Appia Confirms High-Grade Gallium Mineralization in All Zones on Alces Lake Property

Toronto, Ontario--(Newsfile Corp. - March 25, 2021) - Appia Energy Corp. (CSE: API) (OTCQB: APAAF) (FSE: A0I.F) (FSE: A0I.MU) (FSE: A0I.BE) (the "Company" or "Appia") is pleased to announce that high-grade gallium has been consistently reported from lithogeochemical assay results from all of the high-grade rare earth element ("REE") zones on the Company's Alces Lake property (the "Property"), northern Saskatchewan.

Following up on the results from an electron microprobe study that successfully showed monazite was the mineral host for gallium as well as REEs (see News Release dated February 17, 2021), the Company re-analyzed select samples with high-grade rare earth oxide ("**REO**") results from each zone to determine the extent of gallium mineralization over the Property (Table 1). The results from the recent study shows gallium concentrations ranging from 0.01 to 0.104 wt% Ga_2O_3 , and a positive linear correlation between gallium and REO suggests that all monazite on the Property contains gallium: more monazite means more REO and gallium. High-grade gallium is considered anything greater than 0.010 wt% Ga_2O_3

Frederick Kozak, Appia's President, comments: "The gallium concentrations on the Property are remarkable. Gallium was found in naturally occurring high-concentrations on the Property that far-exceed current concentrations required for global production of gallium. The presence of gallium in the high-grade REO system on the Alces Lake property helps distinguish the Property as a potential world-class asset for high-valued critical elements required for sustainable production of advanced technological applications".

The current price of high-grade gallium metal (99.99%) is US\$376.71/kg. On January 31st, 2021, the price of high-grade gallium metal (99.99%) was US\$306.72/kg, and on October 31st, 2020, the price of high-grade gallium metal (99.99%) was US\$189.43/kg (all prices were derived from Shanghai Metals Market). These represent a 23% price increase over 2 months and 99% price increase over 5 months. In 2011, the price for low-grade gallium oxide (99%) peaked at US\$1,150/kg.

Up to 90% of primary global gallium supply is a by-product of processing of bauxite (alumina ore) with lesser amounts derived from sphalerite (ZnS) production. Production of gallium is therefore limited by global economic and social factors that influence the production of the principal mineral commodities (i.e., aluminum or zinc). It takes multiple cycles of bauxite processing before the gallium content reaches its production starting concentration point of approximately 100 - 125 ppm Ga_2O_3 , whereas Ga_2O_3 from Alces Lake monazite would have approximately 10x to 20x higher starting concentrations.

Gallium is one of several elements deemed "critical" by the United States Government (i.e., restricted supply by China, Kazakhstan and Ukraine, and in high-demand) that is used in numerous modern technological applications, in <u>wireless communications such as 5G</u>, cell phones, laser diodes, semiconductors, solar energy magnetic materials, and military defense. A significant potential exists for bottlenecks in the gallium supply chain because of rapid growth in areas of green/clean energy technologies.

Much like rare earth elements, gallium is widely dispersed in nature but rarely found in economically extractable quantities. For example, the Apex mine, southwestern Utah, USA, was the only primary mined source of gallium (and germanium) until its closure in 2011 by Teck Resources Limited. The mine operated intermittently over 100 years since 1884. A historic estimate for the average concentration of gallium was 0.032 wt%, with locally occurring grades up to 0.148 wt% gallium (USGS - Gallium Statistics

and Information).

All lithogeochemical assay results were provided by Saskatchewan Research Council's Geoanalytical Laboratory, an ISO/IEC 17025:2005 (CAN-P-4E) certified laboratory in Saskatoon, SK, for lead isotope, uranium and gallium analysis by lithium metaborate fusion.

All analytical results reported herein have passed internal QA/QC review and compilation. The technical content in this news release was reviewed and approved by Dr. Irvine R. Annesley, P.Geo, Advisor to Appia's Board of Directors, and a Qualified Person as defined by National Instrument 43-101.

ALCES LAKE SUMMARY

Since detailed exploration began at Alces Lake in 2017, a total of seventy-four (74) REE, gallium and uranium bearing surface zones and occurrences over 45 km of the System have been discovered on the Property. To date, less than 1% of the Property has been explored with diamond drilling. The Property is in Saskatchewan, the provincial jurisdiction that is developing a "first-of-its-kind" rare earth processing facility in Canada, scheduled to become operational by 2022.

The Property encompasses some of the highest-grade total and critical rare earth elements ("CREE") and gallium mineralization in the world. CREE is defined here as those rare earth elements that are in short-supply and high-demand for use in permanent magnets and modern electronic applications such as electric vehicles and wind turbines, (i.e. neodymium (Nd), praseodymium (Pr) dysprosium (Dy), and terbium (Tb)). The Alces Lake project area is 17,577 hectares (43,434 acres) in size and is 100% owned by Appia. The project is located close to an old mining camp with existing support services, such as transportation (i.e., 15 km from the nearest trail), energy infrastructure (hydroelectric power), a 1,200 m airstrip that receives daily scheduled services, and access to heavy equipment.

Appia is planning to aggressively explore the Property during the summer months of 2021. The Company is fully-funded and committed to complete the largest exploration and diamond drilling program on the Property to date.

About Appia

Appia is a Canadian publicly-listed company in the uranium and rare earth element sectors. The Company is currently focusing on delineating high-grade critical rare earth elements and uranium on the Alces Lake property, as well as prospecting for high-grade uranium in the prolific Athabasca Basin on its Loranger, North Wollaston, and Eastside properties. The Company holds the surface rights to exploration for 65,601 hectares (162,104 acres) in Saskatchewan.

The Company also has a 100% interest (subject to a 1% Uranium Production Payment Royalty and a 1% Net Smelter Return Royalty on any precious or base metals payable, provided that the price of uranium is greater than US\$130 per pound) in 12,545 hectares (31,000 acres), with rare earth element and uranium deposits over five mineralized zones in the Elliot Lake Camp, Ontario. The Camp historically produced over 300 million pounds of U_3O_8 and is the only Canadian camp that has had significant rare earth element (yttrium) production. The deposits are largely unconstrained along strike and down dip.

Appia has 94.4 million common shares outstanding, 110.4 million shares fully diluted.

For more information, visit Appia's website at www.appiaenergy.ca.

Cautionary Note Regarding Forward-Looking Statements: This News Release contains forward-looking statements which are typically preceded by, followed by or including the words "believes", "expects", "anticipates", "estimates", "intends", "plans" or similar expressions. Forward-looking statements are not guarantees of future performance as they involve risks, uncertainties and assumptions. We do not intend and do not assume any obligation to update these forward-looking statements and shareholders are cautioned not to put undue reliance on such statements.

Neither the Canadian Securities Exchange nor its Market Regulator (as that term is defined in the policies of the CSE) accepts responsibility for the adequacy or accuracy of this release.

For further information, please contact:

Tom Drivas, CEO and Director: (cell) 416-876-3957, (fax) 416-218-9772 or (email) appia@appiaenergy.ca

Frederick Kozak, President: (cell) 403-606-3165 or (email) fkozak@appiaenergy.ca

James Sykes, VP Exploration & Development, (tel) 306-221-8717 or (email) isykes@uraniumgeologist.com

Frank van de Water, Chief Financial Officer and Director, (tel) 416-546-2707, (fax) 416-218-9772 or (email) fvandewater@rogers.com

Table 1 - Lithogeochemical results for Gallium (Ga_2O_3), Thorium (ThO_2), Uranium (U_3O_8) and Individual, Total and Critical REOs

Zone	Boulder/ Channel Line/DDH	From (m)	To (m)	interval (m)	14,0, 85%	95% C+O ₁	PV.O., 85N	N4(0) 35N	Sm ₁ O 1 (KN)	Eu ₁ O	64,0; 85%	ThuOs NSNi	Dy.0 195%	Ho,0 185%	EnOv BSN	195N	10,0, 85%	Y,O, 85%	Ga,O, 85%	ThO;	95% 95%	TREO BSN	CREO 85%
lvan	IV-19-012	9.70	17.60	7.90	7.130	15.219	1.735	5.748	0.805	0.000	0.400	0.027	0.071	0.007	0.012	0.002	0.000	0.173	0.067	4.058	0.105	31,339	7.591
77.77	includes	9.70	13.40	3.70	11.233	23.833	2.753	5.996	1.258	0.016	0.626	0.042	0.110	0.011	0.019	0.002	0.001	0.266	0.104	6.165	0.164	49.165	11.91
Dylan	Line 10	0.48	1.50	1.02	9.657	20.789	2.250	7.042	0.907	0.012	0.521	0.006	0.086	0.009	0.028	0.001	0.001	0.205	0.078	4.926	0.133	41.534	9.417
Dylan	Line 11	0.48	1.19	0.71	9.403	19.227	2.114	6.754	0.883	0.012	0.521	0.025	0.081	0.009	0.027	0.001	0.001	0.213	0.077	4.835	0.131	39.273	8.967
Dente	Line 3	1.66	2.45	0.79	2.838	6.187	0.605	1.919	0.272	0.004	0.154	0.008	0.025	0.003	0.008	0.000	0.000	0.064	0.030	1.623	0.046	12.087	2.563
Dante	DT-19-0048	16.30	17.50	1.20	5.313	11.715	1.239	4.470	0.626	0.007	0.304	0.022	0.051	0.006	0.006	0.005	0.000	0.132	0.051	3.141	0.078	23.891	5.785
WRCB	CH-18-008	0.00	1.55	1.55	1.096	2.371	0.248	0.814	0.122	0.002	0.075	0.005	0.020	0.003	0.006	0.001	0.000	0.077	0.013	0.568	0.017	4.841	1.090
WRCB:	CH-18-008	9.00	12.55	3.55	2.400	4.886	0.545	1.685	0.240	0.003	0.137	0.007	0.025	0.003	0.008	0.001	0.000	0.076	0.023	1.274	0.038	10.017	2.265
WRC8	RI-20-004	8.60	9.30	0.50	2.533	5.479	0.570	1.906	0.270	0.003	0.113	0.009	0.025	0.003	0.003	0.001	0.000	0.067	0.028	1.377	0.039	11.011	2.543
WRC8	R1-20-004	10.60	13.40	2.80	2.566	5.468	0.599	1.909	0.270	0.003	0.111	0.009	0.025	0.003	0.003	0.005	0.000	0.069	0.025	1.437	0.037	11.035	2.546
WRCS	RI-20-005	10.15	10.90	0.75	1.728	3.659	0.404	1.309	0.190	0.000	0.098	0.007	0.022	0.002	0.004	0.001	0.000	0.066	0.019	0.906	0.024	7.573	1.025
WRC8	W1-18-004	16.80	17.85	1.05	3.613	7.620	0.831	2.687	0.363	0.005	0.198	0.000	0.033	0.004	0.010	0.000	0.000	0.091	0.033	1.904	0.051	15.465	3.566
Danny	Boulder				1.935	4,471	0.476	1.842	0.275	0.002	0.145	0.005	0.049	0.001	0.026	0.005	W	0.156	0.022	1.096	0.029	9.400	2.365
Danny	Boulder				2.639	6.007	0.672	2.437	0.348	0.003	0.176	0.018	0.048	0.001	0.030	0.003	nr	0.150	0.031	1.113	0.040	12.532	3.170
Denny	Boulder				2.850	6.511	0.761	2.635	0.385	0.000	0.196	0.020	0.054	0.001	0.034	0.003	nr	0.171	0.029	0.452	0.057	13.626	3.474
Danny	Boulder				0.482	1.137	0.124	0.494	0.072	0.001	0.042	0.005	0.015	0.001	0.008	0.001	M	0.047	0.006	0.092	0.006	2.430	0.640
Danny	Boulder				2.111	4.778	0.509	1.901	0.266	0.000	0.125	0.012	0.026	0.001	0.019	0.001	nr.	0.065	0.025	0.996	0.027	9.815	2,445
Danny	Boulder				2.533	5.823	0.674	2.297	0.327	0.002	0.150	0.013	0.032	0.002	0.023	0.001	nr	0.074	0.028	1.377	0.033	11.951	3.019
Biotite Us.	Boulder				0.562	1.241	0.137	0.462	0.074	0.002	0.042	0.003	0.011	0.001	0.002	0.000	0.000	0.032	0.030	0.403	0.019	2.568	0.654
Biotite Uk.	Boulder				0.538	1.107	0.128	0.441	0.068	0.001	0.019	0.003	0.010	0.001	0.002	0.001	0.000	0.028	0.010	0.382	0.016	2.367	0.583
Ermacre	Boulder				0.908	1.965	0.239	0.821	0.128	0.001	0.059	0.005	0.017	0.002	0.004	0.002	0.000	0.057	0.012	0.506	0.012	4.209	1.064
Hinge	Une 1	0.97	1.35	0.41	0.577	1.314	0.149	0.536	0.074	0.001	0.036	0.004	0.008	0.001	0.006	0.001	nr	0.019	0.011	0.264	0.011	2.726	0.690
Oldman	tine 2	0.69	1.45	0.79	0.814	1.609	0.181	0.634	0.087	0.002	0.015	0.002	0.004	0.000	0.001	0.000	0.000	0.007	0.013	0.387	0.014	1.177	0.821
TREO + Total	ulium (Tm) and P I Rare Earth Oxid cal Rare Earth Ox	le = sum of side = sum Indicat	LayOy+Cer of Pr _i O ₁₁ + tes light ra tes heavy	Dj.+PryD ₁₃ +N Ndj/Dj.+Buj/D re earth ele rare earth e	Nd,O,+Sm,i),+Tb,O;=D iments fements	Oy+Eu ₂ O ₂ =							r sponse	evus rasa	m to 2-2-3								
nr = not rep	orted	Indicar	tes heavy		lements																		
	Used for Report	7	site Resul	ts																			
- runnell av	wdw = 0.010 w/th	Ga,O.																					
- com g	44																						

To view an enhanced version of this graphic, please visit: https://orders.newsfilecorp.com/files/5416/78564_table.jpg

To view the source version of this press release, please visit https://www.newsfilecorp.com/release/78564