

THE CREE LAKE PROPERTYSWAYZE TOWNSHIPONTARIO, CANADALATITUDE 47.78°NLONGITUDE86.66°W

PREPARED FOR BLACKROCK EXPLORATION INC. IN ACCORDANCE WITH NI 43-101

BY **D. R. HAWKE, MSC. P.GEO.**

EFFECTIVE DATE

DECEMBER 04, 2019

Table of Contents

1.0 Summary (Item 1)	5
2.0 Introduction (Item 2)	7
3.0 Reliance on Other Experts (Item 3)	7
4.0 Property Description and Location (Item 4)	
4.1 Location	
4.2 Mineral Tenure	9
4.3 Other Interested Parties	
4.4 Alienations	
4.5 Environment	
4.6 Permitting	
5.0 Accessibility, Climate, Local Resources, Infrastructure and Physiography (Item 5)	
5.1 Access	
5.2 Climate	
5.3 Local Resources and Infrastructure	
5.4 Physiography	
6.0 History (Item 6)	20
6.1 Introduction	
6.2 Chronological History	
7.0 Geological Setting and Mineralization (Item 7)	24
7.1 Geological Setting	
7.2 Mineralization	
7.2.1 Flint Rock /Mantis Occurrences	
7.2.2 Other Occurrences	
7.2.2.1 Buffalo Canadian Occurrence	
7.2.2.2 South Cree Lake Occurrences	
8.0 Deposit Type (Item 8)	
9.0 Exploration (Item 9)	
9.1 2008 Trenching Program	
9.2 2013-2016 MMI Soil Sampling Survey	
9.3 2016/17Airborne Mag, VLF and Radiometric survey	
9.4 2019 Geophysical Interpretation	
10.0 Drilling (Item 10)	41

10.2 2010-2011 Diamond Drill Program	43
11.0 Sample Preparation Analyses and Security (Item 11)	44
12.0 Data Verification (Item 12)	45
13.0 Mineral Processing and Metallurgical Testing (Item 13)	46
14.0 Mineral Resource Estimates (Item 14)	46
15.0 Mineral Reserve Estimates (Item 15)	46
16.0 Adjacent Properties (Item 23)	46
17.0 Other Relevant Data and Information (Item 24)	47
17.1 Websites	
17.2 Abbreviations and Acronyms	
17.3 Units of Gold Measure and Elemental Measure	50
18.0 Interpretations and Conclusions (Item 25)	51
19.0 Recommendations (Item 26)	51
20.0 References (Item 27)	53
21.0 Date and Signature Pages	56
Certificate of Author	57
APPENDIX A	58
Figure 5	58
APPENDIX B	
Figure 10	59
APPENDIX C	60
Figure 12	60

LIST OF TABLES

9	TABLE 1: CREE LAKE PROPERTY CLAIM SUMMARY
21	TABLE 2: CHRONOLOGICAL HISTORY
29	TABLE 3: SUMMARY OF GOLD ASSAY RESULTS FROM 2008 TRENCHING PROGRAM
	TABLE 4: DIAMOND DRILL INTERCEPTS FROM 1980S EXPLORATION CAMPAIGNS
42	TABLE 5: SUMMARY OF 1985-1987 DIAMOND DRILL RESULTS
43	TABLE 6: SUMMARY OF 2010 DIAMOND DRILL RESULTS
43	TABLE 7: SUMMARY OF 2011 DIAMOND DRILL RESULTS
48	TABLE 8: ACRONYMS AND ABBREVIATION OF TERMS AND UNITS IN THIS REPORT
50	TABLE 9: DEFINITIONS AND UNITS OF GOLD AND ELEMENTAL MEASURE
52	TABLE 10: PROPOSED EXPLORATION BUDGET, CREE LAKE PROPERTY

LIST OF FIGURES

FIGURE 1: GENERAL LOCATION MAP, CREE LAKE PROPERTY, (HAWKE 2015, 2016)	8
FIGURE 2: CLAIM MAP, (FROM EMNDM WEBSITE)	17
FIGURE 3: ACCESS MAP, (HAWKE, 2015, 2016).	18
FIGURE 4: DIAMOND DRILL AT FLINT ROCK OCCURRENCE, (HANYCH AND EWANCHUK, 2010)	26
FIGURE 5: REGIONAL GEOLOGY; CREE LAKE CLAIM GROUP (AFTER AYER ET.AL. 2005) (SEE ALSO	
APPENDIX-A)	27
FIGURE 6:MAIN VEIN OF FLINT ROCK OCCURRENCE LOOKING WEST, DEEP EROSIONAL TROUGH OF	F SHEAR
AND ASSOCIATED OXIDIZED BEDROCK, (HANYCH AND EWANCHUK 2010)	30
FIGURE 7: HIGH GOLD VALUES AT THE MANTIS OCCURRENCE WERE OBTAINED FROM THE STRON	G SHEAR
AND OXIDATION ZONES IN THE TRENCH (UPPER RIGHT QUADRANT OF PHOTO), (HANYCH AN	١D
EWANCHUK 2010)	31
FIGURE 8: BUFFALO-CANADIAN OCCURRENCE, FAULT SCARP LOOKING WEST AT CONTACT BETWE	EEN
FELISC VOLCANICS TO SOUTH AND MAFIC VOLCANICS TO NORTH, (HANYCH AND EWANCHUK	K 2010).
	32
FIGURE 9: CARBONATIZED AND QUARTZ-CARBONATE VEINED VOLCANICS; SOUTH CREE LAKE ARI	EA,
(HANYCH AND EWANCHUK 2010)	33
FIGURE 10: CREE LAKE PROPERTY COMPILATION MAP , (HAWKE 2015, AND 2016 BY HANYCH AND)
MODIFIED 2019)	35
FIGURE 11: GRIDDED PLOT OF AU RESPONSE RATIOS, SOUTH CREE LAKE GRID, (FEDIKOW 2017)	37
FIGURE 12: SOUTH CREE LAKE COMPILATION MAP, (FEDIKOW 2017)	
FIGURE 13: TOTAL MAGNETIC INTENSITY, (BRETT AND HANYCH 2019)	
FIGURE 14: FIRST VERTICAL DERIVATIVE WITH INTERPRETED HOST LITHOLOGIS, (BRETT AND HA	ANYCH
2019)	40
FIGURE 15: TOTAL COUNT RADIOMETRIC MAP WITH INTERPRETED INTRUSIONS, (BRETT AND HA	NYCH,
2019)	41

REVISION HISTORY

Revision-0

Date Issued; December 5, 2019

Prepared by; D. R. Hawke P.Geo.

Report Status; Final

Revision-1; May 15, 2020

Reviewed by; Don Hawke, P. Geo,

Revision-2; June 19, 2020

Reviewed by; Don Hawke, P.Geo.

Report Status; Final to client

1.0 Summary (Item 1)

The purpose of this report is to provide an independent review of the Cree Lake gold property according to the standards set out in NI 43-101, companion policy N143-101CP and form 43-101F1.

The Cree Lake property is located in Swayze, Cunningham and Dore Townships, approximately 195 kilometers northwest of Sudbury, Ontario. The project comprises 151 single cell and 43 boundary claims covering approximately 4,074 hectares, all owned by Mr. J. Leliever of Caledon, Ontario and optioned to Blackrock Exploration Inc.

The Cree Lake gold property is hosted by the Halcrow – Swayze assemblage of the Swayze greenstone belt consisting of ultramafic flows, tholeiitic basalt, calc alkaline metavolcanics and iron formation intruded by quartz feldspar porphyry and lamprophyre. These rocks have been intensely sheared and altered in places.

Mineralization consists of discontinuous quartz-carbonate veins, stringers and stockworks with some pyrite.

There are no activities on the property at the present time.

Prospecting in the area became active when the Kenty gold discovery was made, in 1931 about 8 km north of the Cree Lake claim group. This activity also lead to the discovery of the Buffalo-Canadian occurrence which lies within the Cree Lake claims. Exploration subsequently waned until the Flint Rock showing was discovered in 1941. This discovery also lies within the present claim boundary. Exploration tapered off until the 1980's when many regional airborne and ground exploration activities were carried out.

In 2009 Mantis Explorations Inc. (Mantis) discovered a new gold zone (Mantis showing) on the property characterized by thick, near surface, drill intersections of low-grade gold mineralization that is atypical of the Swayze Belt.

In April 2010 Probe Mines Limited ("Probe") entered into an agreement with Mantis, pursuant to which Probe had an option to acquire up to a 70% interest in the Cree Lake gold Property.

In the summer of 2010, Probe completed a six (6) hole program on the Cree Lake property that totalled 645m.

In the winter of 2011, a second phase five (5) hole program was completed totalling 331.9m. The core was moved to Chapleau, Ontario where the core was logged and sampled and stored in Probe's core shack facility.

In late 2011, Probe elected to drop its option of the Cree Lake property and the property reverted to Mantis with Mantis retaining 100% ownership.

In December 2012, Elcora Resources optioned the property from Mantis under the terms of a qualifying transaction, but subsequently elected to drop its option in 2013. The property was returned to Mantis which operated briefly as Gondwana Oil Corp. and now as European Metals Corp. Mr. Leliever acquired the property from European Metals Corp in 2015, which was subsequently optioned to Blackrock Exploration the same year.

In 2016-2017, 792 soil samples previously collected in 2013 were subjected to MMI analysis. Interpretation of the results revealed the presence of long sinuous multi element anomalies containing nodes of Au anomalies that were deemed significant.

In 2017 the entire property was flown by Terraquest Limited. The bidirectional survey consisting of Airborne Magnetic Gradiant, High Resolution Matrix VLF-EM and Radiometrics traversed 834 kilometers in the north-south direction and 782 kilometers in the east-west direction.

During 2019 a preliminary interpretation of the High-Resolution Airborne Matrix VLF-Mag-Radiometric data was completed by MPH Consulting Ltd... The magnetic data outlined linear anomalies interpreted to be associated with favourable lithologies (ultramafics and/or iron formation) while the VLF survey data exhibited two conductor axes interpreted as fractured structures that could host gold mineralization. The radiometric data was interpreted as outlining possible felsic intrusions that could have acted as heat sources driving hydrothermal fluid systems.

Based on the results obtained during previous work programs on the property a 2-phase exploration program is recommended consisting of mapping, rock sampling, geophysical surveying, MMI sampling and finally diamond drilling if warranted. The estimated costs for all two phases of work total \$860,000.

2.0 Introduction (Item 2)

This technical report was commissioned by Blackrock Exploration Ltd. Of Collingwood, Ontario, that has an option agreement on the Cree Lake property with Mr. J. Leliever of Caledon, Ontario. Mr. Leliever is the sole owner of 151 single cell claims and 43 boundary mineral claims (Cree Lake property) all located in Swayze, Cunningham and Dore Townships, Ontario. Mr. D. Hawke, P.Geo. was retained to prepare a NI 43-101 compliant report on the Cree Lake property.

The report constitutes a compilation of data and information extracted from private documents and public information in the assessment files of the Ministry of Energy, Northern Development and Mines as well as public material published by the Ministry. The purpose of the report is to document the history, geology and exploration potential of the claims.

The qualified person for the report is Mr. Donald Hawke, M.Sc., P. Geo. a practising member of Professional Geoscientists of Ontario. Mr. Hawke visited the property on September 13, 2012 and viewed some of the stripping, trenching and channel sampling as well as some drill collars. No surficial work has been performed on the property, other than an MMI soil sampling program and report in the period 2016-2017, since Mr. Hawke's site visit of 2012. Therefore, a current site inspection is deemed by the author to be unnecessary.

3.0 Reliance on Other Experts (Item 3)

The author of this report is a Qualified Person as defined by NI 43-101, and is independent of the company / issuer and its affiliates. The author was retained to review, technical data and reports, and mining title. The author was not required to comment on legal issues regarding ownership, title or possible encumbrances and/or liens and is unaware of any such issues regarding the property.

Descriptions of the property and ownership are of a general nature and are provided for general information purposes only.

This report contains information from historic as well as recent public and private sources and some of the reports were not written by Qualified Persons as defined by NI 43-101. However, the information reviewed by the author appears to be genuine and of acceptable quality and no significant discrepancies were noted. The reports were prepared according to standards that were deemed acceptable by the exploration industry and government agencies at the time; there is no reason to doubt their veracity. The author has also relied on reports written by professionals who meet the criteria as Qualified persons as defined by NI 43-101 (Fedikow, M. 2017, Brett, J. and Hanych, W. 2019).

4.0 Property Description and Location (Item 4)

4.1 Location

The Cree Lake property is located 195-kilometers north-northwest of Sudbury, Ontario in Swayze Township. The Property lies within NTS map sheet 410/15. The geographic co-ordinate for the property is centered at latitude 47.78° north, longitude 86.66° west. The location of the property is shown in (Figure 1).

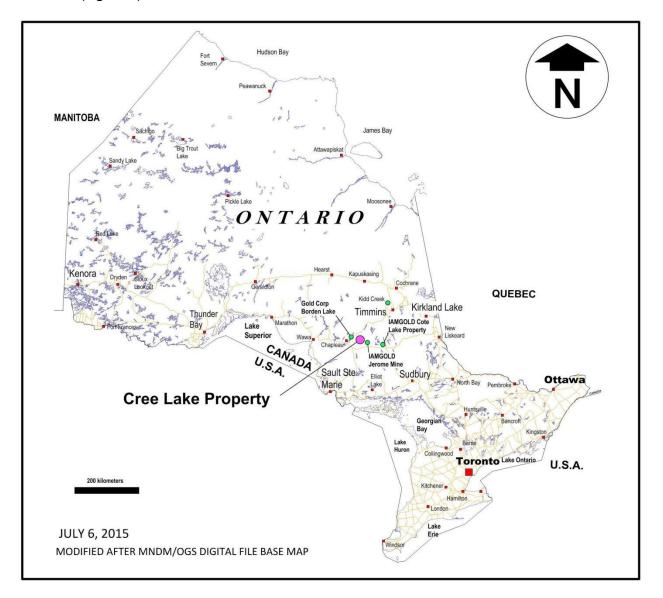


Figure 1: General Location Map, Cree Lake Property, (Hawke 2015, 2016).

4.2 Mineral Tenure

The Property effective the date of this report consists of, 145 single cell and 50 boundary contiguous unpatented mining claims covering approximately 3,390-hectares. The claims are registered with the Mining Recorders Office, Porcupine Mining division, Timmins, Ontario. All of the claims have been staked in accordance with the Ontario Mining Act and are open to public scrutiny by accessing Ministry of Energy, Northern Development and Mines (EMNDM) website at, www.gov.on.ca/mndm/mines.

Currently, 82-claims with an anniversary dates of April 3rd, 2019, and 6-claims with anniversary dates of January 23, 2020 have by order of the mining recorder been designated as "active", and 107-claims are "hold" pending extension of time for work filing.

A summary of the claims is tabled below.

Township / Area	Tenure ID	Tenure Type	Anniversary Date	Tenure Status	Work Required
SWAYZE	102389	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	103047	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	103048	Single Cell Mining Claim	2020-01-23	Active	800
SWAYZE	103049	Single Cell Mining Claim	2020-01-23	Active	800
SWAYZE	103911	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	103912	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	104442	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	104443	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
CUNNINGHAM	105415	Single Cell Mining Claim	2019-04-03	Active	800
CUNNINGHAM	105416	Boundary Cell Mining Claim	2019-04-03	Acitve	400
SWAYZE	106917	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	110768	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
CUNNINGHAM,SWAYZE	111063	Single Cell Mining Claim			800
CUNNINGHAM	111064	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	111582	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400

Table 1: Cree Lake Property Claim Summary

		1			
SWAYZE	112256	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
CUNNINGHAM	115423	Boundary Cell Mining Claim	2019-04-03	Acitve	400
SWAYZE	119184	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	119185	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	120545	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
CUNNINGHAM	120858	Single Cell Mining Claim	2019-04-03	Acitve	800
CUNNINGHAM	120859	Boundary Cell Mining Claim	2019-04-03	Acitve	400
SWAYZE	123460	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	123575	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	123576	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	126431	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
DORE,SWAYZE	129095	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
CUNNINGHAM	130448	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	134317	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	135447	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	135448	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	136263	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	137035	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	141496	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	147176	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	148916	Single Cell Mining Claim	2019-04-03	Acitve	800
CUNNINGHAM	148917	Boundary Cell Mining Claim	2019-04-03	Acitve	400
CUNNINGHAM	153226	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	153555	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	154378	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	154379	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	154380	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	156364	Single Cell Mining Claim	2019-04-03	Acitve	800
DORE,SWAYZE	156442	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	159940	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400

SWAYZE	159941	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	160342	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	161270	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	165132	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
CUNNINGHAM,SWAYZE	170121	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	170628	Boundary Cell Mining Claim	2019-04-03	Acitve	400
SWAYZE	173216	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	173217	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	173218	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	173219	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	174934	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	175814	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	178561	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	180660	Single Cell Mining Claim	2019-04-03	Acitve	800
CUNNINGHAM	183293	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	185343	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	185873	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
CUNNINGHAM,SWAYZE	189318	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	189784	Single Cell Mining Claim	2020-01-23	Active	800
SWAYZE	189785	Single Cell Mining Claim	2020-01-23	Active	800
SWAYZE	192517	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	192518	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
CUNNINGHAM	194618	Boundary Cell Mining Claim	2019-04-03	Acitve	400
SWAYZE	195822	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
CUNNINGHAM,SWAYZE	197029	Single Cell Mining Claim	2019-04-03	Acitve	800
CUNNINGHAM	197030	Boundary Cell Mining Claim	2019-04-03	Acitve	400
SWAYZE	199381	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	199643	Single Cell Mining Claim	2019-04-03	Acitve	800
DORE,SWAYZE	201049	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	201849	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800

SWAYZE	206975	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	208606	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	208607	Single Cell Mining Claim	2019-04-03	Acitve	800
DORE,SWAYZE	209179	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	212480	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	212481	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	215124	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	216120	Single Cell Mining Claim	2019-04-03	Acitve	800
CUNNINGHAM,SWAYZE	218652	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	220176	Single Cell Mining Claim	2019-04-03	Acitve	800
DORE,SWAYZE	222414	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	222456	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	224397	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
CUNNINGHAM,SWAYZE	226605	Single Cell Mining Claim	2019-04-03	Acitve	800
CUNNINGHAM,SWAYZE	226606	Boundary Cell Mining Claim	2019-04-03	Acitve	400
CUNNINGHAM	226607	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	232371	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	232372	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	233161	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	236101	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	237035	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
CUNNINGHAM	238741	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	241123	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
CUNNINGHAM,SWAYZE	241780	Single Cell Mining Claim	2019-04-03	Acitve	800
CUNNINGHAM	241781	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	242572	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	242573	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	242615	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	243632	Single Cell Mining Claim	2019-04-03	Acitve	800
CUNNINGHAM,SWAYZE	243633	Single Cell Mining Claim	2019-04-03	Acitve	800

SWAYZE	244584	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	245857	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	246208	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	246209	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	246210	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	249192	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	249421	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	249422	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
CUNNINGHAM	249853	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	250512	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	250513	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	250514	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	251666	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	251667	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	251668	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	251982	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	254223	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	255697	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	255698	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	257880	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	258411	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	259063	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	259064	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	261740	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	261741	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
CUNNINGHAM,SWAYZE	263679	Single Cell Mining Claim	2019-04-03	Acitve	800
CUNNINGHAM	268604	Boundary Cell Mining Claim	2019-04-03	Acitve	400
SWAYZE	271094	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	273402	Single Cell Mining Claim	2019-04-03	Acitve	800
CUNNINGHAM	273403	Boundary Cell Mining Claim	2019-04-03	Acitve	400

SWAYZE	273797	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	274606	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	274901	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	274902	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	276921	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	276922	Boundary Cell Mining Claim	2019-04-03	Acitve	400
SWAYZE	277629	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	280391	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	281138	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	283245	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	283246	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	285519	Single Cell Mining Claim	2019-04-03	Acitve	800
CUNNINGHAM	285525	Boundary Cell Mining Claim	2019-04-03	Acitve	400
SWAYZE	286977	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	289228	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	290266	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
CUNNINGHAM	293216	Single Cell Mining Claim	2019-04-03	Hold Pending extension of time	800
SWAYZE	293797	Single Cell Mining Claim	2020-01-23	Active	800
SWAYZE	293798	Single Cell Mining Claim	2020-01-23	Active	800
SWAYZE	296498	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	296499	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
DORE,SWAYZE	296500	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	296622	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	298767	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	299052	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
CUNNINGHAM,SWAYZE	300219	Single Cell Mining Claim	2019-04-03	Acitve	800
CUNNINGHAM,SWAYZE	300220	Single Cell Mining Claim	2019-04-03	Acitve	800
CUNNINGHAM	300221	Boundary Cell Mining Claim	2019-04-03	Acitve	400
SWAYZE	302326	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	302327	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400

		-			
CUNNINGHAM,SWAYZE	303397	Boundary Cell Mining Claim	2019-04-03	Acitve	400
SWAYZE	303433	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	304432	Single Cell Mining Claim	2019-04-03	Acitve	800
CUNNINGHAM	305364	Boundary Cell Mining Claim	2019-04-03	Acitve	400
SWAYZE	308963	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	311210	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	311211	Boundary Cell Mining Claim	2019-04-03	Acitve	400
SWAYZE	315339	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	315340	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	320260	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
CUNNINGHAM,SWAYZE	322121	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	323017	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	323017	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	323920	Boundary Cell Mining Claim	2019-04-03	Acitve	400
SWAYZE	325012	Boundary Cell Mining Claim	2019-04-03	Acitve	400
DORE,SWAYZE	325660	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	325661	Boundary Cell Mining Claim	2019-10-04	Hold Pending extension of time	400
SWAYZE	328935	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	329215	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	333953	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	333954	Single Cell Mining Claim	2019-04-03	Acitve	800
SWAYZE	334322	Boundary Cell Mining Claim	2019-04-03	Acitve	400
SWAYZE	334323	Boundary Cell Mining Claim	2019-04-03	Acitve	400
SWAYZE	334324	Boundary Cell Mining Claim	2019-04-03	Acitve	400
SWAYZE	336586	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
CUNNINGHAM,SWAYZE	337248	Boundary Cell Mining Claim	2019-04-03	Acitve	400
SWAYZE	338603	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	340812	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	341122	Single Cell Mining Claim	2019-10-04	Hold Pending extension of time	800
SWAYZE	341679	Single Cell Mining Claim	2019-04-03	Acitve	800

A map showing the claim fabric (Figure 2) is attached. Legacy claims 4203295, 4203275, 4203296 and 4209811 were originally acquired from prospectors Rintala and Johnson by way of a twoyear option agreement through the issuance of 1,200,000 shares by Mantis Exploration Inc. resulting in that company acquiring a 100 % interest. The prospectors retained a carried 1.5 % NSR interest. All the other claims were acquired by staking by Mantis Exploration Inc. All of the claims were incorporated into an agreement between Mantis Exploration Inc and Mr. Leliever, whereby the latter has acquired 100% interest in the property described above. Mr. Leliever retains a 3% NSR interest with the pre-existing NSR of 1.5 % being embodied as part of the 3% on the whole package. One half of the 3% NSR, by right of the agreement is available for purchase upon payment of \$2,000,000.

The owner of a mineral cell claim in the province of Ontario does not have any surface rights but a claim owner has the right to access their claim holdings and to use the surface for exploration activities. Expenditures of \$400 per year are required for each cell in order to keep the claims in good standing.

4.3 Other Interested Parties

Besides the Ontario government, the Mattagami, Wabun First Nations and Wabun Tribal Council have an interest and authority of some nature. Aboriginal consultation was entrenched into the Mining act by bill 173. The regulations affecting exploration activities, requires the submittal to the government and First Nation communities of work plans for approval. Although, no consultation has taken place with the Wabun Triabl Council since 2013, Blackrock Exploration is committed to engage in required consultation by open dialogue with the First Nations prior to undertaking a diamond drill program or other surface work. The author is not aware of any other interested parties or any other significant factors that could affect the ability of the claim holder to preform work on the property.

159263 284631 244761	41015	044 124837 410158045	343573 410158040	410158647 317511 218715	268540 410158048	175036 410158040	315750 410158050	299363 410150051	318056 410158052	339644 410158053	223708 410158854	268390 410158055	103372 410158056	183895 410158057	119006 410156058	249729 410158050	193055 410158060	217252 410154041	342865 41015/012	237333 41015/010	283230 410154044	316422 41015/045	337334 41015/04	109222 41015/647
1015805 3 4 3 5 7 5 1 8 4 8 2 3		410158085 343574 339603	410158060 226034 184822	410 15867 2 44769 188827	328475 410158069	268541 410158000	309058 430158079	301 412 410158071				PRO			177171 410158079	298481 410156079	279833 410158080	279832 410154601	331018 410154652	151825 410154003	217253 410154864	213223 410154065	111.474 41015/00	244254 410154667
2 44783	X	232636 410158085	299319 410158080	410158087 317512 185962	341429 410156088	2 52 633 410158080	329047 410158010	121936. 410138091	193368 410118002	222581 410158093	193180 410158094	118529 410156085	278259 410158095	297176 410116087	278258 410158099	165074 410158099	120486 410158100	410154001 296498 158965	410(54022 135932 325661	410154083 277629 272451	41015A844 325660 254084	205875 41015485	1,000 m SCALE: 1.20	197135 40154897 0000
260128	410158	104 11 5982 410 1581 05	278183 410158188	41015B107 260127 104300	245973 410158108	289848 410158100	341430 41015R10	1042.99 410158111	297274 410158112	250070 410158113	338694 410158114	259723 410158115	338693 410158110	193181 410158117	129745 410158118	178505 410158119	298482 410158120	41015A101 242572 231816	104442 41015A102	192517 41015A103	41015404 222414 179462	134247 41015495	NTS 410 134246 400154860	341063 41015A107
128981	410158	124 279703 410158125	115983 410158126	410 138127 32 9048 1582 54	281766 410158128	2 52 63 4 410158130	121957 410158130	341 43 1 410158131	297275 410158832	163311 410158133	229119 410158134	175215 410158135	32 492 0 410158136	156282 410158132	295707 410158138	175902 410158139	156947 410158140	410154121 192518 241942	296499 410154122	2.42573 410154129	41015A124 129095 134249	282483 410154125	341064 410158126	265703 410154127
212164	410158	41279704 410158145	326790 410158146	41013B147 312761 259686	297140 410158145	410158149 299041 278228	410158150 271193 340033	410158151 299040 245974	41015 2223 1203	PROP	PERTY	BOUND	ARY	62364 0158157	1562.83 410158158	156948 410138159	337448 41015860	410154141 119619 259064	104443 410154142	2 59063 410154140	272981 296500 265705 410154144	41015A145 3.43.997 3.02270	410154146 341065 207581	41015A147 117926 265704
260129	49015B	64 2 12 1 65 410 (58) (65	115984 410158166	410158167 278230 164279	278229 410158108	410158100 224390 177135	165121 410158170	327640 410158171	280380 410158172	286452 410158173	173169 410158174	103023 410158175	410159178 156284 154348	241280 410158177	241279 410118178	191906 410158179	289036 410158180	410154161 255697 229782	136263 410154882	273797 410(5A163	410154164 201049 169608	207582 410154355	196946 410154166	196945 41015A167
0158184		410158185	SWAY 410158186	2E 193197 41015InE7	259687 410158188	410158189 22,4391 163741	159016 410158100	184570 410158191	327641 410158112	3.453.76 410158113	219713	274372 410158105	410158136 274371 162365	258329 410138187	102304 410118118	221816 410158199	258990 410158200	41015A181 119620 137035	255698 41015A182	237035 410154183	41015A194 285047 156442	00RE 217792 41015A185	321600 410154185	285046 410154187
	10158	94410158295	410158286	223079 410158207	157707 410158208	159018 246210 193198 41015839	410158210 2.462.09 3.4003.4	410158211 261731 2462.08	410150212 159017 123575	410158213 293763 249422	410158214 118328 2.49421	410158215 250513 227155	102305 250512 126397 410158216	410158217 111582 191229	4101188218 221140 212480	410158218 2 41 123 277020	410158220 22.9783 159940	41015A201 2 57880 2 41968	410 201849 41015A292	154 410154203 110768 236449	41015A204 292380 209175	3.43.998 41015A25	196947 410154200	4 285048 41015A207
0156224		410158225	410158226	104592 410158227	163793 41015829	410/158220 3/02/32/7 1/63/792	2.902.66 410.158230	134317 410198291	302326 410156252	315339 410138233	2.96622 410158294	250514 410158255	338603 410158236	161270 410158237	308963 410158238	249192 410158299	112256 410158040	41015A221 102389 199347	410154222 242615 236450	41015A229 3032.02 222456	135165 41015329	275042 41015A225	275041 41015828	33.5461 41015A227
5158244		410158245	135447 410158346	199643 410158247	236101 410158048	283245 410158340	32 02 60 410158250	3.41 122 410158291	123576 410158252	106917 410158259	315340 410158254	195822 410156255	32 92 15 410158256	1.47176 410158252	174934 410118258	212.481 410158259	159941 410156250	276921 410156341	1563.64 410154242	41015430 325012 170719	254512 410154344	155016 410154345	287116 410154245	208947 410154247
	101583	14.410/158265	216120 410158386	123460 410158267	135448 410158058	281138 410158259	233161 410158270	1853.43 410158271	215124 410158272	103047 410158273	154378 410158274	173216 410158275	126431 410158276	261740 410158277	103912 410156278	103.911 410138279	336586 410158280	258411 41015A301	175814 410154282	410155263 304527 276922	274598 41015A264	294428 41015A285	127070 410154266	275043 410156267
1	101582	14 410158285	254223 410158286	341679 410158207	303.433 410158288	2.45857 410158289	2 51982 410158250	340812 410158291	289228	173218 410158293	189784 410158294	293797 410118255	173217 4101582%	178561 410158297	232371 410158200	12.0545 410158299	208607 410158000	208606 41015A281	304432 41015A392	41015A383 267948 170628	220765 41015A254	335462 410156255	287119 41015/286	155017 41015A287
-	101588	4 410156003	283246 410158000	141496 410158887	180660 410158008	185873 410158000	271094 492158810	1603.42 410158011	328935 410158012	274901 410158813	293790 410158014	103048 410156015	154379 410158018	119184 410158017	2 99052 410158018	22.43.97 410158019	274606 4101588.20	220176 41015/301	311210 410154382	410154303 135771 323920	141209 41015/304	271296 410154305	149196 41015/005	111232 41015/007
	101583	4 410158325	251667 410158026	251666 410158527	148916 410156929	243632 410158030	285519 410158830	199381 410156531	333953 410156832	286977 410158033	103049 410156034	189785 410158335	154380 410156335	244584 410158037	261741 415156538	410136039 119185 141880	410158940 334324 274608	410158321 334323 304433	410156322 334322 334325	410154320 311211 310537	254577 410154324	167863 410154325	271297 410156326	301174 41015A327
	01585	4 410158345	300219 410158340	243633 410158347	251668 410158948	298767 410158940	273402 410158850	153555 410158851	333954 410158852	323017 410158859	274902 410158054	206975 410156955	173219 410158056	165132 410158857	280391 410158358	410130038 208608 232372	255237 410156960	141882 41015/441	PA1-44 141881 410154342	199921 410(5/343	207928 410154344	PAT-11049 197332 PAT-11050 410154345	186451 PAT-11050 410158346	167864 410154347
	015850	4 410158365	12 08 58 410158965	263679 410156367	300220 410158368	197029 410156969	322121 490158970	170121 410158071	410158872 303397 153557	410158973 226606 206883	226605 410158874	218652 410118875	189318 410158876	111063 4101589.77	2.41780 410156978	410158379 274609 337248	410156980 237183 188690	410154361 105297 136425	208609 410158362	410154083 141210 PAT-44684	135772 410154364	410150315 PAT-11055 PAT-11051	410154860 PAT-11052 198010	319190 41015A367
	015658 80613	4 105585 410158385	410158385 316479 120859	410 158387 197030 161239	410158388 300221 195279	410158389 333965 148917	40158390 273403 303398	410156991 115423 303909	410336882 333967 285525	410158883 322122 305364	226607 410158994	293216 410158995	238741 410158990	249853 410158997	130448 410118938	410158899 304434 194618	410158400 136426 125220	410154381 321748 200590	220177 410154382	410154383 2 54578 PAT-44685	141211 410154384	PAT-11653 410154385	PAT-11054 265261 41015/580	319191 410154357 PA
4	010.00	178006 41010.005	316480 41010,006	262468 41010.007	1612.40 41010.008	133325 41010.000	383399 41010,010	22/62/91 41016,011	219003 41010J012	41010,013 303,910 105416	105415 41016.014	153226 41010J015	1832.93 41010,010	2.41781 41010.017	111.064 41016.018	41010.019 208611 268604	40103020 208.610 12.522.1	41010001 255343 170629	220178 41010002	141883 41010000	521232 41010804	PAT-1105 41010005 PAT-11055 521241	521233 410101006	521235 41010007
	010.02	106586 41010.025	316481 41010.026	176415 41010.027	176414 41010.028	273404 41010,029	265486	285527 41010.031	285526	170122 41010,003	12546 804 1.75002 1.2890000	-tio Multis	an Arrest	41010,002	410 m.2.00 W	5093.97 41015.0029	509399 41010,040	509400 41019.821	509398 41010022	52 09 32 410 100 20	521238 41016824	521239 410106025	521236 410101025	521234 41010027

Figure 2: Claim Map, (from EMNDM Website).

4.4 Alienations

There are no known alienations that affect the Cree Lake property.

4.5 Environment

There do not appear to be any outstanding environmental concerns or issues affecting the Cree Lake property. There are a number of lakes and streams on the property which may be designated as cold water fish habitats by the Ministry of Natural Resources (MNR). Crossing of these water bodies using mechanized equipment requires MNR approval.

4.6 Permitting

Under the "Modernized Mining Act" of Ontario, as of April 1st, 2013, a permitting process for exploration activities is mandatory. Submittal of plans for low impact exploration activities, and

D. HAWKE

exploration permits for higher impact activities are required. Regardless of exploration impact all activity requires First Nation consultation. Neither Leliever nor Blackrock Exploration have entered into negotiations with any First Nations representatives up to the present time.

5.0 Accessibility, Climate, Local Resources, Infrastructure and Physiography (Item 5)

5.1 Access

Highway 144 starts in Sudbury to the south and ends at Highway 101 in the north. Access to the property can be gained by travelling north from Sudbury on Highway 144 and then west on secondary Highway 560 (locally known as the Sultan road). Approximately, 55-kilometers west of Highway 144, Highway 560 intersects a logging haul road known as the Doré road (figure 3). From this point, north for 27-kilometers to a fork in the road, the left fork which bears north and west and leads to a restricted access logging road. The gate is positioned 4.8-kilometers from the fork and access is controlled by Domtar via a locked gate. About 1.3-kilometers from the gate, a trail heading south leads to Hook Lake and boat access to the Buffalo-Canadian occurrence located south of the south shore of Hook Lake. At 2.7-kilometers from the gate, a 500-meter long truck drivable trail leads to a clearing from which a rough ATV trail begins. This trail leads south for 1.8-kilometers and ends up at the Flint Rock occurrence (Figure 3).



Figure 3: Access Map, (Hawke, 2015, 2016).

5.2 Climate

The climate of the Swayze area is typical of a northern mid-continental climate, whereby summers can vary from cool and moist to hot and dry, while winters typically last 5-months and can be quite cold. Average daily summer temperatures are in the 21° centigrade range, occasionally reaching maximums of 35° centigrade in July. Average daily winter temperatures are in the order of -16° centigrade, occasionally attaining extreme minimums of -43° centigrade in January. Seasonal climatic conditions do not unduly impede the ability to carry-out exploration programs on the Cree Lake property as all of the occurrences are land accessible.

Yearly snowfall is in the order of 275-centimeters with most of it occurring between December and March, when monthly average accumulations range from 15 to 28 centimeters. Yearly rainfall is in the order of 521-millimeters, occurring between April and November, when the monthly averages range from 22 to 83 millimeters, (Data source <u>www.climate.weatheroffice.ec.gc.ca</u>).

5.3 Local Resources and Infrastructure

The closest cities to the property are Sudbury with a population of 157,850, 195-kilometers, southsoutheast and Timmins with a population of 43,600, 130-kilometers northeast of the property. Both cities are well known mining centres supporting an extensive infrastructure, accommodating mining and mineral exploration. The Watershed Restaurant, Car & Truck Stop at the intersection of secondary highway 560 and highway 144, is the closest cross-road with fuel, food and limited accommodations, and is situated about 90-kilometers by road from the property.

5.4 Physiography

Vegetation on the Property area is typical of a boreal forest. On drier ground jack pine, spruce, white pine and aspen are plentiful. In lower swampy ground, black spruce, alder and cedar are common.

The Cree Lake property is located 40-kilometers north of the height of land that separates the Arctic drainage system from the Atlantic drainage system. The proximity to the divide results in sluggish river currents and poorly drained lakes. The main river flowing into Cree Lake is the Wakami River, which flows in a southeast direction, eventually linking with the Woman River. The more significant lakes in the immediate vicinity of the Property are Cree Lake, Ransom Lake, Freymond Lake and Saxton Lake.

Topography is typical of the Precambrian shield. Relief doesn't exceed 30-meters, with the highest elevations occurring north of Cree Lake. Sandy glacial till overburden is common and blankets most of the lower lying areas.

6.0 History (Item 6)

6.1 Introduction

Prospecting in the Swayze area became active in 1931 when the Kenty gold discovery was made in August of the same year. In 1933, two shafts were sunk on the property, 510 (155m) and 534 (163m) feet deep, with 6,750 feet (2057m) of corresponding lateral development. By 1934, production at the mine was suspended due to low gold values. This was outside the present property boundary.

Exploration within the Swayze Gold area continued and in the early 1930's, Buffalo-Canadian Gold Mines Ltd. made a gold discovery south of Hook Lake and east of Cree Lake, named the 'Buffalo-Canadian' occurrence. This work was on the present Cree Lake property. They followed this with a trenching, stripping and diamond drill program in 1933.

The area was geologically mapped by Furse (1932), Rickaby (1934) and V.B.Meen (1941) for the Ontario government and most of the work would be outside the Cree Lake claims.

Little exploration activity occurred after 1941 until Flint Rock Mines Ltd. acquired claims in the area and proceeded to drill the 'Flint Rock' occurrence in 1962-63, on the mainland and the island in Cree Lake. INCO gained rights to the property and area in 1966 carried out a small two hole drill program. The Flint Rock occurrence is located on the property.

The 1980s appeared to be the most active time for the property and area with many air and ground exploration programs taking place. Further geological mapping in the area was completed by Siragusa and a new map was generated from the results (1980). Most of this work was outside the claims.

During the 1990s, the ground passed between a junior company and individual prospectors.

The Cree Lake property was staked by prospectors R. Rintala and C. Johnson of Sudbury, Ontario and acquired under option by Mantis Explorations Inc. and they subsequently carried out trenching, sampling and drilling programs. The prospectors retain a 1.5% NSR royalty.

6.2 Chronological History

Table 2: Chronological History

	Chr	onological History		
Year	Company	Work Performed The 'Buffalo-Canadian' occurrence was trenched, stripped and drilled to yield assay results of 0.02-0.08 oz. per ton Au in mineralized quartz within shear zones. Visible gold was reported from this site.		
1930s *	Buffalo-Canadian Gold Mines Ltd.			
1932 **	Fruse	Geological mapping of the Swayze gold area.		
1933 *	Buffalo-Canadian Gold Mines Ltd.	On the east shore of Cree Lake, a 500 foot trenching and diamond of program was carried out		
1934 **	Rickaby	Geological mapping of the Swayze gold area, including Dore and Swayze townships.		
1941 **	V.B.Meen	Geological mapping.		
1959 **	M.W.Bartley, P.Eng.	Prospecting in the Ridout-Swayze area		
1961 *	Flint Rock Mines Ltd.	D.McKechnie wrote a report after visiting the Flint Rock property, recommendations included drilling, which was carried out the following year.		
1961-1963 *	Flint Rock Mines Ltd.	From July 1962 - February 1963, 34-holes were drilled on the property totalling 4,449.5 feet at what is now known as the 'Flint Rock' occurrence. On the mainland showing, 25-holes ranging from 28 to 379 feet in length were drilled, while on the island, nine holes from 85- to 160 feet in length were cored. Gold values ranged from 0.4-20.7 oz. per ton and silver values were from 0.32-4.54 oz. per ton. The program also included re-sampling of old trenches.		
1965 **	J.F.Donovan	Geological Report 33 "Geology of the Swayze and Dore Townships".		
1966 *	INCO Ltd.	Two drill holes totalling 1,133 feet were completed. In vicinity of Flint Rock occurrence.		
1968 **	J.F.Donovan	Geological mapping, Swayze township.		
1976 **	UMEX Ltd.	A total of 1,158 line-miles of an airborne magnetic survey were flowr over Denyes, Swayze, Dore, Heenan and part of Rollo Townships by Scintrex Survey Ltd, between January 29 and March 1, 1976.		
1980 **	Siragusa	Geological mapping, Swayze area.		
1980 **	ODM/OGS	An airborne INPUT electromagnetic survey and a magnetometer survey were completed in the area in late 1980 through early 1981.		

1981 **	Canadian Nickel Company Ltd.	In the spring, 560-contiguous claims were staked in Denyes, Swayze and Dore Townships. In the fall, an airborne geophysical survey was carried out over the area, as well as reconnaissance mapping and prospecting. Eight samples, centered on Cree Lake returned assays greater than 100 ppb Au, and five samples ranged from 20-100 ppb Au.	
1982 *	Troudor Resources Inc.	VLF-EM and magnetometer surveys were completed by S.Young and J.K.Filo. Based on these results, a report was written by D.R.MacQuarrie which recommended an IP survey and trenching or drilling, pending positive results.	
1982 *	L.J.Cunningham	During October, the property was mapped, the pits were cleaned ou and resampled and a report of this was submitted to Troudor.	
1984 *	Troudor Resources Inc.	Utah Mines filed assays for Troudor Resources.	
1984 *	Canadian Nickel Company Ltd.	A line grid, geological mapping, magnetic survey, IP survey and 3- diamond drill holes were completed in the area between Cree Lake and Cuckoo Lake.	
1984 *	Quinterra Resources/Golden Rim Resources	In the fall, on the south shore of Cree Lake, extending south into Cunningham Township, preliminary geological mapping and prospecting was completed, with assays of grab samples performed. Terraquest Ltd. flew a combined VLF-EM and magnetic survey.	
1985 *	Quinterra Resources Inc.	 From November 1985 to January 1986, 40 line-miles of grid were cut, south of Cree Lake onto which a magnetic, VLF-EM, self-potential and magnetometer survey, as well as detailed geological mapping were completed. A total of 7,010 feet were drilled by Longyear Canada Inc. in fourteen diamond drill holes, testing geological and geophysical targets, as well as a surface gold showing of 0.878 opt Au. Three zones of anomalous gold were intersected from five of these drill holes, including: 8.5 feet of iron-formation averaging 363 ppb Au; along a 37 foot length, best values obtained were 440 ppb, 280 ppb and 410 ppb Au in 5 foot, 3 foot and 5 foot intervals respectively; 37 feet averaging 183 ppb Au; 31.5 feet averaging 608 ppb Au, the best value of 3 feet of blue-grey to black chert, mineralized with 5% pyrite, yielded 2,000 ppb Au; and 20 feet of 600 ppb Au in quartz veined, metasomatized, altered core at the end of the hole. The highest value from the program was 1200 ppb Au over 5 feet. 	
1987 *	Quinterra Resources/Golden Rim Resources	A further 6-diamond drill holes totalling 2,962 feet, testing geophysical targets, were completed between March and May by Longyear Canada Inc. In the fall, a small magnetic and VLF surveying program was carried out on 20 grid lines, as well as overburden stripping. In three of the holes, assay results showed: a 22 foot section of mineralized, altered mafic tuffs that averaged 0.0157 opt. Au; 23 feet of a graphitic zone that averaged 0.0122 opt. Au; and 6.5 feet of mafic	

		tuffs, interlayered with graphite-pyrite beds that averaged 0.021 opt Au.	
1988 **	Charet Syndicate	Between March and April, an airborne magnetic and VLF-EM survey was carried out by Terraquest Ltd. on the north and northeast portion of Cree Lake, as well as further east in Swayze and Dore Townships.	
1990 *	Charles Mortimer	In January, Joe-Ann Salo was contracted to carry out a Total Field Magnetometer survey and Halo Explorations completed plugger work and blasting to obtain samples for assays.	
1990 *	Cree Lake Resources Corp.	Ground geophysical surveying of about 50 line miles, including MaxMin II EM and magnetic surveying were performed, along with data compilation and limited prospecting by MPH Consulting Ltd. from November to December, in the vicinity of Cree Lake.	
1992 *	Cree Lake Resources Corp.	A fall exploration program including mapping, prospecting, 801 overburden geochemistry samples, mechanized stripping of 14-areas, 1,100 feet of trenching and sampling was completed on its 100 claim gold property in the Cree Lake area.	
1993 *	Ron Crichton	A program involving hand stripping, 4.4 miles of line cutting, total field magnetometer, VLF EM, diamond drilling and assays was performed on the Cuckoo Lake property in Swayze Township. Two drill holes, one extended from 540ft to 692ft and the other totalling 402 ft. were drilled by Larry Salo and Ron Crichton, later logged by Mark Masson and samples sent for assay.	
2006 *	Johnson/Rintala	Sampling of Main trench at Flint Rock occurrence returned Au values ranging from .004 opt to 2.8 opt:	
2008 *	Mantis Explorations Inc.	A 155-meter stripping, trenching and sampling program was undertaken from September to November of the Flint Rock occurrence and the Buffalo-Canadian showing. Flintrock occurrence recommended for follow-up diamond drilling, Buffalo –Canadian showing results did not warrant immediate follow-up.	
2009 *	Mantis Explorations Inc.	A drill program consisting of 952.7m in 7-drill holes was carried out during the month of July of the Flint rock showing, which led to the discovery of a new zone (Mantis showing). In the early fall, the Mantis showing was exposed to bedrock, mapped and sampled. At program completion the high and steep trench south wall was deemed to be a potential safety hazard and the trench was backfilled	
2010 *	Probe Mines Limited	Mantis Mineral Corp. optioned property to Probe Mines Limited. Probe completed a Phase-1, 6-hole program of NQ, diamond drilling totalling 645-meters, in the vicinity of the Flint Rock showing.	

2011 *	Probe Mines Limited	A Phase-2 diamond drill program consisting of 5-holes totalling 331.9- meters was completed in the vicinity of the Flint Rock showing (Figure 4).
2012 *	Elcora Resources Corp	Claim post survey. Soil sampling program only partially completed. Samples collected on the South Cree Lake area but not submitted for analyses.
2016-2017	Leliever	792 soil samples using the Mobile Metal Ion Technology south of Cree Lake. Elements analysed were: Au, Ag, Cu, Pb, Zn, As, Mo &Bi. Nodes of strongly elevated Au in the north trend of the survey were recognized and very high Cu responses correlating with Au.
2016-2017	Blackrock Exploration Inc	Airborne Horizontal Magnetic Gradiant, Matrix VLF-EM and Radiometric surveys conducted by Terraquest over entire claim fabric. Bi-directional survey conducted with 178 north-south lines totalling 834 kilometers and 139 east-west lines totalling 783 kilometers.

Note: In the table above a single asterisk behind the date indicates that the work was carried out on the property while a double asterisk indicates a wider ranging program in which only a portion of the work was performed directly on the claims.

7.0 Geological Setting and Mineralization (Item 7)

7.1 Geological Setting

The Cree Lake property lies within the 2.6-2.8 Ga. south-western Abitibi Subprovince, a Neoarchean granite-greenstone terrane. The area is bounded to the west by the Kapuskasing Structural Zone and to the east by the Kenogamissi Batholith (figure 5). The Cree Lake property is hosted within the Halcrow-Swayze assemblage that is one of nine assemblages of the area that were historically and collectively referred to as the "Swayze Greenstone Belt". This assemblage consists of greenschist to amphibolite facies komatiitic flows, tholeiitic basalts, felsic and calc-alkaline metavolcanics, and oxide facies iron formation and it has been intruded by late quartz-feldspar porphyry and bodies of lamprophyre. Intense east to southeast striking shearing with 30° westerly plunging lineation occurs in the southern portion of the assemblage. The volcanic assemblages have been subjected to internal folding, producing sub-vertically oriented stratigraphy.

In the Cree Lake area, ultramafic to mafic flows are spatially associated with margins of the assemblage while intermediate to felsic metavolcanics are concentrated towards the interior.

Komatiitic flows at the northern and southern contacts of the assemblage are distinguished by a high magnetic signature and may correlate with each other through a large-scale anticline.

Sedimentary rocks in the Swayze area belong to the Ridout and Raney-Newton assemblages and consist of turbidites, arkose, conglomerate and iron formation. The Raney-Newton assemblage, historically referred to as the "Swayze Series", occurs at the northern contact of the Halcrow-Swayze assemblage, while the Ridout assemblage occurs at the southern contact. Within the Ridout assemblage, east-west trending, vertically dipping oxide facies iron formations occur south of Cree Lake.

The northern part of the Cree Lake property is underlain mainly by ultramafic flows cut by quartz feldspar porphyry and granite. The rocks strike roughly east-west and dip steeply. The southern edge of this assemblage of rocks is demarcated by the Ridout deformation zone. This is a zone of intense shearing and alteration.

The southern portion of the property is underlain by a mixture of mafic volcanic flows and rhyolite porphyry with minor amounts of quartz feldspar porphyry and granite. They also strike roughly east-west and they have been rotated into a steep dip by folding.

Both rock assemblages have been altered to the greenschist facies and they are overprinted by pervasive carbonate alteration. East-west shearing is prominent on the property and individual shears sometimes coalesce to form wider zones that may contain carbonate +/- quartz stockworks.

Two past producing gold mines are situated in the Swayze area; the Jerome and the Kenty. The Jerome gold mine is located 38-kilometers southeast of Cree Lake and occurs within the Ridout assemblage. The Kenty mine is located approximately 7 km northeast of Cree Lake and like the Cree Lake property is hosted within the Halcrow-Swayze assemblage.

At the Jerome mine gold occurs within an intense deformation zone characterized by strong carbonate stockworks, quartz veining and breccia, at the contact between sediments and granodiorite porphyry. High gold values correlate with quartz veins containing appreciable amounts of molybdenum. On July 18, 2011 Augen Gold (the operator of the property at that time) issued a press release stating that they had carried out a NI 43-101 compliant resource calculation indicating an inferred resource of 18.7 million tonnes grading 1.7 grams per tonne. The author has been unable to verify the information therefore the information is not necessarily indicative of the mineralization on the property.

At the Kenty mine, development work between 1931 and 1934 consisted of the sinking of two shafts, the No.1 and No.2 respectively. Three levels were accessed by the No.1 shaft and two by the No.2 shaft. Production figures are not available; and the author is not aware of any resource calculations for the property that would meet NI 43-101 disclosure standards. Gold mineralization is contained within quartz-carbonate veins in altered meta-volcanics within high strain zones spatially associated with a large body of feldspar porphyry

Figure 4: Diamond Drill at Flint Rock Occurrence, (Hanych and Ewanchuk, 2010)

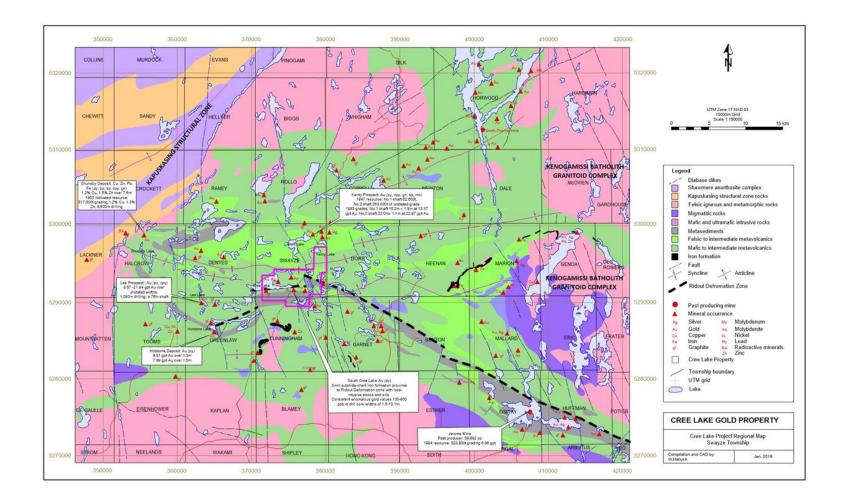


Figure 5: Regional Geology; Cree Lake Claim Group (after Ayer et.al. 2005) (See also Appendix-A)

7.2 Mineralization

The Cree Lake property hosts three main gold occurrences in the North area; the Flint Rock, the Buffalo Canadian, and the Mantis, in the South area five targets have been delineated. The Flint Rock occurrence and the Buffalo-Canadian occurrences were subjected to limited exploration in the past. and both were relocated and exposed during the 2008 exploration program. The Mantis occurrence was only discovered as a result of the 2009 drill program.

Anomalous to high gold values at the Flint Rock and Mantis occurrences are associated with discontinuous mm-cm quartz veins contained within 0.3 to 4.7-meter multiple sub-parallel shear zones in andesitic pyroclastics. Quartz-carbonate \pm chlorite veins of the Mantis occurrence contain visible mineralization in the form of subhedral to euhedral pyrite. Pyrite within the vein averages 1-2% but can attain concentrations of 12% where it is present in cm-scale, semi-massive form associated with strong shearing and oxidation.

Gold is associated with sulphide/oxide facies iron formation in the South area within a sedimentary assemblage. The sediments cover an extensive area in excess of 6,000-meters in strike length containing two separate horizons of iron formation each of which is estimated to form stratigraphic units that are approximately 200-300-meters wide.

7.2.1 Flint Rock /Mantis Occurrences

The bedrock of the Flint Rock occurrence consists of andesitic flows and weakly bedded tuff trending 080° with a steep southerly dip. The entire volcanic succession has undergone pervasive chloritization and carbonatization with more intense carbonatization occuring in zones of shearing. The shearing occurs as single to multiple, coalescing and bifurcating shear zones which trend more or less conformably with the volcanic stratigraphy. Typically, simple linear shears vary in width from 0.3 to 1.0-meter and in areas where they coalesce, 4.7-meter widths are attained. The shear zones strike 070° to 080° and dip 70° south., (see Figure 6).

Within the 'Main' shear zone along which the old workings were concentrated a multiple, quartzcarbonate vein system with widths of 10-15cm occurs semi-continuously for an 80-meter length. These veins occupy dilational spaces within the shear fabric and where more than one vein is present, a sub-parallel stacking occurs.

The veins contain visible mineralization in the form of native gold, galena, chalcopyrite and pyrite. Galena and chalcopyrite are sporadically present up to 1.5% within the veins. Pyrite within the vein averages 3% but can attain concentrations of 15% where it is present in cm-scale, semi-massive form.

High grade gold values are associated with galena mineralization. The highest gold value attained from a grab sample of bedrock containing quartz-carbonate vein material with galena and visible gold was 1,300 ppm or 37.91 opt (see Table 3). Continuous channel cut samples across the zone ranged from 0.005 ppm to 1.465 ppm.

Sample No	Au ppm	Au opt	Sample Type
C174482	196	5.68	spot cut 15cm
C174483	103.5	3.00	spot cut 15cm
C174217	83.7	2.43	spot cut 15cm
C174213	51.7	1.50	spot cut 15cm
C174212	61.1	1.77	spot cut 30cm
C174263	50.1	1.45	spot cut 50cm
C174470	48.6	1.41	spot cut 10cm
C174222	45.6	1.32	spot cut 30cm
C174264	41.	1.19	spot cut 50cm
C174490	36.7	1.06	spot cut 12cm
C165601	19.2	0.56	spot cut
C174255	32.1	0.93	channel 50cm
C174225	39.4	1.14	grab
C174243	45.2	1.31	grab
C174484	11.85	0.34	grab
C174232	90.9	2.64	grab
C174231	69.3	2.01	grab
C174227	36.1	1.05	grab
C174214	195	5.66	grab
C174215	184	5.34	grab
C174250	15.75	0.46	grab
C165604	47.8	1.39	grab
C174203	63.1	1.840	grab
C174206	13.4	0.39	grab
C174480	151.5	4.39	grab
C174481	229	6.64	grab
C174500	20.2	0.59	grab
C174494	26.2	0.76	grab
C174223	139.5	4.05	grab
C174295	26	0.75	grab
C174499	37.9	1.10	grab
C174296	301	8.73	grab
C174295	26	0.75	grab
C174401	172	4.99	grab
C174261	34.2	0.99	grab
C174265	62.6	1.82	grab
C174262	8.73	0.25	grab
C174269	6.48	0.19	grab
C174268	1300	37.70	grab

Table 3: Summary of gold assay results from 2008 trenching program.

Notes to above table: Spot cuts are 15-20cm long by 3cm wide diamond saw cut samples on the vein. Channel cuts are 30-50cm long by 3cm wide diamond saw cut samples across the vein and beyond into an alteration envelop or host rock. Grab samples are broken bed rock sourced chunks of rock typically biased towards well mineralized rock.

A 2009 drill program of the Flint Rock occurrence intersected deformation structures and veining along flow horizons and lithologic contacts. Some of the mineralized, multi-phase quartz veins and silicification halos contained 3-20% pyrite and 0.5-1.5% chalcopyrite and galena within broader meter-scale zones of late carbonate barren stockworks. Although assay results of the six holes that targeted the down-dip and strike extension of the Flint Rock occurrence yielded only anomalous gold values hole DDH-6 intersected a new zone, 3-5-meters below the collar elevation, labeled the Mantis zone.

Figure 6:Main vein of Flint Rock occurrence looking west, deep erosional trough of shear and associated oxidized bedrock, (Hanych and Ewanchuk 2010).

The Mantis zone/occurrence as exposed by a trench in 2009, revealed semi-continuous mineralization along 40-meter strike length of the trench and across widths of 5-6 meters in areas of high oxidation and shearing The zone characterized by a network of mm-cm scale quartz veins is interpreted to be an incipient stockworks. Unlike the narrow structure of the Flint Rock Occurrence, the new discovery is a thicker zone of gold mineralization. A weighted average of 2.053 ppm gold along a 15.5-meter cored interval from 5.5m to 21.0m was obtained in DDH-6. The best results at the Mantis occurrence were obtained from an area in the middle of the trench where shearing and oxidation are very strong and gold values attained 12.2 and 43.2 ppm, (see Figure 7).

Figure 7: High gold values at the Mantis occurrence were obtained from the strong shear and oxidation zones in the trench (upper right quadrant of photo), (Hanych and Ewanchuk 2010).

7.2.2 Other Occurrences

Previous workers have discovered gold mineralization at other places on the property mainly through the selection and assaying of grab samples. The exact locations of these samples are uncertain but they have been plotted on the compilation map (Figure 10) as accurately as the old information would allow.

7.2.2.1 Buffalo Canadian Occurrence

The Buffalo-Canadian occurrence consists of an east-west trending volcanic succession with a stratigraphic sequence from north to south of mafic fragmental (basaltic tuff), basalt, feldspar porphyry and finally rhyolite. The contact between the basalt and rhyolite is demarcated by a sharp steep fault scarp and a zone of intense shearing, oxidization, pervasive carbonatization and mm-carbonate-quartz veining across widths exceeding 6-meters.

80 channel cut, spot cut and grab samples from this occurrence were assayed and 29 contained anomalous gold values greater than or equal 0.100 ppm and are associated with mm-cm-scale quartz \pm carbonate veins with the fault contact shear zone between the basalt and the rhyolite. Assay results ranged from <0.005 ppm to 6.09 ppm gold. Two gold values from grab samples within this zone (4.48 ppm and 6.09 ppm) were the highest attained from the sampling program.

The 4.48 ppm value is from a basalt with 15% pyrite, and the 6.09 ppm value is from a sample containing a glassy-white quartz vein with 5% pyrite. Most of the values fall in the range 0.100 ppm to 0.500 ppm and tend to lie within 1-meter of the east-west trending fault scrap along its entire length.

Figure 8: Buffalo-Canadian occurrence, fault scarp looking west at contact between felisc volcanics to south and mafic volcanics to north, (Hanych and Ewanchuk 2010).

7.2.2.2 South Cree Lake Occurrences

The South Cree Lake area hosts several occurrences which are located south of Cree Lake about ½ the distance to Ransom Lake, and they consist of mineralization associated with sulphide/oxide facies iron formation and carbonatized volcanics (figure 9) in close proximity to an intrusive. Mapping and sampling carried out by Quinterra Mining in 1984 revealed the iron formation to be composed of pyrite and quartz rich layers.

Two large target areas defined by drilling, mapping and sampling occur in the South Cree Lake area; five sub-targets are identified in the east large target area (Figure 10).

Two grab samples from the central horizon, 275 meters north of a felsic intrusive, in the east target area, sent to Swastika labs returned values of 0.878 oz. /t Au (30.1 g/t) and 0.503 oz. /t Au (17.2 g/t). Twenty diamond drill holes within an area of 1,100 meters wide by 2,700 meters long (east target area) tested four stratigraphic volcanic-iron formation horizons. Eight returned encouraging results and are summarized below.

Drill Hole	From (meters)	To (meters)	Interval (meters)	Gold (g/t)	Mineralization
CL85-05	26.06	28.65	2.59	0.363	Sulfide-chert-graphite iron formation
CL85-10	231.34	242.62	11.28	0.183	Sulfide-chert-graphite iron formation
CL85-12	na	na	1.52	1.200	Contact zone of felsic intrusive
CL85-14	67.97	77.57	9.60	0.608	Sulfide-chert-graphite iron formation
Above includes	57.45	58.32	0.91	2.000	Blue chert with 5% pyrite
CL87-15	78.64	85.34	6.70	0.538	Sulfide-chert – quartz veined iron formation
CL87-16	95.71	105.77	10.06	0.418	Graphite-chert
CL87-18	12.19	16.00	3.81	1.783	Sulfide-chert iron formation
CL87-20	126.80	127.86	1.06	1.063	Quartz-feldspar porphyry/diorite

Table 4: Diamond Drill Intercepts from 1980s Exploration Campaigns

Figure 9: Carbonatized and quartz-carbonate veined volcanics; South Cree Lake area, (Hanych and Ewanchuk 2010).

D. HAWKE

8.0 Deposit Type (Item 8)

The Cree Lake property gold mineralization is modelled as Archean lode gold associated with greenstone terranes, intrusive rocks and regional scale deformation zones. Dynamic hydrothermal fluid systems generating overpressure and fluid-rock interactions can promote ductile shear in less competent units and brittle deformation in more competent lithologies. This activity can generate dilatant zones which can form gold mineralizing environments as pressure, temperature and fluid chemistry changes. The overriding condition for this model type is the presence of deformation zones with extensional domains. On a local scale, mineralization may vary from shear hosted no veining to veining, to distinct dilational vein arrays, to prominent brittle fault vein systems where meter-scale veins develop.

A significant component of gold mineralization at Cree Lake is associated with sulphide/oxide facies iron formation considered to be chemical sediments of exhalative origin. Chemical sediments can host highly anomalous to ore-grade concentrations of gold, which may be modified by proximal intrusive activity remobilizing the gold into higher grade gold vein arrays.

9.0 Exploration (Item 9)

The most recent significant work carried out on the property was a diamond drilling program completed by Probe Mines Ltd. in 2010 and 2011 while under option from Mantis Exploration Inc. This program tested targets developed during trenching and stripping operations previously completed by Mantis Mineral Exploration Inc.

9.1 2008 Trenching Program

Mantis carried out a 155 meter stripping, trenching and sampling program on the Flint Rock and Buffalo-Canadian occurrences.

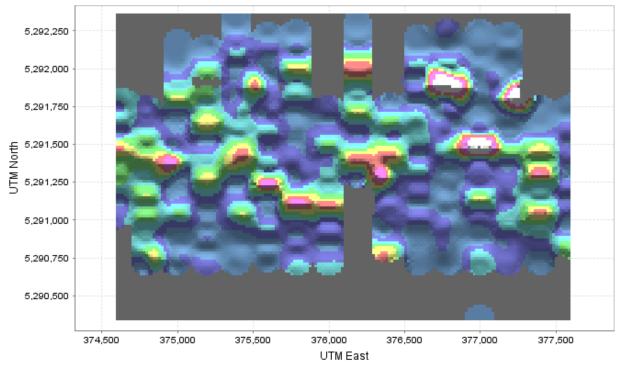
The Flint Rock occurrence prior to stripping consisted of vestiges of old workings of 2-blast trenches and 2-blast pits, all heavily overgrown, overburden and debris filled, and scattered along an east–west direction for about a 100-meter length. The stripping of these old workings effectively exposed them as well as the intervening bedrock revealing a more or less continuous bedrock exposure for the entire 100-meter length and averaging 15-meters in width.

At the Flint Rock occurrence 175-samples were collected. Various sampling methodologies were employed in the process of extracting a sample and included; power saw channel sampling, power saw spot sampling, portable drill core sampling, bedrock grab sampling and loose grab sampling.

Figure 10: Cree Lake Property Compilation Map , (Hawke 2015, and 2016 by Hanych and modified 2019).

(See also Appendix-B)

Results from the sampling program undertaken at the Flint Rock occurrence were encouraging. Of the 175-samples collected, 30-samples yielded gold values \geq 34 ppm, 7-samples contained gold values in the range \geq 17 ppm < 34 ppm, 5-samples contained values in the range \geq 10 ppm < 17 ppm and 21-samples returned values in the range \geq 3 ppm < 10ppm. The remainder of the samples yielded results < 3ppm Au.


The Buffalo–Canadian occurrence prior to stripping consisted of the remnants of several heavily overgrown and debris filled trenches scattered in a general east-west direction, along a 50-meter length. The excavation un-earthed a continuous strip of bedrock, that measured 55-meters in length by 20-meters in width. Channel cut, spot cut and bedrock grab samples were taken across zones of interest utilizing the same gathering and recording protocol that was employed at the Flint Rock occurrence.

A total of 80-samples were collected and submitted for analysis. Anomalous gold values in the range of greater than 0.100 ppm are associated with mm-cm-scale quartz \pm carbonate veins with the fault contact shear zone between the basalt and the rhyolite. Two gold values within this zone (4.48 ppm and 6.09 ppm) were the highest attained from the sampling program. Most of the values fall in the range 0.100 ppm to 0.500 ppm and tend to lie within 1-meter of the east-west trending fault scrap along its entire length.

The work completed to date has outlined three areas of mineralization alteration and shearing containing significant gold values. The Mantis occurrence appears to be the most significant where anomalous gold values were encountered over significant widths. Additional work is required to determine the significance of these occurrences.

9.2 2013-2016 MMI Soil Sampling Survey

In the fall of 2013, an MMI soil survey was conducted over the South Cree Lake occurrences., The field program was managed by JEX Resource Consulting Ltd. A total of 773-samples were collected from 15-north-south GPS controlled traverse lines covering 3,000-meters (strike length) by 1,400-meters (width). The survey coverage coincided with the broad target area explored in the 1980's by Quinterra Resources and Golden Rim Resources (Figure 8). The purpose of the soil survey was to vector-in on targets partially identified as a result of the 1980's work. Although, the samples were collected, they were never analyzed, by Elcora Resources nor by Mantis Exploration. The samples were stored in a secure facility pending analysis. In 2016 the samples were retrieved from storage and sent to SGS Mineral Services in Vancouver for analysis. A multi element sinuous response was outlined across the property. Nodes of high responses along these trends for Au and associated elements are follow-up targets, (see figure 8 and 9).

Cree Lake MMI Gridded AuRR

Figure 11: Gridded Plot of Au Response Ratios, South Cree Lake Grid, (Fedikow 2017).

9.3 2016/17Airborne Mag, VLF and Radiometric survey

During 2016/17 Terraquest Ltd. Completed a high resolution Matrix VLF, Mag and Radiometric survey over the property totalling 1617 line km.

9.4 2019 Geophysical Interpretation

In 2019 a preliminary geophysical interpretation was prepared using the Terraquest airborne survey data by J. Brett (MPH Consulting Ltd) and W. Hanych (Hanych Geological Consulting Ltd.). The authors outlined several features that were caused by different lithologies and/or geological structures. Some of these were coincident with or adjacent to geological targets identified by previous sampling, drilling and trenching programs. Several were recommended for additional work, (see figures 10,11 and 12).

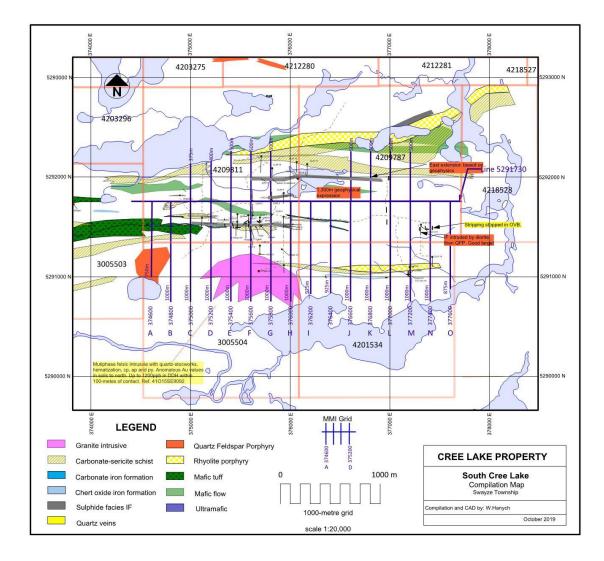


Figure 12: South Cree Lake Compilation Map, (Fedikow 2017).

(See also Appendix-C)

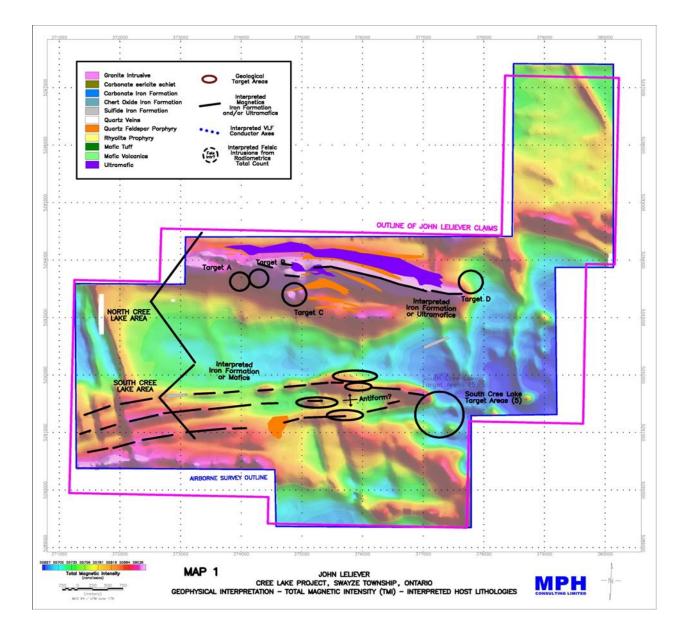


Figure 13: Total Magnetic Intensity, (Brett and Hanych 2019)

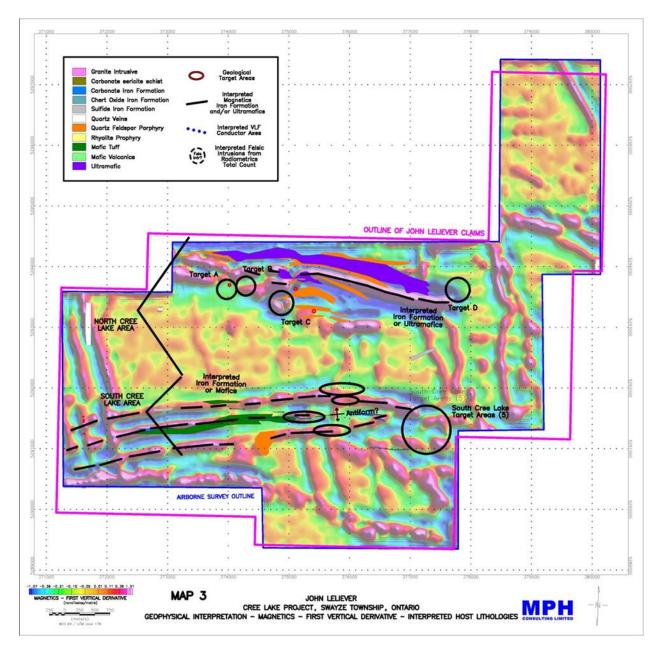


Figure 14: First Vertical Derivative with Interpreted Host Lithologis, (Brett and Hanych 2019).

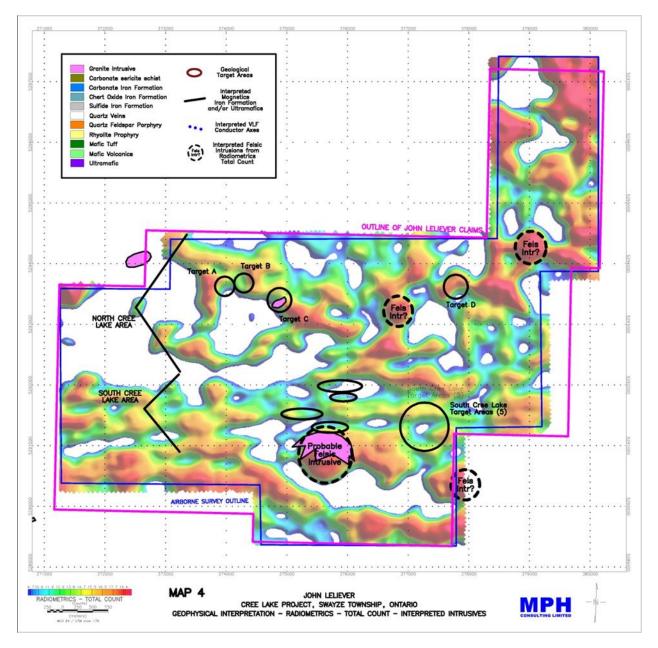


Figure 15: Total Count radiometric Map with Interpreted Intrusions, (Brett and Hanych, 2019).

10.0 Drilling (Item 10)

There has been no recent drilling performed on the property. The latest drill program was undertaken by Probe Mines in 2011. Nevertheless, the documentation of the historical drill programs is summarized to provide a frame of reference for future exploration considerations.

From 1985 to 1987 Quinterra Resources Inc and joint venture partner Golden Rim Resources Ltd drilled 20-holes in the area of what is referred to in this report as the South Creek lake area targeting a gold enriched sulphide/oxide facies iron formation. This formation, described as being

located south of the Cree Lake fault (Ridout Deformation zone), was outlined by geophysical surveying and mapping to occur for a 3,000 meter strike length on the property. Motivated by encouraging results of these surveys – a gold showing yielded up to 30.10 gpt Au in a grab sample – a total of 3,040 meters of diamond drilling were completed focussed north of a felsic intrusive body. The results of these drill campaigns are summarized below as well as in Section 6.0 (History) of this report.

Year	DDH	From meters	To meters	Interval	Gold gpt	Mineralization
1985	CL85-05	26.06	28.6	2.59	0.363	sulphide-chert-graphite iron formation
1985	CL85-10	231.34	242.62	11.28	0.183	sulphide-chert-graphite iron formation
1985	CL85-12	n.a.	n.a.	1.52	1.200	contact zone of felsic intrusive
1985	CL85-14	67.97	77.57	9.60	0.608	sulphide-chert-graphite iron formation
above includes	CL85-14	57.45	58.32	0.91	2.000	blue chert with 5% pyrite
1987	CL87-15	78.64	85.34	6.70	0.538	sulphide-chert quartz veined iron formation
1987	CL87-16	95.71	105.77	10.06	0.418	graphite chert
1987	CL87-18	12.19	16.00	3.81	1.783	sulphide-chert iron formation
1987	CL87-20	126.80	127.86	1.06	1.063	quartz-feldspar porphyry/diorite

Table 5: Summary of 1985-1987 Diamond Drill Results

The 2009 drilling and sampling program undertaken by Mantis Explorations Inc. involved the drilling of seven drill holes for a total of 952.7m at the Flint Rock occurrence. The drilling was performed by Roncor Diamond Drilling of Sudbury, Ontario utilizing NQ drill rods. Acid tests were taken at bottom of each hole, while the dip at the collar was checked by inclinometer. All of the cores were transported by truck to the accommodations at the Watershed Restaurant-Truck Stop, where logging, core cutting and sampling facilities were set up.

The details of the core were recorded in mineralogy and lithology logs. 1,052 samples were bagged, recorded and sent for assay to ALS Chemex in Sudbury, Ont. The retained core was trucked to Noelville, Ontario where it is stored in the service yard of Ronkor Diamond Drilling.

Results from the drill program undertaken at the Flint Rock occurrence are encouraging. Of the 1,052-samples collected, 185-samples yielded gold values ≥ 0.1 ppm, 39-samples contained gold values in the range ≥ 0.5 ppm < 34 ppm, 22-samples contained values in the range ≥ 1 ppm, 11-samples contained values ≥ 2 ppm, 8-samples yielded gold values of ≥ 3 ppm and 1-sample or returned a value of 11.55 ppm. The remainder of the samples yielded results < 0.1ppm.

10.2 2010-2011 Diamond Drill Program

Six holes were drilled along the interpreted west strike extent of the Mantis occurrence/zone. No obvious intercepts correlate with this zone; however a few of the holes in their upper sections did intersect the Flint Rock zone. Highlights of this drilling are summarized in table 3 below.

DDH	From	То	Width	Au ppb	Lithology	Comments	Zone
CL10-08	28.00	29.00	1.00	625	Mafic flow/tuff	Pervasive Q-C veins with 2-5% sulphides.	
CL10-08	43.00	44.00	1.00	812	Mafic tuff		Flint Rock
CL10-08	44.00	45.00	1.00	1285	Mafic tuff		Flint Rock
CL10-08	60.00	61.00	1.00	941	Mafic tuff		
CL10-09	34.00	35.00	1.00	3078	Mafic tuff	Margin of 1m zone high chlorite, 70%, 5% py.	Flint Rock
CL10-09	49.00	50.00	1.00	811	Mafic tuff	V-1, 20cm Q-C vein with 5% stringer py.	
CL10-09	73.00	74.00	1.00	644	Mafic tuff	10% , Q -veins with 1-2% diss. py.	
CL10-10	23.00	24.00	1.00	1367	Mafic tuff	vein with 5-10% diss. py.	
CL10-10	30.00	31.00	1.00	846	Mafic tuff	sil section, 2-3% diss. and blebby py.	
CL10-10	70.00	71.00	1.00	693	Lithic-XTL tuff	No outstanding features recorded.	
CL10-11	33.00	34.00	1.00	929	Mafic tuff	<5% V-1. Avg. 1-2% py, locally 5-10% py.	Flint Rock
CL10-11	35.00	36.00	1.00	2397	Mafic tuff	<5% V-1. Avg. 1-2% py, locally 5-10% py.	Flint Rock
CL10-11	36.00	37.00	1.00	7980	Mafic tuff	<5% V-1. Avg. 1-2% py, locally 5-10% py.	Flint Rock
CL10-11	46.00	47.00	1.00	4747	Mafic tuff	<5% V-1. No sulphides reported.	
CL10-12	8.00	9.00	1.00	23990	Mafic tuff	veins with 10% med gr py.	Flint Rock
CL10-12	9.00	10.00	1.00	1893	Mafic tuff	2.5cm wide Q-C with Brecciation, 1-2% Py.	Flint Rock
CL10-12	31.00	32.00	1.00	2306	Mafic tuff bx	<5% Q-C , 3-5% Py, locally 5-10% cm-scale.	
CL10-12	64.00	65.00	1.00	5402	Mafic tuff	Silic frag, flow banding, 3-5%.frag, diss. Py.	
CL10-12	79.00	80.00	1.00	504	XTL tuff	No sulphides or veining	
CL10-12	86.00	87.00	1.00	884	Mafic tuff	5% Q-C 2-3% Py, minor silic frag.	
CL10-12	98.00	99.00	1.00	590	Mafic tuff	10% Q-C, 1-3% Py.	
CL10-12	108.00	109.00	1.00	1199	Mafic tuff	10% Q-C, 1-3% Py.	
CL10-12	112.00	113.00	1.00	2559	Mafic tuff	10% Q-C, 1-3% Py.	
CL10-13	9.00	10.00	1.00	997	Mafic tuff	40% Q-C +5% Py.	Flint Rock
CL10-13	73.00	74.00	1.00	1146	Mafic tuff	5-10% Q-C, 1-3% Py locally 5%	
CL10-13	89.00	90.00	1.00	707	Mafic tuff	<5% Q-C, 2-3% diss. Py.	
CL10-13	111.00	112.00	1.00	715	Mafic tuff	Silic frag zone, 2-3% f.d.Py, large fragments.	
CL10-13	112.00	113.00	1.00	526	Mafic tuff	Silic frag zone, 2-3% f.d.Py, large fragments.	

Table 6: Summary of 2010 Diamond Drill Results

Five BQ-holes totalling 331.9-meters were drilled in the immediate vicinity of the Mantis showing bracketing CL09-6, Mantis' discovery hole. The results of this drill campaign are summarized below in table 4.

DDH	Sample	From	То	Width	Au ppb	Lithology	Comments
CL11-14	342146	50.60	51.60	1.00	512	Lithic tuff	1% diss. py, po Q-C vns (V-1?).
CL11-16	342300	29.10	30.10	1.00	819	XTL tuff	Pervasive Q-C veins, ± py and po., 1-2%
CL11-16	342302	31.20	32.20	1.00	659	XTL tuff	
CL11-16	342307	36.20	37.20	1.00	10949	XTL tuff	
CL11-16	342309	38.20	39.20	1.00	1434	XTL tuff	
CL11-16	342310	39.20	40.20	1.00	871	XTL tuff	

Table 7: Summary of 2011 Diamond Drill Results

CL11-16	342312	40.80	41.80	1.00	771	Mafic lithic tuff	Pervasive mm-cm Q-C vns, 1-2% py, po.
CL11-17	342379	54.30	55.30	1.00	658	Tuff breccia	Pervasive Q-C veins, ± py and po. with 1-2% py and
CL11-17	342380	55.30	56.30	1.00	783	Tuff breccia	po.
CL11-17	342381	56.30	57.30	1.00	1165	Tuff breccia	
CL11-17	342389	64.40	65.80	1.35	602	Mafic lithic tuff	1-2% diss py.
CL11-18	342242	39.80	40.60	0.81	1278	Mafic lithic tuff	Tr py,po. Mm Q-C vns generally no sulph.
CL11-18	342243	40.60	41.90	1.31	915	Tuff breccia	1% py, tr po.
CL11-18	342263	61.40	62.40	1.00	726	Mafic lithic tuff	K-altered (?), bx section with Q-C vns. Tr py,po.

The true widths of the intercepts listed in tables 3 and 4 are not known but they are assumed to be less than the drilled widths.

The results from the stripping and drilling programs are considered to be encouraging. Significant gold values were encountered in both drilling programs at the Flint Rock and the Mantis occurrences. Gold values roughly correlate with increased sulphide content occasionally resulting in bonanza grades. High grade gold values over narrow widths (1 meter) are interspersed with low but anomalous grades over significant widths along with widespread alteration create attractive targets that merit additional work to assess their significance.

11.0 Sample Preparation Analyses and Security (Item 11)

Trench samples were cut across the mineralized zones using a rotary diamond saw and they were chipped out of the rock and bagged at appropriate intervals. The bags were then sealed and delivered to the lab. During the 2009 drilling program the core was logged and appropriate sample intervals were marked out. The core was cut in half with a diamond saw and one half was bagged and sealed while the other half was returned to the core box for reference. The samples were delivered to the lab. Similar procedures were followed for the 2010 and 2011 drilling but the samples were delivered by commercial carrier to Accurassay Lab in Thunder Bay.

Samples from the 2008 trenching program and the 2009 drilling program were submitted to ALS Chemex laboratory in Sudbury while those from the 2010-2011 programs were submitted to the Accurassay Lab in Thunder Bay. Both are independent commercial laboratories operating at several locations across Canada. Chain of custody and sample security for the 2008 and 2009 programs was ensured through the delivery of the samples by Mantis personnel or bonded couriers, to the ALS Laboratory Group in Sudbury, Ontario for preparation. Samples that were sent to ALS Chemex were assayed for 35 elements using an aqua regia digestion followed by ICP-AES and for gold a fire assay with an AA finish was done on a 30 gram aliquot. The samples that were sent to Accurassay Labs were analyzed for gold and silver using a fire assay with an AAS finish. The methods used at both laboratories are considered to be adequate.

Core sample intervals were identified based on changes in lithology, structure, alteration and mineralization. Generally, samples of 1 meter were taken in longer sections of similarly mineralized rocks. Upon completion of the logging and demarcating the sample intervals, the core was sawn in half with a diamond saw. One half of the core was bagged, tagged with a sample number and then sealed and the other half is put back in the core boxes and kept as a reference.

A total of 886 samples were sent for Fire assay to Accurassay Laboratories in Thunder Bay. In 2010, 588 samples from the six drill holes were sent and in 2011, 298 samples were submitted from five drill holes

The author is of the opinion that the sampling procedures and the security precautions taken were adequate.

12.0 Data Verification (Item 12)

No standards or blanks were submitted during the 2008 trench sampling program. The nature of grab and chip samples does not lend themselves to duplication in the field because of the inherent bias of this type of sample. However, ALS Chemex is an accredited laboratory meeting ISO 9001:2000 accreditation and is accredited ISO 17025 by the Standards Council of Canada. The lab employs a quality control protocol of control samples that include duplicates, reference samples and blanks in all sample batches. These control samples revealed no problems or concerns.

In 2010, no standards or blanks were submitted by Probe with the drill samples, however it is Accurassay's QAQC protocol that results will be accepted as long as the internal lab standards for each batch of samples fall inside the +/-2 standard deviation lines. Any data that falls outside the +/- 3 standard deviation lines will result in the rejection of all results and the entire batch will be re-assayed. The results show minimal differences between the original and the duplicate

In 2011, Probe instituted its own QA/QC protocol with standards and blanks submitted within the sample stream. Samples were assembled into batches of 40 samples including the QAQC samples inserted in each batch. Each batch contained two certified reference materials (standards) and one blank. The lab completed internal sample duplicates.

In addition to the 288 drill samples, a total of 8 blanks and 16 standards were sent. Two types of standards were submitted (8 X Oreas 65A and 8 X Oreas H3). The blank material was supplied to Probe by Accurassay however the blank samples were tagged and submitted by Probe personnel.

The blank samples returned acceptable values and did not indicate any contamination.

Eight Oreas 65a samples were submitted. This standard performed well with one sample returning one value less than 2SD from the Mean Certified value, however it was not adjacent to another less than 2SD value and as such all the standards are considered as passed.

Eight Oreas H3 standards were submitted. Three of the standards failed, returning values greater than 3SD from the Mean Certified value. Therefore, select samples above and below the failing standards were re-run to validate the results. A total of 84 samples were re-run and these results have been used in the final database.

Lab duplicates were completed with the 2011 assays. A total of 31 samples were duplicated. The results indicate minimal differences between the original and the duplicate.

The author considers the quality control and quality assurance procedures from the 2008, 2009, 2010 and 2011 work programs to be satisfactory to provide confidence in the data collection and processing.

Dr Fedikow of mount Morgan Resources was engaged to interpret and comment on the MMI survey results from the 2016 analytical work. As part of his conclusions he stated the following "based on a review of the standard reference materials MMISRM18 and MMISRM19, the replicate analysis of the analytical blank (n=19) and the correspondence of analyses for duplicate sample pairs the MMI-M database is considered to be accurate, reproducible and free of and contaminants that would impact the recognition of bona fide geochemical anomalies including patterns of response in the Cree Lake property MMI survey" This indicates that the quality assurance and control measures for this survey are satisfactory.

13.0 Mineral Processing and Metallurgical Testing (Item 13)

This item does not apply.

14.0 Mineral Resource Estimates (Item 14)

This item does not apply.

15.0 Mineral Reserve Estimates (Item 15)

This item does not apply.

16.0 Adjacent Properties (Item 23)

There are no producing mines on any adjacent properties. The non-producing Kenty mine is located about 7 km north of the Cree Lake property and the shuttered Jerome mine is located some 38 km to the southeast.

17.0 Other Relevant Data and Information (Item 24)

The following expenditures have been reported for work done on the property. The author has not independently verified any of the reported expenditures.

2008 Trenching	\$111,200
2009 Drilling	\$289,224
2009 Trenching	\$30,000
2010-2011 Drilling	\$132,343
2012 Soils, rock sampling, claim post survey	\$120,000
2017 Airborne survey	\$145,291*
2017 MMI Survey	\$89,897**
2019 Geophysical interpreation	\$5,712***
Total	\$923,667

- * Expenditures January 1, 2017 to May 31, 2017.
- ** Expenditures August 1, 2017 to September 27, 2017
- *** Expenditures January 1, 2019 to January 17, 2019
- Total Expenditures January 1, 2017 to January 17, 2019\$249,900

17.1 Websites

The following websites were visited in the preparation of this report.

www.IAMGold.com www.sgs.com/geochem www.actlabs.com www.climate.weatheroffice.gc.ca www.mndmf.gov.on.ca/mines www.alschemex.com www.accurassay.com

17.2 Abbreviations and Acronyms

Acronyms a	nd abbreviations of terms and units in this report
AA	Atomic Absorption
AAS	Atomic Absorption Spectroscopy
AES	Atomic Emission Spectroscopy
AEM	airborne electromagnetic
Au	gold
amsl	above mean seal level
cm	centimeter
С	centigrade
DDH	diamond drill hole
ft.	feet
Ga	Billion years
GPS	Global Positioning System
gpt	grams per tonne
ICP	Inductively Coupled Plasma
ISO	International Organization for Standards
km	kilometer
km ²	square kilometers
m	meter
mm	millimeter
mag	magnetometer
MNDMF	linistry of Northern Development Mines and Forestry
DZ	Deformation Zone

Table 8: Acronyms and Abbreviation of Terms and Units in this Report

MMI	Mobile Metal Ion			
NAD	North American Datum			
N	north			
NTS	National Topographic System			
NI 43-101	National Instrument 43-101			
No.	number			
NSR	Net Smelter Return			
oz/t	ounce per ton			
ODM	Ontario Department of Mines			
OGS	Ontario Geological survey			
ppb	parts per billion			
ppm	parts per million			
RR	Response Ratio			
SGH	Soil Gas Hydrocarbons			
SI	International System of Units			
UTM	Universal Transverse Mercator			
VLF-EM	Very Low Frequency Electro-magnetic			
>	greater than			
<	less than			

17.3 Units of Gold Measure and Elemental Measure

Technical reports and assay certificates report gold and elemental values in various units of measure. This report contains such information. Useful definitions and conversions are tabled below.

Table 9: Definitions and Units of Gold and Elemental Measure

ppm	per million, is a parts per notation of dimensionless quantity which denotes one per 1,000,000 parts.
ppb	per billion, is a parts per notation of dimensionless quantity which denotes one per 1,000,000,000 parts.
1 troy ounce	31.103481 grams. This conversion results in grams per short ton. To complete the metric conversion, the imperial short ton must be converted to a metric ton using the factor 0.9071, since 1 short ton =0.9071 tonnes, thereby resulting in 34.2857 grams per tonne.
1 ppm	Can be expressed as 1 gram per tonne.
1,000 ppb	Equivalent to 1 ppm.

18.0 Interpretations and Conclusions (Item 25)

The results from previous exploration programs are very encouraging, especially in the light of the discovery referred to as the Mantis occurrence. This discovery significantly increases the gold mineralization potential of the Cree Lake property. The system displays significant grade-widths hosted by an incipient stockwork vein set, and unlike spectacular high grade showings associated with narrow leader veins in shear-fault zones. Stockwork type mineralized systems potentially form larger deposits and targets. This new discovery, of a vein system with an incipient stockwork network carrying disseminated pyrite provides a larger mass for geophysical tracing and is more amenable to definition drilling as well. The procedures and methods used during the exploration programs carried out on the Cree Lake property are all considered to be adequate to instill confidence in the quality and reliability of the information generated.

The South Cree Lake occurrences are located south of Cree Lake about ½ the distance to Ransom Lake and consist of occurrences associated with sulphide/oxide facies iron formation in close proximity to intrusive bodies. Mapping and sampling carried out by Quinterra Mining in 1984 revealed the iron formation to be composed of pyrite and quartz rich layers. Two grab samples sent to Swastika labs returned values of 0.878 oz. /t Au (30.1 g/t) and 0.503 oz. /t Au (17.2 g/t). Five immediate follow-up target areas defined by previous drilling, mapping and rock sampling, occur in this area that warrant further investigation.

The MMI survey and the airborne VLF-Mag-Radiometric have identified several anomalies. Some are coincident with or adjacent to, previously discovered auriferous targets and others are new targets untested during previous work programs. These anomalies merit additional work to determine their significance relative to the geological model developed for the Cree Lake property.

19.0 Recommendations (Item 26)

- The full extent of the mineralization encountered at the Mantis showing and the Flint rock occurrence is currently unknown and should be determined.
- Beyond the Flint Rock and Mantis occurrences, the South Cree Lake occurrence area is under-explored requiring further evaluation of the sulphide-facies iron formation.
- The occurrences outside these areas should also be prospected and evaluated in the context of the property geological model. And the remainder of the property should be covered by MMI surveying.
- Targets identified by the initial MMI survey and the airborne survey work should be investigated by mapping, prospecting and geophysical surveying (I.P.)

• The following phased recommendations are made for future exploration programs on the property. The diamond drilling of Phase-2 proposed program will be contingent on attaining positive results from Phase-1 and Phase-2 (1,2,3) of the work programs.

Phase 1

- 1. Ground follow-up of soil results, mapping and prospecting.
- 2. I.P. surveying over selected geochemical and geophysical targets

Phase 2

- 1. MMI sampling covering the northern sector of the Cree Lake property
- 2. MM sampling South Cree lake, extension to west
- 3. Ground follow-up of selected targets
- 4. Diamond drilling, ~4000-meters.

Table 10: Proposed Exploration Budget, Cree Lake Property

	Amount	Cost
Phase -1		
Prospecting, Mapping, Sampling I.P. surveying		\$120,000
Phase -2		
MMI sampling and ground follow-up	~800 samples	\$140,000
Diamond Drilling	4000 meters	\$600,000
TOTAL		\$860,000

20.0 References (Item 27)

Barrie, Charles Q., 1988. Airborne Magnetic and VLF-EM Survey, Swayze and Dore Townships, Porcupine Mining Division, Ontario for Charet Syndicate by Terraquest Ltd. Assessment Files.

Bartley, M.W., 1959. A Report on the Prospecting in the Ridout-Swayze Area. Assessment Files.

Bell, Robert C., 1984. Geological Survey Report on Claims in Swayze Township, NTS: 41015. Assessment Files.

- Boyle, R.W., 1979. The Geochemistry of Gold and its Deposits (together with a chapter on geochemical prospecting for the element), Canadian Government Publishing Centre, Hull, Quebec, p. 584.
- Brereton, W.E., 1990. Report on the Cree Lake Gold Property of Cree Lake Resources Corp, Swayze and Cunningham Townships, Porcupine Mining Division, Ontario. Assessment Files.
- Brett, J. and Hanych, W. 2019. Geophysical Interpretation Report on the Results of an Airborne Horizontal Magnetic Gradient, Matrix VLF EM and Radiometric Survey, Cree Lake Project for John Leliever, Caledon, Ontario.
- Bruce, C.S., 1981. Report on the Magnetometer Survey Report of the Cree Lake Claims, Swayze Township. N.T.S. 41-O-15, Porcupine Mining Division, Ontario. Assessment Files.
- Canadian Nickel Co. Ltd., 1985. Diamond Drilling Report for Hole 72525-0. Assessment Files.

Canadian Nickel Co. Ltd., 1985. Diamond Drilling Report for Holes 72526-72528. Assessment Files.

Canadian Nickel Company Ltd., 1985. Diamond Drilling Report on Hole 72529-0. Assessment Files.

- Caven, Roger J., 1976. A Report on the Airborne Magnetic Survey Flown for UMEX by Scintrex Surveys Ltd. Assessment Files.
- Colvine, A.C. et al., 1988. Archean Lode Gold Deposits in Ontario: Part I. A Depositional Model: Part II. A Genetic Model, Queen's Printer for Ontario, Ontario, Canada, p. 136.
- Crichton, Ron, 1993. Final Submission OPAP 92-814, Cuckoo Lake Property, Swayze Township. Assessment Files.

Crichton, Ron, 1994. OPAP Final Submission, Swayze Township, OP93-711. Assessment Files.

- Cunningham, L.J., 1982. Report on the Swayze Township Property of Troudor Resources Inc., Porcupine Mining Division, Ontario. Assessment Files.
- Donovan, J.F., 1964. Map No. P.209 Swayze Township, Ontario Department of Mines. Assessment Files.
- Donovan, J.F., 1965. Ontario Department of Mines, Geological Report No. 33, Swayze and Dore Townships, Frank Fogg, Toronto, Ontario, Canada, p. 25.
- Dubeau, M., 1987. Report on the Diamond Drilling Programme on the Cree Lake Property, Swayze Township, Ontario for Golden Rim Resources Ltd. Assessment Files.
- Edwards, A.B., 1947. Textures of the Ore Minerals and Their Significance., Brown, Prior, Anderson Pty. Ltd., Melbourne, Australia, p. 185.
- Fedikow, M. 2017. Results of a Mobile Metal Ion Soil Geochemical Survey on the Cree Lake Property of JEX Exploration, Swayze Township for john Leliever, Caledon , Ontario

Flint Rock Mines Limited, 1963. Diamond Drilling Report on Holes 1-12A on Claim S 116847. Assessment Files.

Flint Rock Mines Limited, 1963. Diamond Drilling Report on Holes 1-10 on Claim S 116850. Assessment Files.

- Fruse, G.D., 1932. Geology of the Swayze Area. ODM, Vol. XLI
- Goad, Robin E., 1989. Diamond Drill Record for Can-Mac Exploration Ltd. by Geological Engineering Services, North Bay, Ontario. Assessment Files.
- Granges Exploration, 1977. Diamond Drilling Report on Hole SW-32. Assessment Files.
- Hamilton, Joseph A., 1993. Report on the 1992 Exploration Programme on the Cree Lake Gold Property of Cree Lake Resources Corp., Swayze and Cunningham Townships, Porcupine Mining Division, Ontario. Assessment Files.
- Hanych, W., 2009. Internal Geological Summary Report, Cree Lake property, for Mantis Explorations Inc. private company report
- Hanych, W and Ewanchuk S., 2008. Geological Technical Report, 2008 Trenching and Sampling Program, Cree Lake Gold Property, for Mantis Explorations Inc., p 44. Assessment Filed report.
- Hanych, W. and Ewanchuk, S., 2009, Geological Technical Report, 2009 Trenching and Sampling Program, Cree Lake Gold Property, Swayze Township, Ontario, Canada, for Mantis Explorations Inc., p 48.
- Hanych, W. and Ewanchuk, S., 2010, Geological Technical Report, 2009 Drilling and Sampling Program, Cree Lake Gold Property, Swayze Township, Ontario, Canada, for Mantis Explorations Inc., p 244. Assessment filed report.
- Hanych, W, and Palmer, D., 2012, Probe Mines Limited, Cree Lake Project, Drill Data Summary, 2010 and 2011Programs, p 33. Assessment filed report.
- Hodges, Greg, 1987. Report on the Electromagnetic and Magnetic Surveys on the Saxton Lake Property of Glen Auden Resources Limited, Swayze Township. Assessment Files.
- Hughes, T.N.J., 1981. Geophysical Report on the Ransom Lake Project, Cunningham Township for Ingamar Explorations Limited. Assessment Files.
- Lashbrook, R.L., 1980. Report on an Electromagnetic Survey of the Cree Lake Claims, Swayze Township, N.T.S. 41-O-15, Porcupine Mining Division, Ontario. Assessment Files.
- MacQuarrie, D.R., 1982. VLF-EM and Magnetometer Survey on the Cree Lake Gold Prospect of Troudor Resources Inc., Sudbury District, Ontario. Assessment Files.
- Meen, V.B. 1941. Geology of the Cunningham Garnet area, ODM Vol. 44
- Rickaby, H.C., 1934. Map No. 43b Swayze Gold Area, Ontario Department of Mines. Assessment Files.
- Salo, J.G., 1990. Report on Geological Exploration Program on the Swayze Township Property for Charles Mortimer. Assessment Files.
- Salo, Larry J., 1998. Swayze Township, Work Report, Stripping, Assessment Files.
- Sutherland, Don B., 1976. Report on the Electromagnetic and Magnetic Survey, Group 9, Swayze Project, Ontario. Assessment Files.
- Sutherland, Don B., 1976. Report on the Electromagnetic Survey, Group 10, Swayze Project, Ontario. Assessment Files.

Szetu, S.S., 1971. Report on a Program of Geophysical Check Surveys in March 1971. Assessment Files.

- Terraquest Ltd., 1985. Report on an Airborne Magnetic and VLF-EM Survey, Swayze and Cunningham Townships, Porcupine Mining Division, Ontario for Quinterra Resources Incorporated. Assessment Files.
- Winter, L.D.S., 1986. Exploration Summary, Cree Lake Property, Swayze Township, Ontario for Golden Rim Resources. Inc. Assessment Files.
- Winter, L.D.S., 1986. Report on the Exploration Program on the Cree Lake Property, Swayze Township, Ontario for Golden Rim Resources Inc. Assessment Files.

21.0 Date and Signature Pages

NI 43-101 TECHNICAL REPORT

ON

THE CREE LAKE PROPERTY

Swayze Township

ONTARIO, CANADA

LATITUDE 47.78°N LONGITUDE 86.66°W

Prepared for

BlackRock Exploration Inc.

In accordance with NI 43-101

Ву

D. R. Hawke, MSc. P.Geo.

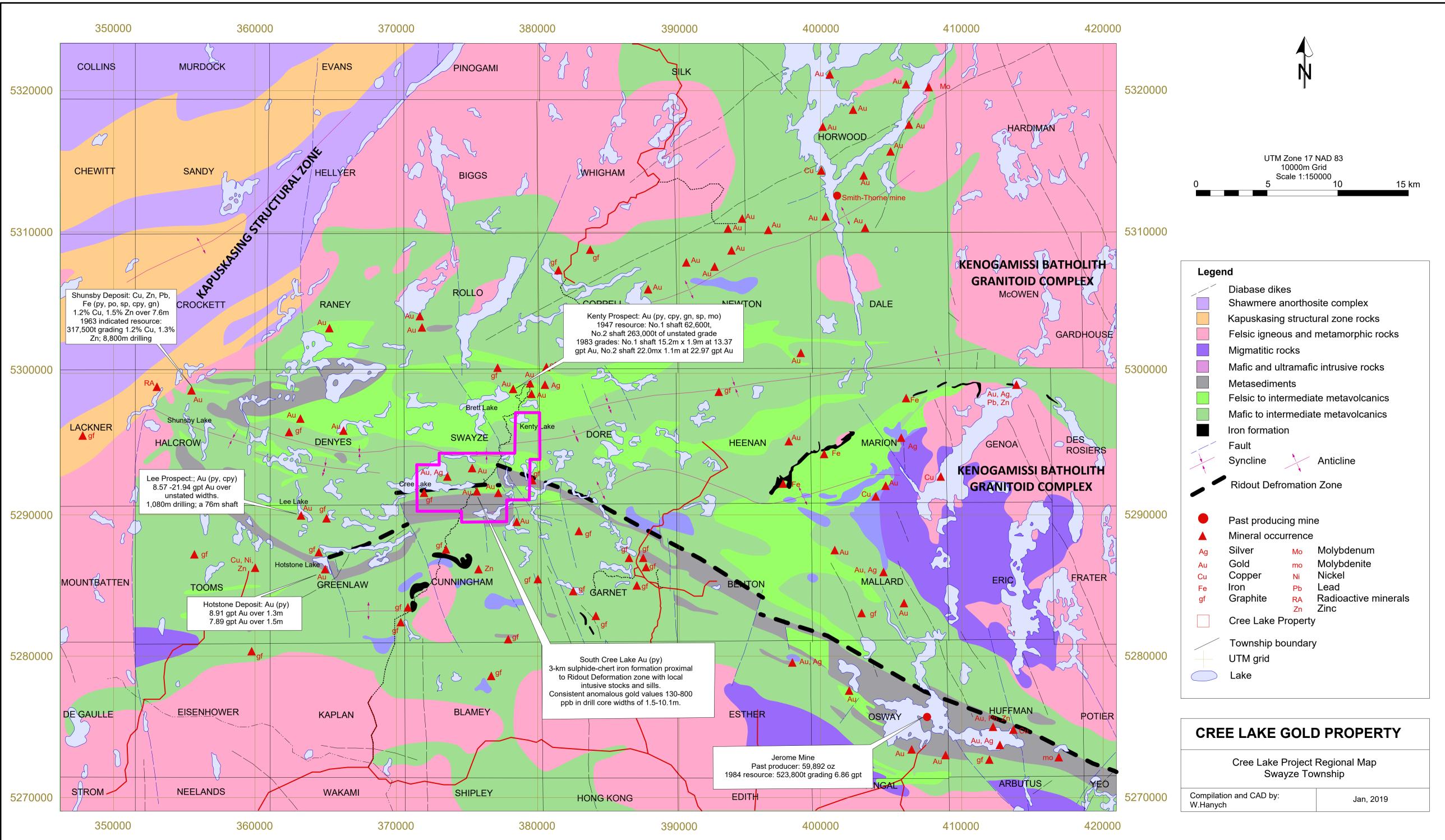
ONALD ROBERT 0661

Effective Date December 03, 2019

Certificate of Author

,I, Donald Robert Hawke of Port Sydney, Ontario do hereby certify as follows.

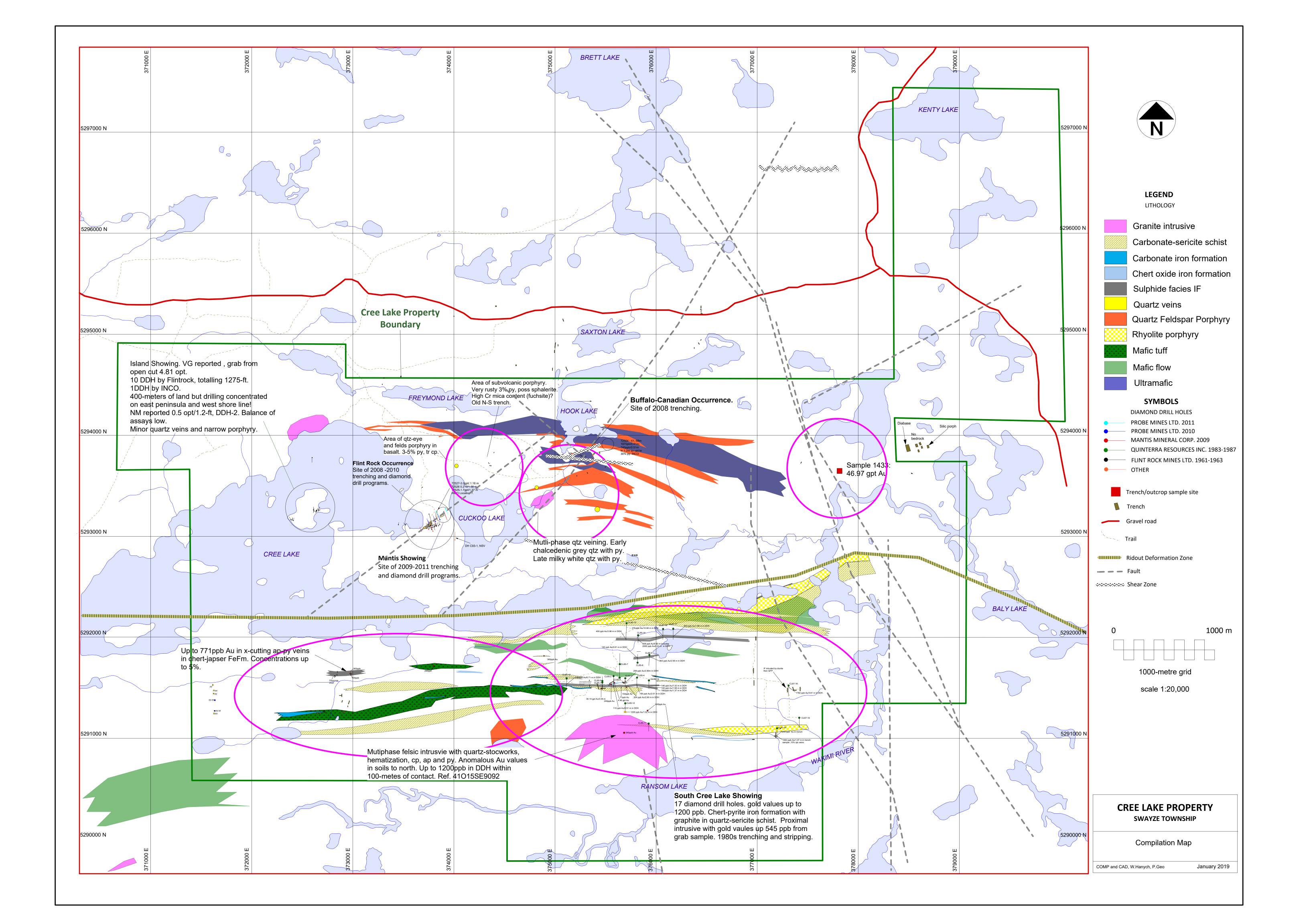
- 1. I am a geologist residing at 242 Deer Lake Road Port Sydney, Ontario and I have practiced my profession continuously for the past 48 years.
- I graduated from Laurentian University, Sudbury Ontario with a M.Sc. degree in geology in 1981 and a Hons. B.Sc. degree in geology in 1973. In 1968, I graduated from Cambrian College, Sault Ste. Marie with a geology Technician Diploma.
- 3. I am a member of the Association of Professional Geoscientists of Ontario (#0661)
- 4. This report is based on the listed references, my general knowledge of the area and a visit to the property on September 13, 2012.
- 5. I am the author of the technical report titled "NI 43-101 Technical Report on the Cree Lake Property, Swayze Township, Ontario, Canada prepared for Blackrock Exploration Ltd. dated December 4, 2015 and revised Dec. 3, 2019 according to National Instrument 43-101 and I am responsible for all items in the report. I have read NI 43-101 and the technical report has been prepared in compliance with NI 43-101.
- 6. I am independent of the issuer applying all of the tests in section 1.5 of National Instrument 43-101 and I am independent of the vendor.
- 7. Other than a property visit on September 18, 2012 I have no prior involvement with the Cree lake property.
- 8. I have read the definition of a qualified person as set out in NI-43-101 and I certify that I meet the requirements as outlined in NI-43-101 and I have read the technical report
- 9. As of the effective date of this report and to the best of my knowledge and belief the technical report contains all scientific and technical information that is required to be disclosed to make the report not misleading. I am not aware of material change with respect to the subject matter of this report that is not reflected in the report.
- 10. I consent to the public filing of this report and to the use of extracts from, or a summary of the report providing that no extracts or summary be used to convey a meaning not set out by the whole.


December 03, 2019

D. R. Hawke

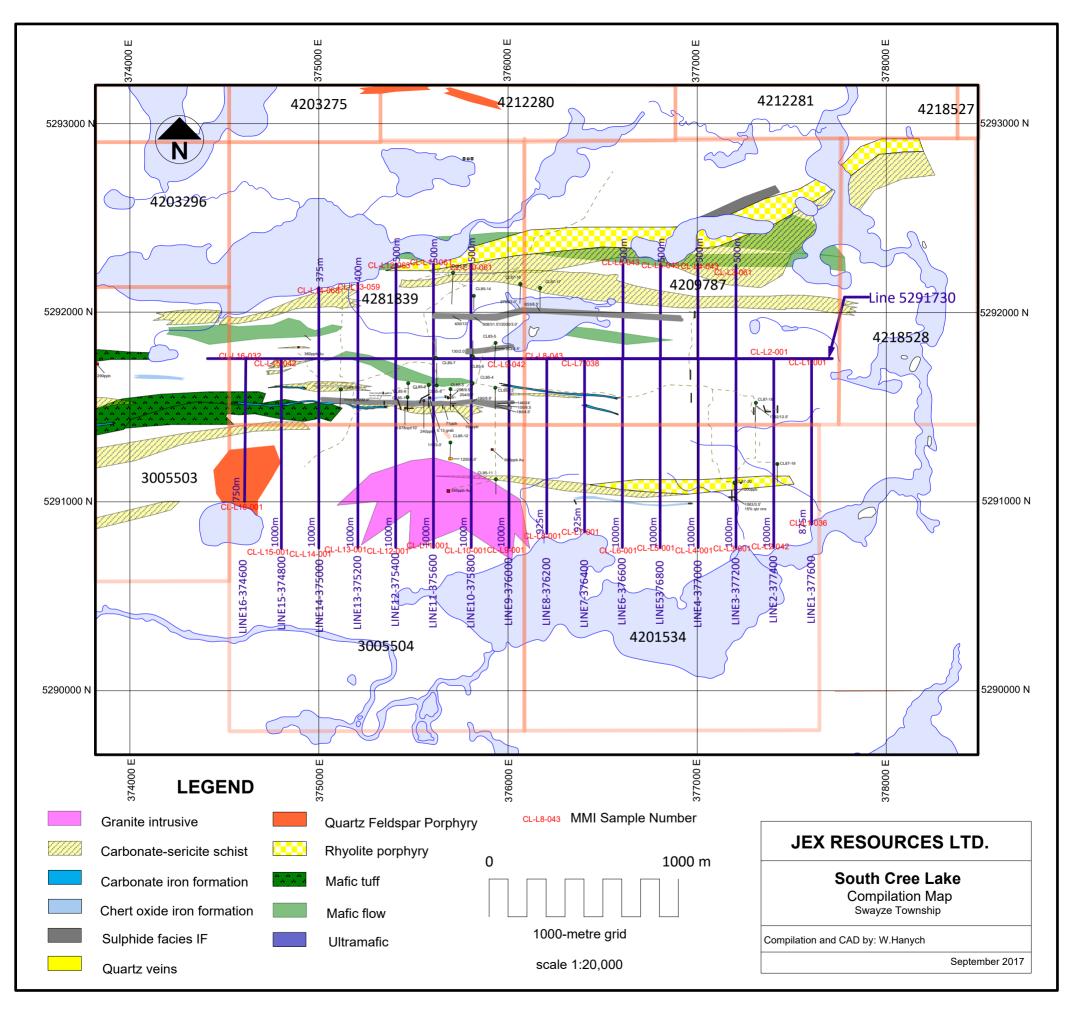
APPENDIX A

Figure 5


(Zoom-in version of figure 5 in document)

APPENDIX B

Figure 10


(Zoom-in version of figure 10 in document)

APPENDIX C

Figure 12

(Zoom-in version of figure 12 in document)

