 0,32 | 0,17 | 1,90 | 0,22 | 9,54 | 0,07 | | | | | | | S00357789 | 669776 | 667155 | 50,87 | 17,78 | 0,58 | 23,59 | 0,07 | | 0,10 | 0,78 | 0,12 | 6,07 | 0,04 | | <u> </u> | | | | | S00357790 | 670030 | 667663 | 33,82 | 13,86 | 0,50 | 44,55 | 0,04 | | 0,03 | 0,67 | 0,09 | 6,38 | 0,05 | | 0,02 | | | | | S00357791 | 670197 | 667864 | 41,46 | 11,83 | 0,53 | 38,22 | 0,06 | 0,11 | 0,06 | 0,68 | 0,40 | 6,62 | 0,04 | | | 0,01 | | | | S00357792 | 670199 | 667834 | 26,11 | 19,38 | 0,71 | 43,87 | 0,06 | | | 0,78 | 0,14 | 8,90 | 0,04 | | 0,02 | | | | | S00357793 | 670189 | 667857 | 2,72 | 1,06 | | 4,11 | | 0,40 | | | 13,99 | 4,16 | 0,73 | 3,55 | 0,41 | | | 0,19 | | Au ppm | Pt ppm | Ag ppm | Pd ppm | | Ta205 | | ThO2 | UO2 | CeO2 | Nd2O3 | | Pr203 | Sm203 | Gd2O3 | Dy203 | | Yb2O3 | Er203 | |--------|-------------|----------|--------|----------|-------|------|------|------|-------|-------|--------------|-------|-------------|-------|----------|----------|-------|-------| | | | | | 0,24 | | 0,17 | 0,11 | | 0,51 | 0,16 | 0,15 | | | | | 0,017 | | | | | | | | 0,15 | 0,04 | 0,08 | | | | | | | | | | 0,006 | | | | | | | | 0,16 | | 0,16 | | | | | | | <u> </u> | | | 0,004 | | | | | | | | 0,78 | | 0,39 | | | | | | | | | | 0,122 | | | | 16 | 38 | tr | tr | <u> </u> | | | | | | | | | ļ | | | | | | | | | | | 0,17 | | 0,14 | | | | | | | | | | 0,01 | | | | | | <u> </u> | | 0,15 | | 0,10 | | | | 0,09 | | | | | | tr | | | | | }
} | ļ | | 0,16 | | 0,41 | | | | | | | <u> </u> | | | 0,01 | | | | | | | | 0,13 | | 0,13 | | | | | | | | | | | | _ | | | | | | 0,22 | | 0,67 | | | | | | | | | | 0,04 | | | | | | ļ | | 0,12 | | 0,28 | | | | | <u> </u> | | ļ | | | tr | | | | | | ļ | | 0,15 | | 0,24 | | | | 0,12 | | | ļ | | | tr | | | | | | | | 0,15 | | 0,27 | 0,05 | | | | | | | | | 0,01 | | | | | | ļ | | 0,18 | | 0,28 | | | | | | ļ | ļ | | | ļ | | | | | | ļ | | 0,16 | | 0,19 | | | | 0,13 | | | ļ | | | tr | | | | | | | | 0,10 | | 0,08 | | | | | | | ļ | | | | | | | | | | |
! | | | - | - | | | | | | | | | | - | | 13 | 53 | | | | | | | | | | | | | | | | - | | | 13 | 38 | 1 | | | 1 | | | 1 | | | 1 | 1 | Ť | | | | | 1 | | 23 | 20 | 19 | 19 | | | | | | 1 | | | | | | | | | | | 46 | 31 | tr | tr | | | | | | | | | | | | | | | | | 63 | 15 | | | | | | | | | | | | <u> </u> | | | | | | | 56 | 25 | tr | tr | | | | | | | | | | | | | | | | | 19 | 0,2 | tr | tr | :
: | | | | | | | | | | | | | | | | 32 | | 32 | | tr | tr | <u> </u> | | | | | | | | | 0,07 | | | 1 | | <u> </u> | | | | | 63 | 15 | | | tr | | | | | | | | | | | | tr | | | | 11 | tr | tr | tr | | | | | | | | ļ | | | | | | | | | 15 | <u> </u> | <u> </u> | | <u> </u>
| | | | | | | 1 | | 1 | | | <u> </u> | | | | 13 | <u> </u> | <u> </u> | |
: | | - | | | | | - | | | | | | | | | | | | | 0,62 | 0,72 | 0,21 | 7,27 | 0,18 | 38,68 | 7 27 | 6,91 | 2,07 | 2,20 | 1,10 | 0,48 | 0,04 | 0,95 | 0,01 | tr = trace IGS ICP Analytical results from AUXICO samples taken in December 2021, all in ppm | Id | Area | Xz19 | yz19 | Li | Ge | Мо | Cd | Bi | Nb | Sn | Та | La | Се | |------------|---------------------------------|--------|--------|-------|-------|------|--------|--------|--------|--------|--------|--------|--------| | S00357832A | Area 50 -New Pits | 667865 | 670298 | 26,39 | 3,35 | 3,97 | 8,05 | 0,02 | 19,77 | 3,13 | 9,99 | 18,94 | 29,22 | | S00357832C | Area 50 -New Pits | | | 20,90 | 3,66 | 1,82 | | | 127,31 | 33,38 | 13,62 | 47,49 | 84,22 | | S00357833A | Area 50 -New Pits | 667865 | 670298 | 20,90 | 2,51 | 1,65 | 14,04 | | 11,01 | 10,95 | 8,03 | 14,95 | 29,53 | | S00357833C | Area 50 -New Pits | | | 0,00 | 3,21 | 1,76 | 7,00 | | 78,15 | 5,26 | 18,38 | 112,03 | 79,20 | | S00357834A | Area 50 -New Pits | 667865 | 670298 | 23,51 | 2,30 | 2,00 | 6,19 | 0,88 | 20,26 | 8,52 | 19,86 | 13,32 | 37,65 | | S00357834C | Area 50 -New Pits | | | 19,89 | 7,09 | 2,52 | 19,25 | 0,18 | 134,60 | 12,47 | 26,95 | 118,02 | 210,34 | | S00357835A | Area 50 -New Pits | 667743 | 670258 | 37,51 | 4,60 | 4,41 | 7,84 | 4,57 | 139,64 | 22,86 | 293,45 | 99,52 | 101,79 | | S00357835C | Area 50 -New Pits | | | 21,59 | 4,67 | 2,17 | 3,61 | 2,11 | 205,77 | 10,84 | 115,96 | 78,54 | 115,88 | | S00357836A | Area 50 -New Pits | 667743 | 670258 | 30,06 | 3,14 | 2,65 | 5,54 | 0,14 | 14,70 | 30,31 | 9,11 | 29,19 | 59,93 | | S00357836C | Area 50 -New Pits | | | 20,92 | 2,20 | 1,58 | 2,70 | | 45,35 | 2,79 | 9,61 | 18,96 | 29,85 | | S00357837A | Area 3-west of Area 50 | 667156 | 670311 | 23,73 | 2,27 | 3,27 | 43,88 | 0,98 | 30,70 | 31,47 | 11,77 | 21,73 | 39,03 | | S00357837C | Area 3-west of Area 51 | | | 21,52 | 2,98 | 3,45 | 4,39 | 0,01 | 89,97 | 13,53 | 48,94 | 31,72 | 31,21 | | S00357838A | Area 3-west of Area 52 | 667156 | 670311 | 36,03 | 3,44 | 2,81 | 0,97 | | 22,73 | 3,24 | 9,61 | 17,40 | 31,02 | | S00357838C | Area 3-west of Area 53 | | | 21,65 | 2,81 | 1,87 | 0,16 | 0,30 | 64,28 | 4,54 | 21,94 | 30,51 | 39,07 | | S00357839A | West of Area 50, N of Inselberg | 667565 | 670110 | 19,57 | 1,75 | 1,34 | 5,72 | 0,26 | 28,60 | 6,73 | 16,70 | 7,06 | 12,60 | | S00357839C | West of Area 50, N of Inselberg | | | 20,69 | 3,00 | 3,10 | 14,95 | 3,58 | 273,02 | 12,32 | 101,58 | 43,93 | 58,39 | | S00357840A | Area 50-SE end, New Pits | 667897 | 670029 | 32,58 | 3,56 | 4,04 | | 0,34 | 26,32 | 3,53 | 12,17 | 16,16 | 24,21 | | S00357840C | Area 50-SE end, New Pits | | | 21,32 | 3,61 | 2,85 | 15,39 | 0,08 | 96,80 | 7,72 | 11,81 | 49,79 | 58,42 | | S00357841A | Area 50-SE end, New Pits | 667897 | 670029 | 21,28 | 22,73 | 1,69 | 15,06 | 7,59 | 34,39 | 3,03 | 36,07 | 241,39 | 1022,0 | | S00357841C | Area 50-SE end, New Pits | | | 20,91 | 3,67 | 1,89 | | | 116,50 | 3,98 | 15,09 | 110,95 | 82,30 | | S00357846 | TA Area | 668626 | 669460 | 21,47 | 5,34 | 9,21 | 205,92 | 3,95 | 91,21 | 36,08 | 96,76 | 50,73 | 49,04 | | S00357847 | TA Area | 668626 | 669460 | 25,08 | 2,73 | 6,26 | 59,16 | 0,65 | 66,13 | 15,09 | 20,54 | 25,86 | 24,24 | | S00357848 | TA Area | 668626 | 669460 | 18,79 | 3,54 | 5,04 | 9,90 | 0,16 | 65,21 | 11,38 | 13,20 | 97,93 | 54,63 | | S00357849 | TA Area | 668626 | 669460 | 21,29 | 3,19 | 5,70 | 6,70 | 3,12 | 167,11 | 28,95 | 231,61 | 47,22 | 38,90 | | S00357850 | TA Area | 668633 | 669467 | 21,40 | 3,86 | 7,55 | 7,44 | 0,49 | 75,56 | 125,25 | 36,07 | 25,94 | 42,48 | | S00357851 | TA Area | 668633 | 669467 | 24,12 | 4,14 | 4,60 | 463,98 | 104,38 | 2901,2 | 36,98 | 1631,0 | 89,20 | 69,44 | | S00357852 | TA Area | 668633 | 669467 | 24,77 | 3,02 | 1,97 | 55,54 | 2,33 | 128,00 | 27,94 | 119,94 | 55,38 | 47,03 | | S00357853 | TA Area | 668633 | 669467 | 21,47 | 2,50 | 1,66 | 28,84 | 6,05 | 217,70 | 36,68 | 71,64 | 51,93 | 44,25 | | S00357855 | TA Area | 668625 | 669440 | 21,68 | 2,88 | 2,70 | 8,13 | 1,72 | 73,68 | 16,24 | 36,96 | 30,86 | 23,75 | | S00357856 | TA Area | 668625 | 669440 | 30,70 | 2,41 | 2,47 | 6,44 | 0,84 | 66,74 | 43,21 | 48,99 | 28,86 | 19,39 | Certificate of Analysis Project Ref: CA-AUXICO-LA-2022-02 70 Goodfellow Delson (Québec), Canada J5B 1V4 F: 450.993.0577 Fax: 514.221.4724 E: bureau_des_affaires@impact-gs.com http://www.impact-gs.com | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Но | Er | Tm | Yb | Lu | Th | Υ | U | V | Cs | Ga | Rb | Sr | TI | |---------------|--------|-------|------|-------|------|-------|------|-------|----------|-------|----------|--------|--------|-------|--------|------|-------|-------|-------|------| | 3,96 | 13,01 | 2,12 | 0,71 | 1,95 | 0,86 | 2,20 | 1,04 | 1,37 | | 2,09 | | 7,68 | 13,84 | 5,71 | 73,02 | | 11,96 | 29,48 | 37,48 | 0,86 | | 11,63 | 43,66 | 7,98 | 1,31 | 6,40 | 1,69 | 7,67 | 1,12 | 6,02 | | 8,83 | 1,14 | 110,72 | 61,05 | 14,36 | 66,62 | | 4,50 | 7,64 | 20,38 | 0,72 | | 4,03 | 12,79 | 2,16 | 0,68 | 1,78 | 0,83 | 1,79 | | 1,12 | | 1,75 | | 5,29 | 11,45 | 5,18 | 55,39 | | 8,22 | 25,38 | 32,46 | 0,81 | | 9,03 | 37,61 | 4,46 | 1,10 | 4,10 | 1,15 | 4,67 | 1,04 | 3,47 | | 4,52 | 0,22 | 9,17 | 37,67 | 8,00 | 44,56 | | 3,10 | 11,17 | 36,12 | 0,68 | | 3,60 | 11,60 | 1,82 | 0,64 | 1,50 | 0,79 | 1,59 | 4,53 | 0,95 | | 1,59 | | 8,05 | 8,78 | 5,64 | 44,96 | | 6,44 | 18,56 | 23,29 | 0,86 | | 29,21 | 116,95 | 17,10 | 1,43 | 7,37 | 1,78 | 7,77 | | 4,73 | | 5,77 | 0,40 | 30,69 | 56,96 | 9,11 | 48,89 | | 4,20 | 8,26 | 20,07 | 0,71 | | 13,31 | 45,36 | 6,72 | 1,26 | 5,01 | 1,31 | 4,84 | | 3,03 | <u> </u> | 3,68 | | 44,22 | 30,34 | 9,66 | 138,25 | 0,42 | 26,38 | 73,56 | 78,17 | 1,09 | | 15,75 | 58,86 | 10,56 | 2,07 | 9,40 | 2,21 | 12,32 | 2,37 | 9,69 | <u> </u> | 12,42 | 1,71 | 31,61 | 115,57 | 17,70 | 45,73 | | 3,81 | 8,26 | 22,09 | 0,71 | | 7,51 | 25,47 | 4,53 | 1,13 | 3,94 | 1,12 | 3,64 | | 2,25 | | 2,76 | | 7,76 | 23,92 | 5,81 | 63,25 | | 12,70 | 40,54 | 42,15 | 0,88 | | 3,88 | 14,07 | 2,19 | 0,75 | 2,35 | 0,91 | 2,79 | | 2,17 | <u> </u> | 3,49 | 0,07 | 6,69 | 22,51 | 7,00 | 27,83 | | 2,77 | 13,55 | 38,37 | 0,67 | | 5,93 | 16,88 | 2,96 | 0,45 | 1,19 | 0,74 | 1,08 | | 0,49 | <u> </u> | 1,15 | | 32,63 | 4,02 | 5,97 | 32,72 | | 17,20 | 7,80 | 14,81 | 0,78 | | 5,03 | 22,64 | 3,88 | 1,20 | 4,97 | 1,39 | 8,01 | 0,36 | 6,73 | | 9,58 | 1,24 | 15,80 | 72,87 | 14,50 | 154,25 | | 10,50 | 12,49 | 19,82 | 0,70 | | 4,49 | 15,18 | 2,38 | 0,72 | 2,14 | 0,92 | 2,64 | 1,02 | 1,76 | | 2,49 | | 65,37 | 19,01 | 6,47 | 93,26 | 2,64 | 14,26 | 33,54 | 35,47 | 0,92 | | 6,29 | 26,58 | 5,65 | 1,31 | 5,64 | 1,46 | 7,36 | | 5,77 | <u> </u> | 7,57 | 0,83 | 9,83 | 63,74 | 11,26 | 88,15 | | 6,97 | 13,01 | 23,59 | 0,73 | | 1,80 | 5,02 | 0,71 | 0,48 | 1,01 | 0,76 | 1,49 | | 1,03 | | 1,90 | | 6,05 | 10,68 | 5,87 | 43,15 | | 6,40 | 9,88 | 15,84 | 0,74 | | 7,26 | 25,01 | 4,49 | 1,23 | 7,22 | 2,13 | 13,35 | | 12,46 | 0,04 | 17,33 | 2,81 | 42,79 | 138,39 | 21,02 | 45,28 | | 5,03 | 8,07 | 18,12 | 0,70 | | 3,29 | 10,88 | 1,66 | 0,69 | 1,84 | 0,90 | 2,52 | | 1,70 | | 2,41 | | 8,90 | 17,46 | 6,51 | 132,40 | | 18,51 | 37,44 | 43,01 | 0,97 | | 9,71 | 41,19 | 8,11 | 1,99 | 11,57 | 2,61 | 16,27 | 2,49 | 12,96 | | 16,78 | 2,59 | 13,70 | 150,75 | 18,06 | 60,60 | | 5,76 | 12,79 | 24,83 | 0,72 | | 165,64 | 456,91 | 98,35 | 0,77 | 21,73 | 3,97 | 14,45 | | 4,51 | | 6,86 | 0,44 | 922,85 | 16,85 | 6,33 | 30,02 | | 10,64 | 20,16 | 30,17 | 0,77 | | 10,80 | 47,73 | 6,78 | 1,50 | 6,12 | 1,45 | 7,33 | | 6,09 | <u> </u> | 8,39 | 0,98 | 9,72 | 66,12 | 15,35 | 44,93 | | 4,06 | 11,30 | 23,11 | 0,68 | | 6,15 | 19,15 | 2,83 | 0,57 | 2,23 | 0,92 | 2,20 | 0,21 | 1,33 | | 2,21 | | 53,97 | 12,50 | 13,80 | 158,26 | | 25,08 | 24,90 | 34,37 | 0,83 | | 4,21 | 12,28 | 2,13 | 0,55 | 1,70 | 0,83 | 1,74 | 1,82 | 0,98 | ļ | 1,79 | ļ | 17,24 | 7,58 | 6,58 | 39,44 | | 25,39 | 11,89 | 24,00 | 0,84 | | 7,65 | 26,62 | 3,20 | 0,82 | 3,05 | 0,95 | 2,40 | 3,29 | 1,25 | <u> </u> | 1,92 | <u> </u> | 25,30 | 11,70 | 9,11 | 46,18 | | 31,60 | 17,12 | 37,41 | 0,76 | | 4,83 | 16,34 | 2,15 | 0,64 | 2,29 | 0,87 | 2,15 | | 1,30 | | 2,07 | | 36,35 | 14,05 | 10,13 | 66,14 | | 36,47 | 17,62 | 33,12 | 0,74 | | 4,44 | 13,83 | 2,10 | 0,63 | 2,04 | 0,91 | 2,44 | | 1,72 | <u> </u> | 2,74 | ļ | 24,11 | 14,78 | 9,10 | 97,83 | | 18,05 | 17,25 | 29,11 | 0,76 | | 11,47 | 38,47 | 7,35 | 1,14 | 6,50 | 1,62 | 6,01 | 0,21 | 2,41 | ļ | 3,82 | | 36,17 | 34,33 | 39,54 | 32,59 | | 36,59 | 23,87 | 50,45 | 1,06 | | 6 <i>,</i> 55 | 20,92 | 2,74 | 0,70 | 2,34 | 0,85 | 1,97 | | 1,02 | | 1,85 | | 36,84 | 8,55 | 8,10 | 27,72 | | 39,10 | 18,23 | 55,74 | 0,77 | | 5,65 | 19,36 | 2,73 | 0,59 | 2,41 | 0,92 | 2,62 | ļ | 2,04 | <u> </u> | 3,10 | ļ | 23,62 | 18,03 | 8,83 | 33,81 | ļ | 21,14 | 10,12 | 33,03 | 0,86 | | 3,61 | 12,11 | 1,88 | 0,48 | 1,68 | 0,79 | 1,54 | | 1,10 | ļ | 2,13 | | 14,81 | 10,37 | 7,35 | 33,89 | | 9,33 | 6,89 | 21,02 | 0,81 | | 2,70 | 11,24 | 1,20 | 0,49 | 1,19 | 0,76 | 1,43 | 1,06 | 0,99 | <u> </u> | 1,70 | | 12,39 | 9,10 | 5,67 | 62,19 | 1,57 | 7,52 | 15,46 | 20,67 | 0,89 | ## CanaMex 💩 # Appendix III: Distribution of Auger Holes Proposed distribution of auger holes on the Minastyc property for the 2022 program Minastyc proposed auger hole coordinates for the 2022 program | Id | Easting | Northing | Id | Easting | Northing | Id | Easting | Northing | |----|---------|----------|----|---------|----------|-----|---------|----------| | 2 | 667593 | 669674 | 79 | 668175 | 670082 | 115 | 668154 | 669916 | | 3 | 667503 | 669677 | 80 | 668097 | 670083 | 116 | 668241 | 669505 | | 46 | 667697 | 669673 | 81 | 668052 | 670164 | 117 | 668144 | 669505 | | 47 | 667766 | 669673 | 82 | 667964 | 670166 | 118 | 668053 | 669502 | | 48 | 667631 | 669589 | 83 | 668269 | 670164 | 119 | 668781 | 669726 | | 49 | 667553 | 669591 | 84 | 668210 | 670165 | 120 | 668677 | 669727 | | 50 | 667458 | 669594 | 85 | 668136 | 670166 | 121 | 668581 | 669729 | | 51 | 667599 | 669521 | 86 | 668010 | 670246 | 122 |
668140 | 669416 | | 52 | 667503 | 669525 | 87 | 667925 | 670248 | 123 | 668071 | 669416 | | 53 | 667403 | 669677 | 89 | 668173 | 670243 | 124 | 667985 | 669414 | | 54 | 667291 | 669680 | 90 | 668090 | 670246 | 125 | 668824 | 669814 | # CanaMex & | 55 | 667860 | 669754 | 91 | 667728 | 670003 | 126 | 668736 | 669813 | |----|--------|--------|----------|--------|----------|----------|----------|--------| | 56 | 667767 | 669758 | 92 | 667635 | 670003 | 127 | 668637 | 669808 | | 57 | 667659 | 669758 | 93 | 667820 | 670000 | 128 | 668728 | 669640 | | 58 | 667547 | 669761 | 94 | 667776 | 670087 | 129 | 668626 | 669640 | | 59 | 667895 | 669834 | 95 | 667684 | 670086 | 130 | 668523 | 669642 | | 60 | 667816 | 669835 | 96 | 667856 | 670083 | 131 | 668869 | 669728 | | 61 | 667724 | 669835 | 97 | 667810 | 670169 | 132 | 668826 | 669637 | | 62 | 667615 | 669838 | 98 | 667730 | 670170 | 133 | 668680 | 669559 | | 63 | 668120 | 669833 | 99 | 667885 | 670167 | 134 | 668586 | 669559 | | 64 | 668054 | 669832 | 100 | 667780 | 670248 | 135 | 668486 | 669559 | | 65 | 667979 | 669835 | 101 | 668173 | 669775 | 136 | 668767 | 669562 | | 66 | 667934 | 669918 | 102 | 667853 | 670246 | 137 | 668655 | 669481 | | 67 | 667854 | 669919 | 103 | 667815 | 670309 | 138 | 668550 | 669481 | | 69 | 668095 | 669916 | 104 | 667753 | 670300 | 139 | 668761 | 669481 | | 70 | 668018 | 669918 | 105 | 667886 | 670306 | 140 | 668603 | 669402 | | 71 | 667978 | 669999 | 106 | 667775 | 669916 | 141 | 668707 | 669401 | | 72 | 667899 | 670000 | 107 | 667688 | 669918 | 142 | 668649 | 669315 | | 73 | 668203 | 669995 | 108 | 668102 | 669751 | 143 | 668523 | 669315 | | 74 | 668137 | 669999 | 109 | 668154 | 669717 | 144 | 668760 | 669315 | | 75 | 668060 | 669999 | 110 | 668078 | 669669 | 145 | 668556 | 669217 | | 76 | 668011 | 670086 | 111 | 668160 | 669669 | 146 | 668654 | 669218 | | 77 | 667933 | 670085 | 112 | 668128 | 669583 | 147 | 668778 | 669872 | | 78 | 668239 | 670083 | <u> </u> | | <u> </u> | <u> </u> | <u> </u> | | # Appendix IV Alpha1 Assay Certificates | WA | AVELENGTH DISPERSIV | E X-RAY FLUC | PRESCENCE REPORT | The state of s | Olphai | |---|--|--|---|--|---------------------------------------| | Sample Type
Origin
Clien
Contac
Address
Gh | n 500357754 CANECA 1 :: DESCONOCIDO i: DESCONOCIDO i: DESCONOCIDO i: TIFFANY GIVENTES :: 201 RUE NOTRE DAME QUEST ;: MONTREAL :: 1 438499621 | | Consecutive of Sample
Responsible for Sampling
Sampling Plan/Procedure
Date Received:
Date of Analysis:
Date of Report.
Solicitud Análisis:
Consecutive of Report. | AUX 26107
CLIENT
NONE
02/09/2021
15/09/2021
15/09/2021
SA7735
26107-RE XRF | Servicios Analisicos | | Method of Analysis | s: PRT-GT-01 WDXRF-OMNAN P | ERLA | Application: | 1,11 AQ 2020 | | | 7-47-35 Versión 3 | | OBSERVATIONS | 1 | Págira I de 1 | | | | | | - | | | | | Name | Element ALO | Composition (%) | | | | | Aluminum
Silicon | Al ₂ O ₃
SiO ₂ | 1,13 | | | | | 7.235.731.5 | P ₂ O ₅ | 1.00000 | | | | | Phosphorus | K,O | 0,18 | | | | | Potassium | - | 0,14 | | | | | Manganese | Mn0
TiO ₂ | | | | | | Titanium
Iron | | 33,16
31,84 | | | | | Zinc | Fe ₂ O ₃
ZnO | 0,07 | | | | | Zirconium | ZrO ₂ | - | | | | | Niobium | Nb ₂ O ₅ | 12,36 | | | | | | | 0,78 | | | | | Lead
Hafnium | PbO
HfO ₂ | 0,39 | | | | | | SnO ₂ | | | | | | Tin | - | 0,13 | | | | | Loss of Ignition | LOI | N.D. | | | | | | REE | | | | | | Name | Element | Composition (%) | | | | | Cerium | CeO ₂ | N.D. | | | | | Neodymium | Nd_2O_3 | N.D. | | | | | Lanthanum | La ₂ O ₃ | N.D. | | | | | Praseodymium | Pr ₂ O ₃ | N.D. | | | | | Samarium | 5m203 | N.D. | | | | | Gadolinium | Gd ₂ O ₃ | N.D. | | | | | Dysprosium | Dy_2O_3 | N.D. | | | | | Yttrium | Y ₂ O ₃ | 0,12 | | | | | Ytterbium | Yb ₂ O ₃ | N.D. | | | | | Erbium | Er203 | N.D. | | | | | Total Rare Earth
Elements | REE | 0,1 | | | | evations
NOT DETECTABLE LDI : (LC | ISS OF IGNTION, 1000°Cfor1 hour | | | 120 | | | enalysis corresponds to a sen | ni-quantitative program (max std 5%). Th | e result is based on dried | Approved by Jairo Torres | 8 | | | s technique does not validate the | rore presence of elements not detected if | they are below 100ppm, O. | irtrace Ceneral Manager | | | | the validity or applicability of the | results with commercial ends, Alpha 1 S.A.S | does not take responsibility | for the sepresentativity | | | | traceability of the sample and fo
sture | crivands them to the Sumpling Plat/Procedu | re referenced above. | | | 10.24.0 | | sture | NONE 45 | gh | Produce by Juan Sebastia | n Betancourt | AK 60 No. 67º 80 B. Modelo Norte | | ple quantity | 15g | | Analyst | | Bogotá D.C. | | netic Characteristics: | NONE | | | | Tel. (57-1) 2313518 | | er
phal SAS reserves the right to a | confirm the authoriticity of this report of analys | is under the policies of confid | enfeity and property rights of our clients. | | Móvil 3134549361
www.alpha1.com.co | | s analytical results present corre | spond EXCLLSIVELY to the sample received as | ed NOF to any other material o | of the same origin. | | gerenciaadministrativa@alpha1.com.co | | | Every copy of the results on paper will have as
in of the report is prohibited without written as | | rice of the analysis. | | устепнавиннизивнувация 1. сонт. со | | | | | | | | | ny inconveniences with the results | can be processed within 3 months after the t | he report has been sent to th | e clent by Alpha1 SAS. | | | | | 500357757 CANECA 1 | IVE A-BAT I E | Consecutive of Sample: | AUX 26109 | Servicios Anali | |--|---
--|---|---|---| | Origin:
Client
Contact
Address:
City:
Phone Number: | DESCONOCIDO
DESCONOCIDO
AUXICO RESOURCES
TIFFANY CIFUENTES
201 RUE NOTRE DAME QUE
MONTREAL
1 4384999621
PRT-GT-01 WDMRF-OMNIAN | | Responsible for Sampling
Sampling Plan/Procedure:
Date Received:
Date of Analysis:
Date of Report:
Solicitud Análisis:
Consecutive of Report:
Application: | CUENT
NONE
02/09/2021
15/09/2021
15/09/2021
5A7735
26109-RE XRF
1,11 AQ 2020 | | | -35 Version 3 | TRIPUTOT NUMBER CONTINUES | | | Pagna 1 de 1 | | | | | OBSERVATIONS | /i | | | | | Name | Element | Composition (%) | | | | | Magnesium | MgO | 0,02 | | | | | Aluminum | Al ₂ O ₃ | 2,01 | | | | | Silicon | SiO ₂ | 40,06 | | | | | Phosphorus | P ₂ O ₅ | 0,06 | | | | | Manganese | MnO | 0,93 | | | | | Titanium | TiO ₂ | 26,36 | | | | | Iron | Fe ₂ O ₃ | 24,65 | | | | | Zinc | Zn0 | 0,07 | | | | | Zirconium | ZrO ₂ | 5,45 | | | | | Niobium | Nb ₂ O ₅ | 0,15 | | | | | Hafnium | HfO ₂ | 0,10 | | | | | Loss of Ignition | LOI | N.D. | | | | | | REE | | | | | | Name | Element | Composition (%) | | | | | Cerium | CeO ₂ | N.D. | | | | | Neodymium | Nd ₂ O ₃ | 0,09 | | | | | Lanthanum | La ₂ O ₃ | N.D. | | | | | Praseodymium | Pr ₂ O ₃ | N.D. | | | | | Samarium | Sm ₂ O ₃ | N.D. | | | | | Gadolinium | Gd_2O_3 | N.D. | | | | | Dysprosium | Dy ₂ O ₃ | N.D. | | | | | Yttrium | Y ₂ O ₃ | 0,004 | | | | | Ytterbium | Yb ₂ O ₃ | N.D. | | | | | Erbium | Er ₂ O ₃ | N.D. | | | | | Total Rare Earth
Elements | REE | 0,1 | | | | ervations | | | | | | | nalysis corresponds to a semi- | S OF IGNTION) 1000°C for 1 hour
quantitative program (max std 5%) | The result is based on drie | Approved by Jairo Torres | | | | | name presence of elements not detecte | | | | | | | receits with commercial ends, Alpha 1.5 | | Bity for the representativity | | | | taceability of the cample and for
ure | wards them to the Sampling Flan/Frod | adure referenced above. | | | | | activity | | μS _t yh | Produce by Juan Sebastia | n Betancourt | CONTROL OF THE LEADERS OF THE THE PARTY. | | Ne quantity | 45g | become of the control | Analyst | | AK 60 No. 67° 80 B. Modelo N | | etic Characteristics: | NONE | | 1000000 | | Bogotá | | t
half S.A.S received the right to co | ofen the authorized the most of an | alveir under the nations of our | risdenticity and property rights of our clients. | | Tel. (57-1) 2313 | | analytical results present corresp | ond EXCLUSIVELY to the cample receive | d and NOT to any other mater | ol of the came origin. | | Móvil 3134549 | | | my capy of the results on paper will hav | | oprice of the analysis. | | www.alpha1.com
qerenciaadministrativa@alpha1.com | | consists or partial reproduction | | | | | | | Identificati
Sample Tyj
Orig
Clie
Conta
Addre
Ci
Phone Numb | AVELENGTH DISPERS on 500357759 CANECA 1 we're DESCONDEDO in: DESCONDEDO in: DESCONDEDO in: ALXICCO RESOURCES ct: TIFFANY CIPUENTES se: 2017 RUE NOTHE DAME OUE by: MONTREAL in: 1 4384999621 is: PRT-GT-01 WIDSPF-OMNIAN is: PRT-GT-01 WIDSPF-OMNIAN | รา | Consecutive of Sample: Responsible for Sampling Sampling Plan/Procedure: Date Received: Date of Analysis: Date of Report: Solicitud Análisis: Consecutive of Report Application: | AUX 26111
CLIENT
NONE
0.2099/2021
15;09/2021
15;09/2021
SA7735
26111-RE XRF
1,11 AQ 2020 | | |--|--|------------------------------------|--|--|--| | The second | E. | OBSERVATIONS | | | | | | Name | Element | Composition (%) | | | | | Aluminum | Al ₂ O ₃ | 1,78 | | | | | Silicon | SiO ₂ | 47,57 | | | | | Phosphorus | P ₂ O ₅ | 0.04 | | | | | Manganese | MnO | 0,91 | | | | | Titanium | TiO ₂ | 23,32 | | | | | Iron | Fe ₂ O ₃ | 20,35 | | | | | Zinc | Zn0 | 0,15 | | | | | Zirconium | ZrO ₂ | 5,61 | | | | | Niobium | Nb ₂ O ₅ | 0,13 | | | | | Hafnium | HfO ₂ | 0.13 | | | | | Loss of Ignition | LOI | N.D. | | | | | | REE | | | | | | Name | Bement | Composition (%) | | | | | Cerium | CeO ₂ | N.D. | | | | | Neodymium | Nd ₂ O ₃ | N.D. | | | | | Lanthanum | La ₂ O ₃ | N.D. | | | | | Praseodymlum | Pr ₂ O ₃ | N.D. | | | | | Samarium | Sm ₂ O ₃ | N.D. | | | | | Gadolinium | Gd_2O_3 | N.D. | | | | | Dysprosium | Dy ₂ O ₃ | N.D. | | | | | Yttrium | Y ₂ O ₃ | N.D. | | | | | Ytterbium | Yb ₂ O ₃ | N.D. | | | | | Erblum | Er ₂ O ₃ | N.D. | | | | | Total Rare Earth
Elements | REE | 0,0 | | | | | L055 OF IONTION) 1000°C for 1 hour | | | | | | This technique does not validate t | eni-quantitative program (max sid 5%)
he none presence of elements not detecte
he results with commercial ends. Alpha 1 S | d if they are below 100ppm. Or | | | | | | forwards them to the Sampling Plan/Proc | | | | | | Noisture
Radioactivity | 9,17
NONE | %
uSw/h | Produce by Juan Sebastia | n Betancourt | | | Sample quantity | 15g | | Analyst | | AK 60 No. 67 ^a 80 B. Modelo Nor | | Regnetic Characteristics: | NONE | | | | Bogota D. | | Sates:
Alabot S.A.T reserves the right to | confirm the authoraticity of this regard of an | plesis under the policies of confi | entiality and amounty rights of any ellarge | | Tel. (57-1) 23135 | | The analytical results present cor | respond EXCLUSIVEL! to the sample receive | d and NOT to any other material | of the same origin. | | Movil 313454930 | | | tivery copy of the results on paper will have
tion of the report is prohibited without writte | | non of the analysis | | www.alpha1.com. | | | | | | | | | Name | Sample Type:
Origin:
Client:
Contact:
Address:
City:
Phone Number: | DESCONOCIDO AUXICO RESOURCES TIFFANY CIFUENTES 201 RUE NOTRE DAME OUEST MONTREAL | r
Astilla | Consecutive of Sample;
Responsible for Sampling
Sampling Plar/Procedure:
Date Received:
Date of Analysis;
Date of Report:
Solicitud Analass;
Consecutive of Report:
Application: | AUX 26113
CLJENT
NONE
02/09/2021
15/09/2021
15/09/2021
SA7735
26113-RE XRF
1,11 AQ 2020 | |
---|--|---|--------------------------------|--|---|--| | Abminum | 1.00 | | OBSERVATIONS | | | | | Aluminum Al ₂ O ₃ 2,17 Silicon SiO ₂ 53,56 Phosphorus P ₂ O ₃ 0,04 Potassium K ₂ O 0,19 Manganese MnO 0,80 Titanium TiO ₂ 19,20 Iron Fe ₂ O ₃ 18,15 Zinc ZnO 0,01 Zironium ZrO ₂ 5,46 Nicolum Nb ₂ O ₃ 0,12 Hafnium HfO ₂ 0,28 Loss of Ignition LOI N.D, REE Name Element Composition (%) Corlum CoO ₂ N.D. Neodymium Hd ₂ O ₃ N.D. Lanthanum La ₂ O ₃ N.D. Lanthanum La ₂ O ₃ N.D. Lanthanum Fr ₂ O ₃ N.D. Lanthanum Gd ₂ O ₃ N.D. Lanthanum Gd ₂ O ₃ N.D. Lanthanum Sm ₂ O ₃ N.D. Lanthanum Sm ₂ O ₃ N.D. Lanthanum Fr ₂ O ₃ N.D. Dysprosium Dy ₂ O ₃ N.D. Oysprosium Dy ₂ O ₃ N.D. Trifum Y ₂ O ₃ N.D. Total Rare Earth Elements Elements REE O,0 Erbitum Er ₂ O ₃ N.D. Total Rare Earth Elements REE O,0 Characteristic does not acide to the nare presence of shoreous productions. Acide to the second production of | i i | Name | Element | Composition (%) | | | | Phosphorus P ₂ O ₃ 0,04 Potassium (₁ O 0,19 Manganese MnO 0,80 Titanium TiO ₂ 19,20 Iron Fe ₂ O ₃ 18,15 Zine ZnO 0,01 Zironium ZrO ₂ 5,46 Niobium Nb ₂ O ₃ 0,12 Hafinium HiO ₂ 0,28 Loss of Ignition I.Ol N.D. REE Name Element Composition (%) Cerium CeO ₂ N.D. Neodymium Nd ₂ O ₃ N.D. Neodymium Nd ₂ O ₃ N.D. Lanthanum La ₂ O ₃ N.D. Praseodymium P ₁ O ₃ N.D. Samarium Sm ₂ O ₃ N.D. Samarium Sm ₂ O ₃ N.D. Dysprosium Dy ₂ O ₃ N.D. Dysprosium Dy ₂ O ₃ N.D. Yttrium Y ₂ O ₃ N.D. Yttrium Y ₂ O ₃ N.D. Erbium Er ₂ O ₃ N.D. Total Rare Earth REE O,0 Erbium Er ₂ O ₃ N.D. Total Rare Earth REE O,0 Total Rare Earth REE O,0 Total Rare Earth REE O,0 Total Rare Earth Selections of descriptions of description of the residence of the selection of descriptions of the selection of description of the residence of the selection of description of the residence of the selection of description of the selection of the selection of description of the selection se | | Aluminum | Al ₂ O ₃ | | | | | Potassium K ₂ O 0,19 Manganese MnO 0,80 Titanium TiO ₂ 19,20 Iron Fe ₂ O ₃ 18,15 Zinc ZnO 0,01 Zirconium ZrO ₂ 5,46 Niobium Nb ₂ O ₃ 0,12 Hafnium HiO ₂ 0,28 Loss of Ignition LOI N.D., REE Name Element Composition (%) Cerlum CeO ₂ N.D. Neodymium Nd ₂ O ₃ N.D. Lanthanum La ₂ O ₅ N.D. Lanthanum La ₂ O ₅ N.D. Praseodymium Nd ₂ O ₃ N.D. Samarium Sm ₂ O ₃ N.D. Dysprositum Dy ₂ O ₃ N.D. Dysprositum Dy ₂ O ₃ N.D. Tyttrium Y ₂ O ₃ N.D. Yttrium Y ₂ O ₃ N.D. Yttrium Y ₂ O ₃ N.D. Erbium Er ₂ O ₃ N.D. Total Pare Earth REE O,0 Recent Recen | | Silicon | SiO ₂ | 53,56 | | | | Potassium K ₂ O 0,19 Manganese MnO 0,80 Titanium TiO ₂ 19,20 Iron Fe ₂ O ₃ 18,15 Zinc ZnO 0,01 Zirconium ZrO ₂ 5,46 Niobium Nb ₂ O ₃ 0,12 Hafnium HiO ₂ 0,28 Loss of Ignition LOI N.D., REE Name Element Composition (%) Cerlum CeO ₂ N.D. Neodymium Nd ₂ O ₃ N.D. Lanthanum La ₂ O ₃ N.D. Lanthanum La ₂ O ₃ N.D. Praseodymium Nd ₂ O ₃ N.D. Samarium Sm ₂ O ₃ N.D. Dysprositum Dy ₂ O ₃ N.D. Dysprositum Dy ₂ O ₃ N.D. Tytrium Y ₂ O ₃ N.D. Yttrium Y ₂ O ₃ N.D. Yttrium Y ₂ O ₃ N.D. Total Fare Earth REE O,0 O, | | Phosphorus | P>0s | 0.04 | | | | Manganese MinO 0,80 Titanium TiO ₂ 19,20 Itron Fe ₂ O ₃ 18,15 Zinc ZnO 0,01 Zirconium ZrO ₂ 5,46 Niobitum Nb ₂ O ₅ 0,12 Hafnitum HiO ₂ 0,28
Loss of Ignition LOI N.D, REE Name Element Composition (%) Cerium CeO ₂ N.D. Neodymium Nd ₂ O ₃ N.D. Lanthanum La ₂ O ₃ N.D. Lanthanum La ₂ O ₃ N.D. Praseodymium Pr ₂ O ₃ N.D. Samarium Sm ₂ O ₃ N.D. Samarium Sm ₂ O ₃ N.D. Gadolinkim Gd ₂ O ₃ N.D. Tyttrium Y ₂ O ₃ N.D. Ytterbium Pr ₂ O ₃ N.D. Ytterbium Y ₂ O ₃ N.D. Total Rare Earth Elements REE 0,0 Total Rare Earth Elements REE 0,0 Total flare Earth Elements REE 0,0 Total flare bandwister of the service and detected if they are below 105gm Our trace the selfice or specialized interval to the common detected if they are below 105gm Our trace The selfic or specialized interval to the common detected if they are below 105gm Our trace The selfic or specialized interval to the common detected if they are below 105gm Our trace The selfic or specialized interval to the common detected if they are below 105gm Our trace The selfic or specialized interval to the common detected if they are below 105gm Our trace The selfic or specialized interval to the common detected if they are below 105gm Our trace The selfic or specialized interval to the common detected if they are below 105gm Our trace The selfic or specialized interval to the common detected if they are below 105gm Our trace The selfic or specialized interval to the common detected if they are below 105gm Our trace The selfic or specialized interval to the common detected if they are below 105gm Our trace The selfic or specialized interval to the common detected if they are below 105gm Our trace The selfic or specialized interval to the common detected if they are below 105gm Our trace Note that the selfic or special points are special point or special points and the special points are special point or special points are special point or special points and 100 to see yout points are special point or special points are spec | | | | 0,19 | | | | Thanium TiO ₂ 19,20 Iron Fe ₂ O ₃ 18,15 Zinc ZnO 0,01 Zirconium ZrO ₂ 5,46 Niobilum Nb ₂ O ₃ 0,12 Hahrilum HiO ₂ 0,28 Loss of Ignition LOI N.D. REE Name Element Composition (%) Cerium CeO ₂ N.D. Neodymium Nd ₂ O ₃ N.D. Lanthanum La ₂ O ₃ N.D. Lanthanum La ₃ O ₃ N.D. Praseodymium Pr ₂ O ₃ N.D. Samarium Sm ₂ O ₃ N.D. Gadolinum Gd ₂ O ₃ N.D. Samarium Sm ₂ O ₃ N.D. Tyttrium Y ₂ O ₃ N.D. Yttrium Y ₂ O ₃ N.D. Yttrium Y ₂ O ₃ N.D. Erbium Er ₂ O ₃ N.D. Total Rare Earth Elements REE O,0 Total Rare Earth Flierments Rar | | 1,15,150,000 | | | | | | Iron Fe ₂ O ₃ 18,15 Zinc ZnO 0,01 Zironkum ZrO ₂ 5,46 Niobium Nb ₂ O ₅ 0,12 Hafnium HfO ₂ 0,28 Loss of Ignition LOI N.D, REE Name Element Composition (%) Cerlum CeO ₂ N.D. Neodymium Nd ₂ O ₃ N.D. Larithanum La ₂ O ₅ N.D. Praseodymium Pr ₂ O ₃ N.D. Samarkum Sm ₂ O ₃ N.D. Samarkum Sm ₂ O ₃ N.D. Gadolinium Gd ₂ O ₃ N.D. Dysprosium Dy ₂ O ₃ N.D. Yttrium Y ₂ O ₃ N.D. Yttrium Y ₂ O ₃ N.D. Erbium Er ₂ O ₃ N.D. Erbium Er ₂ O ₃ N.D. Total Rare Earth REE 0,0 Erbium Er ₂ O ₃ N.D. Total Rare Earth REE 0,0 | | | | U. C. | | | | Zinc ZnO 0,011 Zirconlum ZrO ₂ 5,46 Nilobium Nb ₂ O ₅ 0,12 Hahilum HfO ₂ 0,28 Loss of lightion LOI N.D. REE Name Element Composition (%) Cerium CeO ₂ N.D. Neodymium Nd ₂ O ₃ N.D. Lanthanum La ₂ O ₉ N.D. Praseodymium Pr ₂ O ₃ N.D. Samarkum Sm ₂ O ₃ N.D. Tyttrium Y ₂ O ₉ N.D. Ytterblum Pr ₂ O ₃ N.D. Ytterblum Pr ₂ O ₃ N.D. Total Rare Earth Elements REE 0,0 Recovered by Juan Sebastian Betaincourt Notice States of the Recovered Rare | j | | | A STATE OF THE PARTY PAR | | | | Ziroonlum ZrO ₂ 5,46 Niloblum Nb ₂ O ₅ 0,12 Hafnium HfO ₂ 0,28 Loss of Ignition LOI N.D., REE Name Element Composition (%) Cerlum CeO ₂ N.D. Neodymium Nd ₂ O ₅ N.D. Lanthanum La ₂ O ₃ N.D. Lanthanum La ₂ O ₃ N.D. Samarlum Sm ₂ O ₃ N.D. Samarlum Sm ₂ O ₃ N.D. Samarlum Sm ₂ O ₃ N.D. Dysprosium Dy ₂ O ₃ N.D. Yttrium Yo ₂ O ₃ N.D. Yttrium Yo ₂ O ₃ N.D. Yttrium Yo ₂ O ₃ N.D. Total Rare Earth Elements REE O,0 Total Rare Earth Elements REE O,0 Total Rare Earth Flements Received the search with commonic lease, skipts 15.45 does not see the proposition for search and formed in the search part of the search and formed in the search part of pa | | | | | | | | Niobitum Nb ₂ O ₅ 0,12 Hafnium HfO ₂ 0,28 Loss of Ignition LOI N.D. REE Name Element Composition (%) Cerium CeO ₂ N.D. Neodymium Nd ₂ O ₅ N.D. Lanthanum La ₂ O ₃ N.D. Lanthanum La ₂ O ₃ N.D. Lanthanum La ₂ O ₃ N.D. Samarium Sm ₂ O ₃ N.D. Gadolinium Gd ₂ O ₅ N.D. Opysprosium Dy ₂ O ₃ N.D. Tyttrium Y ₂ O ₃ N.D. Yttrium Y ₂ O ₃ N.D. Yttrium Y ₂ O ₃ N.D. Erbitum Er ₂ O ₃ N.D. Total Rare Earth REE 0,0 Total Rare Earth REE 0,0 Total Rare faith REE 0,0 Total Rare faith REE 0,0 Total Rare Earth Ree 0,0 Total Rare In the result of the number of the second of the countries of the second of the number of the number of the number of the number of the second of the number | | 1,000,000 | 300.14 | -7-7- | | | | Hafnlum HfO2 0,28 Loss of Ignition LOI N.D. Name Blement Composition (%) Cerlum CeO2 N.D. Neodymium Nd2O3 N.D. Lanthanum La2O3 N.D. Lanthanum La2O3 N.D. Lanthanum Sm2O3 N.D. Cardillium Sm2O3 N.D. Gaddinium Gd2O3 N.D. Dysprosium Dy2O3 N.D. Tyttrium Y2O3 N.D. Ytterbum Y2O3 N.D. Ytterbum Y2O3 N.D. Total Rare Earth Elements REE D,0 Total Rare Earth Elements REE D,0 Total flare to the content of co | | | - | | | | | Loss of Ignition LOI N.D. REE Name Element Composition (%) Cerium 6e02 N.D. Neodymium Nd203 N.D. Lanthanum La_03 N.D. Lanthanum La_03 N.D. Praseodymium Pf203 N.D. Praseodymium Pf203 N.D. Samarlum 5m203 N.D. Samarlum 5m203 N.D. Objection of the control | | 4 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | | | Name Element Composition (%) Cerlum CeO ₂ N.D. Neodymium Nd ₂ O ₃ N.D. Lanthanum La ₂ O ₃ N.D. Lanthanum Nd ₂ O ₃ N.D. Praseodymium Pr ₂ O ₃ N.D. Samarium Sm ₂ O ₃ N.D. Samarium Sm ₂ O ₃ N.D. Objection Gadolinium Gd ₂ O ₃ N.D. Dysprosium Dy ₂ O ₃ N.D. Ytterbium Yb ₂ O ₃ N.D. Ytterbium Yb ₂ O ₃ N.D. Total Rare Earth REE O,0 Total Rare Earth REE O,0 Total results in the sealph corresponds to a semi-quantificitie program inex set 5%. The result is based on third material formation in the sealph corresponds to the results with commodification. Abotal 5.83, The result is based on third material formation in the sealph corresponds to the results with commodification. Abotal 5.83, the result is based on third material formation in the sealph corresponds to the sealph and formation from the facility of the corresponds to the sealph | | | 100,000 | | | | | Cerlum CeO ₂ N.D. Neodymium Nd ₂ O ₃ N.D. Lanthanum Pr ₂ O ₃ N.D. Praseodymium Pr ₂ O ₃ N.D. Samarium Sm ₂ O ₃ N.D. Samarium Sm ₂ O ₃ N.D. Gadollinium Gd ₂ O ₃ N.D. Dysprosium Dy ₂ O ₃ N.D. Tyttrium Y ₂ O ₃ N.D. Ytterbium Yr ₂ O ₃ N.D. Ytterbium Yr ₂ O ₃ N.D. Total Rare Earth Elements Erbium Er ₂ O ₃ N.D. Total Rare Earth Elements REE O,0 Total Rare Earth Please O,0 Erbium Er ₂ O ₃ N.D. Total Rare Earth See O,0 From the stable corresponds to a sent-cusnificative program insected 80 years on the stable on the desired and the sent of the stable of stabl | i | | REE | | | | | Neodymium Nd ₂ O ₃ N.D. Lanthanum La ₂ O ₃ N.D. Samarium Sm ₂ O ₃ N.D. Samarium Sm ₂ O ₃ N.D. Gadolinium Gd ₂ O ₅ N.D. Dysprosium Dy ₂ O ₃ N.D. Dysprosium Dy ₂ O ₃ N.D. Total Pare Earth Pipolium Yb ₂ O ₃ N.D. Erbium Yb ₂ O ₃ N.D. Total Pare Earth Elements REE O ₁ O Total Pare Earth Elements REE O ₁ O Total Pare Earth Pipolium Pipolium Pipolium Elements Pipolium Pipoli | | Name | | Composition (%) | | | | Lanthanum La_2O ₃ N.D. Praseodymium Pr ₂ O ₃ N.D. Samarlum Sm ₂ O ₃ N.D. Gadolinium Gd ₂ O ₃ N.D. Dysprosium Dy ₂ O ₃ N.D. Tyttrium Y ₂ O ₃ N.D. Yttrium Y ₂ O ₃ N.D. Yttrium Y ₂ O ₃ N.D. Tyttrium Y ₂ O ₃ N.D. Erbium Er ₂ O ₃ N.D. Total Rare Earth Rece D,0 Total Rare Earth Rece D,0 Total Rare Earth Rece D,0 Total rare shown or description of the second of fine and the second of fine material for the second of the second of fine material for the second of fine material fine and fine material fine and the second of fine material fine and th | | Cerlum | CeO ₂ | | | | | Lanthanum La20s N.D. Praseodymlum Pr ₂ O ₃ N.D. Samarlum Sm ₂ O ₃ N.D. Gadolinium Gd ₂ O ₅ N.D. Dysprosium Dy ₂ O ₃ N.D. Tyttrium Y ₂ O ₃ N.D. Yttrium Y ₂ O ₃ N.D. Yttrium Y ₂ O ₃ N.D. Erblum Er ₂ O ₃ N.D. Total Rare Earth ReEE O ₁ O Total Rare Earth ReEE O ₁ O Total Rare the seather of seather the seather of seather the seather than seat | | Neodymium | Nd ₂ O ₃ | N.D. | | | | Samarfum Sm ₂ O ₃ N.D. Gadollinium Gd ₂ O ₃ N.D. Dysprosium Dy ₂ O ₃ N.D. Yttrium Y ₂ O ₃ N.D. Yttrium Y ₂ O ₃ N.D. Ytterbium Y ₂ O ₃ N.D. Erbium Er ₂ O ₃ N.D. Total Rare Earth Elements REE O,0 Total Rare Earth Elements REE O,0 Erbium Er ₂ O ₃ N.D. Total Rare Earth Elements REE O,0 And One of the sealph corresponds to a semi-classificative program institution of the sealph corresponds to a semi-classificative program institution of the sealph sealp | | | La ₂ O ₃ | N.D. | | | | Gadolinium Gd203 N.D. Dysprosium Dy203 N.D. Yttrium Y203 N.D. Yttrium Y203 N.D. This provides the second of th | | Praseodymlum | Pr ₂ O ₃ | N.D. | | | | Dysprosium Dy203 N.D. Yttrium Y203 N.D. Yttrium Y203 N.D. Ytterbuim Y203 N.D. Erblum Er203 N.D. Total Rare Earth REE 0,0 | | Samarium | Sm ₂ O ₃ | N.D. | | | | Yttrium Y ₂ O ₃ N.D. Ytterbum Yb ₂ O ₃ N.D. Erblum Er ₂ O ₃ N.D. Total Rane Earth REE O,0 Rane Rane Rane Rane Rane Rane Rane | | Gadolinium | Gd ₂ O ₃ | N.D. | | | | Yttrium Y ₂ O ₃ N.D. Ytterbum Yb ₂ O ₃ N.D. Erblum Er ₂ O ₃ N.D. Total Rare Earth REE O ₁ O Total Rare Earth REE O ₁ O Total rare shows the second s | | Dysprosium | Dy ₂ O ₃ | N.D. | | | | Erblum Er_O_S N.D. Total Rare Earth REE 0,0 Total Research REE 0,0 Total Research REE 0,0 Total Research Re | | | | N.D. | | | | Total Rare Earth Elements 8 : NOT CRECIBELE 1.01 : (LOSS OF ENTION) 1000*C for 1 hour 9 : NOT CRECIBELE 1.01 : (LOSS OF ENTION) 1000*C for 1 hour 9 is explain to a serial countries of the serial countries of the result in based on afred material Approved by Jairo Torres Search Manager 1 the soliday or applicability of the results with commercial exists. Adviral 5.6.5 does not take responsibility for time
representative or the soliday of the results with commercial exists. Adviral 5.6.5 does not take responsibility for time representative or through a continue or the Sampling Period Procedure inference shares 1 continue or | | Ytterblum | Yb ₂ O ₃ | N.D. | | | | Total Rare Earth Elements 8 : NOT CRECIBELE 1.01 : (LOSS OF ENTION) 1000*C for 1 hour 9 : NOT CRECIBELE 1.01 : (LOSS OF ENTION) 1000*C for 1 hour 9 is explain to a serial countries of the serial countries of the result in based on afred material Approved by Jairo Torres Search Manager 1 the soliday or applicability of the results with commercial exists. Adviral 5.6.5 does not take responsibility for time representative or the soliday of the results with commercial exists. Adviral 5.6.5 does not take responsibility for time representative or through a continue or the Sampling Period Procedure inference shares 1 continue or | | Erblum | | N.D. | | | | Lateralisists 10. HOT CREETABLE LOT: (LOSS OF INVITION) 1000% for 1 hour an enables correspond to a semi-parametrise program in each 15 Ni). The result is based on dried material Approved by Jairo Torres Search Hanager the soliding or againshifty of the result with commercial each. April 15 A5 does not lake exprobability for the expressive side control of elements on detected if they are below 100 ppm 0,0 treat of throughout the results with commercial each. April 15 A5 does not lake exprobability for the expressive side of throughout the results with commercial each. April 15 A5 does not lake exprobability for the expressive side of throughout the smalls and forwards then to the Sassings Plactifications inferenced above. Out 10 And 15 A5 does not the second through their to the Sassings Plactification in the second above. Produce by Juan Sebastian Betancourt AK 60 No. 67° 80 B. Modelo Analyst Region Connectionists: NOW. Tel. (57-1) 2.31 Migrat 3.51 research in rights continute authoriting of this region of analysis under the politics of contributable, and appropriy sights of ear clines. Migrat 3.51 research cannot be required to continue authoriting of this region of analysis under the politics of contributable and program spaces on office the continue analysis and program spaces on office the continue analysis and program spaces on office the continue analysis and program spaces. Migrat 3.51 research continue analysis and program spaces on office the space of the project of the space of the spaces. West-adaptive analysis and spaces of the spaces of the spaces of the spaces. | | Total Rare Earth | 50/19 | 10000 | | | | The analysis corresponds to a semi-quantitative program (max std 5%). The result is based on dried material propoved by Jaino Torres Search Harager for the stiffig or applicability of the results with commercial each. After 1.5.6 does not see expossibility for the results with commercial each. After 1.5.6 does not select 100 ppm. Duri tree for the stiffig or applicability of the results with commercial each. After 1.5.6 does not select repossibility for the recreasorability red transability of the sample and forwards them to the Sampling Peril Procurse in the recreasorability red transability of the sample and forwards them to the Sampling Peril Procurse in the recreasorability Analysis Produce by Juan Sebastian Betancourt AK 60 No. 67° 80 B. Modelo Analysis Region Commission: ANALYSIS Transers the right in content the autheritory of this region of analysis under the politics of contributivity and property rights of our direct. Moved 313455. The adoption analysis means consequent EXCOSTICS to the sample marked and 160° are yet one marked of the same of the sample. New All politics is the sample of the sample marked and 160° are yet one marked in the sample. | lkaernefeera | Elemenus | | | | | | To the solidity or applicability of the results with commercial and, Africal 5.65 does not take reportability for the representativity and transactivity of the sample and foreact), then to the Samplery Perry Processor take reportability for the representativity of the sample and foreact), then to the Samplery Perry Perry Processor take reportability to the representativity of the sample actually and the sample actually and the sample actually and the sample actually and sample actually and sample actually and sample actually and samplery fights of our direct. Moved 313 455. The adjustic all results are sample actually actua | The analysis corresponds to a semi- | uantitative program (max std 5%). Ti | re result is based on dried of | Approved by Jairo Torres | 0 | | | Indicate any of the sample and forwards them to the Sampling PeruProcession inferenced allows. October Section October | or the velidity or applicability of the re | sults with commercial encis, Albha 1 S.A. | does not take responsibility | for the representativity | | | | obscure 0.2.1 % públic | | | | 0 | | | | any to quantity 30 g. Analyst Tel. (57-1) 231 Analyst | olsture | 0,21 % | | Uradisa buli wa Sabasaia | n Usernanium | | | Bogol Test Constraint | | | Wh | | n becancount | AK 60 No. 67º 80 B. Modelo No. | | Tel. (57-1) 231 Aghat 3.45 reserves the right on content the authenticity of this report of analysis under the polities of contributability and property rights of ear clients. Movel 3.1345-4 The report as only in this sample, bury casy of the realize or page of lance as additional 15% case of the price of the realize. WWW.calphat.cc | | | | Analyst | | Bogotá D. | | The analytical results present correspond ECC/GMCC. To the sample received and BOT to any other inspectal of the same only it. It has report at only fee this sample, Samy capy of the results or paper will have an additional 15% cost of the price of the analysis. WWW.alpha 1.c | lotaet | | | | | Tel. (57-1) 23135 | | I. This report a only for this sample, Sway copy of the results on paper will have as additional 15% cost of the price of the analysis. WWW.alpha1.c | I. Alpha 1 5.A.5 reserves the right to cov | | | | | Móvil 31345493 | | The correlate as martial managering of the report is problemed author to produce of the correlation c | The population require agreement recovery | | | | | www.alpha1.com. | | | | | | | | The second secon | | Expreservatives with the results can be presented within 3 moretic after the report has been serve to the older by Rights 1.8.1. If, the disposal of the coentercatepies and second sumples in done in accordance with what has been approved with the identify the request of amigins. | l. This report is only for this eample. Eve
I, The complete or partial reproduction o | | | | | gerenciaadministrativa@alpha1.com. | | Identification Sample Type: Origin: Client Contact Address: City: Phone Number: | VELENCTH DISPERSIN
500357764 CANECA 1
DESCONOCIDO
DESCONOCIDO
AUXICO RESOURCES
TIFFAM CIPUENTES
201 RUE NOTIRE DAME OUESI
MONTREAL
1 4384999621
PRT-67-67 HOWRE-OMNIAN P | Ī. | Consecutive of Sample: Responsible for Sampling Sampling Plan/Procedure: Date Received: Date of Analysis: Date of Report: Solicitud Análisis: Consecutive of Report Application: | AUX 26115
QJENI
NCNE
02/09/2021
15/09/2021
15/09/2021
5A7735
26115-RE XRF
1,11 AQ 2020 | Gervidos Aralie | |---|---|--------------------------------|--|--|-----------------------------------| | 7-35 Versiin 3 | | OBSERVATIONS | | Régine 1 de 1 | | | | Name | Bement | | | | | | Sodium | Na-O | Composition (%) | | | | | Aluminum | Al ₂ O ₂ | 0,02
6,10 | | | | | | SiO ₂ | | | | | | Silicon | P ₂ O ₅ | 42,91 | | | | | Phosphorus | CaO | 0,09 | | | | | Calcium | | 0,11 | | | | | Manganese | MnO | 0,71 | | | | | Titanium | TiO ₂ | 23,61 | | | | | Iron | Fe ₂ O₃ | 17,90 | | | | | Zinc | ZnO | 0,03 | | | | | Zirconium | ZrO ₂ | 8,00 | | | | | Niobium | Nb ₂ O ₅ | 0,15 | | | | | Hafnium | HfO ₂ | 0,27 | | | | | Thorium | ThO ₂ | 0,05 | | | | | Loss of Ignition | LOI | N.D. | | | | | it. | REE | | | | | | Name | Bement | Composition (%) | | | | | Cerium | CeO ₂ | N.D. | | | | | Neodymium | Nd ₂ O ₃ | N.D. | | | | | Lanthanum | La ₂ O ₂ | N.D. | | | | | Praseodymium | Pr ₂ O ₃ | N.D. | | | | | Samarium | Sm ₂ O ₃ | N.D. | | | | | Gadolinium | 6d ₂ O ₃ | N.D. | | | | | Dysprosium | Dy ₂ O ₃ | N.D. | | | | | Yttrium | Y ₂ O ₃ | 0.004 | | | | | Ytterblum | Yb ₂ O ₃ | N.D. | | | | | Erbium | Er ₂ O ₃ | N.D. | | | | | Total Rare Earth | | | | | | | Elements | REE | 0,0 | | | | | | | -43 | | | | ervations | | | | | | | | S OF ISNTICIN) 10000°C for 1 hour | | | | | | | | | d material Approved by Jairo Torres | | | | backers description of the | none presence of elements not detected it | the or below 100 | General Manager | | | | | ecuts with commercial ends, Alpha LSA | | | | | | | wards them to the Sampling Plan/Proceds | | 1 | | | | sture | 0,17 % | 8 | | <u> </u> | AK 60 No. 67° 80 B. Modelo No | | factisky | | wh | Produce by Juan Sebastia | n Betancourt | Bogotá I | | gle quantity | 25g
NONE | | Analyst | | Tel. (57-1) 2313 | | netic Characteristics: | nvolt | | | | Movil 3134549 | | | | | Seerfalty and property rights of our cherts. | | www.alpha1.com | | | and EXCLUSIVELY to the sample received a | | | | gerenciaadministrativa@alpha1.com | | is report is only for this speeds for | | | | | | | | of the report is prohibited without written a
an the report is prohibited without written a
an the processed within 3 months after the I | pproval of Alpha'l S.A.S. | | | | | | VELENGTH DISPERSI |
VE X-RAY FLU | | | | |---|--|--------------------------------|--|---|----------------------------------| | Sample Type | 500357766 CANECA 1
DESCONOCIDO
DESCONOCIDO | | Consecutive of Sample:
Responsible for Sampling
Sampling Plan/Procedure: | AUX 26117
CLIENT
NONE
02/09/2021 | | | Contact:
Address: | AUXICO RESOURCES
TIFFANY CIFUENTES
201 RUE NOTRE DAME OUES | T: | Date Received:
Date of Analysis:
Date of Report: | 15/09/2021
15/09/2021 | | | Phone Number: | MONTREAL
1 4384999621
PRT-GT-01 WOXRF-OMNIAN P | ASTILLA | Solicitud Análisis:
Consecutive of Report:
Application: | SA7735
26117-RE XRF
1,11 AQ 2020 | | | T-33 Versión 3 | | OBSERVATIONS | M | Fágina 1 de 1 | | | | Name | Element | Composition (%) | | | | | Aluminum | Al ₂ O ₃ | 1,94 | | | | | Silicon | SiO ₂ | 42,20 | | | | | Phosphorus | P ₂ O ₅ | 0.03 | | | | | Manganese | MnO | 0,03 | | | | | Titanium | TiO ₂ | 26,09 | | | | | Iron | Fe ₂ O ₃ | 23,12 | | | | | Zirconium | ZrO ₂ | 5.20 | | | | | Niobium | Nb ₂ O ₅ | 0,15 | | | | | Hafnlum | HfO ₂ | 0,19 | | | | | Loss of Ignition | LOI | N.D. | | | | | | REE | | | | | | Name | Element | Composition (%) | | | | | Cerium | CeO ₂ | N.D. | | | | | Neodymium | Nd ₂ O ₃ | 0,16 | | | | | Lanthanum | La ₂ O ₃ | N.D. | | | | | Praseodymium | Pr ₂ O ₃ | N.D. | | | | | Samarium | Sm ₂ O ₃ | N.D. | | | | | Gadolinium | Gd ₂ O ₃ | N.D. | | | | | Dysprosium | Dy ₂ O ₃ | N.D. | | | | | Yttrium | Y ₂ O ₃ | N.D. | | | | | Ytterbium | Yb ₂ O ₃ | N.D. | | | | | Erbium | Er ₂ O ₃ | N.D. | | | | | Total Rare Earth
Elements | REE | 0,2 | | | | servetions. | | | | | | | | S OF IGNTION) 1000°C for 1 hour | | | | | | | | | a maren Approved by Jairo Torres | | | | technique does not validate the r | name presence of elements not detected i | Tribey are below 100ppm. | Ourtrace | | | | the validity or applicability of the | easts with commercial ends, Alpha 1 S.A. | 5 does not take responsib | iny for the representativity | | | | traceability of the sample and for | wards them to the Sampling Plan/Proced.
0.2 % | | | | | | sture
linectivity | | igh | Produce by Juan Sebastia | Betancourt | | | ple quantity | 359 | | Analyst | | | | pretic Characteristics. | NONE | | 2000.00 | AK 60 No. | 67° 80 B. Modelo No | | HI:
Indext S.A. Separators that shall be seen | nfirm the authenticity of this report of analy | eic under the policies of cor | ridentizity and property rights of our clients. | | Bogotá D
Tel. (57-1) 23135 | | | | | | | | | ne analytical results present corresp | ond EXCLUSIVELY to the sample received a | | | | | | ne analytical results present corresp
his report is only for this sample. Ex | | n additional 15% cost of th | | | Movil 31345493
www.alpha1.com | | WAY | VELENGTH DISPER | SIVE X-RAY FIII | ORESCENCE REPORT | | | |---|---|-------------------------------------|--|--|--------------------------------------| | Identification
Sample Type: | 50035773 CANECA 1
DESCONOCIDO
DESCONOCIDO | with a-Anti PLO | Consecutive of Sample:
Responsible for Sampling
Sampling Plan/Procedure: | AUX 26103
CLIENT
NONE | | | Contact:
Address: | AUXICO RESOURCES
TIFFANY CIFUENTES
201 RUE NOTRE DAME O | UEST | Date of Analysis
Date of Report | 02/09/2021
15/09/2021
15/09/2021 | | | Phone Number: | | N. Decree | Solicitud Análisis:
Consecutive of Report. | SA7735
26103-RE XRF | | | Method of Analysis: | PRT-GT-01 WDXRF-OMNIA | IN PASTILLA | Application: | 1,11 AQ 2020 | | | | i)
T | OBSERVATIONS | | | | | | Name | Element | Composition (%) | | | | | Aluminum | Al ₂ O ₃ | 2,73 | | | | | Silicon | SiOz | 91,08 | | | | | Phosphorus | P ₂ O ₅ | 0,05 | | | | | Potassium | K _z O | N.D. | | | | | Titanium | TiO ₂ | 0,37 | | | | | Iron | Fe ₂ O ₃ | 4,20 | | | | | Zirconium | ZrO ₂ | 0,09 | | | | | Niobium | Nb ₂ O ₅ | 0,01 | | | | | Tungsten | WO ₃ | 0,04 | | | | [| Loss of Ignition | LOI | 1,43 | | | | | REE | | | | | | | Name | Element | Composition (%) | | | | | Cerium | CeO ₂ | N.D. | | | | | Neodymium | Nd ₂ O ₃ | N.D. | | | | | Lanthanum | La ₂ O ₃ | N.D. | | | | | Praseodymium | Pr ₂ O ₃ | N.D. | | | | | Samarium | Sm ₂ O ₃ | N.D. | | | | | Gadolinium | Gd ₂ O ₃ | N.D. | | | | | Dysprosium | Dy ₂ O ₃ | N.D. | | | | | Yttrium | Y ₂ O ₃ | N.D. | | | | | Ytterbium | Yb ₂ O ₃ | N.D. | | | | | Erbium | Er ₂ O ₃ | N.D. | | | | | Total Rare Earth
Elements | REE | 0,0 | | | | Observations N.D. : NOT DETECTABLE LOI (LOS | S OF ISVITON) 1000°C for 1 hour | | | | | | The analysis corresponds to a semi-
This technique does not validate the n | | | materi Approved by Jairo Torres
General Manager | l. | | | For the validity or applicability of the re | | | ty for the representativity | | | | and traceability of the sample and fore
Mosture | eards them to the Sampling Plan/Pi | ocedure referenced above. | | | | | Redicectivity Sample quantity | NONE | _7ο
μSw/h | Produce by Juan Sebastia | in Betancourt | | | Sample quantity | 535g | - 1 | Analyst | | | | Magnetic Characteristics: | NONE | - | | | AK 60 No. 67* 80 B. Modelo Norte | | Hote:
1. Alpha1 S.A.S receives the right to con | firm the authenticity of this recort of | analysis under the policies of coef | dentisity and property rights of our clients. | | Bogotá D.C. | | 2. The analytical results present corresp | and ECCLUSIVELY to the sample rece | wed and NOT to any other material | of the same origin. | | Tel. (57-1) 2313518 | | This report is only for this sample. Eve The complete or partial reproduction | | | price of the analysis. | | Móvil 3134549361 | | 5. Any inconveniences with the results of | | | he client by Alpha! S.A.S. | | www.alpha1.com.co | | 6. The disposal of the countersamples a | nd unused samples is done in accord | ance with what has been approved | with the client in the request of assignis. | | gerenciaadministrativa@alpha1.com.co | | Sample Type | n 500357776 CANECA 1
: DESCONOCIDO | | Consecutive of Sample:
Responsible for Sampling | AUX 26138
CLIENT | | |---|--|--------------------------------|--|--|------------------------------------| | Client | : Desconocido
L auxico resources
L Tiffany Cifuentes | | Sampling Plan/Procedure:
Date Received:
Date of Analysis:
Date of Report: | 02/09/2021
15/09/2021
15/09/2021 | | | City
Phone Number | r: 201 RUE NOTRE DAME OUES
r: Montreal
r: 1 4384999621
r: Prt-Gt-01 WDXRF-OMNIAN I | | Solicitud Análisis:
Consecutive of Report:
Application: | SA7735
26138-RE XRF
1,11 AQ 2020 | | | T-\$7-25 Verson 3 | | OBSERVATIONS | 1 | Pages 1 de 1 | | | | Name | Element | Composition (%) | | | | | Magnesium | MgO | 0.01 | | | | | Aluminum | Al ₂ O ₃ | 7.60 | | | | | Silicon | SiO ₂ | 61,60 | | | | | Phosphorus | P.05 | 0,17 | | | | | Potassium | K ₂ O | 0,07 | | | | | Titanium | TiO ₂ | 0,29 | | | | | Iron | Fe ₂ O ₃ | 25,18 | | | | | Zirconium | ZrO ₂ | 0,05 | | | | | Loss of Ignition | LOI | 5,01 | | | | | 8 | REE | | | | | | Name | Element | Composition (%) | | | | | Cerium | CeO ₂ | N.D. | | | | | Neodymium | Nd ₂ O ₃ | N.D. | | | | | Lanthanum | La ₂ O ₃ | N.D. | | | | | Praseodymium | Pr ₂ O ₃ | N.D. | | | | | Samarium | Sm ₂ O ₃ | N.D. | | | | | Gadolinium | Gd ₂ O ₃ | N.D. | | | | | Dysprosium | Dy ₂ O ₃ | N.D. | | | | | Yttrium | Y ₂ O ₃ | N.D. | | | | | Ytterbium | Yb ₂ O ₃ | N.D. | | | | | Erbium | Er ₂ O ₃ | N.D. | | | | | Total Rare Earth
Elements | REE | 0,0 | | | | Miservations | | | | | | | LO.: NOT DETECTABLE LOI: (LO | SS OF ICHTION) 1000*Cfor I hour | | | | | | The analysis corresponds to a sem | -quantitative program (max std 5%). | The result is based on dree | Approved by Jairo Torres | | | | his technique does not validate the | none presence of elements not detected | if they are below 100ppm 0 | Jurtino General Manager | | | | | results with commercial ends. Alpha 1.5.7 | | | | | | end traceability of the seriole and fo
facture | ovards them to the Sampling Ran/Proce
0.93 | dure referenced above. | | | | | adoutivity | | is
Kivih | Produce by Juan Sebastia | n Betancourt | | | emple quentity | 5300g | | Analyst | | | | lagnetic Characteristics | YES | | | | AK 60 No. 67º 80 B. Modelo Nor | | | | | dentiality and property rights of our clients. | | Bogotá D | | | good ESCLUSSEELY to the cample received
treey copy of the receive on paper will have | | | | Tel. (57-1) 23135 | | | leny capy of the results on paper will have
a of the report is probibited without written | | price acces acabox. | | Móvil 31345493 | | I. Any inconversionces with the results | can be processed within 5 months after the | the report has been self to | | | www.alpha1.com. | |). The disposal of the courters applies | and enesed samples is done in accordance | with what has been approved | with the client in the request of analysis: | | gerenciaadministrativa@alpha1.com. | | Identification Sample Typ Origi Clier Contar Addres Phone Numb | AVELENGTH DISPERSIV
in: DESCONDICIDO
in: DESCONDICIDO
in: DESCONDICIDO
in: DESCONDICIDO
in: ALXIXICO RESOURCES
ci: THEANY GRUENTES
ix: 201 RUE NOTRE DAME QUEST
yw MONTERAL
ix: 1 4384999621
ix: PRIT-GT-01
WIMBT-OMNIAN P | r | Consecutive of Sample: Responsible for Sampling Sampling Plan/Procedure: Date Received: Date of Analysis: Date of Report: Solicitud Análisis: Consecutive of Report: Application: | AUX 26133
CLIENT
NONE
02/09/2021
15/09/2021
15/09/2021
SA7735
26133-RE XRF
1,11 AQ 2020
Pigrs 1 6-1 | | |---|--|--------------------------------|---|--|-----------------------------------| | | N. | OBSERVATIONS | | | | | | Name | Element | Composition (%) | | | | | Aluminum | Al ₂ O ₃ | 12,60 | | | | | Silicon | SiO ₂ | 52,59 | | | | | Phosphorus | P ₂ O ₅ | 0,13 | | | | | Potassium | K ₂ 0 | 0,07 | | | | | Calcium | CaO | 0,09 | | | | | Titanium | TiO ₂ | 0,37 | | | | | iron | Fe ₂ O ₃ | 26,84 | | | | | Zirconium | ZrO ₂ | 0,08 | | | | | Lead | РЬО | 0,01 | | | | | Loss of Ignition | LOI | 7.21 | | | | | | | | | | | | | REE | V | | | | | Name | Element | Composition (%) | | | | | Cerium | CeO ₂ | N.D. | | | | | Neodymium | Nd ₂ O ₃ | N.D. | | | | | Lanthanum | La ₂ O ₃ | N.D. | | | | | Praseodymium | Pr ₂ O ₃ | N.D. | | | | | Samarium | Sm ₂ O ₃ | N.D. | | | | | Gadolinium | Gd ₂ O ₃ | N.D. | | | | | Dysprosium | Dy ₂ O ₃ | N.D. | | | | | Yttrium | Y ₂ O ₃ | N.D. | | | | | Ytterbium | Yb ₂ O ₃ | N.D. | | | | | Erbium | Er ₂ 0 ₃ | N.D. | | | | | Total Rare Earth
Elements | REE | 0,0 | | | | he analysis corresponds to a se
his technique does not validate th | 065 OF KANTON) 1000°C for 1 hour mi-quantitative program (max std 5%). To e none presence of elements not desocied in | fthey are below 100ppm. O | Salation . | · · · · · · · · · · · · · · · · · · · | | | of transpirity of the seconds and | forwards them to the Sampling PlaniProced | | | | | | osture | 2.39 % | | Designation by June Colored | | | | adioactivity
ample quartity | MCNE pr
4840a | ielfn | Produce by Juan Sebastia | Decancourt | | | lagnetic Characteristics: | NONE | | Analyst | | AK 60 No. 67* 80 B. Modelo Nor | | otes: | | ou romania de come | | | Bogotá D | | | confirm the authenticity of this report of analy
expend ERCLUSIVELY to the sample received a | | | | Tel. (57-1) 23135 | | This report is only for this sample. | Every copy of the results on paper will have a | n additional 15% cost of the | | | Movil 31345493 | | | on of the report is prohibbed without written a
is can be processed within 5 months after the | | to close to dished 5.6 % | | www.alpha1.com | | | | | | | gerenciaadministrativa@alpha1.com | | | WAVELENGTH DISPERSI | VE X-RAY FLU | | | Servicios Analític | |---|--|--------------------------------|--|---|-------------------------------------| | Sample 1
Or
Cor
Add
Phone Nun | ation 500357778 CANECA 1 TOPOSCONOCIDO rigin: DESCONOCIDO lient: AUXICO RESOURCES stact: TIFFANY CHUENTES tress: 201 RUE NOTRE DAME OUEST City: MONTREAL suber: 1 4384499621 lysis: PRT-6T-01 WOXRF-0MNIAN P | | Consecutive of Sample:
Responsible for Sampling
Sampling Plan/Procedure
Date Received.
Date of Analysis:
Date of Report.
Solicitud Análisis:
Consecutive of Report.
Application: | AUX 26135
CLIENT
NONE
02/09/2021
15/09/2021
15/09/2021
SA7735
26135-RE JRF
1,11 AQ 2020 | | | | (| OBSERVATIONS | | | | | | Name | Element | Composition (%) | | | | | Aluminum | Al ₂ O ₃ | 18,33 | | | | | Silicon | SiO ₂ | 42.42 | | | | | Phosphorus | P ₂ O ₅ | 0,11 | | | | | Potassium | K ₂ 0 | 0,06 | | | | | Calcium | CaO | 80,0 | | | | | Titanium | TiO ₂ | 0,53 | | | | | Iron | Fe ₂ O ₃ | 29,79 | | | | | Zinc | ZnO | 0,02 | | | | | Zirconium | ZrO ₂ | 0,12 | | | | | Lead | РЬО | 0,02 | | | | | Loss of Ignition | LOI | 8,53 | | | | | | REE | | | | | | Name | Element | Composition (%) | | | | | Cerium | CeO ₂ | N.D. | | | | | Neodymium | Nd ₂ O ₃ | N.D. | | | | | Lanthanum | La ₂ O ₃ | N.D. | | | | | Praseodymium | Pr ₂ O ₃ | N.D. | | | | | Samarium | Sm ₂ O ₃ | N.D. | | | | | Gadolinium | Gd ₂ O ₃ | N.D. | | | | | Dysprosium | Dy ₂ O ₃ | N.D. | | | | | Yttrium | Y ₂ O ₃ | N.D. | | | | | Ytterbium | Yb ₂ O ₃ | N.D. | | | | | Erbium | Er ₂ O ₃ | N.D. | | | | | Total Rare Earth
Elements | REE | 0,0 | | | | | | | | | | | Oservations | | | | | | | .D.: NOT DETECTABLE LO | : (LOSS OF IGNTION) 1000°C for 1 hour | | | | | | e analysis corresponds to | a semi-quantitative program (max std 5%). Ti | he result is based on died | meter Approved by Jairo Torres | | | | his technique does not valida | te the none presence of elements not detected i | f they are below 100ccm. O | untrace untrace mininger | | | | | of the results with commercial ends, Alpha I S.A. | | ty for the representativity | | | | nd traceability of the sample localure | and forwards them to the Sempling Plan/Proceds
2.35 % | are referenced above. | - FE | | | | adoachrty | NONE µ5 | Swife | Produce by Juan Sebastia | n Betancourt | | | ample quartity | 6730g | | Annlyst | | AK 60 No. 672 80 B. Modelo Nort | | lagnetic Characteristics: | NONE | | - 0 | | Bogotá D. | | | et to confirm the authenticity of this report of analy | | | | Tel. (57-1) 231351 | | Alpha 1 S.A.S receives the right | | | | | | | The analytical results present | correspond ECCLUSTRELT to the cample received a | | | | Movil 313454936 | | . The analytical netality precent
. This report is only for this say | correspond EXCLUSIVELY to the sample measured or
tiple. Every copy of the results on paper will have a
distribut of the report is prohibited without written a | n additional 10% cost of the | | | Móvil 313454936
www.alpha1.com.c | | WA | VELENGTH DISPERSI | /E X-RAY FLU | ORESCENCE REPORT | | | |--|---|--|--|---|-------------------------------------| | | 500357779 CANECA 2 | | Consecutive of Sample: | AUX 26129 | | | Origin: | DESCONOCIDO
DESCONOCIDO | | Responsible for Sampling
Sampling Plan/Procedure:
Date Received: | CLIENT
NONE
02/09/2021 | | | Contact:
Address: | AUXICO RESOURCES
TIFFANY CIFUENTES
201 RUE NOTRE DAME OUES | | Date of Analysis:
Date of Report: | 15/09/2021
15/09/2021 | | | Phone Number. | MONTREAL
1 4384999621
PRT-GT-01 WDXRF-OMNIAN P | ASTILLA | Solicitud Análisis:
Consecutive of Report:
Application: | \$A7735
26129-RE XRF
1,11 AQ 2020 | | | PT-61-55 Vercin 5 | | OBSERVATIONS | | Págirs T de 1 | | | | Name | Element | Composition (%) | | | | | Magnesium | MgO | 0,01 | | | | | Aluminum | AJ ₂ O ₃ | 7,92 | | | | | Silicon | SiO> | 57.04 | | | | | Phosphorus | P205 | 0,22 | | | | | Potassium | K ₂ O | 0,10 | | | | | Titanium | TiO ₂ | 0,29 | | | | | Iron | Fe ₂ O ₃ | 28,71 | | | | | Zinc | ZnO | 0,02 | | | | | Zirconium | ZrO ₂ | 0,04 | | | | | Loss of Ignition | LOI | 5,66 | | | | | | REE | 7 | | | | | Name | Element | Composition (%) | | | | | Cerium | CeO ₂ | N.D. | | | | | Neodymium | Nd ₂ O ₃ | N.D. | | | | | Lanthanum | La ₂ O ₃ | N.D. | | | | | Praseodymium | Pr ₂ O ₃ | N.D. | | | | | Samarium | Sm ₂ O ₃ | N.D. | | | | | Gadolinium | Gd ₂ O ₃ | N.D. | | | | | Dysprosium | Dy ₂ O ₃ | N.D. | | | | | Yttrium | Y203 | N.D. | | | | | Ytterbium | Yb ₂ O ₃ | N.D. | | | | | Erbium | Er ₂ O ₃ | N.D. | | | | | Total Rare Earth
Elements | REE | 0,0 | | | | Observations | 100000000000000000000000000000000000000 | | | | | | N.D.: NOT DETECTABLE: LOS: (LOS | S OF KENTION) 1000°C for 1 hour | | | | | | The analysis corresponds to a semi- | quantitative program (max std 5%). To | ne result is based on drie | Approved by Jairo Torres | | | | This technique does not validate the n | one presence of elements not detected i | they are below 100ccm. | Our trace General Manager | | | | | esuits with commercial ends. Alpha 1 S.A. | | | | | | Meisture | vents them to the Sampling Flan/Proced | | | | | | Redicactivity | | n/h | Produce by Juan Sebastia | n Betancourt | | | Sericle quantity
Magnetic Characteristics: | 7485g
NONE | | Analyst | | AK 60 No. 672 80 B. Modelo Nort | | Notec | 2 J. 10001000 2000 | W Week 25 W.C | NAME OF STREET | | Bogotá D. | | Alpha1 S.A.5 reserves the right to cor The analytical results present corresp | office the authenticity of this report of analy-
cond ESCLESIVELY to the sample received a | sis under the policies of cor
not NOT to any other mater: | Ademiality and property rights of our clients.
al of the came origin. | | Tel. (57-1) 231351 | | 5. This report is only for this comple. Ev | ery copy of the results on paper will have a | sidditional 19%
cost of the | | | Móvil 313454936 | | | of the report is problished without written a
as be processed within 3 months after the | | the client by Nigha 1 S.A.C. | | www.alphaf.com.c | | | ung nammeng analogies is spous to necountaines. | | | | gerenciaadministrativa@alpha1.com.c | | Sample Type:
Origin:
Client:
Contact:
Address:
City:
Phone Number: | DESCONOCIDO AUXICO RESOURCES TIFFANY CIFUENTES 201 RUE NOTRE DAME OF MONTREAL | IN PASTILLA | Consecutive of Sample: Responsible for Sampling Sampling Plan/Procedure: Date Received: Date of Analysis: Date of Report: Solicitud Análisis: Consecutive of Report: Application: | AUX 26132
CLIENT
NONE
02/09/2021
15/09/2021
15/09/2021
5A7735
26132-RE XRF
1.11 AQ 2020 | | |--|--|--------------------------------|--|---|--------------------------------| | | | OBSERVATIONS | | | | | l | Name | Element | Composition (%) | | | | | Sodium | Na ₂ O | 0,03 | | | | | Magnesium | MgO | 0,03 | | | | | Aluminum | AJ ₂ O ₃ | 10,92 | | | | | Silicon | SiO ₂ | 49,52 | | | | | Phosphorus | P ₂ O ₅ | 0,19 | | | | | Potassium | K ₂ 0 | 0,38 | | | | | Calcium | CaO | 0,06 | | | | | Titanium | TiO ₂ | 0,30 | | | | | Iron | Fe ₂ O ₃ | 32,62 | | | | | Zirconium | ZrO ₂ | 0,05 | | | | | Loss of Ignition | LOI | 5,92 | | | | i | | REE | | | | | | Name | Element | Composition (%) | | | | | Cerium | CeO ₂ | N.D. | | | | | Neodymium | Nd ₂ O ₃ | N.D. | | | | | Lanthanum | La ₂ O ₃ | N.D. | | | | | Praseodymium | Pr ₂ O ₃ | N.D. | | | | | Samarium | Sm ₂ O ₃ | N.D. | | | | | Gadolinium | Gd ₂ O ₃ | N.D. | | | | | Dysprosium | Dy ₂ O ₃ | N.D. | | | | | Yttrium | Y ₂ O ₃ | N.D. | | | | | Ytterbium | Yb2O3 | N.D. | | | | | Erbium | Er ₂ O ₃ | N.D. | | | | | Total Rare Earth
Elements | REE | 0,0 | | | | bservations D - NOT DETECTABLE LON - (LDSS) to analysis corresponds to a semi- nic bedingue does not validate the ni to the nability or applicability of the ne | quantitative program (max std 5)
one presence of elements not date | cted if they are below 100ppm. | | | | | nd traceability of the sample and form | | | | | | | osture
adoactivity | 1,77
NONE | %
µSw/h | Produce by Juan Sebastia | n Retanomist | | | adoactvity
emple quantity | NONE
6550a | _P26.9 | | in DetailCouff | AK 60 No. 67* 80 B. Modelo Nor | | agnetic Characteristics | NONE | 7. | Analyst | | Bogotá D. | | riac: | 200245.002.00207 | | and discount of the contract o | | Tel. (57-1) 231351 | | | from the authorisisty of this report of
and EXCLUSIVELY to the sample rece | | dentality and property rights of our cleats.
of of the same origin. | | Móvil 313454936 | | The analytical results present currespo | | | | | | | The analytical results present correspo
This report is only for this sample. Eve
The complete or gartial reproduction o | | | e price of the analysis. | | www.alpha1.com. | | | | YE A-RAT FLU | ORESCENCE REPORT | | CIPITA | |---|--|--|--|---|-----------------------------------| | Sample Type:
Origin: | 500357783 CANECA 2
DESCONOCIDO
DESCONOCIDO | | Consecutive of Sample:
Responsible for Sampling
Sampling Plan/Procedure:
Date Received: | AUX 26130
CLIENT
NONE
02/09/2021 | ■D9FykJ 05 Añ8Eta | | | AUXICO RESOURCES
TIFFANY CIFUENTES | | Date of Analysis:
Date of Report: | 15/09/2021
15/09/2021 | | | | 201 RUE NOTRE DAME OUES | T | Date of Report. | 15/05/2021 | | | City: | MONTREAL | | Solicitud Analisis: | SA7735 | | | Phone Number:
Method of Analysis: | PRT-GT-01 WDXRF-0MNIAN F | ASTRIA | Consecutive of Report:
Application: | 26130-RE XRF
1,11 AQ 2020 | | | T-GT-35 Versión 3 | THE OF STREET, CLUMBER | OBSERVATIONS | Теричения | Fágira 1 de 1 | | | Ŷ. | | OBSERVATIONS | | | | | 3 | Name | Element | Composition (%) | | | | | Sodium | Na ₂ O | 0,23 | | | | | Magnesium | Mg0 | 0,06 | | | | | Aluminum | Al ₂ O ₃ | 19,48 | | | | Į. | Silicon | SiO ₂ | 65,91 | | | | | Phosphorus | P ₂ O ₅ | 0,11 | | | | Į. | Potassium | K ₂ 0 | 6,18 | | | | Į. | Calcium | CaO | 0,27 | | | | 9 | Manganese | MnO | 0,09 | | | | ļļ. | Titanium | TiO ₂ | 0,34 | | | | Į. | Iron | Fe ₂ O ₃ | 3,51 | | | | | Zinc | ZnO | 0,01 | | | | | Zirconium | ZrO ₂ | 0,06 | | | | | Loss of Ignition | LOI | 3,78 | | | | 4 | | REE | 100 | | | | 2 | Name | Element | Composition (%) | | | | ĺ | Cerium | CeO ₂ | N.D. | | | | Į. | Neodymium | Nd ₂ O ₃ | N.D. | | | | | Lanthanum | La ₂ O ₃ | N.D. | | | | | Praseodymium | Pr ₂ O ₃ | N.D. | | | | Į. | Samarium | Sm ₂ O ₃ | N.D. | | | | į. | Gadolinium | Gd_2O_3 | N.D. | | | | | Dysprosium | Dy ₂ O ₃ | N.D. | | | | | Yttrium | Y ₂ O ₃ | N.D. | | | | | Ytterbium | Yb ₂ O ₃ | N.D. | | | | () | Erbium | Er ₂ O ₃ | N.D. | | | | | Total Rare Earth
Elements | REE | 0,0 | | | | bsaryations | | | _ | | | | ID : NOT DETECTABLE LOI : (LOS | S OF IGNRON) 1000°C for 1 hour | | | | | | | | he result is becalf on the | Approved by Jairo Torres | | | | | one presence of elements not detected | ter and the topper | General Manager | | | | or the selects or embrackly of the | esults with commercial ends, Alpha 1 S.A. | 5 does not take new working | to for the recoverable by | | | | | verds them to the Sentaling Plan Proced | | *************************************** | | | | loisture | 1,34 % | | | <u> </u> | W CO N CT CO D W *** | | adioactivity
ample quantity | NONE µ
2440a | Swits: | Produce by Juan Sebastia | n betancourt | AK 60 No. 67* 80 B. Modelo No | | arrore quantity
Tagnetic Characteristics: | 2440g
NONE | | Analyst | | Bogotá D
Tel. (57-1) 23135 | | cies: | | | | | Mövil 31345493 | | Alpha 1 S.A.S reserves the right to co- | ofine the authenticity of this report of analy
and EXCLUSIVELY to the sample received : | sis under the policies of cont
and NCT to any other recents | identiality and property rights of our clients. | | www.alpha1.com | | The analytical results present review | | | | | | | . This report is only for this comple. Bu
. The complete or portial reproduction | wy zapy of the results on paper will have a
of the report is prohibited without written a
or be processed within 3 exceths ofter the | approval of Alpha 1 S.A.S. | | | gerenciaadministrativa@alpha1.com | | The second secon | VELENGTH DISPERS | | Consecutive of Sample: | AUT SAACS | |
--|---|--------------------------------|--|---|------------------------------| | Sample Type: | DESCONOCIDO
DESCONOCIDO | | Responsible for Sampling
Sampling Plan/Procedure:
Date Received: | AUX 26127
CLIENT
NONE
02/09/2021 | | | Contact: | AUXICO RESOURCES
TIFFANY CIFUENTES
201 RUE NOTRE DAME QUES | i | Date of Analysis:
Date of Report: | 15/09/2021
15/09/2021 | | | City: | MONTREAL | | Solicitud Análisis: | SA7735 | | | Phone Number: | | nices i | Consecutive of Report: | 26127-RE XRF | | | Metriod of Analysis: | PRT-GT-01 WOXRF-OMNIAN | | Application: | 1,11 AQ 2020
Pigna 1 ce 1 | | | | | OBSERVATIONS | | | | | | Name | Element | Composition (%) | | | | | Magnesium | MgO | 0,02 | | | | | Aluminum | Al ₂ O ₃ | 19,72 | | | | | Silicon | SiO ₂ | 17,62 | | | | | Phosphorus | P ₂ O ₅ | 0,22 | | | | | Potassium | K ₂ O | 0,24 | | | | | Titanium | TiO ₂ | 0,76 | | | | | Iron | Fe ₂ 0 ₃ | 51,24 | | | | | Zirconium | ZrO ₂ | 0,10 | | | | | Loss of Ignition | LOI | 10,02 | | | | | | REE | | | | | | Name | Element | Composition (%) | | | | | Cerium | CeO ₂ | N.D. | | | | | Neodymium | Nd ₂ O ₃ | N.D. | | | | | Lanthanum | La ₂ O ₃ | N.D. | | | | | Praseodymium | Pr ₂ O ₃ | N.D. | | | | | Samarium | Sm ₂ O ₃ | N.D. | | | | | Gadolinium | Gd ₂ O ₃ | N.D. | | | | | Dysprosium | Dy ₂ O ₃ | N.D. | | | | | Yttrium | Y ₂ O ₃ | N.D. | | | | | Ytterbium | Yb203 | N.D. | | | | | Erbium | Er ₂ O ₃ | N.D. | | | | | Total Rare Earth
Elements | REE | 0,0 | | | | malysis corresponds to a semi-
echnique does not validate the n | S OF IGHTON) 1000°C for 1 hour
quantitative program (max std 5%),
cone presence of elements not detected
esults with commercial ends. Alphaf 5./ | if they are below 100ppm. I | The state of s | | | | aceability of the sample and for | wards them to the Sampling Ren/Proce | | | | | | ure
activity | | k
Svih | Produce by Juan Sebastia | n Betancourt | | | le quantity | 2180g | | Analyst | | | | etic Characteristics: | YES | | | | AK 60 No. 67ª 80 B. Modelo N | | of SAS meaning the right to co | firm the authenticity of this report of sea | yes under the polities of car | dentiality and property rights of our clients. | | Bogotá | | analytical results precent corresp | and EXCLUSIVELY to the cample received | sed NOT to any other materia | d of the same origin. | | Tel. (57-1) 2313 | | | ery copy of the results on paper will have
of the report is prohibited without written | | price of the analysis. | | Movil 3134549 | | | an be processed within 3 months after the | the report has been sent to | | | www.alpha1.com | | | | | with the client in the request of analysis. | | | | Identification Sample Type: Origin: Client: Contact: Address: Cutys: Phone Number: | DESCONOCIDO ALUXCO RESOURCES TIFFANY CIFLENTES 201 RUE NOTRE DAME OUEST MONTREAL | | Consecutive of Sample: Responsible for Sampling Sampling Plan/Procedure: Date Received. Date of Analysis: Date of Report Solicited Análisis: Consecutive of Report Application: | AUX 26125
CJENT
NONE
02/09/2021
15/09/2021
15/09/2021
SA7735
26123-RE XRF
1,11 AQ 2020 | ■Servi-dos Analitk | |--|--|--------------------------------|---|--|------------------------------------| | T-GT-35 Versión 3 | | OBSERVATIONS | 1 | Pagina 1 de 1 |
 | | | | 7 | | | | | Name | Element | Composition (%) | | | | | Sodlum | Na ₂ O | 0,17 | | | | | Magnesium | Mg0 | 0,04 | | | | | Aluminum | Al ₂ O ₃ | 30,57 | | | | | Silicon | SiO ₂ | 44,95 | | | | | Phosphorus | P ₂ O ₅ | 0,22 | | | | 3 | Potassium | K20 | 1,90 | | | | | Calcium | CaO | 0,32 | | | | : | Titanium | 110 ₂ | 0,59 | | | | | Iron | Fe ₂ O ₃ | 11,57 | | | | | Zirconium | ZrO ₂ | 0,07 | | | | 1 | Niobium | Nb ₂ O ₅ | 0,04 | | | | 1 | Tungsten | WO ₃ | 0,00 | | | | | Loss of Ignition | LOI | 9,54 | | | | | | REE | | | | | 4 | Name | Element | Composition (%) | | | | | Cerium | CeO ₂ | N.D. | | | | | Neodymium | Nd ₂ O ₃ | N.D. | | | | 1 | Lanthanum | La ₂ O ₃ | N.D. | | | | | Praseodymium | Pr ₂ O ₃ | N.D. | | | | | Samarium | Sm ₂ O ₃ | N.D. | | | | 1 | Gadolinium | Gd ₂ O ₃ | N.D. | | | | 1 | Dysprosium | Dy ₂ O ₃ | N.D. | | | | | Yttrium | Y ₂ O ₃ | 0.0 | | | | 8 | Ytterbium | Yb ₂ O ₃ | N.D. | | | | 4 | Erbium | | N.D. | | | | | Total Rare Earth | Er ₂ O ₃ | N.U. | | | | | Elements | REE | 0,0 | | | | | 2. | | | | | | finanyations. | | | | | | | LO : NOT DETECTABLE LOI : (LOSS | OF (GNYSON) 1000"Cftr hour | | | | | | he analysis corresponds to a nemi- | uantitative program (max etd 5%). To | result is based on drie | eners Approved by Jairo Torres | E0 | | | his technique does not validate the no | re presence of elements not desected if | they are below 100 ppm. (| Sur trace | | | | or the validity or applicability of the re- | cults with commercial ends, Alpha 1 S.A.S | dosc not tally responsible | by for the representativity | | | | nd traceability of the cample and form | ands them to the Sampling Plan Procedu | na referenced above. | | | | | loisture
ledioactivity | 1,14 % | en . | Produce by Juan Sebastia | n Betancourt | AK 60 No. 67* 80 B. Modelo No. | | encectify
emple quentity | 1580a go | 44 | (人) (大) (大) (大) (大) (大) (大) (大) (大) (大) (大 | Decement | Bogotá D. | | lagnatic Characteristics: | NONE | | Analyst | | Tel. (57-1) 231351 | | MAC: | the arms of the control contr | ACCUMUNICATION | | | Movil 313454938 | | | irs the authenticity of this report of analys
nd EXCLUSIVELT to the sample received as | | fidentiality and property rights of our clients. | | www.alpha1.com. | | This report is only for this sample. Ever | y copy of the recabl on paper will have a | additional 15% cost of the | | | gerenciaadministrativa@alpha1.com. | | | the report is prohibited without written sp | pproval of Alphal S.A.S. | | | gerenetaaummsuauvageapha1.com. | | | | | | | | | . Any inconveniences with the results ca | s be processed within 3 months after the t
divinaged servales is done in accordance w | | | | | | | | | JORESCENCE REPORT | | | |---|---|--|--|-----------------------------|--| | Sample Typ | on PERSONAL 500357793A
ie: DESCONOCIDO
in: DESCONOCIDO | FINOS | Consecutive of Sample:
Responsible for Sampling
Sampling Plan/Procedure: | AUX 26102
CLIENT
NONE | Servicios Analitica | | - | A MANUEL RECOVERED | | Date Received: | 01/09/2021 | | | Conta | nt: AUXICO RESOURCES
et: TIFFANY CIFUENTES | | Date of Analysis:
Date of Report: | 02/09/2021 | | | | ss: 201 RUE NOTRE DAME O | UEST | pale of nepole. | WE/03/2021 | | | Cit | ty: MONTREAL | | Solicitud Analisis: | 5A7734 | | | | er: 1 4384999621 | | Consecutive of Report: | 26102-RE XRF | | | Method of Analysi | is: PRT-GT-01 WDXRF-OMNI | AN PASTILLA | Application: | 1,11 AQ 2020 | | | 35 Vwsion 3 | | OBSERVATIONS | | Pages 1 de 1 | | | | | | 2 2 2 2 2 2 | | | | | Name | Element | Composition (%) | | | | | Aluminum | Al ₂ O ₃ | 1,1 | | | | | Silicon | SiO ₂ | 2,9 | | | | | Phosphorus | P205 | 13,4 | | | | | Calcium | CaO | 0,3 | | | | | Iron | Fe ₂ O ₃ | 4,4 | | | | | Zirconium | ZrO, | 0,7 | | | | | Niobium | Nb ₂ O ₅ | 0,6 | | | | | Tin | 5nO ₂ | 0,2 | | | | | | | 0,7 | | | | | Tantalum | Ta ₂ O ₅ | | | | | | Tungsten | WO ₃ | 0,2 | | | | | Lead | PbO | 0,5 | | | | | Hafnium | HfO ₂ | 0,3 | | | | | Thorium | ThO ₂ | 7,4 | | | | | Uranium | U | 0,2 | | | | | Loss of Ignition | LOI | 1,4 | | | | | | | | | | | | | REE | | | | | | Name | CeO ₂ | Composition (%) | | | | | Cerium | - | 40,74 | | | | | Neodymium | Nd ₂ O ₃ | 7,84 | | | | | Lanthanum | La ₂ O ₃ | 8,56 | | | | | Praseodymium | Pr ₂ O ₃ | 2,13 | | | | | Samarium | 5m2O3 | 2,12 | | | | | Gadolinium | Gd ₂ O ₃ | 2,46 | | | | | Dysprosium | Dy ₂ O ₃ | 0,91 | | | | | Yttrium | Y ₂ O ₃ | 0,10 | | | | | Ytterbium | Yb ₂ O ₃ | 0,61 | | | | | Erbium | Er ₂ O ₂ | 0.20 | | | | | Total Rare Earth | LI 203 | Vico | | | | | Elements | REE | 65,7 | | | | | 2 T | | | | | | enociona
- NOCOCIECTO CO CO CO CO | .055 OF IGNITION) 1000°C for 1 hour | | | | | | | | | | | | | relycic corresponds to a se | eni-quantitative program (max std S | %) The result is based on drie | d meter Approved by Jairo Torres | p. | | | echnique does not validate th | ne none presence of elements not deta | ected if they are below 100ppm. | Curtrace General Manager | | | | E-10 P. 100 P. | The same of the same of the same of | | lity for the representativity | | | | aceability of the sample and | to results with commercial erics, Alpha
forwards them to the Sampling Plan,F
0,22 | rocedure referenced above. | | | AK 60 No. 67 ^a 80 B. Modelo Nort | | ma | 0,22 | _% | Dendura to top Cal | a Batasasurt | Bogotá D.C | | schirty | 46 | µSv/h | Produce by Juan Sebastia | n perancourt | | | sle quantity | 126g
NONE | - | Analyst | | Tel. (57-1) 231351 | | J 6 - 10 | NONE | | | | Mövil 313454936 | | | | | | | manus alabad assa s | | netic Cheractoristics:
:
da.1 S.A.S reserves the right to | confirm the authenticity of this record of | analysis under the policies of coa | fidentialty and property rights of per clieres. | | www.alpha1.com.c | | :
hall S.A.S reserves the right to
analytical results present corr | respond EXXLUSIVELF to the sample rec | elved and NOT to any other materi | | | gerenciaadministrativa@alpha1.com.c | | :
Ital 5.A.5 reserves the right to
analytical results present corr
a report is only for this sample. | | elved and NCT to any other materi
have an additional 15% cost of th | al of the same origin. | | The second section is not a second second second | | Client:
Contact:
Address:
City: | DESCONDODO DESCONDODO AUMICO RESOURCES TIFFANY DRJENTES 201 RUE NOTRE DAME QUES MONTREAL | ř. | Consecutive of Sample:
Responsible for Sampling
Sampling Plan/Procedure:
Date Received:
Date of Analysis:
Date of Report:
Solicitud Análisis: | AUX 26099
CLIENT
NONE
01/09/2021
02/09/2021
02/09/2021
5A7734 | Clipha
Servicios Aralit | |---|--|--------------------------------|---|---|-----------------------------------| | Phone Number: | 1 4384999621 | | Consecutive of Report: | 26099-RE XRF | | | Method of Analysis: | PRT-GT-01 WDXRF-OMNIAN P | ASTILLA | Application: | 1,11 AQ 2020 | | | | i i | OBSERVATIONS | | | | | i | Name | Flement | Composition (%) | | | | | Aluminum | Al ₂ O ₃ | 1,3 | | | | 1 | Silicon | SIO | 2,9 | | | | | Phosphorus | P ₂ O ₅ | 14,0 | | | | 1 | Calcium | CaO | 0,4 | | | | | Manganese | MnO | 0,1 | | | | 1 | Iron | Fe ₂ O ₂ | 7,2 | | | | | Zirconium | ZrO ₂ | 0,5 | | | | | Niobium | Nb ₂ O ₅ | 1,2 | | | | | Tantalum | Ta ₂ O _c | 1,3 | | | | 1 | Tungsten | WO ₃ | 0,3 | | | | | Lead | PbO | 0,5 | | | | | Hafnium | HfO ₂ | 0,3 | | | | | Thorium | ThO ₂ | 7,1 | | | | 1 | Uranium | U | 0,2 | | | | | Tin | SnO ₂ | 0,2 | | | | | Bismuth | Bi ₂ O ₃ | 0,2 | | | | | Loss of Ignition | LOI | 1,5 | | | | i | | REE | | | | | | Name | Element | Composition (%) | | | | | Cerium | CeO ₂ | 36,75 | | | | | Neodymium | Nd ₂ O ₃ | 7,38 | | | | 1 | Lanthanum | La ₂ O ₃ | 9,37 | | | | | Praseodymium | Pr ₂ O ₃ | 1,82 | | | | | Samarium | Sm ₂ O ₃ | 2,08 | | | | 1 | Gadolinium | Gd ₂ O ₃ | 2,17 | | | | | Dysprosium | Dy ₂ O ₃ | 0,70 | | | | | Yttrium | Y203 | 0,12 | | | | ļ | Ytterbium | Yb ₂ O ₃ | 0,38 | | | | | Erbium | Er203 | 0,25 | | | | | Total Rare Earth
Elements | REE | 61,0 | | | | | | | | | | | nervations
1: NOT DETECTABLE 1:01: (LOSS | | anon a burat na ma | e mater Approved by Jairo Torres | | | | | one presence of elements not detected t | | | | | | | outs with commercial ends, Alpha 1 S.A. | | | | | | | ands them to the Sampling Plan/Process | | again, agreement | | AK 60 No. 674 80 B. Modelo No. | | sture | 0.34 % | | | 27 / 2 | Bogotá (
Tel. (57-1) 2313 | | ficetishy | | Wh. | Produce by Juan Sebastia | n Betancourt | Móvil 31345493 | | nple quantity
gretic Characteristics: | 158g
NONE | | Analyst | | www.alpha1.com | | ex . | archine Royale IIV 15 | e apert de seus | and or me | | gerenciaadministrativa@alpha1.com | | bhat SAS reserves the right to con- | fire the authoracity of this report of analy
and EXCLUSIVELY to the sample received a | is under the policies of use | fidentiality and property rights of our clients. | | gerendada ilinisuama e alphar con | Consecutive of Sample: AUX 26100 Responsible for Sampling Sampling Plan/Procedure: NONE Date Received: 01/09/2021 Date of Analysis: 02/09/2021 Date of Report: 02/09/2021 AK 60 No. 67ª 80 B. Modelo Norte Bogotá D.C. Tel. (57-1) 2313518 Móvil 3134549361 www.alpha1.com.co
gerenciaadministrativa@alpha1.com.co Contact: TIFFANY OFLENTES Address: 201 RUE NOTRE DAME OUEST City: MONTREAL Phone Number: 1 438499621 Nethod of Analysis: PRT-67-01 WDXRF-OMNIAN PASTILLA Solicitud Análisis: SA7734 Consecutive of Report: 26100-RE XRF Application: 1,11 AQ 2020 5 Versile 5 | Name | Element | Composition (%) | |-----------------|--------------------------------|-----------------| | Aluminum | Al ₂ O ₃ | 1,1 | | Silicon | SiOz | 2,7 | | Phosphorus | P20s | 14,0 | | Calcium | CaO | 0,4 | | Iron | Fe ₂ O ₃ | 4,8 | | Zirconium | ZrO ₂ | 0,1 | | Niobium | Nb ₂ O ₅ | 1,0 | | Tin | SnOz | 0,3 | | Tantalum | Ta ₂ O ₅ | 1,3 | | Tungsten | WO ₃ | 0,1 | | Lead | PbO | 0,6 | | Hafnium | HfO ₂ | 0,3 | | Thorium | ThO ₂ | 7,0 | | Uranium | U | 0,2 | | oss of Ignition | LOI | 1,5 | | REE | | | | | |------------------------------|--------------------------------|-----------------|--|--| | Name | Element | Composition (%) | | | | Cerium | CeO _z | 38,82 | | | | Neodymium | Nd ₂ O ₃ | 8,39 | | | | Lanthanum | La ₂ O ₃ | 6,80 | | | | Praseodymlum | Pr ₂ O ₃ | 2,74 | | | | Samarium | Sm ₂ O ₃ | 2,59 | | | | Gadolinium | Gd _Z O ₃ | 2,39 | | | | Dysprosium | Dy ₂ O ₃ | 0,96 | | | | Yttrium | Y2O3 | 1,03 | | | | Ytterblum | Yb ₂ O ₃ | 0,40 | | | | Erblum | Er ₂ O ₃ | 0,09 | | | | Total Rare Earth
Elements | REE | 64,2 | | | | Observations N.D NOT DETECTABLE 1 OF | (LOSS OF KINTION) 1000°C for 1 | hour | | |--|--|---------------------------------|--| | Application and the second | Anna de la companya del companya de la companya del companya de la | VICTOR 100 100 | on dreat mater. Approved by Jairo Torres | | The technique does not validate the none presence of elements not detected if they are below 100ppm. Our trail | | | Oppns: Curtinace Secretal Manager | | For the validity or applicability o | f the results with commercial ends, A | lipha 1 S.A.S does not take rec | porcibility for the representativity | | | nd forwards them to the Sampling Pi | an/Procedure referenced abov | *. | | Moisture | 0,45 | % | | | Hadinartistiy | 4.5 | HSuth | Produce by Juan Sebastian Betancourt | Note: 1. July 13.4.5 reserves the night to combine the authorities of this report of smallpide under the position of creditarizing and property rights of our clience. 2. The multiplied results propert correspond ECOLUMNET for the average resolved and MOT as any other material of the same origin. 3. This report is only for this sample. Every copy of the results on paper will have an additional 15% cost of the price of the analysis 4. The complete or partial reproduction of the report is problehed without written approval of Alpha's S.A.S. 5. Any inconveniences with the results can be processed within 3 months other the the report has been sent to the client by Alpha's S.A.S. 6. The disposal of the countersamples and unused samples is done in accordance with what has been approved with the client in the request of analysis. ### WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE REPORT Identification 500351155 CANECA 1 LAVADO // "26136" Sample Type: DESCONOCIDO Origin: DESCONOCIDO > Client: AUXICO RESOURCES Contact: TIFFANY CIFUENTES Address: 201 RUE NOTRE DAME OUEST City: MONTREAL Phone Number: 1 4384999621 Method of Analysis: PRT-GT-01 WDXRF-OMNIAN PASTILLA Consecutive of Sample: AUX 26258 Responsible for Sampling CLIENT Solicitud Análisis: SA7767 Consecutive of Report: 26258-RE XRF Application: 11 AQ 2020 LT Página 1 de | Initial weight (g) | Weight before concentration (g) | Weight after
concentration and
drying(g) | |--------------------|---------------------------------|--| | 5200 5200 | | 41.6 | | Co | 125 | | | Name | Element | Composition (%) | | |------------------|--------------------------------|-----------------|--| | Aluminum | Al ₂ O ₃ | 2.29 | | | Silicon | SiO ₂ | 86.11 | | | Phosphorus | P ₂ O ₅ | 0.05 | | | Potassium | K₂O | 0.08 | | | Manganese | MnO | N.D. | | | Titanium | TiO ₂ | 0.19 | | | Iron | Fe ₂ O ₃ | 9.50 | | | Zirconium | ZrO ₂ | 0.09 | | | Tungsten | WO ₃ | N.D. | | | Loss of Ignition | LOI | 1.67 | | | Precious metals on concentrate | | | | | |--------------------------------|---------|------------------|--|--| | Name | Element | Composition (ppm | | | | Gold | Au | 15 | | | | Silver | Ag | <1 | | | | Palladium | Pd | <1 | | | | Platinum | Pt | 38 | | | #### **WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE REPORT** Identification 500357774 CANECA 1 LAVADO // "26137" AUX 26259 Consecutive of Sample: Sample Type: DESCONOCIDO Responsible for Sampling CLIENT Origin: DESCONOCIDO Sampling Plan/Procedure: NONE Date Received: 06/10/2021 Client: AUXICO RESOURCES Date of Analysis: 29/11/2021 Date of Report: Contact: TIFFANY CIFUENTES 29/11/2021 Address: 201 RUE NOTRE DAME OUEST City: MONTREAL Solicitud Análisis: SA7767 Phone Number: 1 4384999621 Consecutive of Report: 26259-RE XRF Method of Analysis: PRT-6T-01 WDXRF-OMNIAN PASTILLA Application: 1,11 AQ 2020 LT | Initial weight (g) | concentration (g) | concentration and
drying (g) | |--------------------|-------------------|---------------------------------| | 1200 | 1200 | 39,3 | | OBSERVATIONS | | | | |--------------|--------------------------------|----------------|--| | Name | Element | Composition (% | | | Aluminum | Al ₂ O ₃ | 8,17 | | | Silicon | SiO ₂ | 80,87 | | | Phosphorus | P ₂ O ₅ | 0,08 | | | Potassium | K₂O | 0,09 | | | Titanium | TiO ₂ | 0,23 | | | Iron | Fe ₂ O ₃ | 10,47 | | | Zirconium | ZrO ₂ | 0.05 | | | Precious metals on concentrate | | | | | |--------------------------------|-------------------|--|--|--| | Element | Composition (ppm) | | | | | Au | <1 | | | | | Ag | <1 | | | | | Pd | <1 | | | | | Pt | <1 | | | | | | Au
Ag | | | | | Identification 50035775 CANECA 1 LAVADO // "26139" | Consecutive of Sample: | AUX 26261 | |---|---|-----------------| | Sample Type: DESCONOCIDO | Responsible for Sampling | CLIEN | | Origin: DESCONOCIDO | Sampling Plan/Procedure: | NONE | | | Date Received: | 06/10/2021 | | Client: AUXICO RESOURCES | Date of Analysis: | 07/10/2021 | | Contact: TIFFANY CIFUENTES | Date of Report: | 07/10/2021 | | Address: 201 RUE NOTRE DAME QUEST | 100000000000000000000000000000000000000 | | | City: MONTREAL | Solicitud Análisis: | SA7767 | | Phone Number: 1 4384999621 | Consecutive of Report: | 26261-RE XRE | | Method of Analysis: PRT-GT-01 WDXRF-OMNIAN PASTILLA | Application: | 1,11 AQ 2020 LT | | 95 Versión 3 | 1995-Book II - 1995-1995 | Pagina 1 de | | | Weight after | | | Initial weight (g) | Weight before concentration (g) | Weight after
concentration and
drying (g) | |--------------------|---------------------------------|---| | 3560 | 3560 | 45,0 | | Concentra | Concentration ratio | | | OSSERVATIONS | | | |------------------|--------------------------------|-----------------| | Name | Element | Composition (%) | | Aluminum | Al203 | 17,64 | | Silicon | SiO ₂ | 61,28 | | Phosphorus | P ₂ O ₅ | 0,09 | | Potassium | K₂0 | 0,07 | | Manganese | MnO | 0,03 | | Titanium | TiO ₂ | 0,63 | | Iron | Fe ₂ O ₃ | 14,95 | | Zirconium | ZrO ₂ | 0,26 | | Loss of Ignition | LOI | 5,04 | | Precious metals on concentrate | | | |--------------------------------|---------|-------------------| | Name | Element | Composition (ppm) | | Gold | Au | 13 | | Silver | Ag | <1 | | Palladium | Pd | <1 | | Platinum | Pt | 53 | Identification 500357776 CANECA 1 LAVADO // "26138" Consecutive of Sample: AUX 26260 Sample Type: DESCONOCIDO Responsible for Sampling CLIENT Sampling Plan/Procedure: Origin: DESCONOCIDO NONE Date Received: 06/10/2021 Client: AUXICO RESOURCES Date of Analysis: 07/10/2021 Contact: TIFFANY CIFUENTES Date
of Report: 07/10/2021 Address: 201 RUE NOTRE DAME OUEST City: MONTREAL Solicitud Análisis: SA7767 Phone Number: 1 4384999621 Consecutive of Report: 26260-RE XRF Method of Analysis: PRT-GT-01 WDXRF-OMNIAN PASTILLA Application: 1,11 AQ 2020 LT | Initial weight (g) | Weight before concentration (g) | Weight after
concentration and
drying (g) | |--------------------|---------------------------------|---| | 5100 | 5100 | 63,0 | | Concentr | ation ratio | 81 | #### **OBSERVATIONS** | Name | Element | Composition (%) | |------------------|--------------------------------|-----------------| | Aluminum | Al203 | 4,22 | | Silicon | SiO ₂ | 76,89 | | Phosphorus | P ₂ O ₅ | 0,14 | | Potassium | K ₂ O | 0,07 | | Titanium | TiO ₂ | 0,23 | | Iron | Fe ₂ O ₃ | 15,14 | | Zirconium | ZrO ₂ | 0,13 | | Loss of Ignition | LOI | 3,14 | | Name | Element | Composition (ppm) | |-----------|---------|-------------------| | Gold | Au | 13 | | Silver | Ag | <1 | | Palladium | Pd | <1 | | Platinum | Pt | 38 | ### WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE REPORT Identification 500357778 CANECA 1 LAVADO // 'Q648ecutive of Sample: CLIENT Responsible for Sampling Sample Type: DESCONOCIDO Sampling Plan/Procedure: NONE Origin: DESCONOCIDO 10/6/2021 Date Received: 10/7/2021 Client: AUXICO RESOURCES Date of Analysis: Contact: TIFFANY CIFUENTES Date of Report: 10/7/2021 Address: 201 RUE NOTRE DAME OUEST SA7767 City: MONTREAL Solicitud Análisis: Phone Number: 1 4384999621 Consecutive of Report: 26257-RE XRF Application: 11 AQ 2020 LT Method of Analysis: PRT-GT-01 WDXRF-OMNIAN PASTILLA | Initial weight (g) | Weight before concentration (g) | Weight after
concentration and
drying(g) | |--------------------|---------------------------------|--| | 6730 | 6730 | 12.9 | | Concentr | ation ratio | 522 | | Name | Element | Composition (%) | |------------------|--------------------------------|-----------------| | Aluminum | Al ₂ O ₃ | 16.77 | | Silicon | SiO ₂ | 53.86 | | Phosphorus | P ₂ O ₅ | 0.10 | | Potassium | K₂O | 0.07 | | Titanium | TiO ₂ | 0.30 | | Iron | Fe ₂ O ₃ | 22.15 | | Zirconium | ZrO ₂ | 0.12 | | Loss of Ignition | LOI | 6.59 | | Precio | us metals on cor | centrate | |-----------|------------------|------------------| | Name | Element | Composition (ppm | | Gold | Au | 46 | | Silver | Ag | <1 | | Palladium | Pd | <1 | | Platinum | Pt | 31 | Date of Report: # WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE REPORT Identification 500357781 CANECA 2 LAVADO // 'Qôt@ecutive of Sample: Sample Type: DESCONOCIDO Responsible for Sampling Origin: DESCONOCIDO Sampling Plan/Procedure: NONE Date Received: 10/6/2021 Client: AUXICO RESOURCES Date of Analysis: 10/7/2021 Contact: TIFFANY CIFUENTES Address: 201 RUE NOTRE DAME OUEST City: MONTREAL Solicitud Análisis: SA7767 Phone Number: 1 4384999621 Consecutive of Report: 26255-RE XRF Method of Analysis: PRT-GT-01 WDXRF-OMNIAN PASTILLA Application: 11 AQ 2020 LT Página 1 de 1 10/7/2021 | Initial weight (g) | Weight before concentration (g) | Weight after concentration and drying(g) | |--------------------|---------------------------------|--| | 6650 | 6650 | 57.2 | | Concentr | ation ratio | 116 | ### OBSERVATIONS | Name | Element | Composition (%) | |------------------|--------------------------------|-----------------| | Aluminum | Al ₂ O ₃ | 5.30 | | Silicon | SiO ₂ | 73.16 | | Phosphorus | P ₂ O ₅ | 0.17 | | Potassium | K₂O | 0.19 | | Titanium | TiO ₂ | 0.28 | | Iron | Fe ₂ O ₃ | 17.44 | | Zirconium | ZrO ₂ | 0.01 | | Loss of Ignition | LOI | 3.37 | | s metals on cor | ncentrate | |-----------------|---------------------------| | Element | Composition (ppm | | Au | 19 | | Ag | <1 | | Pd | <1 | | Pt | <1 | | | Element
Au
Ag
Pd | ### WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE REPORT Identification 500357783 CANECA 2 LAVADO // "26130" Consecutive of Sample: AUX 26254 Sample Type: DESCONOCIDO Responsible for Sampling CLIENT Origin: DESCONOCIDO Sampling Plan/Procedure: NONE Date Received: 06/10/2021 Client: AUXICO RESOURCES Date of Analysis: 07/10/2021 Contact: TIFFANY CIFUENTES Date of Report: 07/10/2021 Address: 201 RUE NOTRE DAME OUEST City: MONTREAL Phone Number: 1 4384999621 Method of Analysis: PRT-GT-01 WDXRF-OMNIAN PASTILLA Solicitud Análisis: SA7767 Consecutive of Report: 26254-RE XRF Application: 1,11 AQ 2020 LT Weight before Weight after | Initial weight (g) | Weight before
concentration (g) | Weight after
concentration and
drying(g) | |---------------------|------------------------------------|--| | 2440 | 2440 | 23,0 | | Concentration ratio | | 106 | | Name | Element | Composition (%) | Ì | |------------------|--------------------------------|-----------------|---| | Sodium | Na ₂ O | 0,19 | | | Magnesium | MgO | 0,04 | | | Aluminum | Al203 | 20,96 | 1 | | Silicon | SiO ₂ | 64,12 | 1 | | Phosphorus | P ₂ O ₅ | 0,12 | 1 | | Potassium | K ₂ O | 7,69 | | | Calcium | CaO | 0,26 | | | Manganese | MnO | 0,08 | 1 | | Titanium | TiO ₂ | 0,28 | 1 | | Iron | Fe ₂ O ₃ | 2,82 | | | Zirconium | ZrO ₂ | 0,05 | 1 | | Cerium | CeO ₂ | 0,15 | 1 | | Loss of Ignition | LOI | 3,24 | 1 | | Precious metals on concentrate | | | |--------------------------------|---------|-------------------| | Name | Element | Composition (ppm) | | Gold | Au | <1 | | Silver | Ag | <1 | | Pailadium | Pd | <1 | | Platinum | Pt | <1 | Application: 1,11 AQ 2020 LT #### **WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE REPORT** Identification 500357784 CANECA 2 LAVADO // "26124" Consecutive of Sample: **AUX 26249** Responsible for Sampling Sampling Plan/Procedure: Sample Type: DESCONOCIDO CLIEN Origin: DESCONOCIDO NONE Date Received: 06/10/2021 Client: AUXICO RESOURCES Date of Analysis: 29/11/2021 Date of Report: Contact: TIFFANY CIFUENTES 29/11/2021 Address: 201 RUE NOTRE DAME OUEST City: MONTREAL Solicitud Análisis: SA7767 Phone Number: 1 4384999621 26249-RE XRF Consecutive of Report: Method of Analysis: PRT-GT-01 WDXRF-OMNIAN PASTILLA ### OBSERVATIONS | Name | Element | Composition (%) | |------------|--------------------------------|-----------------| | Sodium | Na ₂ O | 0,01 | | Aluminum | Al ₂ O ₃ | 8,91 | | Silicon | SiO ₂ | 87,48 | | Phosphorus | P ₂ O ₅ | 0,02 | | Potassium | K ₂ O | 0,05 | | Calcium | CaO | 0,05 | | Titanium | TiO ₂ | 0,66 | | Manganese | MnO | 0,03 | | Iron | Fe ₂ O ₃ | 2,47 | | Zirconium | ZrO ₂ | 0,28 | | Copper | CuO | 0,02 | | Precious metals on concentrate | | | |--------------------------------|---------|-------------------| | Name | Element | Composition (ppm) | | Gold | Au | <1 | | Silver | Ag | <1 | | Palladium | Pd | <1 | | Platinum | Pt | <1 | | WA | WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE REPORT | | | | |----------------------|---|--------------------------|-----------------|--| | Identification | 500357785 CANECA 2 LAVADO // "26127" | Consecutive of Sample: | AUX 26252 | | | Sample Type: | DESCONOCIDO | Responsible for Sampling | CLIENT | | | Origin: | DESCONOCIDO | Sampling Plan/Procedure: | NONE | | | 740 1 000 | | Date Received: | 06/10/2021 | | | Client: | AUXICO RESOURCES | Date of Analysis: | 29/11/2021 | | | Contact: | TIFFANY CIFUENTES | Date of Report: | 29/11/2021 | | | Address: | 201 RUE NOTRE DAME OUEST | | | | | City: | MONTREAL | Solicitud Análisis: | SA7767 | | | Phone Number: | 1 4384999621 | Consecutive of Report: | 26252-RE XRF | | | Method of Analysis: | PRT-GT-01 WDXRF-OMNIAN PASTILLA | Application: | 1,11 AQ 2020 LT | | | -GT-35 Versión 3 | | | Página 1 de 1 | | | Initial weight (g) | Weight before concentration (g) | Weight after
concentration and
drying(g) | | |--------------------|---------------------------------|--|--| | 1990 | 1990 | 17,5 | | | Concentra | ation ratio | 114 | | | Name | Element | Composition (%) | |------------|--------------------------------|-----------------| | Aluminum | Al_2O_3 | 3,92 | | Silicon | SiO ₂ | 91,66 | | Phosphorus | P ₂ O ₅ | 0,05 | | Chromium | Cr ₂ O ₃ | 0,02 | | Titanium | TiO ₂ | 0,44 | | Iron | Fe ₂ O ₃ | 3,70 | | Zirconium | ZrO ₂ | 0,12 | | Precious metals on concentrate | | | | |--|------------------------------------|-------------------|--| | Name | Element | Composition (ppm) | | | Gold | Au | 2 | | | Silver | Ag | <1 | | | Palladium | Pd | <1 | | | Platinum | Pt | <1 | | | Estimated LLD forWDXRF-OMNIAN PASTILLA | on concentrate material is 100 ppm | | | #### **WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE REPORT** Identification 500357786 CANECA 2 LAVADO // "26126" AUX 26251 Consecutive of Sample: Sample Type: DESCONOCIDO Responsible for Sampling CLIENT Origin: DESCONOCIDO Sampling Plan/Procedure: NONE Date Received: 06/10/2021 Date of Analysis: Date of Report: Client: AUXICO RESOURCES 29/11/2021 Contact: TIFFANY CIFUENTES 29/11/2021 Address: 201 RUE NOTRE DAME OUEST City: MONTREAL Solicitud Análisis: SA7767 Phone Number: 1 4384999621 Consecutive of Report: 26251-RE XRF Method of Analysis: PRT-GT-01 WDXRF-OMNIAN PASTILLA Application: 1,11 AQ 2020 LT | Initial weight (g) | Weight before concentration (g) | Weight after
concentration and
drying (g) | |--------------------|---------------------------------|---| | 830 | 830 | 65,0 | | Concentr | ation ratio | 13 | | Name | Element | Composition (%) | |------------|--------------------------------|-----------------| | Aluminum | Al _Z O ₃ | 9,25 | | Silicon | SiO ₂ | 83,00 | | Phosphorus | P ₂ O ₅ | 0,12 | | Potassium | K₂O | 0,09 | | Titanium | TiO ₂ | 0,50 | | Iron | Fe ₂ O ₃ | 6,90 | | Zirconium | ZrO ₂ | 0,13 | | Precious metals on concentrate | | | |--------------------------------|---------|-------------------| | Name | Element | Composition (ppm) | | Gold | Au | <1 | | Silver | Ag | <1 | |
Palladium | Pd | <1 | | Platinum | Pt | <1 | | Identification | 500357787 CANECA 2 LAVADO // "26125" | Consecutive of Sample: | AUX 26250 | |--------------------|--------------------------------------|--------------------------|-----------------| | Sample Type | DESCONOCIDO | Responsible for Sampling | CLIENT | | Origin | DESCONOCIDO | Sampling Plan/Procedure: | NONE | | - II | | Date Received: | 06/10/2021 | | Client | AUXICO RESOURCES | Date of Analysis: | 07/10/2021 | | Contact | TIFFANY CIFUENTES | Date of Report: | 07/10/2021 | | Address | 201 RUE NOTRE DAME QUEST | | | | City | MONTREAL | Solicitud Análisis: | SA7767 | | Phone Number | 1 4384999621 | Consecutive of Report: | 26250-RE XRF | | Method of Analysis | PRT-GT-01 WDXRF-OMNIAN PASTILLA | Application: | 1,11 AQ 2020 LT | | Versión 3 | 2 | 101 | Página 1 de 1 | | | | | | | Initial weight (g) | Weight before concentration (g) | Weight after
concentration and
drying(g) | |--------------------|---------------------------------|--| | 1380 | 1380 | 13,9 | | Concentr | Concentration ratio | | OBSERVATIONS | Name | Element | Composition (%) | |------------|--------------------------------|-----------------| | Sodium | Na ₂ O | 0,09 | | Magnesium | MgO | 0,04 | | Aluminum | Al203 | 21,56 | | Silicon | SiO ₂ | 64,29 | | Phosphorus | P ₂ O ₅ | 0,19 | | Potassium | K ₂ O | 0,56 | | Calcium | CaO | 0,26 | | Manganese | MnO | 0,05 | | Titanium | TiO ₂ | 0,65 | | Iron | Fe ₂ O ₃ | 6,67 | | Zirconium | ZrO ₂ | 0,14 | | Precious metals on concentrate | | | |--------------------------------|---------|-------------------| | Name | Element | Composition (ppm) | | Gold | Au | 63 | | Silver | Ag | <1 | | Palladium | Pd | <1 | | Platinum | Pt | 15 | LOI 5,49 Loss of Ignition Identification 50035788 CANECA 2 LAVADO // "26128" Consecutive of Sample: AUX 26253 Sample Type: DESCONOCIDO Responsible for Sampling CLIENT Sampling Plan/Procedure: Origin: DESCONOCIDO NON Date Received: 06/10/202 Client: AUXICO RESOURCES Date of Analysis: 07/10/202 Contact: TIFFANY CIFUENTES Date of Report: 07/10/202 Address: 201 RUE NOTRE DAME OUEST SA7767 City: MONTREAL Solicitud Análisis: Phone Number: 1 4384999621 Method of Analysis: PRT-GT-01 WDXRF-OMNIAN PASTILLA Consecutive of Report: 26253-RE XRF Application: 1,11 AQ 2020 LT -6T-35 Versión 3 | Initial weight (g) | Weight before concentration (g) | Weight after
concentration and
drying (g) | |---------------------|---------------------------------|---| | 1980 | 1980 | 23,0 | | Concentration ratio | | 86 | ### OBSERVATIONS | Name | Element | Composition (%) | |------------------|--------------------------------|-----------------| | Magnesium | MgO | 0,02 | | Aluminum | Al203 | 16,92 | | Silicon | SiO ₂ | 53,49 | | Phosphorus | P ₂ O ₅ | 0,08 | | Potassium | K₂O | 0,15 | | Titanium | TiO ₂ | 0,64 | | Iron | Fe ₂ O ₃ | 22,72 | | Zirconium | ZrO ₂ | 0,10 | | Loss of Ignition | LOI | 5,88 | | Precious metals on concentrate | | | |--------------------------------|---------|-------------------| | Name | Element | Composition (ppm) | | Gold | Au | <1 | | Silver | Ag | <1 | | Palladium | Pd | <1 | | Platinum | Pt | <1 | # WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE REPORT Identification 500357789 CANECA 1 LAVADO // *Z6£8ecutive of Sample: AUX 26256 Sample Type: DESCONOCIDO Responsible for Sampling CLIENT Origin: DESCONOCIDO Sampling Plan/Procedure: Date Received: 10 Client: AUXICO RESOURCES Contact: TIFFANY CIFUENTES Date of Report: 10/6/2021 Date of Report: 10/7/2021 Address: 201 RUE NOTRE DAME OUEST City: MONTREAL Solicitud Análisis: SA7767 Phone Number: 1 4384999621 Consecutive of Report: 26256-RE XRF Method of Analysis: PRT-GT-01 WDXRF-OMNIAN PASTILLA Application: 11 AQ 2020 LT Página 1 c NONE | Initial weight (g) | Weight before concentration (g) | Weight after concentration and drying(g) | |---------------------|---------------------------------|--| | 2505 | 2505 | 18.7 | | Concentration ratio | | 134 | ### OBSERVATIONS | Name | Element | Composition (%) | |------------------|--------------------------------|-----------------| | Sodium | Na2O | 0.06 | | Magnesium | MgO | 0.04 | | Aluminum | AI203 | 9.03 | | Silicon | SiO ₂ | 77.00 | | Phosphorus | P ₂ O ₅ | 0.06 | | Potassium | K₂O | 0.95 | | Calcium | CaO | 0.09 | | Titanium | TiO ₂ | 0.34 | | Iron | Fe ₂ O ₃ | 9.85 | | Zirconium | ZrO ₂ | 0.02 | | Loss of Ignition | LOI | 2.50 | | Precious metals on concentrate | | | |--------------------------------|---------|-------------------| | Name | Element | Composition (ppm) | | Gold | Au | 11 | | Silver | Ag | <1 | | Palladium | Pd | <1 | | Platinum | Pt | <1 | *Estimated LLD forWDXRF-OMNIAN PASTILLA on concentrate material is 100 ppm AUX 26247 Identification 500357790 CANECA 2 LAVADO // "26122" Sample Type: DESCONOCIDO Responsible for Sampling CLIENT Origin: DESCONOCIDO Sampling Plan/Procedure: NONE Date Received: 06/10/202 Client: AUXICO RESOURCES Date of Analysis: 07/10/2021 Date of Report: Contact: TIFFANY CIFUENTES 07/10/2021 Address: 201 RUE NOTRE DAME OUEST City: MONTREAL SA7767 Solicitud Análisis: Phone Number: 1 4384999621 Method of Analysis: PRT-GT-01 WDXRF-OMNIAN PASTILLA Consecutive of Report: 26247-RE XRF Application: 1,11 AQ 2020 LT FT-GT-35 Version 3 | Initial weight (g) | Weight before concentration (g) | Weight after
concentration and
drying(g) | |--------------------|---------------------------------|--| | 3585 | 3585 | 32,0 | | Concentr | Concentration ratio | | #### OBSERVATIONS | Name | Element | Composition (%) | |------------------|--------------------------------|-----------------| | Sodium | Na ₂ O | 0,02 | | Aluminum | Al203 | 7,64 | | Silicon | SiO ₂ | 69,02 | | Phosphorus | P ₂ O ₅ | 0,09 | | Potassium | K₂O | 0,45 | | Chromium | Cr ₂ O ₃ | 0,02 | | Titanium | TiO ₂ | 0,40 | | Iron | Fe ₂ O ₃ | 18,80 | | Zirconium | ZrO ₂ | 0,04 | | Loss of Ignition | LOI | 3,52 | | rie | cious metals on conce | - Marie | |-----------|-----------------------|-------------------| | Name | Element | Composition (ppm) | | Gold | Au | <1 | | Silver | Ag | <1 | | Palladium | Pd | <1 | | Platinum | Pt | <1 | **WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE REPORT** Identification 500357791 CANECA 2 LAVADO // "26121" **AUX 26246** Consecutive of Sample: Sample Type: DESCONOCIDO Responsible for Sampling CLIENT Sampling Plan/Procedure: Origin: DESCONOCIDO NONE Date Received: 06/10/2021 Client: AUXICO RESOURCES Date of Analysis: 07/10/202 Date of Report: Contact: TIFFANY CIFUENTES 07/10/2021 Address: 201 RUE NOTRE DAME OUEST Solicitud Análisis: SA7767 City: MONTREAL Consecutive of Report: 26246-RE XRF Phone Number: 1 4384999621 Method of Analysis: PRT-GT-01 WDXRF-OMNIAN PASTILLA Application: 1,11 AQ 2020 LT 35 Version 3 | Initial weight (g) | Weight before concentration (g) | Weight after
concentration and
drying (g) | |---------------------|---------------------------------|---| | 1105 | 1105 | 20,0 | | Concentration ratio | | 55 | #### OBSERVATIONS | Name | Element | Composition (%) | |------------------|--------------------------------|-----------------| | Sodium | Na ₂ O | 0,04 | | Magnesium | MgO | 0,04 | | Aluminum | Al203 | 8,82 | | Silicon | SiO ₂ | 61,09 | | Phosphorus | P ₂ O ₅ | 0,22 | | Potassium | K₂O | 0,30 | | Calcium | CaO | 0,04 | | Chromium | Cr ₂ O ₃ | 0,02 | | Titanium | TiO ₂ | 0,36 | | Iron | Fe ₂ O ₃ | 24,45 | | Zirconium | ZrO ₂ | 0,05 | | Loss of Ignition | LOI | 4,55 | | Pre | Precious metals on concentrate | | | | |-----------|--------------------------------|-------------------|--|--| | Name | Element | Composition (ppm) | | | | Gold | Au | 15 | | | | Silver | Ag | <1 | | | | Palladium | Pd | <1 | | | | Platinum | Pt | <1 | | | *Estimated LLD for WDXRF-OMNIAN PASTILLA on concentrate material is 100 ppm #### WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE REPORT Identification 500357792 CANECA 2 LAVADO Consecutive of Sample: AUX 26233 Sample Type: DESCONOCIDO Responsible for Sampling CLIENT Origin: DESCONOCIDO Sampling Plan/Procedure: NONE Date Received: 06/10/2021 Date of Analysis: Date of Report: 06/10/2021 Client: AUXICO RESOURCES Contact: TIFFANY CIFUENTES 06/10/2021 Address: 201 RUE NOTRE DAME OUEST City: MONTREAL Solicitud Análisis: SA7764 26233-RE XRF Phone Number: 1 4384999621 Consecutive of Report: Application: 1,11 AQ 2020 LT Method of Analysis: PRT-GT-O1 WDXRF-OMNIAN PASTILLA | Initial weight (g) | Weight before concentration (g) | Weight after
concentration and
drying (g) | |--------------------|---------------------------------|---| | 1250 | 1250 | 17,0 | | Concentr | ation ratio | 74 | | Name | Element | Composition (%) | |------------------|--------------------------------|-----------------| | Magnesium | MgO | 0,06 | | Aluminum | Al ₂ O ₃ | 15,62 | | Silicon | SiO _Z | 34,75 | | Phosphorus | P ₂ O ₅ | 0,17 | | Potassium | K ₂ O | 0,82 | | Calcium | CaO | 0,04 | | Vanadium | V ₂ O ₅ | 0,12 | | Titanium | TiO ₂ | 0,71 | | Iron | Fe ₂ O ₃ | 40,18 | | Zirconium | ZrO ₂ | 0,06 | | Lead | PbO | 0,02 | | Loss of Ignition | LOI | 7,43 | | Pr | Precious metals concetrated | | | | |-----------|-----------------------------|-------------------|--|--| | Name | Element | Composition (ppm) | | | | Gold | Au | 13 | | | | Silver | Ag | <1 | | | | Palladium | Pd | <1 | | | | Platinium | Pt | <1 | | | | Identification | 500357793 CANECA 2 LAVADO // "26123" | Consecutive of Sample: | AUX 26248 | |---------------------|--------------------------------------|--------------------------|-----------------| | Sample Type: | DESCONOCIDO | Responsible for Sampling | CLIENT | | Origin: | DESCONOCIDO | Sampling Plan/Procedure: | NONE | | | | Date Received: | 06/10/2021 | | Client: | AUXICO RESOURCES | Date of Analysis: | 29/11/2021 | | Contact: |
TIFFANY CIFUENTES | Date of Report: | 29/11/2021 | | Address: | 201 RUE NOTRE DAME QUEST | | | | City: | MONTREAL | Solicitud Análisis: | SA7767 | | Phone Number: | 1 4384999621 | Consecutive of Report: | 26248-RE XRF | | Method of Analysis: | PRT-GT-01 WDXRF-OMNIAN PASTILLA | Application: | 1,11 AQ 2020 LT | | | Initial weight (g) | Weight before concentration (g) | Weight after
concentration and
drying (g) | | |---|---------------------|---------------------------------|---|--| | Г | 2315 | 2315 | 74,0 | | | | Concentration ratio | | 31 | | | | | OBSERVATIONS | | | | | Name | Element | Composition (%) | | | | | | | | | Name | Element | Composition (%) | |------------|--------------------------------|-----------------| | Aluminum | Al ₂ O ₃ | 0,85 | | Silicon | SiO ₂ | 2,39 | | Phosphorus | P205 | 15,12 | | Calcium | Ca0 | 0,27 | | Iron | Fe ₂ O ₃ | 3,38 | | Zirconium | ZrO ₂ | 0,78 | | Niobium | Nb ₂ O ₅ | 0,73 | | Tantalum | Ta ₂ O ₅ | 0,72 | | Lead | PbO | 0,58 | | Hafnium | HfO ₂ | 0,18 | | Thorium | ThO ₂ | 7,97 | | Uranium | U | 0,23 | | Tin | SnO ₂ | 0,19 | | REE | | | | |------------------|--------------------------------|-----------------|--| | Name | Element | Composition (%) | | | Cerium | CeO ₂ | 43,86 | | | Neodymium | Nd ₂ O ₃ | 8,24 | | | Lanthanum | La ₂ O ₃ | 7,95 | | | Praseodymium | Pr ₂ O ₃ | 2,33 | | | Samarium | Sm ₂ O ₃ | 2,12 | | | Gadolinium | Gd _Z O ₃ | 0,91 | | | Dysprosium | Dy ₂ O ₃ | 0,65 | | | Yttrium | Y ₂ O ₃ | 0,05 | | | Ytterbium | Yb ₂ O ₃ | 0,44 | | | Erbium | Er ₂ O ₃ | 0,01 | | | Total Rare Earth | REE | 66,6 | | | Precious metals on concentrate | | | | |--------------------------------|---------|-------------------|--| | Name | Element | Composition (ppm) | | | Gold | Au | 9 | | | Silver | Ag | <1 | | | Palladium | Pd | <1 | | | Platinum | Pt | <1 | | # Appendix V Impact Global Solutions (IGS) Certificate # Sample login weight # Certificate of Analysis Project Ref: CA-AUXICO-LA-2022-02 70 Goodfellow Delson (Québec), Canada J58 1V4 F: 450.993.0577 Fax: 514.221.4724 E: bureau_des_affaires@impact-gs.com http://www.impact-gs.com | | Sample Login Weight | | | | | |------------------------------|-------------------------------|------------------------|------------------------|--|--| | OATE SAMPLED: March 30, 2022 | DATE REPORTED: April 30, 2022 | SAMPLE TYPE: Bulk/Pulp | | TOTAL SAMPLES #: 30 Total Client blank samples #: 0 | | | • | | | Sample Login
Weight | | | | | | Unit: | Kg | Total Client Duplicate samples #: 0 | | | Sample ID | | RDL: | 0.001 | Total Client Standard Samples #: 0 | | | Client ID | IGS ID | | | | | | 500357853 | 500357853 | | 11.403 | | | | 500357851 | 500357851 | | 10.562 | | | | 500357847 | 500357847 | | 11.534 | | | | 500357857 A | S00357857 A | | 9.694 | | | | 500357856 | 500357856 | | 11.673 | | | | 500357852 | 500357852 | | 9.633 | | | | S00357834A | S00357834A | | 3.063 | | | | S00357837A | S00357837A | | 3.028 | | | | S00357840A | S00357840A | | 2.986 | | | | 500357832A | S00357832A | | 3.115 | | | | 500357835A | S00357835A | | 3.007 | | | | 500357850 | S00357850 | | 12.209 | | | | 500357846 | 500357846 | | 11.506 | | | | 500357848 | S00357848 | | 11.194 | | | | S00357838A | S00357838A | | 2.955 | | | | 500357839A | S00357839A | | 2.931 | | | | S00357836A | S00357836A | | 2.916 | | | | 500357841A | S00357841A | | 3.155 | | | | 500357833A | 500357833A | | 2.351 | | | | S00357832C | S00357832C | | 0.012 | | | | S00357833C | 500357833C | | 0.007 | | | | 500357834C | S00357834C | | 0.013 | | | | S00357835C | S00357835C | | 0.004 | | | | 500357836C | S00357836C | | 0.022 | | | | S00357837C | S00357837C | | 0.015 | | | | S00357838C | 500357838C | | 0.009 | | | | 500357839C | 500357839C | | 0.010 | | | | S00357840C | S00357840C | | 0.009 | | | | S00357841C | S00357841C | | 0.011 | | | | 500357849 | S00357849 | | 11.535 | | | Comments: RDL - Reported Detection Limit Analysis performed at IGS 70 GoodFellow, Delson, Quebec (Unless marked by*) ## Quality Assurance- Crush/Pulverisation Project Ref: CA-AUXICO-LA-2022-02 70 Goodfellow Delson (Québec), Canada J5B 1V4 F: 450.993.0577 Fax: 514.221.4724 E: bureau_des_affaires@impact-gs.com http://www.impact-gs.com CLIENT NAME: AUXICO RESOURCES INC. ATTENTION TO: Pierre Gauthier | Sieving - | % Passing | (Crush/l | Pulverizir | ng) | |-----------|-----------|----------|------------|-----| | | | | | | | DATE SAMPLED: Mar | ch 30, 2022 | | DATE REPORTED: April 30, 2022 | SAMPLE TYPE: Bulk/Pulp | |-------------------|-------------|----------|-------------------------------|------------------------| | | | Analyte: | Pass % 75 μm | | | | | Analyte: | Pulver. | | | | | Unit: | % | | | Sampl | e ID | RDL: | 0.01 | | | Client ID | IGSID | | | | | 500357853 | 500357853 | | 89.12 | | | 500357850 | 500357850 | | 90.92 | | Quality Assurance - Crush/Pulverization Comments: Analysis performed at IGS 70 GoodFellow, Delson, Quebed (Unless marked by*) Pass % check is run every (i.e: 50) | Cameloo & and | alone. | | | | te of Anal
AUXICO | | 62 | | | Line | (Quebec), Cr
For
Fac: | 77 Coodholos
medo JSE 164
654 950,0171
SS4 721, 4725
menghanach
pacan
nanch-gacan |------------------------|-------------|--------|-----------|---------------|----------------------|-----------|--------|------------|----------------|------------|-----------------------------|---|--|-------|--------|-----|---------|-------|--------|-------|-------|-------|-------|---------|--------|---------|---------|--------|-------|--------|--------|-------|---------|-------|--------| | CUENTNAME AUXICORES | CURCES INC. | | | | | | | | ATTENDON ' | VO-Plane G | authier . | | 1 | 5 | V20042-10.1 | | 5 | P Fusion II | P-DES.IMS | Finish | | | 11,000,000,000 | | 8000000 | | 1 | IGS SOP : SPE-ICP O | FS/MS | | - 1 | Institution 1 | Technique: | CP-CES/MS | 5 | | | | | | 1 | DATE SAMPLED. WARD SO. | 20122 | | | ATE REPOR | RIS: April 30 | 2912 | | SAMPLE THE | E Bull/Fulp | | | | 1 | T | Sector | n method: | 91 | 440 | 91 | 591 | 91 | 94 | 591 | 99 | 391 | 591 | 91 | SW | 91 | 596 | 440 | 99 | 99 | 94 | 99 | 94 | SPF | 91 | 597 | 99 | SH | 99 | 440 | 599 | 440 | 21 | 91 | SH | | 8 | 2 8 | | c method: | 237085 | 10/16 | 101/16 | IDI/HE | 209/165 | 200196 | 201165 | 33116 | 10,96 | loji6 | 30)16 | 309 WG | DIN | 309/165 | 10/16 | 201165 | 10/16 | 19/16 | 30/86 | 10/16 | 309; WS | 10,146 | 2099465 | 109,946 | 339146 | 32,96 | 201/16 | 309 MS | 10/16 | acernes | 10/16 | ESSINE | | 8 | - | - 1 | Analyse: | ш | Or . | Mo | Nb | 5n | h | | G | G. | Ge | By | | 80 | Gr | 94 | но | No. | ta | La . | Ne | Pr | RD. | Sm | * | To | n | n. | Tm | u | | Y | Yo | | | | - 1 | Uelt | ppm | ppm | ppm | ppm | ppen | ppm | ppm | pgm | ррт | ppet | ppm | ррті | ppm | ppe | ppm | ppm | pper | ppen | ppm | | fresh in | - 1 | ROL: | 15 | 67 | 10 | 2.4 | 0.5 | 0.2 | 0.3 | 35 | 41 | 89 | 7.02 | 04 | 220 | | 135 | 0.2 | 6.2 | | 6.5 | | 1.1 | 0.6 | 0.1 | - | 0.1 | 14.4 | 0.1 | 1.1 | 0.1 | - | 0.1 | 0.1 | | ClientiD | Sample ID | | - | 12 | 61 | | 2.5 | 43 | 9.2 | 9.3 | 3.3 | 6.5 | 0.1 | | - 04 | 12 | - 60 | M | 0.2 | 6.2 | - | V.3 | | 1.1 | 0.0 | 9.3 | , | 9.1 | 6.1 | 4.1 | 1.1 | 6.1 | 1 | - 0.1 | 9.1 | | 510357833 | 900357853 | | | 21.5 | 2.5 | 1.7 | 217.7 | 16.7 | 71.6 | 5.1 | 18.8 | 413 | -a. | 26 | 2.0 | 0.6 | 71.1 | 2.4 | (3) | -0. | 51.5 | - 100 | 19.4 | 3.5 | 19.1 | 2.7 | 33.0 | 0.5 | 23.6 | 0.0 | - 00 | 11 | 33.6 | 18.0 | 3.1 | | 510357851 | 900357151 | | | 24.1 | 4.1 | 4.6 | 2901.1 | 17.9 | 1631.0 | 104.4 | 464.0 | 69.A | +CL | 6.0 | 1.4 | 1.1 | 36.6 | 6.5 | 02 | -18. | 19.2 | -01 | 14.5 | 11.5 | 23.9 | 73 | 50.4 | 1.6 | 35.2 | 11 | +01. | 33.5 | 32.6 | 34.3 | 3.8 | | SI635784T | 900357147 | | | 25.1 | 2.1 | 6.3 | 66.1 | 15.1 | 20.5 | 0.6 | 59.2 | 24.2 | 40. | 1.7 | 1.0 | 0.6 | 25.4 | 1.7 | 18 | +BL | 15.5 | < OL | 11.3 | 12 | 11.9 | 2.1 | 24.0 | 0.8 | 17.2 | 0.8 | 100 | 6.6 | 39.4 | 7.5 | 18 | | 900351857 A | SI4357857 A | | | 31.7 | 24 | 25 | 66.7 | 43.2 | 49.0 | 0.8 | 6.4 | 19.4 | 1.6 | 14 | 1.0 | 0.5 | 7.5 | 1.1 | - 11 | «BL | 18.3 | <0L | 11.2 | 1.7 | 15.5 | 1.2 | 29.7 | 0.8 | 12.4 | 0.9 | <01 | 5.7 | 62.1 | 9.1 | 1.7 | | 500357856 | 300357156 | | | 21.7 | 2.9 | 2.7 | 21.7 | 16.2 | 37.6 | 1.7 | 81 | 23.7 | <0L | 13 | 11 | 0.5 | 2.3 | 17 | 4 DE | - 01 | 30.5 | < 06 | 11.1 | 1.5 | 6.9 | 19 | 21.0 | 0.8 | 54.8 | 0.8 | +00 | 7.4 | 35.9 | 10.4 | 2.1 | | \$16357851 | 500357852 | 1 | | 24.8 | 3.0 | 2.0 | 128.0 | 27.5 | 119.3 | 23 | 55.5 | 47.0 | <0t | 2.0 | 1.0 | 0.7 | 39.1 | 2.3 | 106 | -81 | 15.4 | - 01. | 20.9 | 5.5 | 18.2 | 2.7 | 55.7 | 0.8 | 36.8 | 0.8 | 104 | 8.1 | 27.7 | 8.6 | 1.9 | | 9003571344 | 500357834A | | | 23.5 | 2.5 | 2.0 | 20.3 | 8.5 | 19.6 | 0.9 | 5.2 | 37.7 | 40L | 1.6 | 1.9 | 0.6 | 6.4 | 1.5 | 4.5 | -86 | 13.3 | < 0L | 11.6 | 1.6 | 18.6 | 18 | 23.3 | 0.8 | 8.1 | 0.9 | 100 | 5.6 | 45.6 | 1.8 | 1.6 | | 500357837A | 500357837A | | | 23.7 | 2.1 | 3.5 | 36.7 | 11.5 | 11.8 | 1.0 | 43.9 | 39.0 | <0. | 11 | 1.5 | 0.5 | 17.1 | 1.1 | 400 | -0. | 11.7 | -01 | 16.9 | 3.9 | 7.8 | 3.0 | 14.8 | 0.7 | 32.6 | 0.8 | 100 | 6.0 | 32.7 | 43 | 11 | | 900357840A | 500357840A | | | 32.5 | 3.6 | 4.0 | 26.3 | 3.5 | 12.1 | 0.3 | +DL | 24.2 | <d.< td=""><td>2.5</td><td>1.7</td><td>0.7</td><td>18.5</td><td>1.8</td><td>4 00</td><td><
DL</td><td>16.2</td><td>× 0%</td><td>10.9</td><td>1.3</td><td>37.4</td><td>1.7</td><td>43.0</td><td>9.9</td><td>2.3</td><td>1.0</td><td>< DE</td><td>6.1</td><td>132.4</td><td>17.5</td><td>2.4</td></d.<> | 2.5 | 1.7 | 0.7 | 18.5 | 1.8 | 4 00 | < DL | 16.2 | × 0% | 10.9 | 1.3 | 37.4 | 1.7 | 43.0 | 9.9 | 2.3 | 1.0 | < DE | 6.1 | 132.4 | 17.5 | 2.4 | | 900357832A | 500157832A | | | 25.4 | 3.4 | 4.0 | 19.8 | 3.1 | 10.6 | cos: | 8.1 | 29.2 | 4DL | 2.2 | 1.4 | 0.7 | 12.0 | 2.0 | 1.0 | + BL | 18.3 | × 01. | 13.0 | 4.0 | 29.5 | 2.1 | 37.5 | 0.9 | 1.3 | 0.9 | 100 | 5.7 | 73.0 | 13.8 | 2.1 | | 900357835A | S00357835A | | | 37.5 | 4.6 | 4.4 | 139.6 | 11.9 | 293.4 | 4.6 | 7.8 | 101.8 | 0.4 | 4.8 | 1.0 | 1.1 | 26.4 | 5.0 | < DX | < DL | 19.5 | < DL | 45.4 | 19.3 | 73.5 | 5.7 | 78.2 | 1.3 | 41.2 | 1.1 | - (DE | 9.7 | 131.3 | 31.3 | 3.7 | | 510357850 | 900357850 | | | 21.4 | 3.9 | 7.6 | 75.6 | 125.2 | 16.1 | 0.5 | 7.4 | 42.5 | <tab< td=""><td>2.4</td><td>1.7</td><td>0.6</td><td>18.1</td><td>2.0</td><td>< DL</td><td>+BL</td><td>15.9</td><td>< 0L</td><td>11.8</td><td>1.4</td><td>17.2</td><td>2.1</td><td>29.1</td><td>0.5</td><td>24.1</td><td>0.8</td><td>(0)</td><td>9.1</td><td>97.8</td><td>14.8</td><td>2.7</td></tab<> | 2.4 | 1.7 | 0.6 | 18.1 | 2.0 | < DL | +BL | 15.9 | < 0L | 11.8 | 1.4 | 17.2 | 2.1 | 29.1 | 0.5 | 24.1 | 0.8 | (0) | 9.1 | 97.8 | 14.8 | 2.7 | | \$16357846 | 500357146 | | | 21.5 | 5.1 | 9.2 | 91.2 | 36.1 | 16.8 | 4.0 | 205.9 | 49.0 | ∢DL | 2.2 | 13 | 0.6 | 25.1 | 2.2 | 0.2 | ∗8t | 50.7 | ×01 | 19.2 | 6.1 | 24.9 | 2.8 | 34.4 | 0.9 | 54.0 | 0.8 | 104 | 13.8 | 1513 | 12.5 | 2.2 | | 500357848 | 900357148 | | | 18.8 | 3.5 | 5.0 | 65.2 | 11.4 | 13.1 | co: | 9.9 | 54.6 | 40L | 2.4 | 1,2 | 0.8 | 31.6 | 3.1 | 33 | ×01. | 97.9 | < 0L | 26.5 | 7.5 | 17.1 | 3.2 | 37.4 | 0.5 | 25.3 | 0.8 | (DL | 9.1 | 46.1 | 11.7 | 1.9 | | 900357838A | 500157838A | | | 36.0 | 34 | 2.8 | 21.7 | 3.2 | 9.5 | < DL | (0. | 31.0 | 2.6 | 2.6 | 1.5 | 0.1 | 14.3 | 2.1 | 1.0 | +OL | 17.4 | < 00. | 15.2 | 1.5 | 33.5 | 2.4 | 35.5 | 0.9 | 65.A | 0.9 | 100 | 6.1 | 93.3 | 19.0 | 2.5 | | 9003578394 | 500357839A | | | 15.5 | 18 | 13 | 28.6 | 6.7 | 16.7 | < 06 | 5.7 | 12.6 | <dl< td=""><td>15</td><td>1.0</td><td>0.5</td><td>6.4</td><td>1.0</td><td>< 04</td><td>< DL</td><td>7.1</td><td>× 0%</td><td>5.0</td><td>1.8</td><td>9.9</td><td>0.7</td><td>15.8</td><td>0.8</td><td>6.1</td><td>0.7</td><td>< 01</td><td>5.9</td><td>49.1</td><td>10.7</td><td>1.9</td></dl<> | 15 | 1.0 | 0.5 | 6.4 | 1.0 | < 04 | < DL | 7.1 | × 0% | 5.0 | 1.8 | 9.9 | 0.7 | 15.8 | 0.8 | 6.1 | 0.7 | < 01 | 5.9 | 49.1 | 10.7 | 1.9 | | 9003578364 | 500357836A | | | 39.1 | 31 | 2.6 | 14.7 | 10.3 | 9.1 | < 06 | 5.5 | 59.9 | 4DL | 3.6 | 2.2 | 1.1 | 12.7 | 3.9 | (0) | +BL | 19.2 | < 0L | 25.5 | 75 | 41.5 | 4.5 | 42.1 | 1.1 | 1.1 | 0.9 | < 00. | 5.8 | 63.3 | 23.9 | 2.8 | | 500357141A | 500357841A | | _ | 213 | 21.7 | 1.7 | 34.4 | 3.0 | 16.1 | 7.6 | 15.1 | 1022.0 | <d.< td=""><td>14.4</td><td>1.5</td><td>0.8</td><td>10.6</td><td>21.7</td><td>< DL</td><td>+BL</td><td>241.4</td><td>< 00.</td><td>455.9</td><td>155.8</td><td>21.2</td><td>18.1</td><td>30.2</td><td>4.0</td><td>912.9</td><td>0.8</td><td>+ (0)</td><td>6.1</td><td>30.6</td><td>16.9</td><td>5.9</td></d.<> | 14.4 | 1.5 | 0.8 | 10.6 | 21.7 | < DL | +BL | 241.4 | < 00. | 455.9 | 155.8 | 21.2 | 18.1 | 30.2 | 4.0 | 912.9 | 0.8 | + (0) | 6.1 | 30.6 | 16.9 | 5.9 | | 900357833A | 500357833A | | | 29.9 | 2.5 | 1.6 | 11.0 | 11.3 | 8.0 | €DE | 14.0 | 29.5 | <0L | 1.8 | 1.1 | 0.1 | 1.2 | 1.8 | 400 | +BL | 15.8 | < 01. | 11.8 | 4.0 | 25.4 | 2.2 | 32.5 | 0.8 | 5.3 | 0.8 | 4 DL | 5.1 | 55.4 | 11.4 | 1.7 | | 900357832C | 5003578320 | | | 21.9 | 3.7 | 18 | 127.3 | 33.4 | 13.6 | €DL | 100 | 84.2 | ∢DL | 7.7 | 5.0 | 1.1 | 4.5 | 6.4 | 1.1 | ∢BL | 47.5 | 1.1 | 41.7 | 11.6 | 7.6 | 8.0 | 20.4 | 1.7 | 110,7 | 0.7 | (01 | 14.4 | 66.6 | 61.0 | 8.8 | | 900357833C | 5003578330 | - 3 | _ | KD. | 3.1 | 1.8 | 78.2 | 5.3 | 18.4 | (00 | 7.0 | 79.2 | ∢DL | 4.7 | 15 | 1.1 | 3.1 | AI | 1.0 | -tit. | 112.0 | <0L | 17.5 | 9.0 | 11.2 | 4.5 | 36.1 | 1.2 | 5.2 | 0.7 | < 0s | 8.0 | 44.6 | 37,7 | 4.5 | | 900357834C | 5001578340 | | _ | 19.9 | 7.1 | 2.5 | 134.6 | 12.5 | 16.9 | ∢ DE | 19.2 | 210.3 | ∢Œ. | 7.8 | 1.7 | 1.4 | 4.2 | 7.4 | < DL | +OL | 118.0 | < 04 | 115.9 | 29.2 | 8.1 | 17.1 | 20.1 | 1.8 | 30.7 | 0.7 | + 00. | 9.1 | 48.5 | 57.0 | 5.8 | | 90035713SC | 500357835C | | | 21.5 | 4.7 | 2.2 | 205.8 | 10.8 | 116.0 | 2.1 | 3.6 | 115.9 | <0L | 12.3 | 1.7 | 2.1 | 1.8 | 9.4 | 2.4 | < DL | 18.5 | 1.7 | 58.9 | 15.7 | 8.1 | 10.6 | 22.1 | 2.2 | 31.6 | 0.7 | < DL | 17.7 | 45.1 | 115.6 | 12.4 | | 900357136C | 5001578360 | | - | 20.9 | 2.1 | 1.6 | 45.3 | 2.8 | 9.6 | < 06 | ₹DL | 29.9 | ∢Œ. | 2.8 | 2.2 | 0.8 | 2.8 | 2.3 | < DL | +BL | 19.8 | < DE | 14.1 | 3.9 | 13.5 | 2.2 | 33.4 | 0.9 | 6.7 | 0.7 | (0) | 7.0 | 27.8 | 22.5 | 3.5 | | 5003578570 | 500357837C | | - | 21.5 | 3.0 | 3.4 | 10.0 | 15.5 | 48.5 | €DE | 4.4 | 31.2 | <a< td=""><td>8.0</td><td>1.7</td><td>1.1</td><td>10.5</td><td>5.0</td><td>0.4</td><td>×BL.</td><td>31.7</td><td>1.2</td><td>21.6</td><td>5.0</td><td>12.5</td><td>3.9</td><td>19.8</td><td>1.4</td><td>15.8</td><td>0.7</td><td>+ DE</td><td>14.5</td><td>154.2</td><td>72.9</td><td>9.6</td></a<> | 8.0 | 1.7 | 1.1 | 10.5 | 5.0 | 0.4 | ×BL. | 31.7 | 1.2 | 21.6 | 5.0 | 12.5 | 3.9 | 19.8 | 1.4 | 15.8 | 0.7 | + DE | 14.5 | 154.2 | 72.9 | 9.6 | | 900357838C | 5003578380 | | - | 21.5 | 2.8 | 19 | 14.3 | 45 | 21.9 | 0.3 | €DL | 39.1 | <0. | 7.4 | 5.8 | 1.1 | 7.0 | 5.6 | e Di. | +BL | 30.5 | 6.3 | 26.5 | 1.3 | 13.0 | 5.6 | 23.6 | 1.5 | 9.1 | 0.7 | 4 04 | 11.3 | 88.1 | 53.7 | 7.6 | | 900357839C | 500557839C | - | - | 20.7 | 3.0 | 3.1 | 273.0 | 11.3 | 101.5 | 3.6 | 15.0 | 58.4 | ∢DL | 11.3 | 12.5 | 1.1 | 5.0 | 7.2 | < DL | +BL | 43.3 | 1.8 | 25.0 | 7.3 | 8.1 | 4.5 | 18.1 | 2.1 | 42.8 | 0.7 | (DL | 21.0 | 45.3 | 138.4 | 17.3 | | 500357140C | 5003578400 | | - | 21.3 | 3.6 | 2.9 | 36.5 | 7.7 | 11.8 | €0L | 15.4 | 58.4 | ∢DL | 16.3 | 13.0 | 2.0 | 5.8 | 11.6 | 2.5 | - OL | 45.3 | 1.6 | 61.2 | 9.7 | 12.8 | 8.1 | 24.8 | 2.6 | 13.7 | 0.7 | < 01. | 11.1 | 60.6 | 150.7 | 16.8 | | 9003578410 | 5003578410 | | - | 21.9 | 3.1 | 1.5 | 115.5 | 4.0 | 15.1 | (DE | (DL | 82.3 | ∢Œ. | 7.5 | 1.1 | 1.1 | 4.1 | 6.1 | 4.00 | +OL | 111.0 | 1.0 | 47.7 | 10.8 | 11.3 | 5.8 | 23.1 | 14 | 5.7 | 0.7 | 100 | 15.4 | 44.9 | 66.1 | 8.4 | | \$16357849 | 500357849 | | | 21.3 | 3.1 | 5.7 | 167.1 | 25.9 | 231.5 | 3.1 | 6.7 | 38.9 | ∢DL | 2.2 | 1.3 | 0.6 | 36.5 | 2.3 | € DE | ×81. | 41.2 | × 00. | 18.3 | 4.8 | 17.5 | 2.1 | 33.1 | 9.5 | 35.4 | 0.7 | 4 DE | 19.1 | 66.1 | 14.0 | 2.1 | overventu: ROL - Reported Estaction Unit valyis performed at ISE TO Escolfolow, Delson, Qualet (Voless morted by') In Stations Investigations Certificate of Analysis ICP-MS ADJ: Reported Detection Limit Applicate performed at 655 29 Goodfellow, Dehian, Queloc (Moles), reprised by 19 for each SPE bench of fear one (1) displaces is involved. SEC Section Provides in Million in Million of the street and st # **Duplicates** | E SAMPLED: 1 | Warch 30, 2022 | | | | | | | | | | | | | | |--------------|----------------|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--| | | | Digestion method: | SPF | SPF | SPF | SPF | SPF | 4AD | SPF | 4AD | SPF | SPF | SPF | | | | | Analytic method: | ICP/MS ICP/M | | | | | Analyte: | Rb | Sm | Sr | Tb | Th | п | Tm | U | v | Y | Yb | | | | | Unit: | ppm ppn | | | | | RDL: | 0.6 | 0.1 | 3 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 5 | 0.1 | 0.1 | | | Batche # | | (C) | | | · | 8 | | : | | | | | | | | | | Expect | 0.4 | 1361.0 | 5203.8 | 56.6 | 865.5 | < 0.5 | 4.5 | 13.6 | 533.8 | 523.8 | 19.0 | | | 1 | | Actuel | < DL | 1285.5 | 5213.3 | 5.0 | 859.1 | 0.3 | 4.3 | 12.9 | 474.0 | 532.5 | 20.3 | | | | OREAS 465 | Recovery | | 94% | 100% | 9% | 99% | | 95% | 95% | 89% | 102% | 1079 | | RDL: Reported Detection Limit Analysis performed at IGS 70 GoodFellow, Delson, Quebec (Unless marked by*) For each SPF batch, at least (1-2) CRMs are inserted Partial or compleet Fusion batch is subjected to reprocessing upon unsucceeded IGS and/or Client QA (CRMs) for a given Fusion batch Indicative values ## Standard | | ligs | Q
Project | uality As
Ref: CA | | | | | | | 0.0 | | 20
Balled, Care
F: 40
Fac: 61 | 0.393:0371
6.323:0724
901:0109 |-----------|-------------------------|---|----------------------|--------------|--------------|--------------|------------------------------------|---------------------------------------|-----------------|-------------|---------------|--|--------------------------------------|--------------|---------------|---------------|---------------|---------------|--------------|------------|-------------|----------------|-------------|---------|-------------|----------------|-----------|---------------|----------------|---------------|------------------|--------------|------------|-------| | CLENTHAN | E ALTREO RESOURCES INC. | Ų. | | | | | | | ATTENTION | 10x Finns | Gasthier | - | - | 58 | Fusion F | OP-DES/M | 45 Finish | DATE SAME | ED: March 30, 1022 | | DATERERO | HTED: April | 10, 2022 | | | | - 3 | SMITHET | rec maje | hdp. | - 3 | Digestion methods | SPE | 4AD | 91 | 191 | WE | \$84 | 940 | 94 | 594 | ue. | 94 | SPE | pe. | SHE | 440 | GAF. | 696 | 046 | 91 | 194 | 94 | we | DY | SP4 | SH | 940 | 140 | SPE | 480 | 91 | 91 | 94 | | | | Digestion method: | 7.26 | EAD
LUMB | SPE
COYNE | 191
22/40 | 595
335/96 | \$95
209/146 | 59°F
339/148 | 9F
20/Hs | gar
aprysa | 99F
307,HB | 94
10390 | SPF
COVPR | 94
37,94 | \$96
10'96 | AAD
MY IPR
| GMF
ACTYME | EP# | CPF LOP/NO | EPF EDITOR | 594
227/146 | SPF 309/144 | 307,844 | BY XF,HG | E7/HE | SNI | SME
MANAGE | EAD
ID-year | SPE
LOSPIE | EURINO
LUPINO | SPF
ED/NE | 91
33/W | 3000 | | | | 100000000000000000000000000000000000000 | 7.26 | 22.5 | 30558 | 332V | SPF
207/HE
311 | SPF
SOP(NE)
Te | 62.00 | 2539 | | - 25- | | 20015 | 355 | | 93300 | 25200 | 25 | | 0000 | | - 227 | -500 | 0.000 | 1000 | | 72.7 | 183809 | 1199 | 222 | 1039 | 753 | 33 | | | | Analytic rections: | iores
U | corpse
Ge | poyee
Mo | 22/40 | 311 | 78 | 227/146 | 20/He | acryre
Ga | 307,HG | 10 Mg | DOM/HE | 207,749
E4 | 12790
Co | aprime
Oil | ICPYME
The | icryte
tr | LOP/ME | conne
Le | 227/NB | sonne
Fr | 307,HW | XF/HS
Sm | \$07,048
St | ione | Haryen Th | itryru
Ti | toyes
Tre | LUPING U | EDYNE V | 329/96 | 30F/H | | Bach 6 | GS D | Analytic rections:
Analytic | iores
U | LOYING . | EUP/941 | 332V | SPF
ZZP/ME
3h
ppos
0.5 | SPF
SCP/HG
To
popular
0.2 | 207/140 | 20/146 | acryre. | - 25- | 10,90 | 20015 | 207,949 | 10790 | 10*199 | ICPYNE | 25 | SUP/HE | 0000 | | - 227 | -500 | 307,940 | 1000 | ione
D | 72.7 | 183809 | torpe | 277 | 1039 | 753 | 33 | Comments: 401: Papared Orienton Limit Soughest professor of 160 To Condividuos, Drines, Quebed (Miles: marked by 9) Formula MF Admits are El method blands in inserted Medium, Delican, Grebard (Medium mandard by 1) all blanch is inserted # Blank