TECHNICAL REPORT

RIMROCK PROJECT

Ivanhoe Mining District

Elko County, Nevada, USA

for

CAT STRATEGIC METALS CORPORATION

1010-789 West Pender Street

Vancouver, British Columbia, V6C 1H2 Canada

Tel: 604-674-3145

www.catstrategic.com

info@catstrategic.com

by

Gregory C. Ferdock, M.Sc., Q.P., C.P.G. No. 11060

P.O. Box 769

Virginia City, Nevada 89440 USA

Tel: 775-846-2709

Effective Date: 15 April, 2021

Signing Date: 15 April, 2021

DATE AND SIGNATURE PAGE

Written and Submitted by: Gregory C. Ferdock Certified Professional Geologist #11060 American Institute of Professional Geologists **CGF** Geological Consultants P.O. Box 769 Virginia City, Nevada 89440 USA

Gregory C. Ferdock, MSc, QP, CPG

Virginia City, Storey Co., Nevada

Effective Date: 15 April, 2021

TABLE OF CONTENTS – Rimrock Project Technical Report

	COVEF	R PAGE	i
	SIGNA	TURE PAGE	ii
	TABLE	OF CONTENTS	iii
		F FIGURES	viii
		F TABLES	ix
	LIST O	F APPENDICIES	ix
1.0	SUMN	1ARY	1
2.0	INTRO	DUCTION AND TERMS OF REFERENCE	6
	2.1	lssuer	6
	2.2	Terms of Reference and Purpose of Report	6
		2.2.1 Terms Commonly Used in This Report	6
	2.3	Sources of Information and Data	8
	2.4	Details of Personal Inspection of Property by Qualified Person (QP)	8
3.0	RELIAN	NCE ON OTHER EXPERTS	9
	3.1	Non-QP Reports – Reports Provided by Issuer	10
		3.1.1 Source of Information	10
		3.1.2 Extent of Reliance	11
		3.1.3 Where Disclaimer Applies	11
	3.2	Non-QP Reports on Pricing of Commodities	11
		3.2.1 Report References	11
		3.2.2 Qualifications of Non-QP Report Author	11
		3.2.3 Risks	11
		3.2.4 Verification	12
4.0	PROPE	ERTY DESCRIPTION AND LOCATION	13
	4.1	Area (Size) of Property	14
	4.2	Location	16
	4.3	Type of Mineral Tenure (Claim, License, Lease)	17
	4.4	Nature and Extent of Issuer's Title	19
	4.5	Royalties and Encumbrances	20
	4.6	Environmental Liabilities	20
	4.7	Permits	20
	4.8	Risks	21
5.0	ACCES	SIBILITY, CLIMATE, RESOURCES, INFRASTRUCTURE and	
		PHYSIOGRAPHY	22
	5.1	Topography, Elevation, and Vegetation	22
	5.2	Means of Access	24
	5.3	Proximity to Population Center and Nature of Transport	25
	5.4	Climate and Length of Operating Season	25
	5.5	Infrastructure (Power, Water, Etc.), Availability of Land and	
		Resources	26

6.0	HISTO	RY		28
	6.1	Prior (Ownership and Ownership Changes	28
	6.2		ical Exploration and Development Work	29
		6.2.1	Pre-History and Early Mercury Testing and Mining	
		-	(1915-1973)	29
		6.2.2	Molybdenum, Uranium and Industrial Minerals Exploration	
		•	(1960's through 1993)	31
		6.2.3	Precious Metals Exploration (1970's through 2010)	31
		6.2.4	2011 - 2021	34
	6.3	Histor	ical Mineral Resources/ Reserves	34
	6.4		ical Production	34
7.0	GEOL		SETTING AND MINERALIZATION	36
	7.1	Regior	nal and Local Geology	37
		-	Regional and Local Geology	37
		7.1.2		39
		7.1.3	Cover Materials	42
		7.1.4	Structure	42
	7.2	Prope	rty Geology and Mineralization	43
		7.2.1	Stratigraphy	43
		7.2.2	Structure	45
	7.3	Signifi	cant Mineralization and Geological Controls	47
8.0	DEPO	SIT TYPE	ES	51
	8.1	Epithe	ermal, Low Sulphidation Vein-Style Deposits	51
	8.2	Bulk Tonnage and Sedimentary Rock Hosted Disseminated Gold and		
		Silver	Deposits	54
	8.3	Distal	Disseminated Porphyry Affinity	57
	8.4	Bento	nite Deposits	59
9.0	EXPLC	DRATION	۱	61
	9.1	Histor	ic Exploration	61
		9.1.1	Surface Mapping	61
	9.2	Geoch	nemical Exploration	61
		9.2.1	Rock Chip / Bedrock Sampling	61
		9.2.2	Soil Geochemical Sampling	62
		9.2.3	Sampling Area	63
		9.2.4	Sampling Methods and Sample Quality	63
			9.2.4.1 Rock Sampling	63
			9.2.4.2 Soil Sampling	64
	9.3	Geopł	nysical Surveys	64
		9.3.1	Regional Geophysics	64
		9.3.2	Gravity Survey	67
		9.3.3	Ground Magnetics Survey	69
		9.3.4	Induced Polarization Survey	70

		9.3.5 CSAMT Surveys	71
		9.3.5.1 2004 CSAMT Survey	71
		9.3.5.2 2013 CSAMT Survey	73
	9.4	Significant Results and Interpretation	75
10.0	DRILL	-	78
	10.1	Type and Extent and Results of Drilling	78
		10.1.1 Historic Drilling	78
		10.1.1.1 Touchstone Resources 1987	78
		10.1.2.2 Newmont Exploration 1994	79
		10.1.2 Historic Drilling 2000 to Present	80
		10.1.3 Drilling Procedures	80
		10.1.3.1 Historic Reverse Circulation Drilling	80
		10.1.3.2 Historic Core Drilling	80
	10.2	Accuracy and Reliability	98
		10.2.1 Verification of Previous Drilling	98
		10.2.2 Step-out Drilling	98
		10.2.3 Delineation of the Gold-Silver Mineralization	98
	10.3	Drilling Details	99
		10.3.1 Drill Hole Location, Setup and Relevant Sample Intervals	99
		10.3.2 Sample Length and True Thickness (if Known)	99
		10.3.3 Significant High Grade in Lower Grade Intervals	99
	10.4	Interpretation of Drill Results	99
11.0	SAMP	PLE PREPARATION, ANALYSES AND SECURITY	105
	11.1	Sample Preparation, Handling and Security	105
		11.1.1 Reverse Circulation Drill Sampling	105
		11.1.2 Core Sampling	105
		11.1.3 Rock Chip Sampling	106
		11.1.4 Soil Sampling	106
		11.1.5 Mine Dump and Tailings Sampling	106
	11.2	Laboratory Information	106
	11.3	Quality Control / Quality Assurance	108
		11.3.1 Historical Work	108
		11.3.2 CAT Strategic Metals Sampling	108
	11.4	Author's Opinion Regarding Sample Procedures	108
12.0	DATA	VERIFICATION	110
	12.1	Data Verification Procedures Applied by QP	110
	12.2	Verification Limitations	110
	12.3	Qualified Person's Opinion on Adequacy of Data	110
13.0		RAL PROCESSING AND METALLURGICAL TESTING	112
	13.1	Nature and Extent of Testing, Analytical Procedures and Summary of	
		Relevant Results	112
		13.1.1 Nature and Extent of Metallurgical Testing	112

		13.1.2 Analytical Procedures	-
		13.1.3 Relevant Results	-
	13.2	Basis for Assumptions or Predictions Regarding Recovery Estimates	
	13.3	Representative Nature of Metallurgical Test Samples to Mineral	
	_	Deposit	
_	13.4	Deleterious Processing or Elements Effecting Economic Extraction	
14.0		RAL RESOURCE ESTIMATES	
	14.1	Discussion of Key Assumptions, Parameters, and Methods Used	
		for Estimation	
	14.2	Disclosure Requirements	
	14.3	Conversion Factors for Multi Commodity Metal Equivalency	
	14.4	Impacts on Mineral Resource Estimates	
15.0		RAL RESERVE ESTIMATES	
	15.1	Discussion Regarding Converting Resources to Reserves	
	15.2	Disclosure Requirements for Mineral Reserves	
	15.3	Conversion Factors for Multi Commodity Mineral Reserves	
	15.4	Impacts on Mineral Reserve Estimates	
16.0		NG METHODS	
	16.1	Geotechnical, Hydrological and Other Parameters Relevant to	
		Mine Design	
	16.2	Production Rates, Mine Life, Mining Dimensions, Dilution Factors	
	16.3	Mining Requirements: Stripping, Development, Backfilling	
. – .	16.4	Required Mine Equipment	
17.0		VERY METHODS	
	17.1	Description, Flow Sheet of Processing Plant	
	17.2	Plant Design, Characteristics and Specifications	
	17.3	Requirements for Energy, Water and Process Materials	
18.0		CT INFRASTRUCTURE REQUIREMENTS	
19.0		ET STUDIES AND CONTRACTS	
	19.1	Summary Concerning Markets	
	19.2	Contracts Required for Property Development	
20.0		CONMENTAL STUDIES, PERMITTING, AND SOCIAL COMMUNITY IMPACT	
	20.1	Results of Environmental Studies, Discussion of Issues	
	20.2	Waste and Tailings Disposal, Site Monitoring, Water Management	
	20.3	Permitting Requirements	
	20.4	Social and Community Requirements	
	20.5	Mine Closure Requirements	
21.0		AL AND OPERATING COSTS	
22.0		OMIC ANALYSES	
	22.1	Justification for Principal Assumptions	
	22.2	Cash Flow Forecasts	
	22.3	Net Present Value (NPV)	

	22.4	Taxes, Royalties and Levies	121
	22.5	Sensitivity Analyses	121
23.0	ADJAC	CENT PROPERTIES	122
	23.1	Owner(s) of Adjacent Properties	122
		23.1.1 Hecla Mining Co. – Midas Mine	122
		23.1.2 Hecla Mining Co. – Ivanhoe-Hollister Project	122
		23.1.3 Silver Cloud Property	126
	23.2	Source of Information	127
	23.3	Verification of Information	127
	23.4	Distinction of Information	127
	23.5	Historical Estimates of Mineral Resources	127
24.0	OTHE	R RELEVANT DATA AND INFORMATION	129
25.0	INTER	PRETATION AND CONCLUSIONS	129
	25.1	Interpretation	129
	25.2	Conclusions	132
26.0	RECO	MMENDATIONS	135
	26.1	General Recommendations	135
	26.2	Proposed Exploration Program	135
	26.3	Proposed Budget	135
27.0	REFER	ENCES	138
28.0	CERTI	FICATES OF AUTHOR	144
29.0	GLOSS	SARY AND ABBREVIATIONS	146

LIST OF FIGURES

Figure 1.1	Location of Rimrock Project	2
Figure 1.2	Rimrock Project Location with Nearby Gold Mines	3
Figure 1.3	Rimrock Lode Mining Claims	4
Figure 4.1	Rimrock Project and Geologic Map	13
Figure 4.2	CAT Unpatented Lode Claims Map	14
Figure 4.3	Road Map of North Central Nevada to Project	17
Figure 5.1	Topographic Map of the Rimrock Project Area	23
Figure 5.2	Typical Vegitation in Project Area	24
Figure 6.1	Image of Rimrock Mercury Mine	30
Figure 6.2	Hecla's Midas Mine and Facilities	33
Figure 7.1	Regional Tectonic Framework	36
Figure 7.2	Geologic Base Map	38
Figure 7.3	Generalized Stratigraphic Section Ivanhoe Mining District	40
Figure 7.4	Palinspastic Reconstruction north-central Nevada	46
Figure 7.5	Typical Core Recovery in High Silver Zones	49
Figure 8.1	Diagram of Typical Low-Sulfidation Near Surface Vein System	52
Figure 8.2	Geochemistry Through Vertical Section of Low Sulfidation System	53
Figure 8.3	Permeable Horizon Below the Surfacial Sinter Deposits	55
Figure 8.4	Deep Carlin Test Drilling at Hollister	57
Figure 8.5	Longitudinal Northwest-Southeast Section Fresnillo Silver Mine	59
Figure 9.1	Detailed Geologic Map of the Rhombochasm Area	62
Figure 9.2	Location of Surface Geolchemical Samples	63
Figure 9.3	Regional Total Field Magnetics Map of Nevada	65
Figure 9.4	Regional Bouger Gravity Survey	66
Figure 9.5	USGS Regional Total Field Airborne Magnetics Map	67
Figure 9.6	Gravity Station Locations on Topography 2004 Survey	68
Figure 9.7	CBA Gravity Map	69
Figure 9.8	Magnetic Survey Lines and Total Magnetic Intensity Map	70
Figure 9.9	Ground Magnetic Survey Superimposed over Geology	71
Figure 9.10	2004 Zonge CSAMT Survey Lines	72
Figure 9.11	CSAMT Section Line 600S 2004 Survey	73
Figure 9.12	Geophysical Survey Line 300S with Gravity, Magnetics and CSAMT	73
Figure 9.13	CSAMT Lines Over Topography, 2013 Survey	74
Figure 9.14	CSAMT Inverted Sections over Surface Geology	76
Figure 9.15	Geophysical Interpreted Structures over Geology	77
Figure 9.16	Stacked CSAMT Section with Gravity and Geology Interpretive Overlay	77
Figure 10.1	Drill Collars Identified within the Boundaries of the Rimrock Property	79
Figure 10.2	Core Log for IC-07-02	83
Figure 10.3	Image of IC-07-02 Core through elevated Gold Interval	84
Figure 10.4	Core Hole IC-07-07 Cross Section	86

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

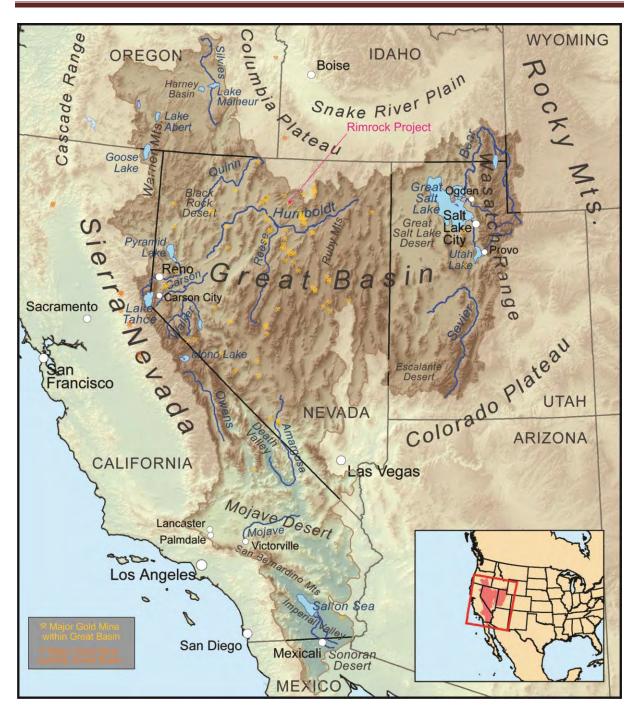
Page viii

Figure 10.5 Figure 10.6	Core Log IC-07-07 Repoting Significant Gold-Silver Results Geochemistry Encountered within IC-07-07 Indicative of Low	87
-	Sulfidation Epithermal Systems (comparative diagram)	88
Figure 10.7	Core Log IC-07-10 Reporting Significant Gold-Silver Results from	
	Geochemical Sampling	90
Figure 10.8	Drill Hole IC-07-10 Core Log Significant Assays, Core Photos	92
Figure 10.9	Core Log IC-07-12 Reporting Significant Gold-Silver Results	93
Figure 10.10	Drill Hole IC-07-12 Core Log Significant Assays, Core Photos	95
Figure 10.11	Core Log IC-07-13 Reporting Significant Gold-Silver Results	97
Figure 10.12	Surface Trace of Angled Drill Holes and Cross-section Trace	103
Figure 10.13	Cross Section through Drill Holes IC-07-10 and IC-07-12	104
Figure 23.1	Location of Rimrock Property and nearby mines: Midas, Hollister,	
	Silver Cloud	123

LIST OF TABLES

Table 4.1	Lode Claims List	15
Table 10.1	Known Drilling Completed on Rimrock Property	78
Table 10.2	Results from Sampling of Reverse Circulation Cuttings	80
Table 10.3	2007 Drilling Information	81
Table 10.4	IC-07-02 Significant Results	81
Table 10.5	Significant Results of Geochemical Sampling from Core Hole IC-07-07	85
Table 10.6	Significant Results of Geochemical Sampling from Core Hole IC-07-10	91
Table 10.7	Significant Results of Geochemical Sampling from Core Hole IC-07-12	94
Table 10.8	Significant Results of Geochemical Sampling from Core Hole IC-07-13	98
Table 10.9	Relevant Gold and Silver Intercepts in 2007 Senator Minerals Core	
	Program	100
Table 10.10	Relative Values of Metals Associated with "High" and "Low" Silver	
	Systems	101

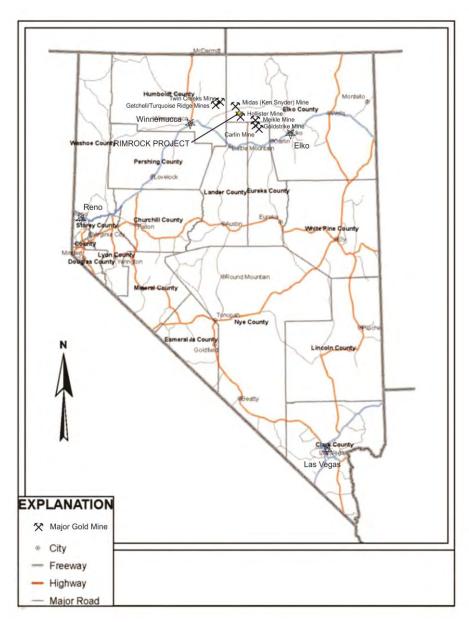
LIST OF APPENDICES


APPENDIX A	Lode Claims Information	on	149
APPENDIX B	Certificates of Assay		154

1.0 SUMMARY

At the request of CAT Strategic Metals Corporation (CAT), this evaluation and report has been made on the Rimrock Project (the "Project"), Ivanhoe Mining District, Elko County, Nevada, U.S.A. (Figure 1.1). The report incorporates a summary of previous work and an appraisal of the exploration potential of the Project, and makes recommendations for further work. This report is based on a compilation and analysis of published and unpublished geological reports prepared by cited persons, and field examinations by the writer, a "qualified person" within the meaning of National Instrument 43-101 of the Canadian Securities Administrators.

The Rimrock project is located near the Midas Trough within the Ivanhoe Mining District in western Elko County, Nevada on the northern flank of the Sheep Creek Range on the Willow Creek Reservoir USGS 7.5' topographic quadrangle. It is located 78 air km west-northwest of Elko and 98 air km east-northeast of Winnemucca, Nevada. From Elko, access is via paved Highways 225 and 226 for 46 miles (74 km), west on the graded dirt Midas-Tuscarora County Road for 36 miles (58 km) and three miles (4.8 km) southeast on the graded dirt Ivanhoe Mining District road. From Winnemucca, 15.8 miles (25.4 km) east on I-80 to the Golconda exit and onto Paved highway 789, then north 15.4 miles (24.6 km) to the graded dirt Midas-Tuscarora Road, then east 20.5 miles (33 km) to the Ivanhoe mining district dirt road. The center of the property is approximately 12.6 miles (20.3 km) southeast of the town of Midas, and the location of the Hecla Mining Company's Midas underground gold mine and approximately 14.9 miles (24 km) north-northwest of Barrick's multi-million ounce Meikle gold mine. Both Elko and Winnemucca are full service mining towns within a two hour drive of the project site (Figure 1.2). Major metropolitan areas with air hubs to international destinations are found at Salt Lake City, Utah (405 air kilometers eastsoutheast) and Reno, Nevada (325 air kilometers southwest).


The property comprises a claim block of 133 unpatented lode mining claims (Figure 1.3). All claims are full size (600 ft by 1,500 ft (182.9 m by 457.2 m)) save two fractional claims. The claims total approximately 2,722.56 acres (1,101 hectares) and are located 48 miles (80 km) northwest of Elko, Nevada. All claims have been filed and recorded with Elko County and the U.S. Bureau of Land Management.

CAT Strategic Metals Corporation | Technical Report | Rimrock Project, Ivanhoe District, Elko Co., Nevada, USA

Figure 1.1 – Location of the Rimrock Project and principal gold mines in the western United States.

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

Figure 1.2 – Rimrock project location with nearby large gold mines and major town and cities.

The project is situated 36 miles (58 km) from the nearest paved highway and is accessed via all-weather, bladed gravel roads to the property; unimproved, two-track roads access various parts of the property. Several small springs occur within the project boundaries; the perennial Willow Creek and Willow Creek Reservoir are located within 5 km north of the property boundaries.

Figure 1.3 – Location of Rimrock lode mining claims and neighboring properties, north of the Hollister Mine, Ivanhoe Mining District, Elko County, Nevada.

The Property is in rolling, sagebrush-covered desert with areas of cliffs, and abrupt dropoffs. The climate is favorable for year-round mining, with all supplies and services needed for a successful exploration program available in the region.

The geology consists of a silicic to intermediate volcanic pile dipping gently to moderately east and capped by relatively flat-lying rhyolite flows. The volcanics vary from shallow (locally absent) to in excess of one kilometer thick overlying Ordovician Vinini Formation siliceous "Upper Plate" sedimentary rocks; thickness of the volcanic pile increases to the north. These rocks are locally overprinted by low sulfidation, hydrothermal alteration, expressed as chalcedonic silicification and opalization, bleaching and local quartz-sericite-pyrite alteration. Mercury mineralization accompanies opal and chalcedony silicification. This mineralization is dated 15.20-14.92 Ma (Wallace, 2003). The stratigraphy is offset by north-northeast and northeast, with subsidiary east-west and northwest oriented high angle structures.

The Rimrock project is situated along the Northern Nevada Rift ("NNR"), a Miocene-age structural zone that hosts several current and past producing mines. The largest of these are Newmont's Mule Canyon and Hecla Mining Company's (Hecla) Midas (Ken Snyder) and

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

Page - 4

Hollister Mines (John and Wallace, 2000; John, 2001; klondexmines.com, 2018).

The Rimrock project is a grassroots prospect. Exploration has been limited to surface prospecting and limited geochemical sampling of altered bedrock. The observed surface indications, gold values to 13 ppb, silver to 0.87 ppm, arsenic to 39.5 ppm and mercury to 327 ppm are similar to subtle features found above high-grade vein systems in the Ivanhoe and Midas (Gold Circle) districts and additional exploration is warranted.

The recommended exploration program consists of additional geologic mapping, geophysical and geochemical ground work to define drill hole locations, followed by a combination of reverse circulation and core drilling to test targets at depth.

This program has been defined in two phases, with the Phase 1 ground work budgeted at approximately \$198,200USD (CAD\$250,000) and the Phase 2 drilling budgeted at a minimum of \$500,000USD (CAD\$630,650).

2.0 INTRODUCTION AND TERMS OF REFERENCE

2.1 ISSUER

This Technical Report for the Rimrock Project has been prepared at the request of CAT Strategic Metals Corporation, the Issuer. It is a summation of current knowledge of the project, its geologic, exploration and mining activities. It does not include a new resource estimate.

Beginning 31 August, 2020, CAT Strategic Metals Corporation acquired the Rimrock Project via transfer of the 69 lode claims covering approximately 1,425.5 acres (576.9 Ha) in the vicinity of Ivanhoe Creek from Richard R. Redfern and Soloro Cobalt and Gold Corporation. CAT then staked additional claims around the original core of claims; the total claims in the project are now 133; all claims are full size (600 ft by 1,500 ft (182.9 m by 457.2 m)) save two fractional claims. The claims total approximately 2,722.56 acres (1,101 hectares). CAT Strategic Metals Corporation also controls the Gold Jackpot Property, located in Elko County, Nevada, 183 km to the east-northeast near the Idaho and Utah boarders.

2.2 TERMS OF REFERENCE AND PURPOSE OF THE REPORT

The purpose of this report is to detail the current understanding of the technical aspects of the Rimrock Project located at Ivanhoe Creek, northern Sheep Creek Mountains, Elko County, Nevada. No resource or reserve estimates have been completed to date.

This report is written in compliance with disclosure and reporting requirements set forth in the Canadian Securities Administrators' National Instrument 43-101, Companion Policy 43-101CP and Form 43-101, revised June 2011. Prior work on the property before the Winter of 2020-2021 included due diligence, data compilation, local geologic mapping, and geochemical sampling.

2.2.1 Terms Commonly Used in this Report

Units of measure, conversion factors and currency in this report are as follows:

Linear Measure1 inch= 2.54 centimeters= 254 millimeters1 foot= 0.3048 meter1 mile= 1.6093 kilometer= 1,609.3 meters

Area Measur	e			
1 acre	1 acre = 0.4047 hectare			
1 square mile	e = 640 acres	= 259 hectares		
Capacity Measure (liquid)1 US Gallon= 4 quarts= 3.785411784 liters		= 3.785411784 liters		
Weight 1 short ton 1 pound	= 2,000 pounds = 0.45359237 kg	= 0.90718474 metric tonne (T) = 14.5833 troy ounces		

Analytical Values

	Percent (%)	Grams per Metric Tonne	Troy ounces per Short Ton
1%	1%	10,000.0000	291.6667
1 gram/tonne	0.0001%	1.0000	0.0291667
1 troy ounce/ short ton	0.003429%	34.2857	1.0000
100 ppb	0.00001%	0.1000	0.0029
100 ppm	0.01%	100.0000	2.9170

Commonly used abbreviations and acronyms

- AA Atomic Absorption Spectrometry
- Ag Silver
- AMSL Above Mean Sea Level
- ATV All-Terrain Vehicle
- Au Gold
- BLM Bureau of Land Management
- CIM Canadian Institute of Mining, Metallurgy and Petroleum
- Core Diamond drilling method producing a cylinder of rock
- EDX Energy-dispersive X-ray spectroscopy
- FA-AA Fire assay with atomic absorption finish
- FtFeet (British Imperial System of measurement)gGrams
- g/T Grams per Metric Tonne
- ha Hectares
- Hg Mercury
- ICP Inductively Coupled Plasma
- m Meters
- mm Millimeters

km	Kilometers
opt	ounces (troy)/ton (short)
ppb	Parts per billion
ppm	Parts per million
RC	Reverse Circulation drilling method producing cuttings as a sample
SEM	Scanning Electron Microscope
Tpd	Tonnes (metric) per day
US	United States

All monetary figures in this report are in U.S. Dollars (USD).

2.3 SOURCES OF INFORMATION AND DATA

The author reviewed all documents and data available relative to the regional and property geology, land status, history of the district and project, past exploration and development work and the accompanying results, methodology, interpretations, and other data necessary to the understanding of the project, sufficient to produce this report. Mr. Ferdock carried out such independent investigations of the data and of the property in the field, as has been deemed necessary in the professional opinion of the author, so that he might reasonably rely on this information.

The sources of this information are primarily from the public domain, namely the United States Geological Survey and Nevada Bureau of Mines and Geology reports and files. Additional internal documentation has been provided by Mr. Redfern and CAT Strategic Metals Corporation personnel and has been verified by site investigation or conversation with independent third parties. Further information has been obtained from public records available on the World Wide Web and data repositories such as county recorders (Elko) and United States Bureau of Land Management (BLM) offices and online sources.

2.4 DETAILS OF PERSONAL INSPECTION OF PROPERTY BY QUALIFIED PERSON (QP)

The property was last visited by the author on 11 February, 2021 and on previous occasions as part of ongoing mapping and exploration efforts. The current exploration programs are being carried out in a thorough and professional manner and the author has no reason to doubt the validity of results of this program.

The author has worked on numerous gold and other mining and exploration projects in Nevada, Alaska, Peru, Mexico, Dominican Republic, Canada and elsewhere in the United

States and world. He has worked on mining projects in Nevada since 1988 to include the Snowstorm and Sheep Creek Mountains region since 1988 and is familiar with the regional and local geology.

The historic drilling, assay and geologic data required to produce this report were generated in several phases over many years from 1915 to 2021. The historic data has passed into the possession of Mexivada, Kent Exploration and Rimrock Gold Corporation, with additional data being sought. Recently acquired data have been incorporated in this report.

As mandated by NI 43-101 requirements, the observations, conclusions and recommendations of the author in this report are derived from comprehensive reviews of the Rimrock project database and on-site inspections through 18 February, 2021. These site inspections were designed to confirm geologic relationships and existing infrastructure.

The author believes that the data presented to him by CAT Strategic Metals Corporation are a reasonable and accurate representation of the Rimrock project.

3.0 RELIANCE ON OTHER EXPERTS

The authors' principal task was to review and compile the historic data made available by Mexivada Mining Corporation, Kent Exploration and that available in the public domain, as well as data from the ongoing exploration program. This report has relied strongly on the historical work and studies in the following areas:

- Land Status Due diligence was completed by R. Redfern and Carlin Trend Mining Supplies and Services was completed in 2007, completed on behalf of Mexivada Mining Corporation, and by Gerber Law Offices, LLP in 2017, and by R. Redfern through March, 2021.
- Geology In addition to published reports (i.e. Wallace, 1991); mapping and reports were conducted and written by E. Harrington (2004, 2006, 2009), Wright Geophysics (2004, 2013), and by the author dated December, 2012.
- Current Program Richard R. Redfern, Consultant to CAT Strategic Nevada Inc.

Metallurgy No metallurgical work has been completed to date.

- Environmental No environmental evaluations have been completed t date.
- Geophysics Senator Minerals Inc. and Kent Exploration Inc. completed gravity, ground magnetics, and CSAMT surveys over the Ivanhoe Creek portion of the project, results reported by Wright (2004). Rimrock Gold Corp. commissioned a CSAMT survey over the Rimrock portion of the project and results reported by Wright (2013). All geophysical work and reports were provided to the issuer by J.L. Wright Geophysics at the behest of Redfern in 2017.

3.1 NON-QP REPORTS – REPORTS PROVIDED BY ISSUER

3.1.1 Source of Information

The issuer has provided the majority of reports produced by previous owners, lessees, and

operators on the project. These include reports from J.L. Wright Geophysics (Senator Minerals and Kent Exploration, 2004, and Rimrock Gold Corp., 2013); Technical Reports by Harrington (Senator Minerals, 2004, 2005 and 2006; and Kent Exploration, 2009); Ferdock (Rimrock Gold Corp., 2013); Wallace (USGS, 2003); Milliard (CREG, 2016).

3.1.2 Extent of Reliance

All reports were reviewed with expert eye as the author has spent several days on the project conducting surface mapping and geochemical sampling as well as preparing subsurface interpretive work.

Reliance on geophysical interpretations is extensive as the author is familiar with the individuals who completed the work, they are well established experts in their fields and the quality of the work meets or exceeds industry norms.

3.1.3 Where Disclaimer Applies

It is unknown how sampling was completed prior to Mr. Redfern's acquisition of the project via staking of unpatented lode claims with the U.S. Bureau of Land Management. The data from these programs have not been verified and no twinned drilling has been completed.

3.2 NON-QP REPORTS ON PRICING OF COMMODITIES

3.2.1 Report References

No reports concerning pricing of commodities were reviewed for this report. Daily spot gold and silver prices are available and frequently referenced from kitco.com.

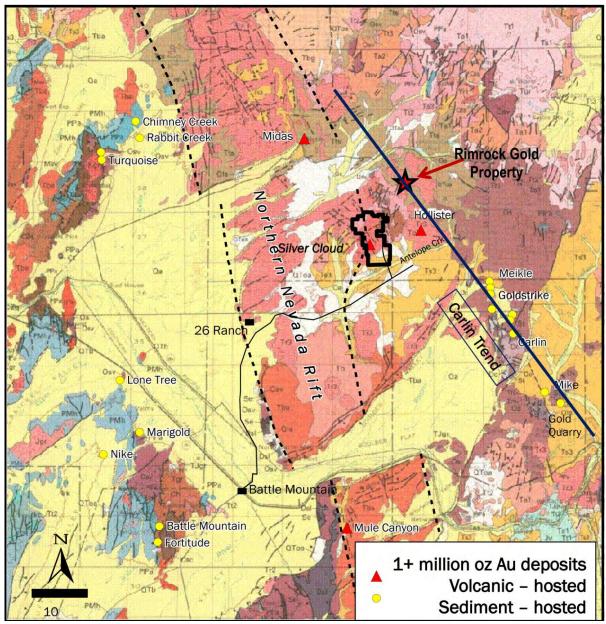
3.2.2 Qualifications of Non-QP Report Author

Kitco.com is a widely referenced metals spot price site and is accepted as an industry source of up-to-the-minute information.

3.2.3 Risks

After this review, it is the opinion of the author that the data provided by CAT were collected in accordance with standard industry practices, and there is no reason to doubt

their validity. Receipts from the U.S. Bureau of Land Management and Elko County demonstrated the unpatented claims are current and valid and that the taxes have been paid for patented claims.


3.2.4 Verification

No assay data verification has been undertaken by the author. The author is reasonably assured that the assays represent the intervals from which they were taken. The author is familiar with the geology in the project area and sees no reason to doubt the published references regarding same.

Conclusions regarding the Rimrock Project and the recommendations presented in this report are those of the author alone, based on a review of the data and extensive personal experience as a geologist in the mining industry, particularly in Nevada, and do not necessarily reflect those of the issuer, CAT Strategic Nevada Inc.

4.0 PROPERTY DESCRIPTION AND LOCATION

The Rimrock Project is located in western Elko County, in north-central Nevada, USA in an area of significant historic and on-going gold mining activity (Figure 4.1).

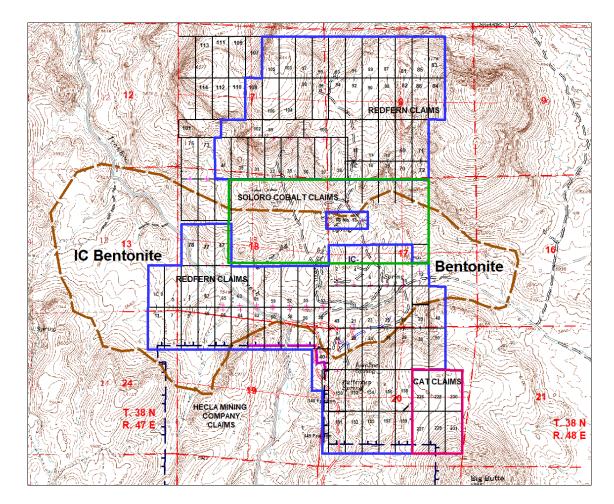


Figure 4.1 – Project location and geologic map noting Rimrock and Silver Cloud properties along with some nearby operating mines (modified from Dilles and McCoy, 2003).

4.1 AREA (SIZE) OF PROPERTY

The property comprises 133 lode claims; all claims are full size (600 ft by 1,500 ft (182.9 m by 457.2 m)) save two fractional claims. The claims total approximately 2,722.56 acres (1,101 hectares) (Figure 4.2; Table 4.1). These claims are located within the Mount Diablo Baseline and Meridian (MDBM) in all or parts of:

Sections 7, 8, 16, 17, 18, 19, 20, and 21 of Township 38 North, Range 48 East and section 13 and 24 of Township 38 North, Range 47 East.

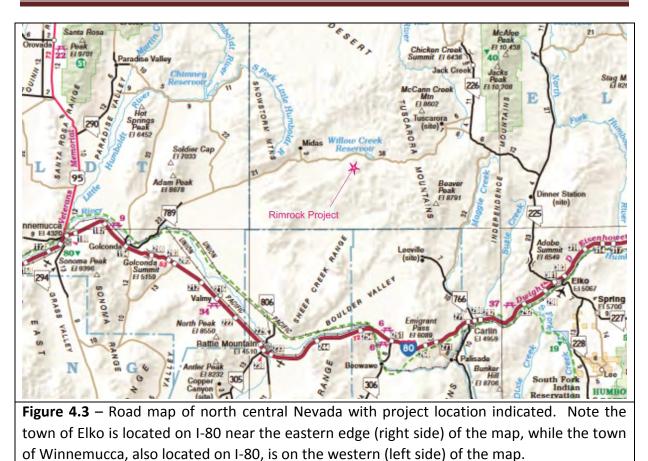
Figure 4.2 – CAT Strategic Metals Corporation unpatented lode claims covering the Rimrock Project, Sheep Creek Mountains, Elko County, Nevada.

Table 4.1 – CAT Strategic Metals Corporation, Rimrock Lode Claims held for the 2020-2021
assessment year.

#	Claim Name	Owner	BLM File #	#	Claim Name	Owner	BLM File #
		ship	NV			ship	NV
1	IC No. 1	100%	105229345	67	IC No. 82	100%	105229385
2	IC No. 2	100%	105229346	68	IC No. 83	100%	105229386
3	IC No. 3	100%	105229347	69	IC No. 84	100%	105229387
4	IC No. 4	100%	101765904	70	IC No. 85	100%	105229388
5	IC No. 5	100%	105229348	71	IC No. 86	100%	105229389
6	IC No. 6	100%	101657371	72	IC No. 87	100%	101543801
7	IC No. 7	100%	105229349	73	IC No. 88	100%	101543802
8	IC No. 8	100%	101657372	74	IC No. 89	100%	101543803
9	IC No. 9	100%	105229350	75	IC No. 90	100%	101543804
10	IC No. 10	100%	101765905	76	IC No. 91	100%	101656973
11	IC No. 11	100%	105229351	77	IC No. 92	100%	101656974
12	IC No. 12	100%	101765906	78	IC No. 93	100%	101657364
13	IC No. 13	100%	101765907	79	IC No. 94	100%	101657365
14	IC No. 15	100%	101765908	80	IC No. 95	100%	101657366
15	IC No. 16	100%	101766061	81	IC No. 96	100%	101657367
16	IC No. 17	100%	105229352	82	IC No. 97	100%	101543805
17	IC No. 18	100%	105229353	83	IC No. 98	100%	101657368
18	IC No. 19	100%	105229354	84	IC No. 99	100%	101657369
19	IC No. 20	100%	105229355	85	IC No. 100	100%	101657370
20	IC No. 21	100%	101766062	86	IC No. 102	100%	101543806
21	IC No. 22	100%	101766063	87	IC No. 103	100%	101545127
22	IC No. 23	100%	101657373	88	IC No. 104	100%	101545128
23	IC No. 24	100%	101657374	89	IC No. 105	100%	101545129
24	IC No. 25	100%	101657375	90	IC No. 106	100%	101545130
25	IC No. 26	100%	101657376	91	IC No. 108	100%	101545131
26	IC No. 27	100%	101657377	92	IC No. 148 Fraction	100%	105229390
27	IC No. 28	100%	101657378	93	IC No. 149 Fraction	100%	105229391
28	IC No. 29	100%	105229356	94	IC No. 150	100%	105229392
29	IC No. 30	100%	105229357	95	IC No. 151	100%	105229393
30	IC No. 31	100%	101543796	96	IC No. 152	100%	105229394
31	IC No. 33	100%	101656970	97	IC No. 153	100%	105229395
32	IC No. 35	100%	101656971	98	IC No. 154	100%	105229396
33	IC No. 36	100%	101656972	99	IC No. 155	100%	105229397
34	IC No. 37	100%	101543797	100	IC No. 156	100%	105229398
35	IC No. 38	100%	101543798	101	IC No. 157	100%	105229399
36	IC No. 39	100%	101543799	102	IC No. 158	100%	105229400
37	IC No. 40	100%	105229358	103	IC No. 159	100%	105229401
38	IC No. 41	100%	101543800	104	RMB #1	100%	101734616
39	IC No. 43	100%	101766064	105	RMB #2	100%	101734617

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

Page - 15 -


40	IC No. 44	100%	101766065	106	RMB #3	100%	101734618
41	IC No. 47	100%	105229359	107	RMB #4	100%	101734619
42	IC No. 48	100%	105229360	108	RMB #5	100%	101734620
43	IC No. 50	100%	105229361	109	RMB #6	100%	101734621
44	IC No. 53	100%	105229362	110	RMB #8	100%	101734622
45	IC No. 54	100%	105229363	111	RMB #9	100%	101734623
46	IC No. 55	100%	105229364	112	RMB #10	100%	101734624
47	IC No. 56	100%	105229365	113	RMB #11	100%	101735645
48	IC No. 57	100%	105229366	114	RMB #13	100%	101735646
49	IC No. 58	100%	105229367	115	RIMRMB #1	100%	101735647
50	IC No. 59	100%	105229368	116	RIMRMB #2	100%	101735648
51	IC No. 60	100%	105229369	117	RIMRMB #3	100%	101735649
52	IC No. 61	100%	105229370	118	RIMRMB #4	100%	101735650
53	IC No. 62	100%	105229371	119	RIMRMB #5	100%	101735651
54	IC No. 63	100%	105229372	120	RIMRMB #6	100%	101735652
55	IC No. 64	100%	105229373	121	RIMRMB #7	100%	101735653
56	IC No. 65	100%	105229374	122	RIMRMB #8	100%	101735654
57	IC No. 66	100%	105229375	123	RIMRMB #9	100%	101735655
58	IC No. 67	100%	105229376	124	RIMRMB #10	100%	101735656
59	IC No. 68	100%	105229377	125	RIMRMB #11	100%	101735657
60	IC No. 69	100%	105229378	126	RIMRMB #12	100%	101735658
61	IC No. 70	100%	105229379	127	IC No. 226	100%	105229260
62	IC No. 71	100%	105229380	128	IC No. 227	100%	105229261
63	IC No. 72	100%	105229381	129	IC No. 228	100%	105229262
64	IC No. 77	100%	105229382	130	IC No. 229	100%	105229263
65	IC No. 78	100%	105229383	131	IC No. 230	100%	105229264
66	IC No. 81	100%	105229384	132	IC No. 231	100%	105229265

CAT Strategic Metals Corporation | Technical Report | Rimrock Project, Ivanhoe District, Elko Co., Nevada, USA

4.2 LOCATION

The Rimrock project is located near the Midas Trough within the Ivanhoe Mining District in western Elko County, Nevada on the northern flank of the Sheep Creek Range on the Willow Creek Reservoir USGS 7.5' topographic quadrangle. It is located 78 air km west-northwest of Elko and 98 air km east-northeast of Winnemucca, Nevada. From Elko, access is via paved Highways 225 and 226 for 46 miles (74 km), west on the graded dirt Midas-Tuscarora County Road for 36 miles (58 km) and three miles (4.8 km) southeast on the graded dirt Ivanhoe Mining District road. From Winnemucca, 15.8 miles (25.4 km) east on I-80 to the Golconda exit and onto Paved highway 789, then north 15.4 miles (24.6 km) to the graded dirt Midas-Tuscarora Road, then east 20.5 miles (33 km) to the Ivanhoe mining district dirt road. The center of the property is approximately 12.6 miles (20.3 km) southeast of the town of Midas, the nearest settlement, located along Nevada State Route 18 (Figure 4.3).

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

The approximate geographic center of the property has UTM coordinates of 534,949.61m East and 4,557,834.08m North (NAD 27, Zone 11); Latitude 41.172901° North and Longitude 116.584294° West (WGS 84).

4.3 TYPE OF MINERAL TENURE (CLAIM, LICENSE, LEASE)

CAT owns and controls 133 unpatented lode mining claims from the BLM, shown in Figure 4.2; these are the IC, RMB and RMRIB lode mining claims.

The U.S. Bureau of Land Management (BLM) manages the lands covered by these unpatented claims, under which title remains with the U.S. Federal Government. Each standard unpatented claim is typically 600 feet x 1,500 feet (182.88 m x 457.2 m) in size covering approximately 20.66 acres (8.36 ha) of surface area, though a number of smaller, fractional claims may cover land fractions between patented claims and irregular claims. Claim corners are typically marked in the field with 2 inches (5 cm) by 2 inches (5 cm) by 4

feet (1.2 m) wooden posts.

Claim location notices for each claim are filed with the BLM and at the courthouse in the County in which the claims are located. Copies of the individual claim notices and the detailed map showing their locations are on file with the central BLM office in Reno, Nevada, and with the Elko County Recorder's office in Elko, Nevada. The map and claim notices on file constitute the legal surveys for the property.

To maintain mining claims in good standing, a claim holder must make annual maintenance fee payments to the BLM of \$165 per claim, plus a \$14.50 per claim Elko County fee totaling \$179.50 per claim. Fees are payable in Elko County, in which the claims are located. Published BLM records indicate that all claim filings are current and that the claims are valid until 11:59 AM on 1 September, 2021, when the next annual maintenance fee payments and filings are due.

All claims were physically staked with wooden posts at the corners and at the discovery monuments. Annual maintenance fees payable to the Bureau of Land Management are required to keep the unpatented mining claims in good standing, and were paid on time in August, 2020 and at the time of additional staking. Property taxes are required on patented mining claims and fee lands; CAT Strategic Metals Corporation does not control any patented lands, and is thus not subject to such fees and taxes. BLM and Elko County maintenance fees have been paid through 1 September, 2021.

The author did locate some of the claim posts in the field, but by no mean all of the posts. The author has not verified the validity of the mining claims or their ownership.

Detailed claim information is listed in Appendix 1.

CAT Strategic Metals Corporation has acquired an earn-in and joint venture agreement (the "Agreement") pursuant to entering into a binding and definitive share purchase agreement (the Share Purchase Agreement") dated November 2, 2020 to acquire up to an 80% undivided ownership in the Rimrock Gold mineral property ("Rimrock"). The Company is required to incur CDN\$620,000 in exploration or expenditures related to the Property over a 4-year period, of which CDN\$210,000 must be spent within the first 12 months, after which the Company will have earned a 51% interest in Rimrock. There are no annual minimum expenditures per year during the remainder of the term regarding the remaining

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

CDN\$410,000 of Expenditures. The Company will earn a 7.25% interest in the property for every CDN\$102,500 spent, until such time as the 80% participating interest in Rimrock is earned. The Company will grant to each of the Vendors, Soloro Cobalt and Gold Corporation, and Richard R. Redfern and Joy A. Perry-Redfern, a 2% Net Smelter Royalty ("NSR") on the property, subject to an agreement that each 1% of the NSR on the Richard R. Redfern and Joy A. Perry-Redfern by the Company for an amount of USD\$1,000,000.

CAT committed to retain Richard R. Redfern's geological consulting services (the "Consulting Services") with a minimum retainer of twenty thousand U.S. Dollars (\$USD 20,000) per year, with the first payment was made on the Effective Date and thereafter is payable in advance of each anniversary of the Effective Date, each until such time as the eighty per cent (80%) Participating interest in the Property is earned by CAT.

CAT paid ten thousand U.S. Dollars (\$USD 10,000) on the Effective Date, and thereafter is payable per year, to Soloro Cobalt and Gold Corporation, with the first payment having been paid on the Effective Date and thereafter is payable in advance of each anniversary date of the Effective Date (the "Advance Payment"), each until such time as the eighty per cent (80%) Participating Interest in the Property is earned by CAT (the "Advance Payment"). The Advance Payment shall be deducted from the expenses or funding Expenditures on or in relation to the Property in the total amount of six-hundred twenty thousand Canadian dollars (\$620,000) to be paid by CAT.

4.4 NATURE AND EXTENT OF ISSUER'S TITLE

The 133 mining claims at Rimrock listed in Table 4.1 (above) are 100% controlled by Cat Strategic Metals Corp. There are no encumbrances on the twelve "RIMRB" claims or the thirteen "RMB" claims that are 100% controlled by CAT Strategic Metals Corporation. There is a 2% NSR royalty that applies to each and all of the 41 "IC NO." claims and the 16 "IC" claims, as discussed in greater detail in section 4.5.

In reporting the recorded title, the author has relied entirely on information provided by the United States Bureau of Land Management and CAT.

The comments in this section do not represent a legal opinion and only preliminary investigations into the actual recorded title have been made by the author. There are no placer claims located on the property.

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

4.5 ROYALTIES AND ENCUMBRANCES

There are no encumbrances on the thirteen "RMB" claims or the twelve "RIMRB" claims that are 100% controlled by CAT, and are encumbered by a 2% Production royalty. Each and all of the 23 Soloro claims and Redfern's 104 "IC" unpatented mining claims are encumbered by a 2% production royalty owned by Soloro and Mr. Richard R. Redfern and Mrs. Joy Redfern, respectively; this royalty is on all production. This is a straight percentage royalty, with no sliding scales. There are no caps on royalties. The Redfern NSR royalties may be purchased at any time from Redfern by CAT.

An Exploration NOI has not been issued as of the time of this writing.

4.6 ENVIRONMENTAL LIABILITIES

All Federal EPA, MSHA, OSHA and state regulations are adhered to during on-going exploration activities. There are no environmental liabilities to Cat Strategic Metals Corp. presently accompanying the project.

There are no archeological resources present on the property per archaeological examinations contracted by previous operators. There are no known mining hazards on this property, to include drilling fluids, drill waste or debris. Remnants of two old mercury retorts are present; one dating to the early part of the 20th century is located at 41.156328° N, 116.585547° W (WGS84); the more recent is located at 41.159440° N, 116.585027° W (WGS84).

4.7 PERMITS

No Notice of Intent (NOI) has been filed, permitted, and accepted by the BLM, nor bonded with the Nevada Division of Minerals.

About 2 km of roads developed during the previous drilling campaigns were reclaimed by Reliance Geological Services and accepted as complete by the BLM. Permits are required from the Bureau of Land Management prior to conducting earthwork related exploration programs on BLM land, i.e. the unpatented mining claims. No obvious hindrances to the permitting process are extant on the property.

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

4.8 RISKS

Precious metals futures prices are always in flux; downward pressure on this sector would adversely affect property economics.

There are no mine dumps or previous mining operations on the property. A full EIS has not been conducted; further identification of cultural resources may impact scheduling and financial resources dedicated to the project.

To the extent known, there are no other significant factors and risks, besides noted in this technical report that may affect access, title, or the right or ability to perform work on the property.

5.0 ACCESSIBILITY, CLIMATE, RESOURCES, INFRASTRUCTURE, and PHYSIOGRAPHY

5.1 TOPOGRAPHY, ELEVATION, AND VEGETATION

The property is situated near the north end of the Sheep Creek Mountains, which lie in the north-central part of the Basin and Range province and forms the southern boundary of the Midas Trough, a large physiographic feature of northern Nevada. These are ranges which rise steeply above relatively flat to gently sloping basins. Big Butte, which lies on the southeastern edge of the Rimrock property, reaches 2,100 meters (6,889 feet) above mean sea level (MSL), while an unnamed butte which borders the northeast corner of the claim group rises 2,127 m (6,977 ft) and is the highest elevation in the area; the lowest elevation is approximately 1,683 m (5,520 feet). The property is hilly with steep sided, locally cliffforming, gullies, cutting rounded hills, flat topped buttes and ridges. The greatest elevation change is 176 m (577 feet) over 290 m (951 feet) or 31.3° ; grades locally approach vertical and grades in excess of 20° are common (Figure 5.1).

The property is generally sparsely covered with grasses and sagebrush (Figure 5.2) which can attain a height of 4 meters in the flats traversed by arroyos and perennial streams; these places can be nearly impenetrable due to dense growth of tall sagebrush. In areas of springs and perennial drainage the ground can be swampy. There are numerous small springs and seeps on the property that provide water to the local deer, antelope and ranch bovine populations.

Smaller populations of mule deer, antelope and coyotes roam the region. Burrowing animals such as badgers and ground squirrels are common. Pack rats commonly have nests in rock outcroppings. Rabbits are very common. Raptors, although few, are present frequently in the summer months; other birds include chukar and a number of small-sized species drawn to the springs in the area. Sage grouse have not been seen on the property by the author or by Mr. Redfern, both of whom have, independently, over the course of the years since 2001, spent many weeks through several seasons roaming the property.

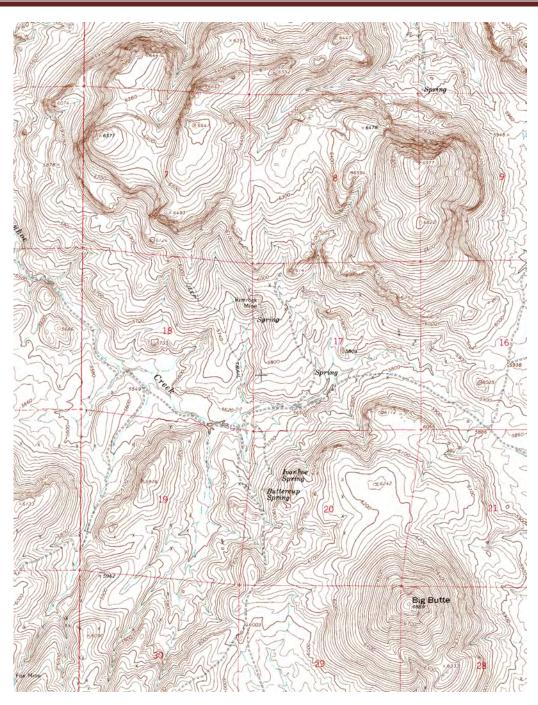
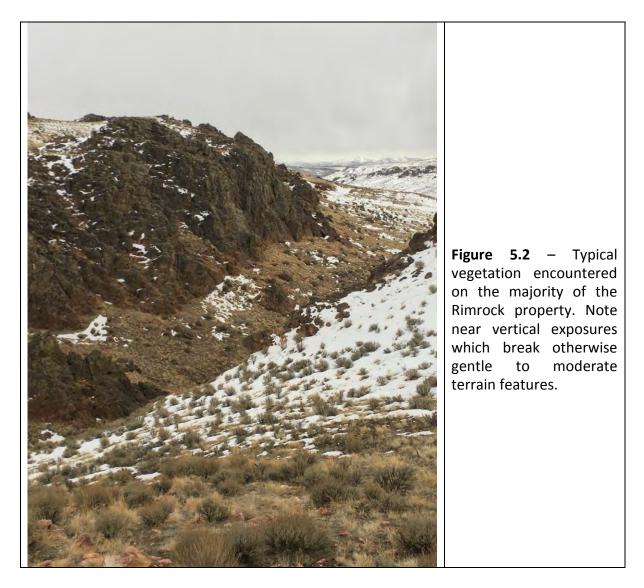



Figure 5.1 – Topography of the Rimrock project area. Contour intervals are 6.1 m (20 feet).

The Rimrock project straddles two hydrographic sub-basins, numbers 62 (Rock Creek Valley) and 63 (Willow Creek Valley), both part of the Humboldt River Basin, regional basin number

Page - 23 -

4. Waters which rise within the project area drain into Willow Creek that subsequently merges with Rock Creek which empties into the Humboldt River near Argenta, east of Battle Mountain.

5.2 MEANS OF ACCESS

The Rimrock property is located in the northwestern part of Elko County, Nevada, approximately 20 km southeast of Midas, Nevada, 27 km northwest of the gigantic Goldstrike Gold Mine, Nevada and 65 km north-northeast of Battle Mountain, Nevada.

It is on the northern flank of the Sheep Creek Mountains. Access to the site is via allweather paved highways (I-80 and Nevada 789) to the county maintained, all-weather gravel Midas Road and then south on the all-weather maintained Hollister Mine Road; drive time from Winnemucca is about 1.5 to 2+ hours depending on weather conditions. The project area is then crossed by a number of dirt two-track roads which during wet periods may be impassible to vehicles, save ATV's; there are places where these are lesser trails. Most of the property is traversable by ATV. Rocky areas are difficult to traverse on foot and impossible to traverse by wheeled vehicles without road building.

The project area is moderately rugged with steep topography between ridge lines and stream bottoms with elevations ranging from 1,670 m to 2,127 m. The property is generally accessible most of the year save after winter storms when snow can pile up in excess of a meter depth.

5.3 PROXIMITY TO POPULATION CENTERS AND NATURE OF TRANSPORT

Winnemucca, 98 air km southwest, or Elko, 78 air km southeast, have regional airports and all the necessary services and skilled work forces to maintain exploration and development programs. There are a number of large operating mines in the region centered on Winnemucca and Elko which maintain a well-trained surface and underground mining oriented workforce. Heavy equipment, repairs, supplies and vendors are all found in both towns; transcontinental railroads pass through both towns and both act as rail passenger hubs. Retail outlets, restaurants and lodging are all available in quantity as well. Additional resources are available in Reno, 328 air kilometers southwest; this city houses many additional mining related vendors, to include assay laboratories and vendors catering to the exploration industry. Reno is also served by an international airport, is a north south road hub and has significant rail services.

The nearest railheads are located at Winnemucca and Battle Mountain, part of the main Union Pacific transcontinental route. The project area is serviced by an all-weather road (the Hollister Mine Road) connecting to the all-weather Midas Road (7 km north) and allows mining truck traffic to and from the site. The closest air service is located at Battle Mountain and the closest scheduled passenger service is available in Elko or Reno, Nevada. Additionally Amtrak maintains passenger service at Winnemucca and Elko, Nevada.

5.4 CLIMATE AND LENGTH OF OPERATING SEASON

The climate at Goldstorm is typical of the high desert regions of Nevada; generally dry and warm in the summer months and cold and occasionally snowy during the winter. Average conditions reported at Midas, 20 km northwest of Rimrock, at an elevation of 1,750 m, are -15.6° C in January and 31.4° C in August; extremes range from -36° C to 36.7° C. Temperatures in the project area are likely a few degrees cooler. Annual precipitation is approximately 23.7 cm about evenly divided between summer thunderstorms and winter snows; precipitation is greater in the uplands. Exploration is generally limited to the months between April and December due to mud and occasional heavy snows that may exceed 1 meter in depth per event; could hamper operations in the winter months. Winds may be nearly constant from the west at 2-10 kph; diurnal thermal variances create moderate breezes in the east facing canyons in evenings, usually dying off an hour after sunset.

5.5 INFRASTRUCTURE (POWER, WATER, ETC.) AND AVAILABILITY OF LAND AND RESOURCES

Everything required for exploration and mining activities can be acquired from nearby towns and cities to include Elko and Reno, Nevada. Electricity is available at Midas (20 km northwest) and at the Hollister Mine, 6 km to the south. Water for exploration activities is available at the various springs on the property, or from Ivanhoe Creek crossing the main Hollister access road, 2.5 km north of the property. This creek is along the drainage from Willow Creek Reservoir, 8 km northeast of the property.

The infrastructure and political climate strongly support mining. There are a number of currently or recently operating gold mines, including the Midas (Ken Snyder) Mine at Midas, the Turquoise Ridge mine at Getchell and the Twin Creeks Mine north east of Getchell, the Hollister Mine (6 km south of Rimrock), and numerous mines to the south east starting at the Rossi Mine (17.5 km southeast) through the Meikle and Goldstrike Mines (24 km southeast) and on south through the Carlin trend. Exploration activity and prospecting in the area is very active. Newmont, Barrick and Hecla are the large mine operators in this area.

Cell phone service is available where there is a direct line of sight to a tower, generally on the tops and sides of the hills facing the Midas Mine and townsite. Service is unavailable on the lower reaches of the valleys.

There are no buildings or other types of infrastructure located on the property. Land currently controlled by CAT is adequate to operate a surface or underground mine and mill

complex on the Rimrock property.

6.0 HISTORY

6.1 PRIOR OWNERSHIP AND OWNERSHIP CHANGES

Prior to European contact, Native Americans of the Paiute, Shoshone, and Washoe tribes inhabited the lands comprising the modern State of Nevada. The first Europeans to explore the region originated from Spain. They gave the region the name of Nevada (snowy) due to the snow which covered the mountains at winter. The area formed part of the Viceroyalty of New Spain, becoming part of Mexico when that country gained independence in 1821. The United States acquired the territory in 1848 following the signing of the Treaty of Guadalupe Hidalgo ending the Mexican-American War. The area was incorporated as part of Utah Territory in 1850. The discovery of silver at the Comstock Lode in 1859 led to a population boom that became an impetus to the creation of Nevada Territory out of western Utah Territory in 1861. Nevada was admitted to the union as a State on 31 October, 1864.

When the United States acquired Nevada, the federal government distributed unclaimed land through the US General Land Office (GLO). The land was first surveyed, then sold through local offices. The first local office was established in Carson City in 1864. Others were in Elko, Eureka, and Reno. The local offices kept tract books (records for each section of land) and township plats (maps of land entries for each township). In 1946, the Grazing Service was merged with the General Land Office to form the Bureau of Land Management within the Department of the Interior. The Bureau of Land Management became less focused on land disposal and more focused on the long term management and preservation of the land. BLM has on record mining claims regulated under the General Mining Law of 1872 which was last modified (in 2001) by the regulation portion of the 1976 Federal Land Policy Management Act is found at 43 CFR 3809: "Surface Management regulations". These regulations were updated and the final rules published in December 2001. These rules effectively replace many provisions of the 1872 Mining Law. The BLM issues permits for oil and gas, coal, strategic minerals, and renewable energy resources such as wind, geothermal and solar to be developed on public lands. The total active mining claims on lands owned by the BLM are over 380,000, of which Nevada has the most at 203,705 (as of December, 2020).

The land on which this project is situated has all remained with the federal government, save for the 40 acre (16.1 ha) patented ground occupying the Rimrock Mine that currently is owned by Newmont Mining Corporation. Numerous claimants have had lode claims in the area since the early twentieth century. These have all been dropped, save for those

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

Page - 28 -

currently controlled by CAT and adjoining mining companies, including Hecla and McEwen Mining.

6.2 HISTORICAL EXPLORATION AND DEVELOPMENT WORK

6.2.1 Pre-History and Early Historic Mercury Testing and Mining (1915 – 1973)

Prior to the historic discovery of mercury, the area had been used as the principal source of raw materials for tool making. The white chalcedony and opal had been used well into antiquity dating to the Clovis and pre-Archaic peoples; 13,400 – 10,000 years before present. Two periods of near constant occupation of the area are noted, based on archeological evidence, at 11,500 – 8,000 year before present and again 6,000 – 3,000 years before present. Trading even further afield ensured expansion of the quarries starting about 1,500 years before present. Numerous quarries existed in the region and materials derived from these quarries have been found throughout the central Great Basin roughly in the area most recently occupied by the White Knife Shoshone. This material was traded and used in a region from central northern Nevada north to central Oregon; roughly 300 km from the quarries. Between 1987 and 1992, Intermountain Research (IMR) conducted a program of survey, testing, and data recovery at Tosawihi Quarries, north-central Nevada. The work was done on behalf of various mining development consultants and gold mining companies and generated several reports comprising the most intensive look at a toolstone quarry yet conducted in North America; nearly one million artifacts were recovered during this effort (Elston, 2006).

Mercury was discovered in the Ivanhoe District in 1915. Most of the district's 2,180 flasks of mercury were produced between 1929 and 1943 (LaPointe and others, 1991) making the district the largest producer of mercury in Elko County. Of the nineteen known mines and prospects in the district, all show mercury values, with eight also showing silver and /or gold mineralization. One of the mercury mines, the "Rimrock" or "Homestake" Mine lies on patented ground currently owned by Newmont Mining Company, and is completely surrounded by CAT's unpatented lode claims. CAT does not control the Rimrock Mine.

Remnants of two mercury retorts on CAT's claims were in production in the early to midtwentieth century; based on extant relics and machinery. The older retort dates to WWI era, the newer dates from the 1930's to 1950's (WWII era). These retorts likely only serviced the nearby Rimrock mine (also known as Rimrock and Homestake Properties and later renamed to Hillside and Opal Group) when it was producing; most recently 1940-41 and

again in 1958 (USBM IC 8252). The Rimrock Mine is composed of several short adits, two shallow shafts and an open pit (Figure 6.1); most of the small mine production came from a bedded deposit in silica sinter developed via the open pit. Other small mercury prospects were dug on mercury-bearing silica sinter in the dilation target area of CAT in the northwest part of the property and another trench was cut perpendicularly to the eastern cinnabarbearing opal on the east side of the property; but no mine production appears to have occurred in any of these prospects.

Figure 6.1 – Image of Rimrock Mercury Mine consisting of open cuts and underground workings.

Mercury production continued intermittently at the Silver Cloud Mine (not on CAT controlled ground) through 1973; the Sheep Corral-Governor-Fox Mines group lies 3.5 to 4.5 km west, the Old Timers-Velvet-Clementine Mine Group is 5-6 km south and the Silver Cloud Mine is 12.5 km south-southwest of the property. A total of 2,180 flasks of mercury were produced from the district, the Silver Cloud Mine accounting for 1,150 flasks. The Hollister mine open pit area and four adjacent small mines yielded some of the mercury production;

1929-1943 (Great Basin Gold, 2007).

6.2.2 Molybdenum, Uranium and Industrial Minerals Exploration (1960's through 1993)

Modern exploration in the Ivanhoe Mining District began in the early 1960's and lasted through the 1980's searching for molybdenum and uranium deposits. During that period several companies explored the area, but without success.

In 1978, a bentonite deposit was discovered in the Ivanhoe Creek area by Chemical and Petroleum Corporation of America. Results from a combination of drilling, pitting, and trenching were used to estimate the size of the bentonite deposit at 2 million tons. 500 tons of bentonite were shipped in 1980 but no further development occurred and work permits lapsed in 1993. This deposit exists on the present Rimrock Property.

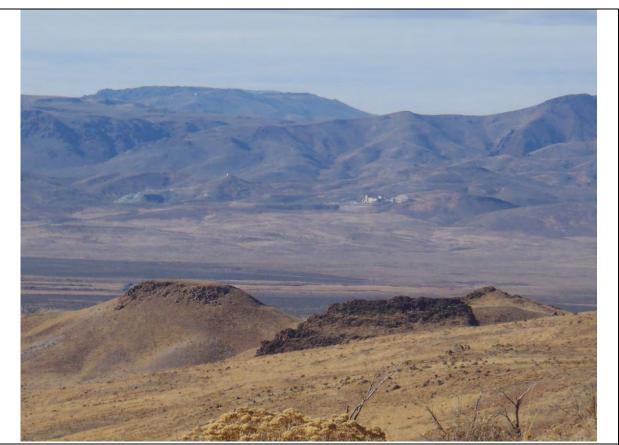
6.2.3 Precious Metals Exploration (1970's through 2010)

In the late 1970's and 1980's numerous companies conducted exploration for gold around the numerous mercury occurrences, primarily focused on shallow, open-pit mineable volcanic-hosted, gold-silver potential. This led to the discovery of the Ivanhoe-Hollister gold-silver mine, located 6 km south of the Rimrock property boundary. The Hollister Mine began open pit production in October 1990 and was actively mined from an open cut through 1992 with heap leaching continuing through 1996. A total of 115,696 ounces of gold were produced from 2.968 million tonnes of ore.

Homestake Mining Company explored in the Hollister area in the 1970's, looking for a McLaughlin-style hot springs gold deposit. United States Steel explored the Ivanhoe District, outlining a body of gold mineralization approximately 9.98 million tons with an approximate grade of 1.6 g/T gold.

Touchstone Resources was active on the Rimrock property in the late 1980's, and drilled at least one vertical hole on the CAT claims in 1987, IV87-129. The results of this drilling are unknown. Great Basin Gold was formed in 1997 and they acquired Touchstone's interest in 1999, to hold 100% of the Hollister Mine. From 1997 to 2001, Great Basin Gold conducted sampling, geophysical surveys, and drilled 216 holes at Hollister, totaling 66,300 m. Hecla Mining Company partnered with Great Basin Gold in 2002 and eventually purchased the property from Great Basin Gold (Cain, 2007); Hecla still maintains control of the property at the time of this writing. Mine development at Hollister began in 2004.

On the Rimrock property, Newmont Exploration dug trenches and drilled between five and six reverse-circulation holes in 1994 with the objective of identifying shallow open-pit mineable gold targets. Holes are estimated to have only been drilled to depths of about 100 to 400 feet (30-122 m), testing areas of silicification and sinter for open pit targets. The results were said to be insignificant (Steven McMillan pers. comm. to R. Redfern, 2018), but CAT does not have any of these drill results.


Since the late 1990's, exploration focus in this District changed to deep, vein-hosted, goldsilver mineralization similar to the Midas Mine (presently controlled owned by Hecla), located approximately 18 km northwest of the property (Figure 6.2). The Silver Cloud property, now controlled by Blackrock Silver Corp., a past producing mercury mine, is located approximately 13 km south-southwest of Rimrock. Teck, Placer Dome and Blackrock Gold conducted exploration since 1999 for vein hosted and disseminated Midas-style gold– silver mineralization at Silver Cloud. Teck drilled a very high-grade drillhole at Silver Cloud in 2000, which returned a drill intercept of 4.603 oz/ton gold across a 1.5 m interval at a depth of 311 m (Kuzma, 2002). Placer Dome followed up in 2002 with a 9-hole program in the area, which yield gold intercepts of up to 3 m of 5.607 ppm gold (Wolverson, 2021).

At the Hollister Mine, Great Basin Gold conducted exploration and mining operations below the elevation of the Hollister open pit; they drilled into the high-grade Gwenivere-Clementine gold-silver bearing quartz vein systems, from which the main ores were mined at Hollister by Great Basin Gold. The approximate centroid of the main mining stopes area was at the 5100 foot (1555 m) elevation level. Great Basin Gold also had the Hatter target area in the eastern part of the Hollister property, which work has been directed towards discovery of Midas-style and deeper Carlin-style sediment hosted gold mineralization. Hecla Mining acquired the mine from Great Basin Gold and continues exploration of this target area.

In 2002, Great Basin Gold drilled at least one vertical hole between Rimrock and the Hollister Mine. The results of this drilling are unknown.

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

CAT Strategic Metals Corporation | Technical Report | Rimrock Project, Ivanhoe District, Elko Co., Nevada, USA

Figure 6.2 – Hecla's Midas Mine and facilities; image taken from vicinity of the "Rhombochasm Zone" on CAT's Rimrock Property.

In 2002 and 2003, R. Redfern took twelve samples for geochemical analyses; samples were taken in areas of silicification and sinter. The most significant of these data are: Gold – 9 ppb; Silver – 0.35 ppm; Mercury - >100 ppm; Selenium – 97 ppm. Additional sampling completed by Redfern at the Silver Cloud Mine returned values of Mercury: 59 and >100 ppm and Gold: 19 and 37 ppb respectively.

In 2003, Wallace produced a regional geologic map of the Willow Creek Reservoir 7.5' Quadrangle; this map included all of the Rimrock property.

In 2003, Senator Minerals, Inc. leased the Rimrock property and held a 50% interest in the bentonite deposits and a 100% lease on the Rimrock property. They produced a Technical Report on the property dated 6 November, 2006 (Harrington, 2006), and an update report dated 20 November, 2009.

Geophysical surveys consisting of ground magnetics, gravity and CSAMT were conducted in August, 2004. Data from these surveys were discussed in in a report compiled by James L. Wright a consulting geophysicist of Elko, Nevada.

Kent Exploration drilled a total of 791.3 meters in five core holes, and discovered goodgrade silver mineralization (to 262 ppm) with attendant tungsten values (to 0.15%). Intercepts from drill holes IC-07-10, -12 and -13 are discussed below. Drill sites and roads were reclaimed to the satisfaction of the BLM, and their bond was released.

6.2.4 2011 - 2021

Mapping and sampling was completed over portions of the Rimrock property in 2012 for Zahav Resources.

In 2013, the property was leased from R. Redfern by Rimrock Gold Corp. (formerly Tucana Lithium Corp.), but no work was conducted. Redfern leased the property to Soloro Cobalt and Gold Corporation in 2018, which parties then optioned the property to CAT Strategic Metals (Nevada) Inc. in October, 2020, which has resumed work on the Rimrock property.

6.3 HISTORICAL MINERAL RESOURCES/ RESERVES

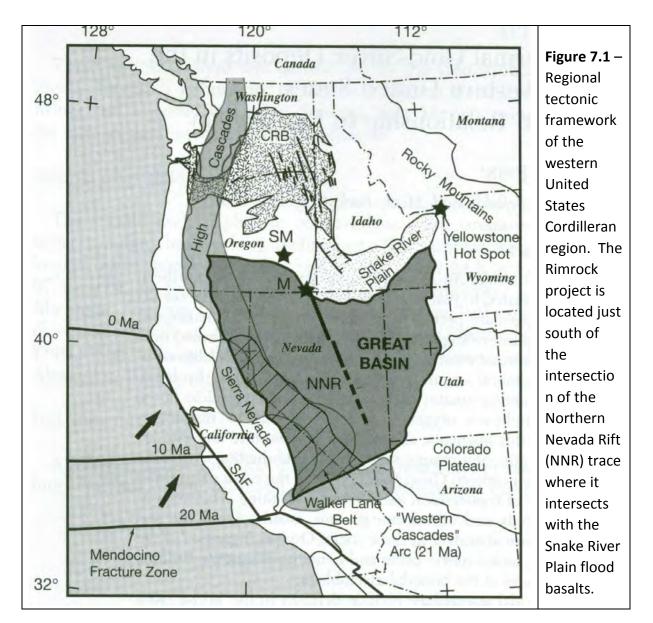
Mercury is the only metal/mineral to have been explored for on the Rimrock property, and it was mined by hard rock methods from the adjoining Rimrock Mine. There are no known records of this historic production.

500 tons of bentonite was removed from the property in 1980. There is an historic estimate of 2 million tons of bentonite extant on the eastern and central areas, which are covered by current lode mining claims controlled by CAT. There are no known characterization studies of this deposit.

There are no historical gold mineral resources or reserves.

6.4 HISTORICAL PRODUCTION

Mercury was mined from the adjoining Rimrock Mine between the First World War and 1958. This mine is composed of a number of short adits, two shallow shafts and a small


open pit; it is located on patented ground not controlled by CAT. No records of that production have been found. There are remnants of two mercury retorts located near fresh water springs in the southeastern portion of the CAT lode mining claims. Tailings extant at these sites indicate production was limited to a few tens of tons.

In 1980, 500 tons of bentonite was removed from surface exposed bentonite deposit located on the western part of the property. No further production was made through the end of the permit which expired in 1993.

No other production has been recorded form the Rimrock property and of the numerous existing prospects, none show any evidence of ore production.

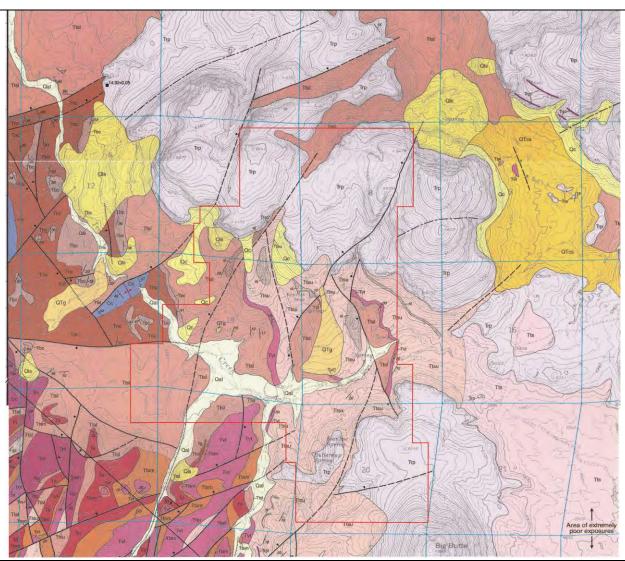
7.0 GEOLOGICAL SETTING AND MINERALIZATION

The Rimrock property is located in the central part of the Great Basin province, on the eastern margin of the Northern Nevada Rift ("NNR") and along the southern margin of the Midas trough, on the northwestern projection of the Carlin gold trend (Figure 7.1).

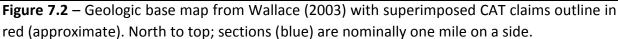
Within the Great Basin province, exposed rock units range from late Pre-Cambrian metasediments to Pleistocene cinder cones. Tectonic events include alternating periods of

Page - 36 -

continental scale compression, extension, and shearing. The Great Basin is most noted as an extensional terrain, with the eastern and western edges of the region, roughly the current sites of Reno, Nevada and Salt Lake City, Utah, having moved apart by some 100 kilometers in the past 40 million years. Prior to this period of extensional movement, the region had seen at least three major periods of compression. Each of these events is evidenced by thrust faults which have stacked sheets of rock over one another that are age contemporaneous, but deposited in different sedimentary environments.


7.1 REGIONAL AND LOCAL GEOLOGY

7.1.1 Regional and Local Geology


The majority of the rocks in the Property area consists of Tertiary volcanic flows, domes, pyroclastic materials, and related reworked sediments that unconformably overlie a basement composed of allochthonous Ordovician Vinini Formation (Figure 7.2). Note; this unit has been interpreted as the Ordovician Valmy Formation on the Silver Cloud property (Wolverson, 2021) to the south. At the Hollister Mine, Newmont USA Ltd. and Great Basin reported the unit as being variously described as Vinini or Valmy Formation depending on USGS Report 98-338, Brown and Caldwell, 2010 and other reports, and deemed it the Vinini Formation for their purposes of reporting. Since the controversy in nomenclature regarding this unit has been ongoing for nearly half a century, its complex tectono-stratigraphy, their temporal and facies equivalency and lack of significant mappable units exposed in the vicinity, for the purposes of this report, all Paleozoic submarine pelagic sedimentary rock units considered to be Ordovician in age are herein designated as the Vinini Formation. In all likelihood, this area represents materials deposited on the boundary between the deep abyssal pelagic environment of deposition to the west, represented by the Valmy Formation, and the shallowing to the east continental slope sedimentary rock facies designated as the Vinini (Dennis, 2006).

Subduction-related intermediate composition volcanic activity started approximately 41 million years (Ma) ago during the Eocene in the northeast corner of Nevada and progressed southwesterly until the Middle Miocene, about 16 Ma. Later events are related to regional extension and crustal thinning starting about 17 Ma and the Northern Nevada Rift/Yellowstone Hot Spot events starting about 16.8 Ma Jarbidge Rhyolite (John and Wallace, 2000) and McDermitt (16.39 Ma) (Henry and others, 2017).

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

CAT Strategic Metals Corporation | Technical Report | Rimrock Project, Ivanhoe District, Elko Co., Nevada, USA

Miocene volcanic rocks and related sediments fill extensional basins that started opening about 17 Ma and are still active, particularly in the western part of the state (Stewart, 1980). This episode of volcanism continued to about 6 Ma; mostly well to the north and west of the Property. A change in the extension direction, from east-northeast to northwest occurred at approximately 8 Ma and resulted in a series of northeast trending grabens, which include the Midas trough (Goldstrand and Schmidt, 2000).

Regional high-angle northeast- and northwest-striking faults cut all rock units in the district.

These high-angle faults served as conduits allowing mineralized hydrothermal solutions to form mercury deposits in sinter and silicified tuffs, disseminated gold deposits in various Miocene rocks, and high-grade gold-silver veins in Paleozoic and deeply buried rhyolitic rocks (Wallace, 2003). Northwest-striking Miocene faults are consistent with the middle Miocene west-southwest extension direction (Zoback and Thompson, 1978; Zoback et al, 1994), and northeast-striking faults are related to younger (<8 Ma) northwest-directed extension (Zoback and Thompson, 1978; Wallace, 1991).

The Rimrock Property is situated along the trend of the Miocene Northern Nevada Rift ("NNR") province between Hecla Mining Company's Midas gold-silver mine to the northwest, and the Newmont's Mule Canyon gold mine to the south.

7.1.2 Regional and Local Stratigraphy

The general stratigraphic framework of the area consists of Paleozoic sedimentary basement rocks overlain by Eocene and Miocene volcanic rocks, with the majority of the exposed units consisting of multiple episodes of intermediate to felsic Miocene volcanic rocks and related fluvial and lacustrine sedimentarary rock strata. Figure 7.3 delineates a general stratigraphic section of the region; detailed discussions of the units depicted are presented below.

Paleozoic basement – Vinini Formation –

The Tertiary volcanic pile was deposited on a basement of Ordovician quartzite, chert, and argillite of the allochthonous Vinini Formation. These rocks are exposed on surface both west and southeast of the Property. The Vinini Formation is the host for most of the high-grade veins at Hecla Mining's the Great Basin Gold Ivanhoe-Hollister Mines (Wallace, 2003). The Teck – Placer Dome drilling at the Silver Cloud mine reportedly encountered Vinini quartzite at approximately 1,000 feet below the surface (Abbott and Redfern, 2002).

CAT Strategic Metals Corporation | Technical Report | Rimrock Project, Ivanhoe District, Elko Co., Nevada, USA

Trp	RHYOLITE PORPHYRY–Crystal- rich, coalescing domes.	 ich, coalescing domes. JPPER TUFF-Tuffaceous edimentary rocks and welded tuffs. Equivalent to Carlin Formation; RHYODACITE FLOWS-Flow- banded, flow-folded rhyodacite lows. //TRIC TUFF-Partially welded, classy, dark gray, airfall tuff; 15.3 Ma. //TRIC TUFF-Partially welded, classy, dark gray, airfall tuff; 15.3 Ma. //TRIC TUFF-Partially welded, classy, dark gray, airfall tuff; 15.3 Ma. //TRIC TUFF-Reddish to black flows. Restricted to western part of map rea. //YOLITE FLOWS-Reddish, phyric, flow-banded and flow-folded hyolite flows to west. /OWER TUFF-Leucocratic uffaceous sedimentary rocks, airfall uffs, and surge deposits.
Ttsu	UPPER TUFF–Tuffaceous sedimentary rocks and welded tuffs. Equivalent to Carlin Formation;	
Trd	RHYODACITE FLOWS–Flow- banded, flow-folded rhyodacite flows.	
Tvt	VITRIC TUFF–Partially welded, glassy, dark gray, airfall tuff; 15.3	
Ta	ANDESITE–Reddish to black flows. Restricted to western part of map area.	
Ttsl	RHYOLITE FLOWS–Reddish, aphyric, flow-banded and flow-folded rhyolite flows. Continuous with widespread flows to west. LOWER TUFF–Leucocratic tuffaceous sedimentary rocks, airfall tuffs, and surge deposits.	
Td	DACITE–Plagioclase-pyroxene dacite flows near Willow Creek WILLOW CREEK TUFF–Multiple eruptive units of rhyolite welded tuff; 39.7 Ma. VALMY FORMATION (ORDOVICIAN)–Chiefly quartzite with subordinate argillite and chert.	
Twt		
Ov		

Eocene volcanic rocks -

Wallace (2003a) reports the presence of two Eocene-age volcanic units overlying the Vinini Formation on the Rimrock property. The same stratigraphic relationship was recognized in the Ivanhoe-Hollister Mine area, approximately 5 kilometers to the

south. The lower part of the section consists of welded tuffs, likely erupted from the Tuscarora volcanic field located northeast of the Property. Two units are discernable; the 39.22 \pm 0.1 Ma tuff of Big Cottonwood Canyon (Tbc); and the 39.42 \pm 0.11 Ma Nelson Creek Tuff (Tnc). These units are overlain by trachyandesite flows and tuffs dated at 37.20 \pm 0.1 Ma. In the northern part of the Ivanhoe District, these units are approximately 300 meters thick, but pinch out entirely to the south.

Miocene volcanic rocks -

These tuffs and tuffaceous sedimentary rocks include subaqueously and subaerially deposited tuffs and lesser fluvial clastic sediments that form a conformable stratigraphic section representing continuous sedimentation. The lower tuff (Ttsl) is below the andesite (Ta); the middle tuff (Ttsm) is between the andesite and vitric tuff (Tvt); and the upper tuff (Ttsu) is above the vitric tuff. The upper, middle, and lower tuff units are practically indistinguishable, especially with typically poor exposures; undifferentiated unit (Tts) includes tuffaceous rocks (Ttsl, Ttsm, Ttsu) where neither the andesite nor vitric tuff is present to provide stratigraphic divisions, or where isolated exposures of tuff preclude inclusion in a specific unit. The sequence was deposited between about 16.5 Ma and 14.4 Ma.

- **Trp** Rhyolite porphyry exposed in crystal-rich domes and flows. Rocks are reddish brown on weathered surfaces and gray-brown on fresh surfaces. The domes are composed of outward-dipping flows derived from central vents. The dome east of the mouth of Ivanhoe Creek was dated at 14.92±0.05 Ma.
- **Ttsu** Upper tuffs and tuffaceous sedimentary rocks include tan to gray, massive- to finely-bedded, very poorly exposed water-lain tuffs and tuffaceous sedimentary rocks. The basal units are composed of very thinly-bedded water-laid deposits. The age of the tuff bed near the base of the unit was estimated at 15.05±0.25 Ma. Unit Ttsu is correlative in part with the lower member of Carlin Formation exposed to the south and southeast, where it is 14.4-15.1 Ma. Total thickness of the unit in this area is unknown.
- Tvt Vitric tuff, dark-brown, silver-gray, to black, rhyolitic, fine-grained, moderately welded vitric tuff. The groundmass is composed of flattened, black, porous vitric ash. On weathered surface, felsic mineral phenocrysts form a distinctive, white-on-black speckled pattern. Welding indicates primarily subaerial deposition. Age, based on 40Ar/39Ar date on sanidine, is 15.10±0.06 Ma.

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

CAT Strategic Metals Corporation | Technical Report | Rimrock Project, Ivanhoe District, Elko Co., Nevada, USA

- **Ttsm** Middle tuffs and tuffaceous sedimentary rocks are fine-grained and usually completely replaced by white chalcedonic silica masking most sedimentary features but making it a distinctive marker unit. As exposed in the Ivanhoe-Hollister Mine area, the unit is composed of thinly-bedded, water-laid tuffaceous sediments. Thickness varies from a few to more than 10 meters.
- **Ta** Reddish to locally black subaerial andesite flow units range from low-silica andesite to low-alkali basaltic trachyandesite. The unit thins to the east, grading from massive red flows to thin vesicular black flows, and it is not present east of Ivanhoe Creek. The thickness varies from 3 to 30 meters, suggesting eruption onto an irregular paleosurface.
- **Ttsl** Lower tuffs and tuffaceous sedimentary rocks include interbedded subaqueous to subaerial air-fall tuffs, reworked tuffaceous material, and minor sandstone and conglomerate. The unit unconformably overlies Eocene trachyandesite flow units (Tta) and Eocene welded tuffs (Tbc) along Ivanhoe Creek. The total thickness of the unit is obscured by faulting, but can exceed 200 meters. Plagioclase from a tuff bed near the middle of the section along the north shore of Willow Creek Reservoir produced a 40Ar/39Ar date of 15.84±0.10 Ma.

7.1.3 Cover Materials

Cover varies generally dependent upon the underlying formations and proximity to drainages and springs; depths vary from zero to several meters, particularly in the valleys. On the whole, exposure of the underlying geology is about 25-35% of the surface area.

Quaternary Overburden –

- **Qal** Unconsolidated alluvium comprising unconsolidated unsorted silt, sand and gravel.
- **Qc** Colluvium consisting of unconsolidated talus and down-slope wash.
- **Qls** Landslide deposits including chaotic to coherent slump blocks and megabreccia.

7.1.4 Structure

The published Willow Creek Reservoir 7.5-minute quadrangle map (Wallace, 2003a) shows at least two series of faults, north-northwest and northeast striking, west-dipping normal

faults cutting the volcanic section. In the area of the Rimrock property, faults are interpreted as being vertical to steeply west-dipping. According to Wallace's map, a fault cuts the silicified zone in the southwestern portion of the Property, extending 3,000 meters northeast where it passes through an area of silicification and mercury sinter.

The regional Northern Nevada Rift (NNR) structural zone also strikes north-northwest and is likely the root cause of the north-northwest fault alignment. As regional structure appears to influence mineralization, any structurally controlled mineralization or alteration on the Rimrock property is likely to follow this same regional trend.

7.2 PROPERTY GEOLOGY AND MINERALIZATION

The Rimrock property has not been the subject of published detailed geologic mapping. The rock descriptions and general stratigraphic relationships described below are taken from the published regional geologic map of the Willow Creek Reservoir 7.5 minute quadrangle (Wallace, 2003a) (Figure 7.2).

Rhyolitic ash and tuff host the Rimrock mercury mine (also known as Rimrock and Homestake Mines; Wilburg Mine; and Ivanhoe Cinnabar Mine); the upper workings at the Rimrock mine are in a bed of opalized ash and tuff containing irregularly disseminated cinnabar and mercury chloride (Calomel - $[Hg_2]^{2+}Cl_2$). The opalized unit is brecciated and contains fragments of silicified tuff and quartz crystals. Underlying the opalite are cream-colored, unsorted, tuff beds that contain matrix-supported lithic fragments. Mercury occurs in cavities and fractures in the massive opalite bed (LaPointe et al, 1991). North-northwest trending reddish-brown chalcedony veinlets, up to 3 cm wide (Redfern sample 153360), were observed to crosscut silicified tuff at the mine entrance.

7.2.1 Stratigraphy

The Rimrock project area, in general, consists of allochthonous Ordovician shales, sandstones and cherts basement rocks overlain by Eocene and younger volcanic and derivative rocks and materials. The Tertiary sequence is majority intermediate to felsic tuffs, flows and related fluvial and lacustrine sediments.

Quaternary Units

Quaternary units are those mappable geological materials that are typically unconsolidated

and form cover over the underlying older rock. These units include landslide deposits (Qls) derived mainly from the rhyolite flow domes where over-steepening and seismic activity lead to collapse of otherwise competent crystalline rock. Colluvium (Qc) comprised of unconsolidated weathered material derived from underlying bedrock and forming talus cover and down slope debris. Unconsolidated alluvium (Qal) is composed of silt, sand and gravel and generally deposited in washes and gullies and form mostly by washing during periods of flash flooding and heavy water flow.

An unmapped unit is composed of aeolian deposits and found mainly in the deepest valleys and occasionally on slopes; it is composed of wind blow and deposited silt and clay sized material, is often rich in organics and forms thin to thick easily excavated material often making excellent habitat for rodents which excavate it with abandon, developing warrens that are effortlessly collapsed when weight is applied.

Miocene Volcanics

These lithologic units are comprised principally of tuffs and tuffaceous sedimentary rocks and include subaqueously and subaerially deposited tuffs and lesser fluvial clastic sediments that form a conformable stratigraphic section representing continuous sedimentation. The lower tuff (Ttsl) is below the andesite (Ta); the middle tuff (Ttsm) is between the andesite and vitric tuff (Tvt); and the upper tuff (Ttsu) is above the vitric tuff. The upper, middle and lower tuff units are practically indistinguishable, due to poor exposures. On the map of Wallace (2003) in areas of poor exposure, an undifferentiated unit (Tts) includes tuffaceous rocks (Ttsl, Ttsm, Ttsu) where neither the andesite nor vitric tuff is present to provide stratigraphic divisions, or where isolated exposures of tuff preclude inclusion within a specific unit. This sequence of rock was deposited between approximately 16.5 Ma and 14.4 Ma.

Eocene Volcanics

Wallace (2003) mapped two Eocene-age volcanic units overlying the Vinini Formation northwest of the project area; the same stratigraphic relationship has been observed in the Hollister mine area 5 km south. There are two discernable units: the tuff of Big Cottonwood Canyon (Tbc) dated to 39.22±0.1 Ma; and the Nelson Creek Tuff (Tnc) which is 39.42±0.11 Ma. These tuff units are overlain by 37.20±0.1 Ma trachyandesite flows and tuffs. These units are 300 meters thick in the northern part of the Ivanhoe District and pinch out completely to the south.

Paleozoic rocks – Vinini Formation (Ov)

The Tertiary volcanic pile was deposited on Ordovician quartzite, chert and argillite comprising the Vinini Formation. The Vinini (Ova) is part of the Roberts Mountain Allochthon, emplaced along low-angle thrust faults during the late Devonian through early Mississippian Antler Orogeny. The Vinini is the host for most of the high-grade veins at the the Hollister Mine (Wallace, 2003). Drilling at the Silver Cloud mine reportedly encountered Vinini quartzite at approximately 305 meters below the surface. This unit is not exposed on the surface within the confines of the property boundary, but is exposed southeast and 300 m west of the property, and has been encountered in the drilling conducted by Kent Exploration in 2007 at depths of approximately 65-125 m below the surface.

7.2.2 Structure

The published geologic map of the 7.5-minute Willow Creek Reservoir Quadrangle (Wallace, 2003) along with surface observations and detailed mapping, demonstrate the principal structures within the project area are north-northwest and northeast striking, steeply west dipping. Subsidiary structures are oriented east-northeast and west-northwest. The two main gold-quartz vein systems in the Hollister Mine were emplaced into west-northwest trending fault structures.

North-northeast sinistral strike-slip (NNESSS) features are noted throughout northern Nevada. There has been little discussion pertaining to these features which are obvious in regional geologic mapping and topographic features; such as the Argentum Rim, Midas Trough, Antelope Creek and other areas. Some of the through-going features have been noted such as the Battle Mountain-Carlin-Elko-Wells feature which can be traced along a series of hot springs, topographic and geologic features. Stress fields set up by the North American Plate in conjunction with those imparted by Yellowstone Hotspot are most likely the driving forces behind these relatively recent kinematic features; this same stress regime will also explain the short lived Northern Nevada Rift (Figure 7.4). The NNESSS features are not singular structures but a series of en échelon shorter segments along a general trend. These features tend to offset older features, such as the Carlin Trend left laterally to the north, and in so doing place the Carlin Trend under the Hollister, Midas (Gold Circle) and eastern Snowstorm Mining Districts; explaining why it is difficult to find significant mineralization along the presumed Carlin trend north of the Rossi Mine.

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

CAT Strategic Metals Corporation | Technical Report | Rimrock Project, Ivanhoe District, Elko Co., Nevada, USA

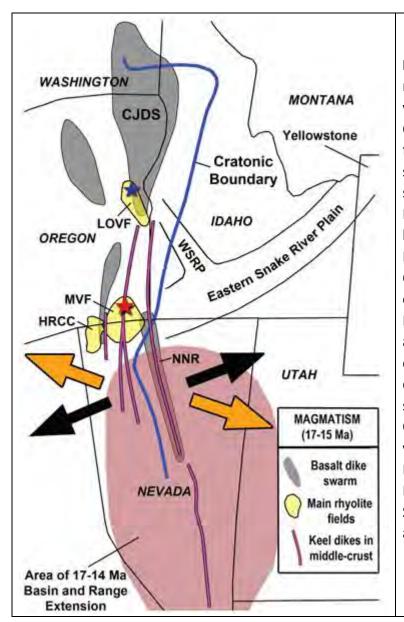


Figure 7.4 -Palinspastic of reconstruction bimodal volcanism along the Nevada-Columbia Basin magmatic belt from ca. 17–15 Ma, with southernmost extension based solely on aeromagnetic data. See Figure 1 for definition of red and blue stars and volcanic fields HRCC, MVF, LOVF, and NNR. Orange arrows depict the orientation of mid-Miocene Basin-and-Range extension; black arrows depict the overall dilation direction of coeval mid-Miocene dikes. CJDS-Chief Joseph dike swarm, where 85% of the Columbia River Basalt Group volume erupted. Area of 17-14 Ma extension from Colgan and Henry (2009). WSRP-Western Snake River Plain. From Camp and Wells, 2021.

The regional Northern Nevada Rift (NNR) structural zone strikes north-northwest and was controlled by the oldest structure set in the region and stress fields set up by the North American Plate moving over the Yellowstone Hot Spot. The NNR was developed along previously existing north-northwest high-angle structures that can be traced to at least the Cambrian time, and represent stress relief experienced at the edge of the continent at that time. Reactivation of these features continues through the present and has localized mineralization throughout northern Nevada (i.e. Carlin Trend deposits).

Two NNW-trending strongly uplifted horst fault blocks are present at Rimrock, which brought Vinini rocks up close to the surface, as documented by CSAMT surveys conducted in 2004 by Kent Exploration. These horst-bounding faults acted as feeder fluid conduits that brought silver, gold, and tungsten mineralization up to near the surface at Rimrock. Vinini outcrops immediately west of the Rimrock property, as mapped by Wallace (2003), are folded with NNW-trending axial traces, and suggest upward doming of these Paleozoic rocks to the ground surface. Relative to the Hollister Mine area, these uplifted blocks indicate that Carlin-style mineralization could be closer to the surface than in the Hollister Mine area.

There is also evidence of strike slip motion along some of the identified structures. Currently detailed knowledge regarding kinematic interactions and ore controls on the project area is limited. Additional detailed mapping will be required to decipher the exact kinematics of the area.

7.3 SIGNIFICANT MINERALIZATION AND GEOLOGICAL CONTROLS

The Ivanhoe Mining District is noted for its prolific occurrences of hot springs emplaced opaline and chalcedonic silica sinter deposits, which locally are auriferous, as in the Hollister Mine open pit. These are often accompanied by mercury mineralization. Volcanic rocks host hot spring sinter and silica replacement, mercury-bearing deposits; these areas are predominately localized along northwest and north east trending high angle fault structures.

At the Silver Cloud deposit (12.5 km southwest of Rimrock) the structurally controlled silica is associated with near surface silica-kaolinite-alunite [SiO2·nH2O or SiO2 - Al₂(Si₂O₅)(OH)₄ -KAl₃(SO₄)₂(OH)₆] alteration overlying buddingtonite-kaolinite [(NH₄)(AlSi₃O₈) -Al₂(Si₂O₅)(OH)₄]. Beneath or adjacent to the buddingtonite zone is a zone of illitekaolinite±adularia [K_{0.65}Al₂[Al_{0.65}Si_{3.35}O₁₀](OH)₂ - Al₂(Si₂O₅)(OH)₄ ± KAlSi₃O₈]. Argillic alteration has been encountered in the drilling at Rimrock, haloed by propylitic alteration similar to that observed at Silver Cloud; the detailed alteration mineralogy at Rimrock has yet to be worked out, but is likely to follow that of known surrounding systems.

At Rimrock, aside from cinnabar, sulfides have only been encountered within the historic drilling, namely pyrite and generally below 60 meters from the surface, the preponderance on fractures, and locally to 10% volume as disseminations.

The writer observed weak argillic alteration along the central portion of the Property in the

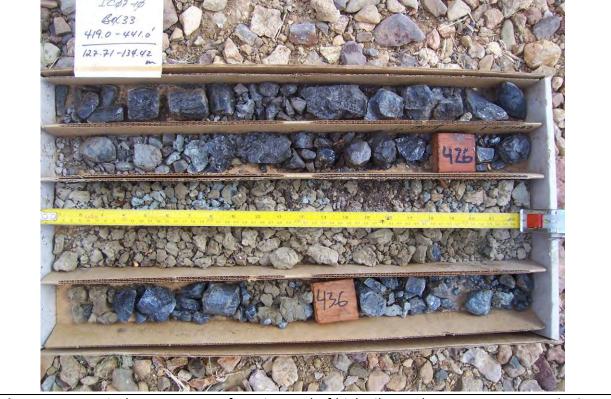
vicinity of the Rimrock mercury mine and in areas south of the "Rhombochasm" target area. A large amount of argillically altered material exists on the western side of the property.

An area of silica veining and massive silica replacement of tuffs is located in the southwest corner of the Property. There is no outcrop in this area, but surface float shows buff-colored highly silicified and brecciated rhyolitic tuff healed with light gray to creamy white chalcedonic quartz. Rhyolite fragments are angular with very sharp corners and do not exhibit alteration on fracture surfaces. Observed breccia fragments range in size from 1 to 100 mm. Fragments of sinter and opaline quartz were also evident.

Gold mineralization from surface sampling has generally resulted in background or near background results; the highest gold value recovered from surface sources is 16 ppb (sample 335772 – silicified, brecciated rhyolite with multiple episodes of quartz healing and cinnabar). However, gold exceeding 10 ppb has been encountered at Rimrock over intervals to 6 meters in the historic drilling; the highest gold value identified in the drilling data available is 187 ppb; and silver to as high as 262 ppm (7.64 opt).

Historic drilling has identified significant intercepts of silver mineralization hosted exclusively within the Ordovician Vinini unit underlying the volcanics. The best of these intercepts were encountered in drill hole IC-07-10:

346'-416' (105.5m-126.8m) – 70' (21.3m) @ 28.8g Ag Including: 376'-396' (114.6m-120.7m) – 20' (6.09m) @ 60.2g Ag


and 426'-436' (129.9m-132.9m) – 10' (3.04m) @ 262.0g Ag.

These numbers represent intervals of very limited core recovery by drilling; on average was only 15% (Figure 7.5).

Geologic controls on mineralization are high angle structures with possible low angle shears acting as subordinate localization and concentration of precious metals and mercury mineralization. Chalcedony and opal, plus or minus mercury mineralization is generally found along high angle structures in surface exposures; often in areas of extension between high angle structures displaying either sinistral or dextral horizontal shearing.

Stratigraphy also affects mineralization. Drilling has demonstrated that, at least locally, gold, silver and mercury are concentrated at the contact between the Ordovician Vinini

formation and the overlying volcanic sequence. Stratigraphy is also responsible for some lateral distribution of opal and chalcedonic mineralization within the volcanic pile. The overlying resistant rhyolite porphyry flow-dome unit has acted as a barrier to fluid flow and subsequently forced hydrothermal fluids to concentrate in and alter the underlying volcanics. Very little of this rhyolite displays cross-cutting hydrothermal alteration, aside for some basal alteration near high angle structures that which host chalcedony-opal deposits.

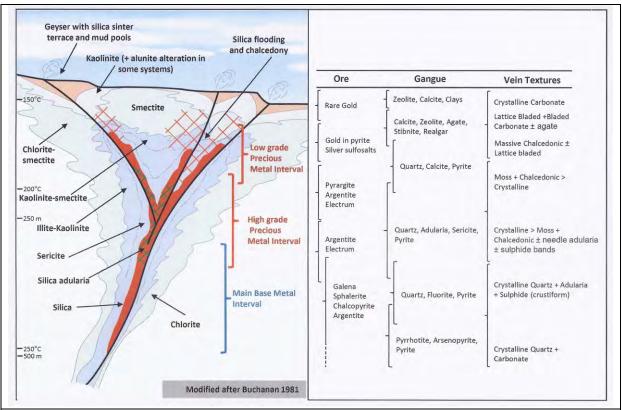
Figure 7.5 – Typical core recovery from interval of high silver values; on average 15%. Core drill hole IC-07-10: 426'-436' (129.9m - 132.9m) returned an assay of 262.0 ppm silver.

Wallace (2003) proposed that the silica-mercury deposits were contemporaneous with the deposition of the host volcanic sedimentary rocks. Multiple episodes of hydrothermal alteration and epithermal gold-silver mineralization may have occurred at Rimrock. Alteration and opal-chalcedony deposition within the overlying 14.92±0.10 Ma rhyolite porphyry flow domes (locally Columbus Rhyolite) and deposition within younger tuffaceous units, the Ttsu unit dated as 15.05±0.25 Ma and as young as 14.4 Ma, where similar styles of silica alteration and deposition are observed would preclude a contemporaneous interpretation. Based on filed observations and the dates compiled by Wallace (2003), our interpretation aligns more closely with similar hot springs activity observed in the active

geothermal fields, where rhyolitic flow domes are erupted after explosive caldera collapse and subsequent ejection of tuffaceous materials. Hydrothermal features form post flow dome activity which can then exist for hundreds of thousands of years afterward; likely hydrothermal activity in the Rimrock area lasted for a shorter period but post latest volcanic activity. If so, then the period of hydrothermal activity was most likely strongest sometime between 14.9 – 14.7 Ma, but older alteration-mineralization events may be hidden at depth. The Hollister gold deposit (5 km south) has been dated at 15.10±0.4 Ma (adularia); the Ken Snyder (Midas) gold vein system (17 km northwest) has a date of 15.14±0.08 Ma (adularia); and the Ivanhoe gold Vein (5 km south) was formed 15.19±0.05 Ma (adularia) (Wallace, 2003). Other areas of the Midas mineralized system have been dated as 15.4 to 15.2 Ma (Leavitt and others, 2004).

8.0 DEPOSIT TYPES

8.1 EPITHERMAL, LOW SULPHIDATION VEIN-STYLE DEPOSITS


The principal targets on the Rimrock property are low-sulfidation epithermal gold-silver deposits, characteristically found as quartz-adularia-calcite veins in volcanic rock (Figure 8.1). Veins are the distinctive "bonanza" type, carrying significant gold and silver. Gold grades in the percent range have been recorded for select samples from this class of deposit, including Nevada's Midas and Sleeper deposits. By the end of 2018, the Midas Mine had produced over 2,200,000 ounces of gold and over 9,000,000 ounces of silver (W. Thompson, oral presentation) was reported by Newmont (Goldstrand and Schmidt, 2000) to have an initial proven and probable mineral reserve 2,726,800 tons of mineable ore, grading 1.15 oz/t gold and 12.82 oz/t silver, for a total of 3,738,500 gold equivalent ounces. Between 1986 and 1996, the Midas-similar, Sleeper Mine, produced more than 1,658,000 ounces of gold and approximately 2.3 million ounces of silver (Wilson and others, 2015).

Usually, the gold-silver veins fill open spaces and show rhythmic bands of quartz and adularia, with occasional bands of dark sulfides or silver selenides with local electrum. Calcite may be present as individual bands or may be replaced by quartz. Bladed calcite, often replaced by quartz, is another common feature in these deposits and is thought to indicate boiling of the hydrothermal solution. Multiple episodes of brecciation and cementation with younger vein material are common. Breccias may show rotated blocks of banded vein material coated by new mineralization (Rhys and others, 2020).

Deposits form at low temperatures, generally less than 200°C, although some deeper systems may show temperatures approaching 300°C. Mineralization often shows abrupt tops and bottoms, while identical barren quartz-adularia-calcite veins continue. The top of the hydrothermal system may be marked by siliceous sinter, typically barren in gold and silver but possibly anomalous in mercury, selenium, thallium, arsenic or antimony (Morris, 2003).

These veins rarely contain significant quantities of base metals, usually less than 200 ppm in total. Silver-to-gold ratios for the Midas-type veins are somewhat higher than for the sediment hosted gold deposits, running in the 2:1 to 12:1 range. Associated trace elements for the Midas type include arsenic, antimony, selenium and mercury +/- molybdenum, thallium and tungsten; they vary from typical volcanic arc-hosted, low sulfidation systems which are usually not significantly enriched in selenium, tungsten or molybdenum, but may

contain elevated bismuth (Figure 8.2). While arsenic is usually present in the veins, it is found at much lower values than is seen in the sediment hosted deposits - a few ppm to a few hundred ppm at most. Selenium is a strong indicator for Midas-type systems, as silver selenides such as naumannite (Ag_2Se) are common in this type of vein but are rare on other types of deposits.

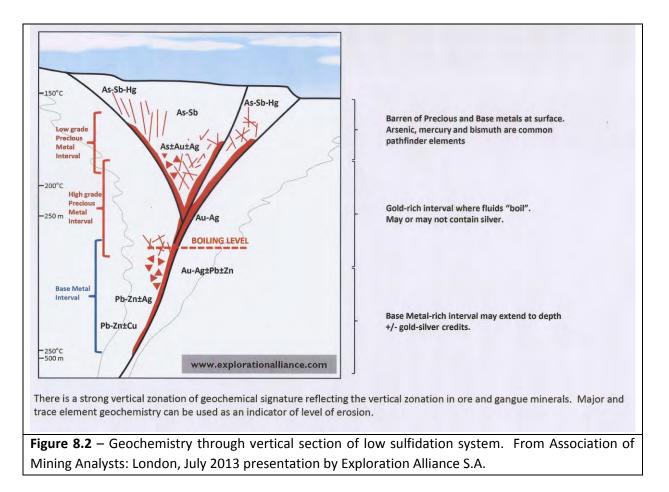


Figure 8.1 – Diagram of typical low-sulfidation near surface vein system including accompanying alteration sequence. The large blanket of smectitic alteration extant at Rimrock indicates the property exposures are still above the precious-metals interval. From Association of Mining Analysts: London, July 2013 presentation by Exploration Alliance S.A.

At Midas and Hollister, veins occupy the same structures that host mafic dikes, with the veins commonly found in the footwall of the dikes. This arrangement is probably due to the mafic dikes acting as buttresses, maintaining open space as the faults continued to move. This spatial relationship between veins and dikes provides a targeting opportunity if the dikes are seen in outcrop or in ground magnetic surveys (Morris, 2003).

The relationship between gold and mercury mineralization, sinter deposits and

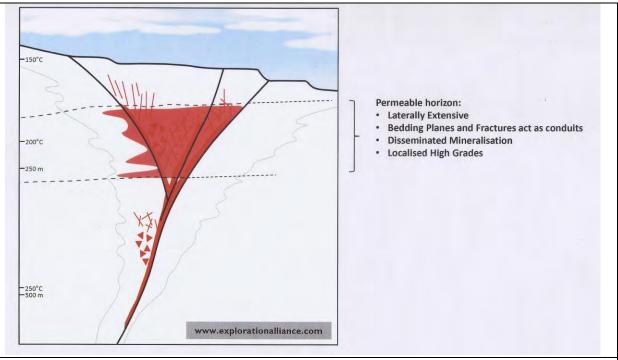
hydrothermal activity is illustrated by recent work in the Beowawe, Nevada area. Atna Resources Ltd operated the White Canyon-Beowawe project situated approximately 40 miles south of the Ivanhoe Creek property, four miles east of Mule Canyon Mine, and three miles southwest of the previously mined Red Devil mercury deposit (cinnabar in silicified Valmy Formation meta-sediments). The project area comprises one of the largest and hottest hot-spring systems in the Great Basin. Atna tested for bonanza-style gold mineralization at depth.

Sinter deposits, occurring along four miles of the northeast-trending Malpais fault, show areas of intense silicification indicative of multiple hydrothermal events, and contain anomalous gold, mercury, arsenic, antimony and bismuth. Atna reported that in 1984 an exploratory geothermal hole reportedly intersected 30 meters grading 10 g/t gold and 60 meters grading 6 g/t gold. Other shallow drill holes testing for a bulk-mineable target intersected sections of anomalous gold, including 502 ppb gold over 16.8 meters and 130

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

ppb gold over 106 meters.

Hecla Mining Company recently reported (Hecla, 2021) on the discovery of new sinterrelated or associated gold-silver mineralization, the Green Racer Sinter, in their Midas property holdings. Hecla reported a 1 meter drill intercept at a depth of 1273 feet (388 m) from the ground surface, associated with the "Green Racer Sinter", with intercepted gold grades of up to 10.68 ounces per ton (366.1 ppm) and 37.3 ounce per ton (1,278.8 ppm) silver (Hecla, 2021, Press Release dated 21 February 2021).

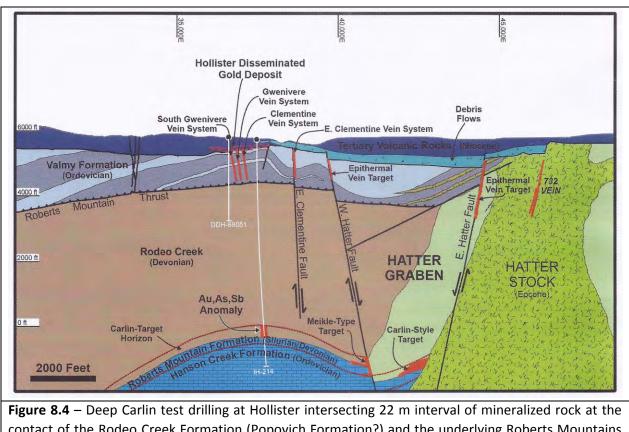

8.2 BULK TONNAGE AND SEDIMENTARY ROCK HOSTED DISSEMINATED GOLD AND SILVER DEPOSITS

The following is from John and others (2010): "Sedimentary rocks host epithermal goldsilver deposits in some low sulfidation epithermal districts; their variable physical and chemical properties, including permeability and chemical reactivity, are primary factors in the genesis of some of these deposits. Permeability contrasts and boundaries, including contacts between highly permeable sedimentary and volcaniclastic rocks and lowpermeability shales and mudstones (aquitards), strongly influence lateral and vertical fluid flow and ore body morphology (Sillitoe, 1993; Hedenquist and others, 2000). These contrasts can result in hydrothermal fluid flow through, and formation of replacement or disseminated deposits in permeable units at permeability boundaries. For example, in the Kelian deposit, Indonesia, impermeable carbonaceous matrix-rich diatreme breccias focused hydrothermal fluid flow into adjacent wall rocks where hydrothermal brecciation and epithermal mineralization were localized (Davies and others, 2008a). At the Kurankh, Russia, low-sulfidation deposit, much of the ore is hosted by highly permeable karst breccias that formed at an unconformity between Cambrian carbonate rocks and overlying Jurassic sandstones (Rodionov and others, 2014)."

Historic drilling on the Rimrock property has demonstrated disseminated silver mineralization is present in the Ordovician Vinini Formation underlying the Miocene volcanic sequence. Other metals are ponded at the sedimentary-volcanic rocks boundary including gold, silver, tungsten, mercury, selenium and mercury but not necessarily in economic concentrations. Conversely, barium is enriched above the contact. This style of mineralization, commonly in the form of auriferous sulfidic blankets, is present in the Hollister Mine and has been modelled elsewhere (Figure 8.3), as at Jake Creek, Nevada (Evolving Gold, 2010).

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

Carlin-type sedimentary rock hosted gold deposits consist of disseminated gold in decalcified and silicified silty limestone and limy siltstone. Sediment-hosted gold deposits characteristically contain microscopic gold disseminated throughout sedimentary host rocks, usually atomically admixed with arsenian pyrite. Commonly associated minerals are realgar, orpiment and stibnite forming after deposition of gold mineralization. These types of deposits are strongly temperature dependent, $230^{\circ} - 240^{\circ}$ C; depth of formation for Carlin deposits is in the range of 0.8 km to 3.2 km deep.


Figure 8.3 – Permeable horizon below the surficial sinter deposits in typical low sulfidation epithermal deposit. This zone can be developed by structural preparation or stratigraphic contacts defining favorable and non-favorable host lithologies. From Association of Mining Analysts: London, July 2013 presentation by Exploration Alliance S.A.

Carlin-type deposits are distributed along well-defined mineral trends that are now understood to represent large, deep crustal breaks extending into the upper mantle. They are found where mineralizing fluids reacted with favorable carbonate rocks or in situations where mineral fluids were trapped below impervious rocks above them. In Nevada, the carbonate rocks that host the deposits are often positioned below Paleozoic, deep-water sedimentary rocks that have been repeatedly thrust over them from the west during late mountain building events. This activity resulted in the development of many low-angle structures and open folds. Many of the Nevada deposits in the Carlin, Nevada region are situated on or close to the Roberts Mountains thrust fault, where it is intersected and usually offset by deep, high-angle normal feeder faults, allowing the movement of mineralized fluids upward into reactive host rocks, where the fluids often spread out laterally, and depositing local gold mineralization. Although the high angle structures are often found to host igneous dikes, to include lamprophyres, no igneous rocks around these deposits are recognized as obvious heat sources for their formation. Faults of multiple ages, including pre- or syn-Jurassic age, high-angle faults, were reactivated after having been intruded by Jurassic lamprophyre dikes such as at Cortez (C. Weakly, pers. comm. to R. Redfern, 2017). Some faults locally were again reactivated in Eocene time to host gold-silver mineralization at several localities in the Carlin and Battle Mountain-Eureka Trends.

Deep drilling at Ivanhoe-Hollister intersected at a depth of 2,100 m below the surface a 22 m interval of gold mineralization at the base of the Devonian Rodeo Creek Formation (Popovich formation?) immediately above the Siluro-Devonian Roberts Mountains Formation (Figure 8.4). Hecla Mining recently has been focusing its Hollister Mine gold-silver exploration efforts on the Hatter structural system, which was intruded by the Eocene Carlin-age Hatter Stock granitic body. Hecla recently has been driving an eastward trending exploration drift toward the Hatter stock, looking for and drilling Midas-age veins as well as a drilling platform for the search for Carlin-style gold deposits at depth.

Rimrock is situated directly atop the main Carlin Trend deep-tapping fault systems (Wright, 2005), and could have received Carlin-style alteration and mineralization at depth. The Rimrock horst fault structures could have been deep tap structural feeders for Carlin-age gold mineralization. The thickness of the Upper Plate Vinini rocks at Rimrock is not yet known, but may be shallower than at Hollister.

CAT Strategic Metals Corporation | Technical Report | Rimrock Project, Ivanhoe District, Elko Co., Nevada, USA

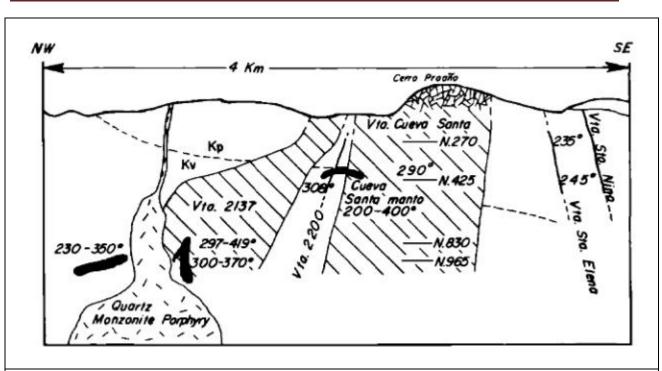
Figure 8.4 – Deep Carlin test drilling at Hollister intersecting 22 m interval of mineralized rock at the contact of the Rodeo Creek Formation (Popovich Formation?) and the underlying Roberts Mountains Formation; 5 km south of the Rimrock Property. From Cain, 2007.

8.3 DISTAL DISSEMINATED PORPHYRY AFFINITY

Historic drilling on the Rimrock Property has intersected disseminated silver mineralization at very shallow depths hosted within the sandstones of the Ordovician Vinini Formation, immediately beneath the volcanic pile. Analyses of the multi-element data derived from this program demonstrate that two separate silver systems are present:

A) samples with silver grades in excess of 10 ppm (to 262 ppm; average 65.1 ppm) are also elevated in Cu (average 193 ppm; high 684 ppm), Mo (average 42 ppm; high 176 ppm), Re (to 17 ppb – virtually all other Re assays using ALS-Chemex ME-MS61 method are below detection in this area), W (average 438 ppm; high 1,500 ppm), and Ni (average 28; high 50.9 ppm). As (varies from 3.7 ppm to 42 ppm) and Hg (generally less than 6 ppm but with a high in excess of 100 ppm) are relatively enriched compared to background but do not demonstrate a direct correlation as the other

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021


Page - 57 -

metals do. Pb shows no enrichment relative to silver. Gold is uniformly low averaging 12 ppb.

B) low grade silver (less than 10 ppm) is associated with Te (average 0.17 ppm; high 0.27 ppm), Se (average 8.0 ppm; high 21.0 ppm), Sb (average 9.0 ppm; high 14ppm), V (average 382; high 675 ppm), ±As (varies from 4.3 to 49.8 ppm, ±Mo (average 7.4 ppm), ±Cr (varies from 29 to 123 ppm) and ±Cu (average 65 ppm). Mercury is uniformly low. Silver averages 3.2 ppm, while gold averages 26 ppb but varies significantly from 9 to 55 ppb.

The affinity of silver with Cu, Mo, W, Ni and Re suggests a porphyry source for the higher grade silver mineralization that likely represents distal dissemination from such a porphyry. Although there are no know porphyry systems in the Rimrock project area, the 39 Ma Hatter granodiorite stock adjacent to the Hollister Deposit, located 6 km southeast of the center of the Rimrock Project, may have some connection with this mineralization similar to that observed at the Fresnillo Mine in Zacatecas, Mexico (Figure 8.5). The Hatter Stock is the same age as the Biotite Feldspar Porphyry associated with gold mineralization at the 50 million ounces plus Goldstrike Mine Complex located 21 km southeast of the Hollister Mine. Similar age rocks (Tuff of Nelson Creek (39.42±0.11 Ma), Tuff of Big Cottonwood Canyon (39.22±0.1 Ma) and Trachyandesite flows and tuffs (37.23±0.1 Ma)) have been identified just off the western boundary of the Rimrock Property and to the north in Willow Creek Canyon where these volcanic rocks immediately overly the sedimentary rocks of the Vinini Formation, and where both are exposed at the surface. In addition to the geochemical signature, tourmaline was noted in drill hole IC-07-02 at 56 meters and, in places, the sedimentary rocks of the Vinini Formation have been reported as recrystallized; perhaps by a porphyry body.

High grade (+10 ppm) silver mineralization has not been identified in the overlying Miocene age rocks at Rimrock. The association of enriched tungsten, molybdenum, nickel, rhenium, and copper relative to surrounding and similar lithologies is indicative of a porphyry signature and represents a distal disseminated system.

CAT Strategic Metals Corporation | Technical Report | Rimrock Project, Ivanhoe District, Elko Co., Nevada, USA

Figure 8.5 – Longitudinal northwest-southeast section through the Fresnillo Mine showing manto (dark areas), and other styles of silver mineralization. Elevations are in meters below surface; temperatures of quartz and calcite fluid inclusions are in °C. There is increasing silver content and decreasing base metal values with distance from the stock. Plateros Formation (Kp), Valdecañas Formation (Kv). The Quartz Monzonite Porphyry has been dated to 32.4-31.6 Ma. From Ruvalcaba-Ruiz and Thompson (1988).

Lower-grade silver mineralization (sub-10 ppm) hosted within the Ordovician sedimentary section has a distinct Se-Te-Sb-V \pm Cu-Mo-Cr-As signature, similar to other epithermal systems of the Pacific rim (Rytuba and Miller, 1990).

Thus, two distinct types and ages of gold-silver mineralization appear to be present in the Rimrock property.

8.4 BENTONITE DEPOSITS

Bentonite occurs on the property and has been previously prospected to include a bulk sample (previously discussed). The deposit at Rimrock is part of the alteration sequence developed in a low sulfidation epithermal environment and typically represents the upper level of the system (Figure 8.1). These types of deposits are rather common in Nevada where they are frequently developed in volcanic ash and tuff layers associated with silicic

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

volcanism. Of the four most common genetic types of bentonite deposits, the one at Rimrock is resultant from alteration by hydrothermal solutions related to magmatic activity (Hosterman and Patterson, 1992). There are no known characterization studies of the clay deposits at Rimrock.

The size, thickness and grade of the deposits at Rimrock need to be studied and analyzed to determine significance and value.

9.0 EXPLORATION

The Rimrock property is at an early stage in the exploration process. Claims were staked based on the exposed alteration, silica veinlets, the mineralized chalcedonic sinters exposed at the surface, and the potential for favorable structural controls that might host gold and silver mineralization.

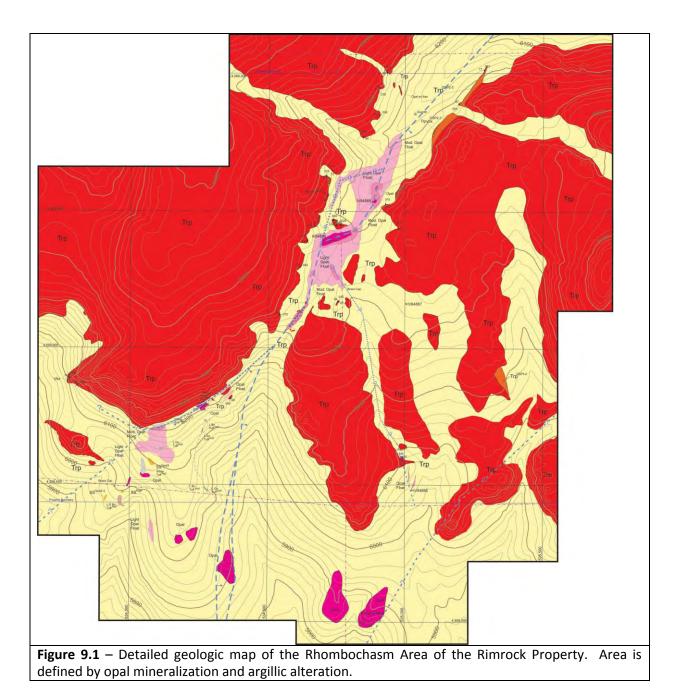
9.1 HISTORIC EXPLORATION

Exploration programs prior to 20210 have been presented in Section 6.0 History. In 1987, one hole was drilled into the property by Touchstone Resources. In 1994, Newmont Exploration Limited drilled 7 or 8 exploration drillholes on the property. In 2007, a core drilling program by Kent Exploration, detailed in Section 10.0 Drilling, was conducted on the Property. Some detailed geologic mapping and surface rock chip sampling took place in 2012.

9.1.1 Surface Mapping

Surface geologic mapping at a scale of 1:24,000 was conducted during 1996-1998 by Alan R. Wallace of the U.S. Geological Survey and published as Geological Map of the *Willow Creek Reservoir Quadrangle, Elko County, Nevada*: Map 135 Nevada Bureau of Mines and Geology (Wallace, 2003).

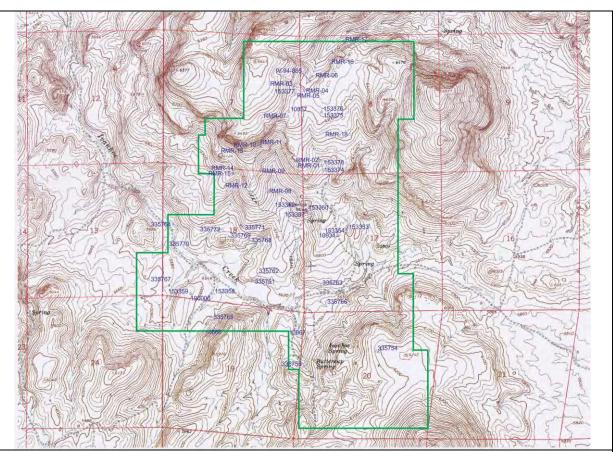
Localized detailed mapping at a scale of 1:5,000 focused on the "Rhombochasm" target area north of the Rimrock Mine, in parts of sections 7, 8, 17, and 18 T.38N., R.48E. (Figure 9.1), was completed in late 2012 by the author. Mapping included lithology, structure, and alteration. A property brief was generated for Zahav Resources (Ferdock, 2012).


9.2 GEOCHEMICAL EXPLORATION

Geochemical exploration data is available from about 2002 forward and are discussed below; no doubt surface rock samples were analyzed prior to that time by various interested parties, but those data are unavailable.

9.2.1 Rock Chip / Bedrock Sampling

50 surface samples with varying amounts of associated data are in the current Rimrock geochemical database. These samples were acquired between 2004 and 2012; Certificates of Analysis for all sample sets, save sample 190006, are presented in Appendix 2. Sampling was performed by the representatives of Reliance Geological Services, RMIC Gold, Senator Minerals Inc., and Zahav Resources. Sampling concentrated on silicified and other alteration zones (Figure 9.2).


G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

9.2.2 Soil Geochemical Sampling

There have been no soil samples taken from the property.

CAT Strategic Metals Corporation | Technical Report | Rimrock Project, Ivanhoe District, Elko Co., Nevada, USA

Figure 9.2 – Location of surface geochemical samples; property outline in green is approximate and does not illustrate the internal patented ground.

9.2.3 Sampling Area

Sampling area is widely dispersed through project area, concentrating upon silicified and hydrothermally altered materials.

9.2.4 Sampling Methods and Sample Quality

Sampling methodology has not been described in detail. But all reported sampling has been completed by professional explorationists.

9.2.4.1 Rock Sampling

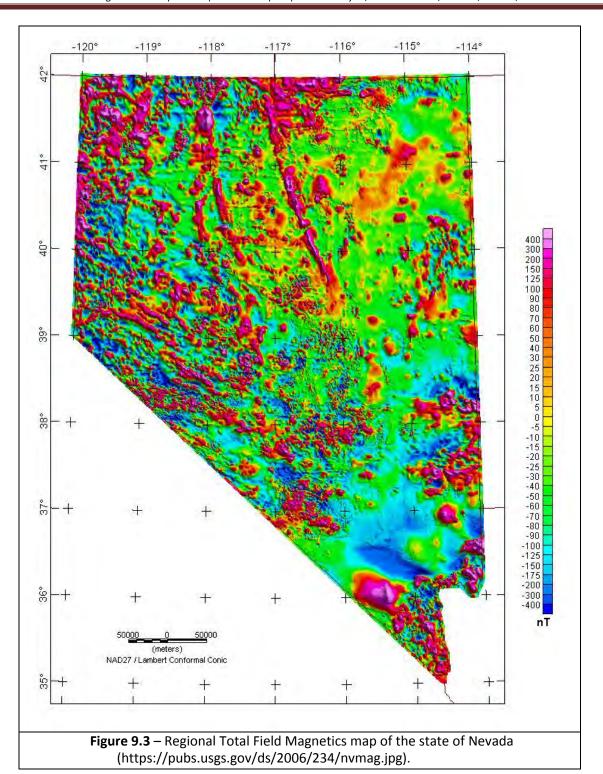
Surface and core drilling sampling has been carried out by exploration professionals. Methodology can be assumed to conform to all industry standards.

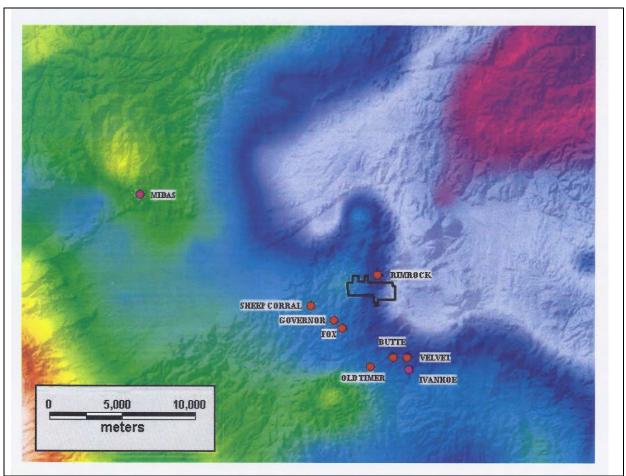
G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

In the case of those samples taken by the author in 2012, samples were selected from surface exposures, each being placed in a labeled and uniquely identified cloth sample bag. Data describing the sample color, alteration, mineralogy, lithology and associated structural features were recorded. Samples were then kept in the author's possession until relinquished to the laboratory where they were inventoried and a chain of custody form received.

9.2.4.2 Soil Sampling

No soil sampling has been completed.


9.3 GEOPHYSICAL SURVEYS


A number of geophysical surveys have been completed over portions of the Rimrock property. These include Gravity, Ground Magnetics and CSAMT surveys in 2004 and a second CSAMT survey in 2013. All of the data derived from these surveys were interpreted by J.L. Wright Geophysics of Spring Creek, Nevada, USA. The 2004 CSAMT survey was completed by Zonge Geosciences of Sparks, Nevada, USA.

9.3.1 Regional Geophysics

Regional geophysical maps of composited Magnetics and Isostatic Gravity are available on the USGS website (https://pubs.usgs.gov/ds/2006/234/nv_refs.htm); these data are coarse and display broad anomalies (Figure 9.3).

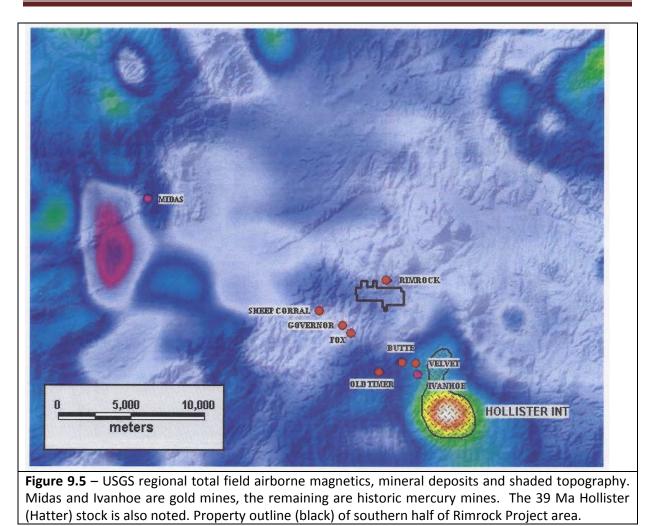
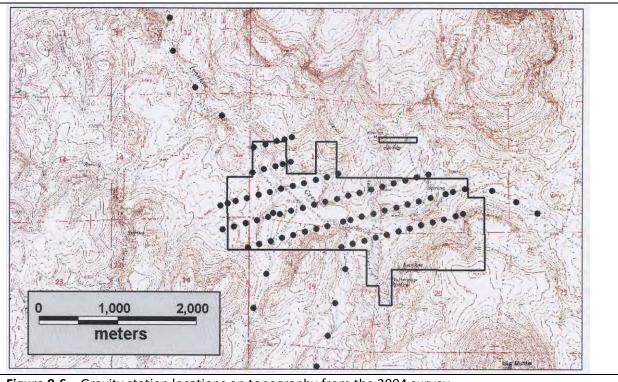

The following is taken largely from Wright (2004). Figure 9.4 presents USGS regional gravity data in the vicinity of the Rimrock property along with mercury prospects and gold mines in the vicinity of the property. Gold and mercury deposits fall along the flanks of gravity highs. Rimrock straddles a prominent north-south gravity gradient, with a localized high immediately west of the property. This north-south gravity gradient is also reflected in topography. These gravity gradients reflect the juxtaposition of volcanic units against Paleozoic basement. This juxtaposition often occurs along deep structures, providing conduits for hydrothermal flow and deposition of mineralization, thus the tendency for both mercury and gold deposits to cluster along gravity gradients. At Rimrock and in northern Nevada in general, north-south structures will tend to be of deep seated origin.

Figure 9.4 – USGS regional Bouger gravity, mineral deposits, and shaded topography. Mercury deposits are in red, gold deposits (Midas and Hollister-Ivanhoe) in magenta. Outline (black) represents only southern half of Rimrock property.

Figure 9.5 presents USGS regional airborne total field magnetic data in the vicinity of the property. Most prominent in the airborne magnetics is the Eocene (39 Ma) Hollister (Hatter) intrusion. A weak magnetic high is situated two kilometers west of the property, roughly coincident with gravity high noted previously. This coincidence is the result of Eocene volcanic units immediately above the Paleozoic basement being exposed in the area. The weak airborne magnetic high correlates with the rhyolitic to trachydacitic Nelson Creek Tuff (Tnc) as mapped by Wallace (2003). This weak magnetic high fades to the east beneath the property which is consistent with a deepening of the basement and overlying Tnc.

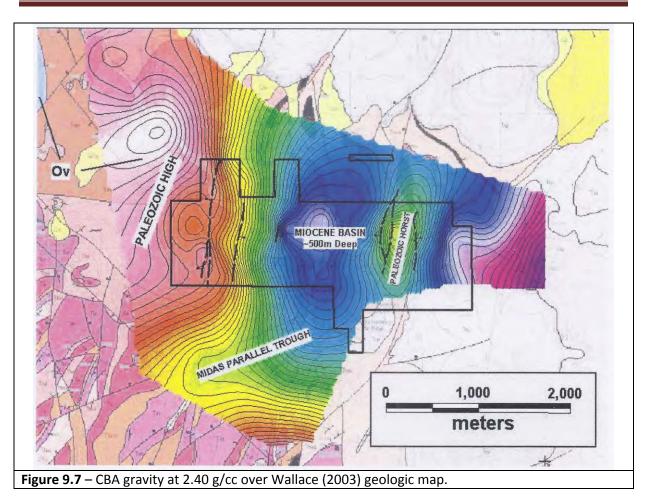

Regional analysis indicates a prominent north-south, deep seated, structural zone cuts the property with elevated basement to the west. Both the gravity and airborne magnetic data support this interpretation. Northeast oriented structures are well reflected in the topography, but these do not appear to be deep seated features. Gold and mercury deposits, as would be expected, cluster along the gravity gradients.

9.3.2 Gravity Survey

Magee Geophysics with offices in Reno, Nevada gathered 93 stations along six 075° bearing profiles across the property. In addition, a number of stations were acquired along three roads surrounding the property. Figure 9.6 presents the gravity station locations over topography. Station spacing along the profiles is 150 m and 500 m; on the roads profile spacing is 300 m. The primary objective of the survey is to map basement geometries beneath the volcanic cover. Rapid basement variations along linear trends map structures

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

Page - 67 -



offsetting the basement. Detailed discussion of the survey can be found in Wright (2004).

Figure 9.6 – Gravity station locations on topography from the 2004 survey.

Figure 9.7 presents the complete Bouguer gravity anomaly at a density of 2.40 g/cc overlying a windowed portion of the quadrangle geology by Wallace (2003). Outcropping Paleozoic Vinini Formation (Ov) is noted on the Figure 9.7, which coincides with elevated gravity values; a localized high is found over an exposed wedge of Ov on the survey's northwest extreme. Using gravity to map siliciclastic basement rocks beneath volcanic lithologies is a well-established practice in northern Nevada. Several primary structural elements are noted on Figure 9.6; most prominent is a basement high occupying the western quarter of the property and extending to the west. Immediately east of this feature is a Miocene volcanic filled basin on the order of 500 m or more in depth. A prominent north-south oriented, 300 m wide, horst block terminates the basin to the east. East of the horst block, volcanic cover again thickens. An east-northeast trending graben, parallel to the Midas Trough located between the property and Midas, is noted south of the property.

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

The north-south structural texture is developed along deep seated basement structures which likely acted as conduits for hydrothermal fluids.

9.3.3 Ground Magnetics Survey

Magee Geophysics with offices in Reno, Nevada gathered approximately 21.9 line-km of ground magnetic data on 150 m spaced lines oriented 075° for Kent Exploration. Station spacing was variable, but on the order of 3 meters. Figure 9.8 illustrates the ground magnetic survey lines and total magnetic intensity over topographic contours in the Ivanhoe Creek valley. Logistical data and additional details of this survey are presented by Wright (2004).

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

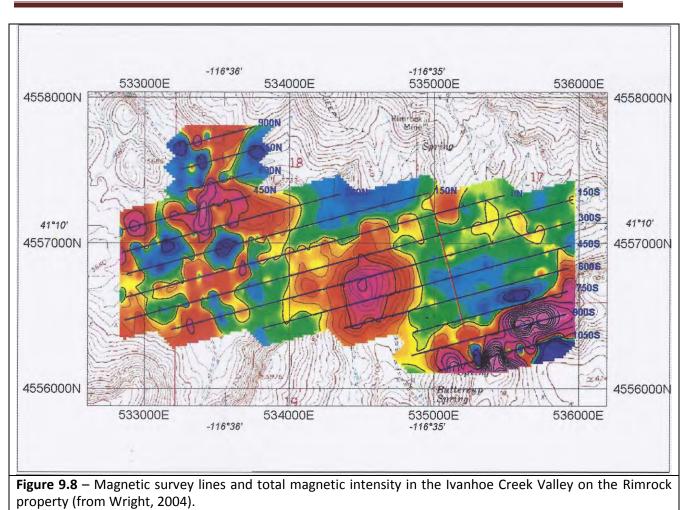
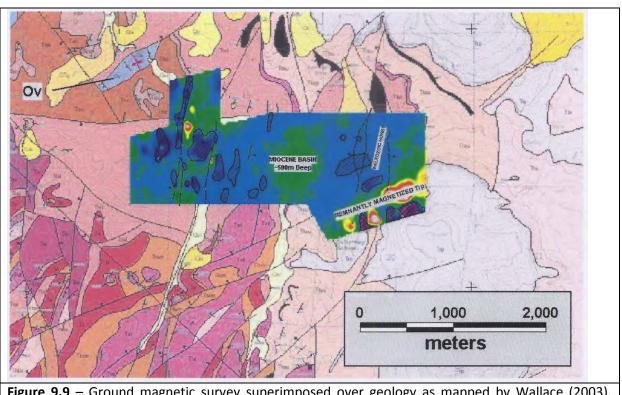
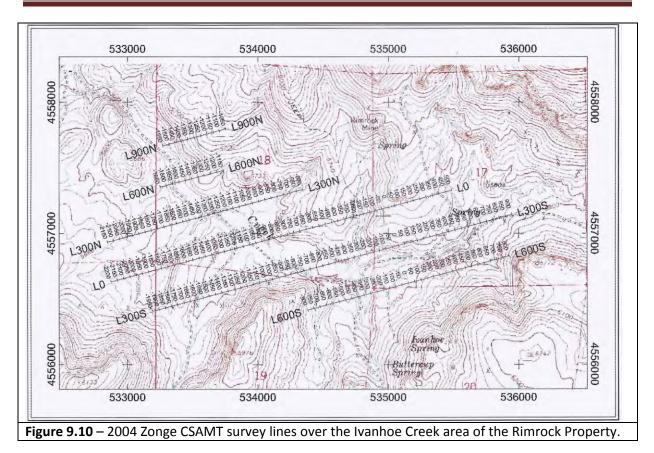



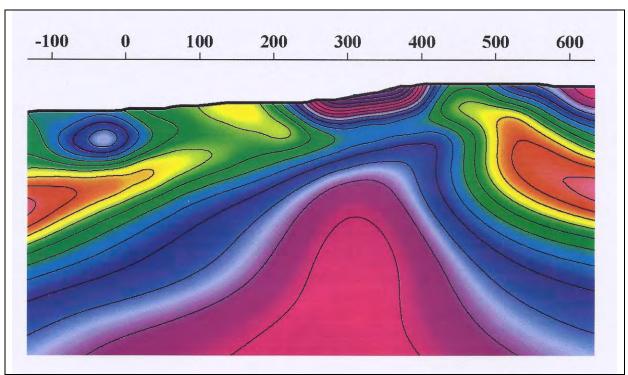
Figure 9.9 presents pole reduced total field data for the survey overlying the geology of Wallace (2003). Shown on the figure are structures and structural elements reviewed in conjunction with the gravity survey; these conform to known structural fabric of the area. Areas of reduced magnetic responses are interpreted as alteration.

9.3.4 Induced Polarization Survey

No induced polarization surveys have been completed to date over Rimrock.

Figure 9.9 – Ground magnetic survey superimposed over geology as mapped by Wallace (2003). Alteration is indicated by hatched areas. Miocene basin in the center of the survey is interpreted to be ~500 m deep. Figure from Wright (2004).


9.3.5 CSAMT Surveys


9.3.5.1 2004 CSAMT Survey

The first CSAMT survey was completed in September 2004 for Kent Exploration and Reliance Geological Services by Zonge Geosciences Inc. and interpreted by Wright Geophysics. A total of six lines were measured along lines oriented 075°-255° (Figure 9.10). These are the same lines used to conduct the ground magnetics and induced polarization surveys. A detailed report dated 14 September, 2004 outlines the details of the survey and its results (Zonge, 2004). The survey was conducted using an electric dipole spacing of 50 m on 150 m spaced lines; vertical scale on the stacked CSAMT sections is 400 m. CSAMT data on line 600S shows a tabular, near surface response characteristic of siliceous sinter (Figure 9.11). Overall, CSAMT data tend to show excellent correlation between gravity and ground magnetics data (Figure 9.12).

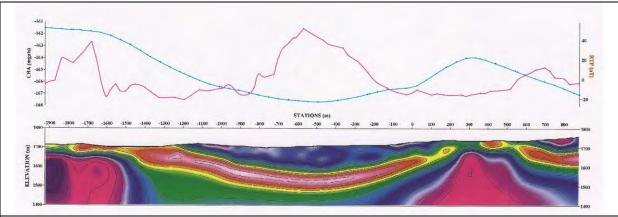

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

Figure 9.11 – CSAMT Section Line 600S from the 2004 survey illustrating classic near surface siliceous sinter anomaly directly over the apex of the Paleozoic horst; estimated depth to the Ov is approximately 100 m from the surface.

Figure 9.12 – Geophysical survey Line 300S with Gravity (blue), Magnetics (red) and CSAMT (bottom) profiles. Note the good correlation between the data; the magnetic high over the central graben is due to accumulation of magnetite in the basin fill. The resistivity highs are areas of elevated Vinini basement rocks (Ov).

9.3.5.2 2013 CSAMT Survey

A second CSAMT survey was completed in 2013 for Mexivada Mining Corporation, north of the 2004 survey over an area called the "Dilation Zone" by Zonge Geosciences, Inc. (Figure 9.13). This survey, summarized here, was discussed by Wright (2013); much of the summary is directly attributable to that reference.

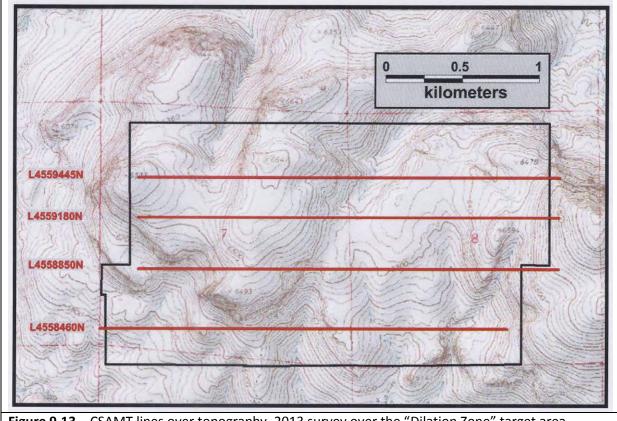
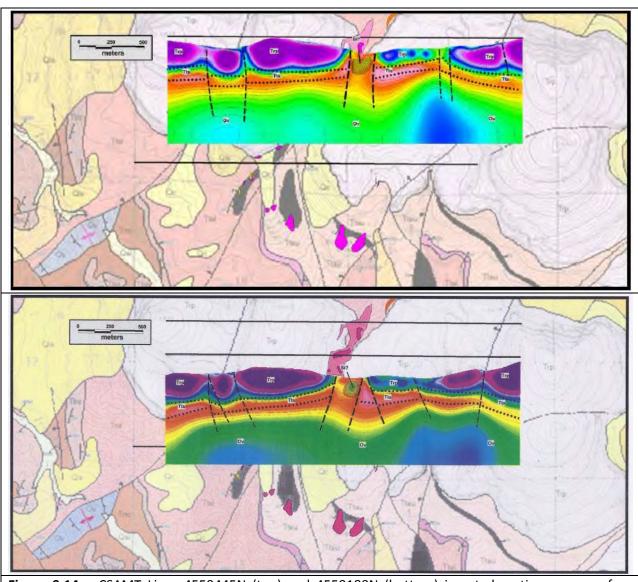


Figure 9.13 – CSAMT lines over topography, 2013 survey over the "Dilation Zone" target area.

Data from this survey are characterized by a three layer resistivity sequence offset by numerous high angle structures. A high sensitivity surface layer is produced by a rhyolite porphyry (Trp of Wallace, 2003) forming flow domes. Structures cutting the Trp tend to reduce the resistivity along the structure due to breakage of the rock mass. Domes or hills of the Trp tend to exhibit relatively flat bottoms with no feeders to the domes evident in the CSAMT results. Beneath the Trp is a conductive layer of variable thickness interpreted to be produced by tuffs (Tts). Wallace (2003) draws a distinction between upper and lower tuffs; however CSAMT interpretation lumps the two together. Finally, beneath these two layers is a half space of moderate resistivity interpreted as being produced by siliciclastic rocks of the Vinini Formation (Ov).

The interpreted structures all appear to be high angle with variable dips. Offsets are also variable with a number of horsts and grabens evident (Figure 9.14). Figure 9.15 shows the structures connected from section to section in plan view. Good agreement with the mapped geology is obvious. The structures form a series of north-northeast trending structures; most obvious is a large swarm of structures cutting the center of the survey, exhibiting direct correlation with mapped opal / chalcedonic, quartz-sericite-pyrite (QSP or phyllic) and argillic alteration. This structure appears to horsetail or fans out along the south edge of the survey and merge to the north. The zone is approximately 150 m wide on the northern lines, with extensive areas of alteration noted in the geology. A horst block bounded by the zone is suggested on the interpreted sections; however, elevated resistivities associated with the Trp makes definitive identification of silica alteration difficult (Wright, 2013).

The CSAMT survey reveals a three layer resistivity geometry offset by numerous high angle structures, which can be grouped into several north-northeast trending structural zones. The three resistivity layers correlate with units defined by Wallace (2003) as the Trp, Tts, and Ov from surface to depth. Interpreted structures correlate directly with mapped alteration of several varieties. However, definitive mapping of alteration types is made difficult due to rock type responses. That is, Trp produces high resistivity anomalies similar to that expected from silicification, and the Tts produces anomalies similar to argillic alteration. Regardless, the structural zones clearly controlled hydrothermal fluid movement responsible for the mapped alteration. Analysis of the regional gravity suggests the north-northeast structures are part of a significant structural zone which offsets the Paleozoic basement.


9.4 SIGNIFICANT RESULTS AND INTERPRETATION

The results of the various geophysical surveys have been summarized by Wright (2004) and are presented here largely verbatim.

Regional and property scale surveys yield a consistent picture of north-south oriented structures modulating the basement beneath Eocene-Miocene volcanic cover. Several structures and areas of possible alteration are defined. Figure 9.16 presents stacked profiles of inverted CSAMT sections overlying gravity and geology.


Clearly evident on Figure 9.16 is direct correlation of resistivity and gravity highs, which are interpreted as basement. The Miocene basin is typified by a two layer resistivity section of high over low resistivities. Below this is a return to low resistivities which, in turn, overlies higher resistivities. The layering appears very uniform. CSAMT shows a draped sequence of volcanics in-filling a basin with very little faulting internal to the basin. Gravity indicates a total depth of volcanic units within the basin exceeding 500 m which agrees with CSAMT data.

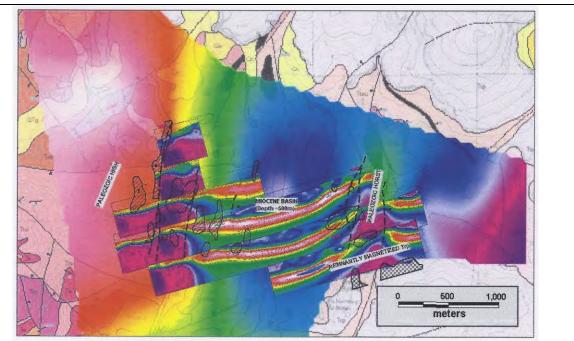

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

Figure 9.14 – CSAMT Lines 4559445N (top) and 4559180N (bottom) inverted sections over surface geology of the Rhombochasm Zone.

Figure 9.16 – Stacked CSAMT section with gravity and geology and interpretive overlay (Wright, 2004). The western structural – alteration zone trends directly north-northeast into the Dilation Zone that was the focus of the 2013 CSAMT survey. The eastern "Paleozoic horst" zone trends directly north-northeast into the recently discovered hydrothermally phyllically altered Trp breccia zone.

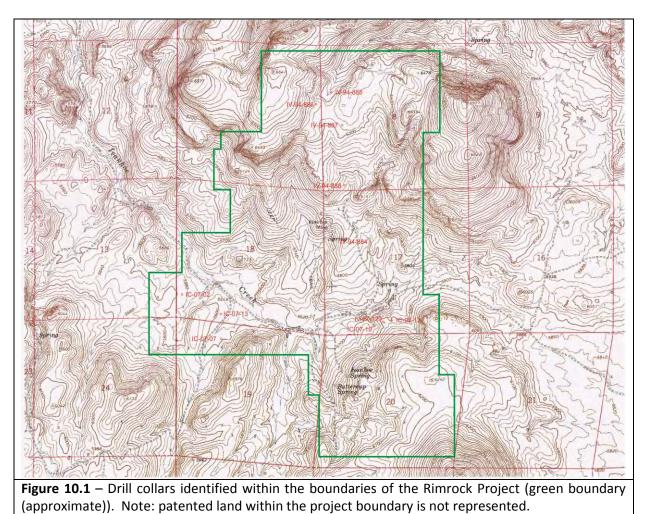
10.0 DRILLING

Drilling has been carried out on the property by a number of companies, the total number of companies involved and holes drilled is presently unknown; known data are presented on Table 10.1. There are three companies known to have drilled holes on Rimrock: Touchstone (1 hole in 1987), Newmont (7 holes in 1994) and for Kent Exploration by Senator Minerals (5 holes in 2007). The data available from the Touchstone and Newmont programs are incomplete; the data for the Kent Exploration-Senator Minerals program are complete and presented here in detail.

Table 10.1 – Known drilling completed within the current boundaries of the Rimrock project. Touchstone and Newmont drilled reverse circulation holes; Kent-Senator drilled core.

Company	Hole ID	Year	East UTM NAD 27	North UTM NAD 27	Depth (m)	Angle	Bearing
Touchstone	IV-87-129	1987	535,545	4,556,741	unk	-90	
Newmont	IV-94-884	1994	535,414	4,557,650	40 ?	-90	
Newmont	IV-94-885	1994	534,961	4,559,335	unk	-90	
Newmont	IV-94-886	1994	534,794	4,559,201	30 ?	-90	
Newmont	IV-94-887	1994	535,085	4,558,965	122 ?	-90	
Newmont	IV-94-888	1994	535,109	4,558,284	unk	-90	
Newmont	IV-94-889	1994	unk	unk	unk	-90	
Newmont	IV-94-890	1994	unk	unk	unk	-90	
Senator Minerals	IC-07-2	2007	533,282	4,557,051	70.10	-60	075
Senator Minerals	IC-07-7	2007	533,724	4,556,547	224.33	-45	255
Senator Minerals	IC-07-10	2007	535,440	4,556,700	135.94	-65	010
Senator Minerals	IC-07-12	2007	535,640	4,556,755	203.00	-60	255
Senator Minerals	IC-07-13	2007	533,724	4,556,840	157.89	-60	255

10.1 TYPE, EXTENT AND RESULTS OF DRILLING


Drilling by both Touchstone and Newmont were completed using reverse circulation methods; Senator Minerals (Senator) drilled all five of its exploration holes with core. All collars have been identified in the field by Richard Redfern and / or the author, save two of Newmont's sites: IV-94-889 and IV-94-890. Assay results are only available from the core drilling program of Senator. Collar locations for all drilling are represented on Figure 10.1.

10.1.2 Historic Drilling (1980's and 1990's)

10.1.2.1 Touchstone Resources 1987

Touchstone Resources drilled a single reverse circulation hole on the current Rimrock

Property in 1987. Aside for the collar location and a presumed vertical angle which is how most holes were drilled during that period of exploration for near surface disseminated gold deposits, little else is known about Touchstone's drilling activities at Rimrock.

10.1.2.2 Newmont Exploration 1994

Newmont Exploration Ltd. (Newmont) drilled seven reverse circulation holes on Rimrock in 1994, managed by Steve McMillin. The collars for five of these holes have been identified and surveyed by Richard Redfern. Depth and angles of drilling are unknown but based on surface evidence it is presumed all of these holes were vertical and shallow; assumptions are presented in Table 10.1. Samples of drill cuttings recovered from the collars of four of these holes were acquired and assayed by Richard Redfern. Abbreviated results of these samples are presented in Table 10.2.

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

Collar	Sample	Au (ppb)	Ag (ppm)	Hg (ppm)	As (ppm)	W (ppm)	Mo (ppm)	Re (ppb)	Sb (ppm)	V (ppm)
IV-94-885	IV-94- 885	<1	0.06	>100	1.0	1.4	4.15	<2	0.60	8
IV-94-886	153377	3	0.17	36.80	8.7	4.2	5.48	3	1.58	61
IV-94-887	153375	4	0.06	26.40	9.5	3.7	3.22	4	1.47	35
IV-94-888	153374	4	0.30	9.37	9.8	10.0	2.52	3	6.32	67

Table 10.2 – Results from sampling of reverse circulation cuttings recovered at the collars of know drill holes at Rimrock; see Table 10.1 for collar coordinates.

10.1.2 Historic Drilling 2000 to Present

Only one drilling project has been completed within the project boundaries since 2000; this being the five-hole program of Senator Minerals, which leased the property to Kent Exploration Inc. in 2007. These holes were all drilled with core and totaled 791.26 meters (2,569 feet) of drilling; recovery was significantly less. These holes were all logged and sampled by Ed Harrington of Reliance Geological services, who wrote the four previous 43-101 style technical reports for the property (2004, 2005, 2006, 2009).

10.1.3 Drilling Procedures

Drilling procedures for all programs save the 2007 Senator Minerals / Kent Exploration program are unknown. However, all of the older programs were completed by professional explorationists with well-financed exploration programs. The author worked for Newmont Exploration at about the time of the drilling by them at Rimrock and is confident they completed these holes in an expert manner in accordance to industry norms established at the time. The author is also confident the Touchstone hole was drilled in a like manner.

10.1.3.1 Historic Reverse Circulation Drilling

Little is known of the historic reverse circulation drilling save the collars identified in the field and reported in Table 10.1 and the geochemical results from samples taken of the remnant cuttings at a few of those holes.

10.1.3.2 Historic Core Drilling

Core drilling in 2007 was completed by Frontier Drilling of Tucson, Arizona from 16 May to 17 August, 2007 using BTW-size equipment producing 3.35 cm (1.32 inch) diameter core. Only two of the five holes collared reached intended target depths of 198.2 meters (650 feet). The drilling operation was suspended on 18 August, 2007 due to repeated breakdowns in the drilling equipment and poor sample recovery.

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

Drill logs and assay results can be found in the Harrington (2009) technical report. The 2007 drilling information is reproduced here in Table 10.3.

Hole	Locat	ion UTM	Core	RQD	Azimuth	Dip	Depth		When Drilled	
	East	North	Recovery %	%			feet	meters	Start	Finish
IC07-02	533282	4557051	88.7	66.3	0750	-600	230	70.1	16-May-07	18-May-07
IC07-07	533724	4556547	81.3	45.5	2550	-450	736	224.33	4-Jun-07	19-Jun-07
IC07-10	535444	4556641	61.9	36.4	0100	-650	446	135.94	31-Jul-07	17-Aug-07
IC07-12	535647	4556754	78.1	46.5	2550	-600	666	203	19-Jul-07	29-Jul-07
IC07-13	533647	4556837	72.2	47.8	2550	-600	518	157.89	20-May-07	4-Jun-07
		1	10.02		1	1.004	2,596	791.3	1212 121	14

Table 10.3 – 2007 Drilling Information (from Harrington, 2009).

Discussions of significant results for each hole are here also reproduced from Harrington (2009).

IC-07-02 (Figure 10.2) was the first hole drilled and is the most westerly drill location on the Rimrock Property. The hole was abandoned at 70.1 meters (230 feet) because of excessive clay build-up on the drilling rods and unstable casing. The lithology consists of ash-fall crystal tuffs. Significant results are presented in Table 10.4.

Table 10.4 – IC-07-02 Significant Results (from Harrington, 2009).

Sample	Int	ersection	(feet)	Inter	section (n	neters)	Assay ppm					
	From	То	Interval	From	То	Interval	Gold	Silver	Arsenic	Selenium		
79035	197.0	200.0	3.0	60.05	60.96	0.91	0.018	0.9	36.2	3		
78907	200.0	202.0	2.0	60.96	61.57	0.61	0.054	0.5	36.5	4		
79036	202.0	205.5	3.5	61.57	62.64	1.07	0.025	0.2	31.1	4		
79037	205.5	209.0	3.5	62.64	63.70	1.07	0.042	0.5	44.8	4		
78908	209.0	211.0	2.0	63.70	64.31	0.61	0.024	0.3	32.9	3		
79038	211.0	214.0	3.0	64.31	65.23	0.91	0.074	0.8	34.1	6		
79039	214.0	217.0	3.0	65.23	66.14	0.91	0.187	1.3	165.5	10		
78909	217.0	219.0	2.0	66.14	66.75	0.61	0.083	0.8	72.2	5		
79041	219.0	222.0	3.0	66.75	67.67	0.91	0.022	1.6	34.5	3		
79042	222.0	225.0	3.0	67.67	68.58	0.91	0.008	0.1	8.0	2		
78910	225.0	230.0	5.0	68.58	70.10	1.52	0.035	0.3	40.9	3		

Note: 1 part per million (ppm) = 1 gram per tonne (g/t)

Sample 79039 (IC-07-02 214.0 - 217.0 feet (65.23 - 66.14 m)) (Figures 10.3 and 10.4) returned the highest gold value of the drilling program (and the highest gold value from any

sample taken from the property to date (GCF)). It shows anomalous silver and selenium values along with the highest arsenic and antimony values (165.5 ppm and 23.50 ppm respectively) of any sample taken from the property to date. This sample was taken from an interval logged as "Welded(?) Tuff"; the description of this interval includes "feldspars displaying boxwork leaching" and "euhedral pyrite content increases with depth from trace to 2%" (from 47.15 m to 70.1 m (154.4 – 230 feet)). Although photographs of the core are available, without seeing the actual core, it is difficult to determine if the lithology encountered is indeed welded or is it silicified; the presence of leached feldspars indicate the latter may be true.

The interval from 60.05 m through 67.67 m is elevated with respect to gold, tungsten, arsenic and antimony. This interval is, in part, also elevated with respect to other samples taken from volcanic rocks on the property, in molybdenum, rhenium, barium, sulfur and selenium. There have been no petrographic or X-ray diffraction (XRD) investigations regarding the minerals hosting these metals, but it is most likely the precious metals are hosted within a selenide, such as Fischesserite {Ag₃AuSe₂} or Naumannite {Ag₂Se}, while antimony, arsenic and sulfur are likely present as a separate species, such as Getchellite {AsSbS₃}, Wakabayashilite {[(As,Sb)₆S₉][As₄S₅]}, Gerstleyite {Na₂(Sb,As)₈S₁₃·2H₂O} or Ambrinoite {[K,(NH₄)]₂(As,Sb)₆(Sb,As)₂S₁₃·H₂O}. A significant portion of this interval is interpreted to be clay altered and gouged from 59.4 m to 63.1 m (195-207 feet).

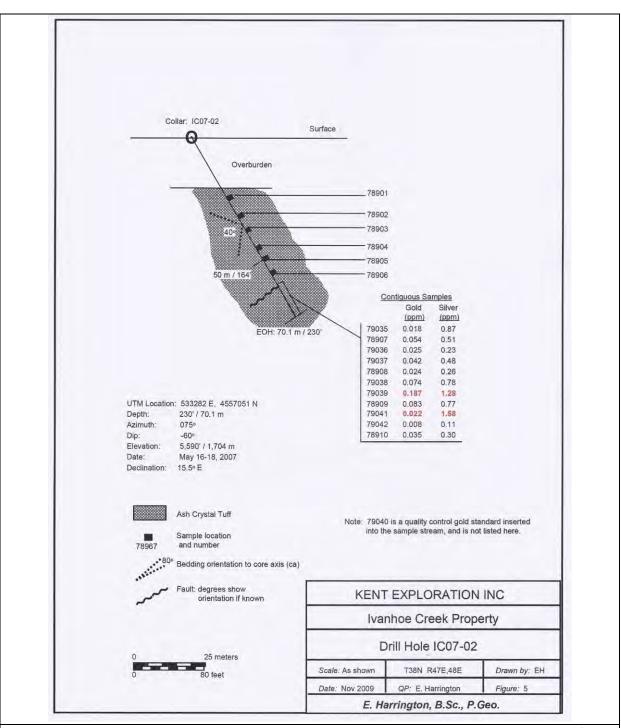
The REDOX boundary was reached at about 50.3 m (165 feet) down hole; or 25.15 m (82.5 feet) below the surface. Pyrite was first noted at the 54 m (177 ft) interval.

IC-07-07 (Figure 10.5) is located approximately 650 meters (2,132 feet) southeast of the collar of IC-07-02; it was drilled to a depth of 224.33 meters (736 feet). The lithology consists of lithic and ash tuffs overlying Paleozoic quartzites and mudstones. Table 10.5 reports the significant results which are primarily elevated silver with gold anomalies and relatively elevated selenium.

			Ivanhoe Creek	4.00011704	Page: 1 of 1		
11	Diamond Drill Log			th: 230' / 70.1m	Date: May 16-18/2007 Logged by: Ed Harrington		
			: 533282 E / 455				
-	Outlin Class man	Az: 075	Dip: -60° Elev:	5,603' / 1,708 m	Declination: 15.5° E		
Meters	Grain Size mm. 0.06 2 3: 0.5 8 0.5 8	2 Sample	Structure	Alteration	Lithology		
21.3	START COL	78901		- Strong clay alteration	21.3-22.4 - yellow cg water-lain tuff rounded to subrounded qtz + lithic frags <=1.5mm. Green spherulites <=1mm concentric rather than radial		
30	3 9 9 9 1 0 0	86-88 ft 26.2-26.8 m 78902 106-108 ft 32.2-32.9 m	- At 32.6m pos. bedding @ 40º/ca	- Strong clay alteration core easily cut with knife.	interiors. Trace biotite. Brick-red to dk brown water-laid(?) tuff. Spherulites <=1mm in granular hem. groundmass of qtz shards 0.1mm and 5% white irregular feldspar <0.5mm to approx 29.3m. Below 29.3m, feldspar appears dull green and subrounded. Weak carbonate on fractures. Trace white mica.		
40		78903 126-128 ft (bitotite books possible fine grained chlorite - green color disseminated carb 	35-38.6m core is mottled pale green and brown. Spherulites become less common. Biotite books <=1mm and lithic fragments <=1.5mm. Core appears more massive and less granular. Weak disseminated carbonate. Green coloration - very fine-grained chlorite? 142.5-146.5 ft (43.4-44.7 m) local auto(?) breccia.		
50		78905	(48.5-49.1m)		Dark brown clay-altered tuff. Lithic fragments angular to subrounded <=8cm. Scattered spherulites. Mod disseminsted carbonate. Upper contact sharp with interbeds of course and fine material @ 35°/ca.		
	D IA M M	79035 197	180-182'/54.9-55.5m 7-200'/60.05-60.96m 200-202' / 60.96-61.57	 local euhedral pyrite trace tourmaline needles 	154.5-230' / 47.15-70.1m Welded(?) tuff. Sharp upper contact at 35°/ca. 5% euhedral biotite, 1mm. Weak disseminated carbonate decreasing with depth. Angular white feldspar showing boxwork leaching.		
60	HAXENAL Janya HX HA Johnson	79036 79037 78908 79038 79038	202-205.5' / 61.57-62. 205.5-209' / 62.64-63. 209-211' / 63.7-64.31r 211-214' / 64.31-65.23 214-217' / 65.23-66.14 Standard	64m 7m n 3m	Euhedral pyrite content increases with depth from trace to 2%		
70		78909 79041 79042	217-219' / 66.14-66.7! 219-222' / 66.75-67.67 222-225' / 67.67-68.5!	7m 3m	Note: EOH 230'/70.1m - excessive clay binding rods. Loss of water return @ 195'/59.4m		
70		78910	225-230' / 68.58-70.1r	n	EOH: 70.1 m / 230'		

Figure 10.3 – Image of IC-07-02 core from interval 65.4-68.4 m (214.6-224.6 feet); sample 79039 was extracted from 65.23-66.14 m (214.0-217.0 feet). This interval contains 0.187 ppm gold, 1.28 ppm silver, 165.5 ppm arsenic, 23.5 ppm antimony, 10 ppm selenium, 2.44% sulfur, 4.7 ppm tungsten, 5.45 ppm molybdenum and 4 ppb rhenium. The image for Box 15 containing the upper part of the sample interval is unavailable.

Sample 78959 returned the highest selenium value of the drilling program, 21 ppm Se. Significant assay results occur in quartzite that has been well broken and gouged. This target zone had extremely poor recovery. Broken and gouged core extends from 126.49-138.68 meters (415-455 feet) and from 141.73-144.78 meters (465-475 feet), suggesting a fault zone at least 18 meters (60 feet) wide. Additionally, an area of weak quartz healed breccia occurs from 138.59-141.73 meters (454.7-465.0 feet).


Elevated precious metals are concentrated at the contact between the Paleozoic sedimentary rocks and the overlying volcanic sequence. Silver varies from 2.00 to 5.27 ppm steadily increasing from lowest to highest towards the lithologic contact; gold varies from 8

to 55 ppb in the same interval with no apparent pattern to mineralization. These metals are associated with enriched vanadium, selenium and tellurium as well as weakly elevated antimony, chromium, copper, molybdenum and arsenic values. This metals association is indicative of a classic low sulfidation epithermal precious metals system (Figure 10.6).

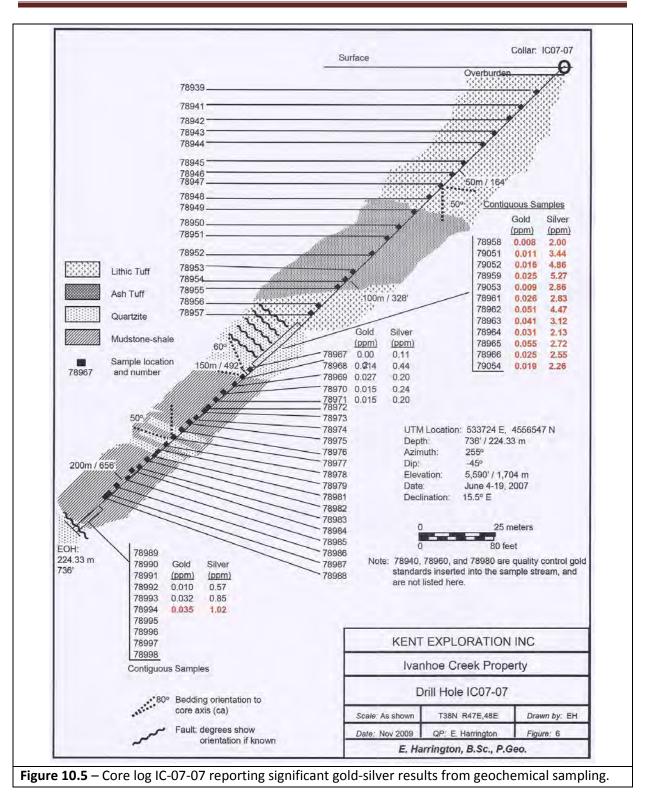
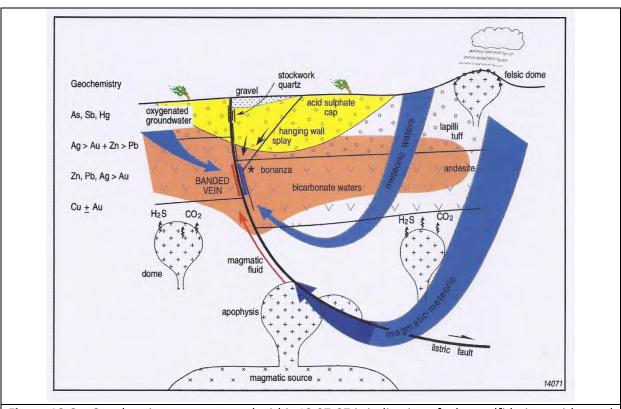
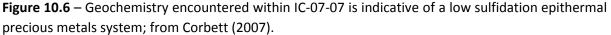

Sample	Int	tersection	(feet)	Inter	section (n	neters)	Assay ppm				
	From	То	Interval	From	То	Interval	Gold	Silver	Mercury	Selenium	
78958	408.0	411.0	3.0	124.36	125.27	0.91	0.008	2.0	1.6	7	
79051	411.0	415.0	4.0	125.27	126.49	1.22	0.011	3.4	0.5	11	
Note: <59	% core rec	overy from	415-425' (12	26.49-129.5	4m)				A. 8. 1		
79052	425.0	433.5	8.5	129.54	132.13	2.59	0.016	4.9	0.2	11	
78959	433.5	436.5	3.0	132.13	133.05	0.91	0.025	5.3	0.4	21	
Note: app	proximately	20% core	e recover fron	n 435-445' (132.59-13	5.64m)					
79053	436.5	455.0	18.5	133.05	138.68	5.64	0.009	2.9	0.4	4	
78961	455.0	458.0	3.0	138.68	139.60	0.91	0.026	2.8	1.0	5	
78962	458.0	461.0	3.0	139.60	140.51	0.91	0.051	4.5	1.0	7	
78963	461.0	464.0	3.0	140.51	141.43	0.91	0.041	3.1	0.5	5	
78964	464.0	467.0	3.0	141.43	142.34	0.91	0.031	2.1	0.6	3	
78965	467.0	470.0	3.0	142.34	143.26	0.91	0.055	2.7	2.7	5	
78966	470.0	473.0	3.0	143.26	144.17	0.91	0.025	2.6	1.9	8	
79054	473.0	476.0	3.0	144.17	145.08	0.91	0.019	2.3	0.6	10	

Table 10.5 – Significant results of	geochemical samplin	ng from core hole IC_07_07
I able 10.5 – Significant results of	geochennical sampli	ing it offit core note ic-07-07.

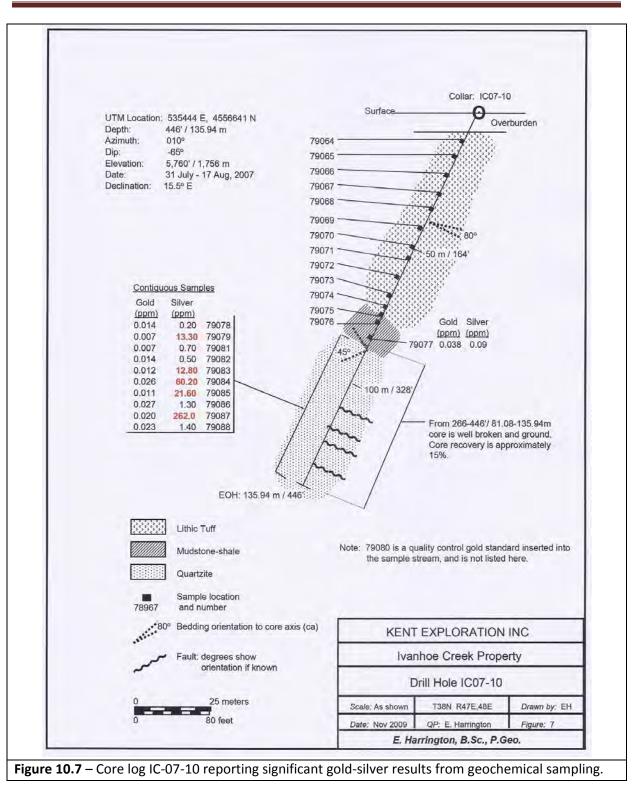
Note: 1 part per million (ppm) = 1 gram per tonne (g/t)




Figure 10.4 – Core hole IC07-07 cross section illustrating geology, sample locations and significant gold and silver results.

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

Page - 87 -



IC-07-10 (Figure 10.7) is located approximately 150 meters (492 feet) west of IC-07-12, and was targeted to undercut outcropping highly silicified tuffs. IC-07-10 had a target depth of 182.9 meters (600 feet), but was terminated at 135.94 meters (446 feet) due to poor core recovery and equipment failure. Lithology consists of lithic and crystal tuffs overlying Paleozoic quartzite. Significant results are reported in Table 10.6. Samples 79079, 79083, 79084, 79085 and 79087 returned anomalous silver and tungsten values; sample 79087 returned the highest silver value thus far found on the Rimrock Property of 262 ppm (8.42 troy ounces per metric tonne) and the second highest tungsten value of 1,130 ppm (0.113%) (Figure 10.8). Intervals of silver values in excess of 10 ppm are also enriched with respect to tungsten, ranging from 116 to 1,130 ppm, generally reflecting a direct correlation with silver. Additionally molybdenum is enriched (to 38.3 ppm). Phosphorous is enriched (average 2,603 ppm) in the quartzite intervals but not within the mudstone sample. Arsenic (42 ppm), nickel (to 50.9 ppm) and rhenium (to 8 ppb) are moderately elevated. Antimony demonstrates only weak anomalies in one-third of the samples. Mercury is, overall, elevated averaging 4.22 ppm excluding sample 79087 which returned a value >100 ppm.

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

Copper ranges from 65 to 354 ppm, averaging 143.6 ppm. Selenium is only weakly anomalous, averaging 4.4 ppm and ranging from 2 to 6 ppm. Tellurium varies from 0.05 to 0.12 ppm, the highest value falling out in the 262 ppm silver interval. The geochemistry in this interval is similar to that found in quartzites intercepted in IC-07-12 and IC-07-13 and is indicative of distal disseminated mineralization emanating from an igneous, possibly porphyry source, discussed in Section 8.3 of this report.

Samples were taken from broken quartzite showing local brecciation. From 87.17-135.94 meters (286-446 feet), the core is extremely broken; recovery in this interval was approximately 15%. Within the 22.56 meter (74 feet) interval between 108.54-131.06 meters (356-430 feet), approximately 9.1 meters (30 feet) consists of mud, sand and clay containing fragments of quartzite.

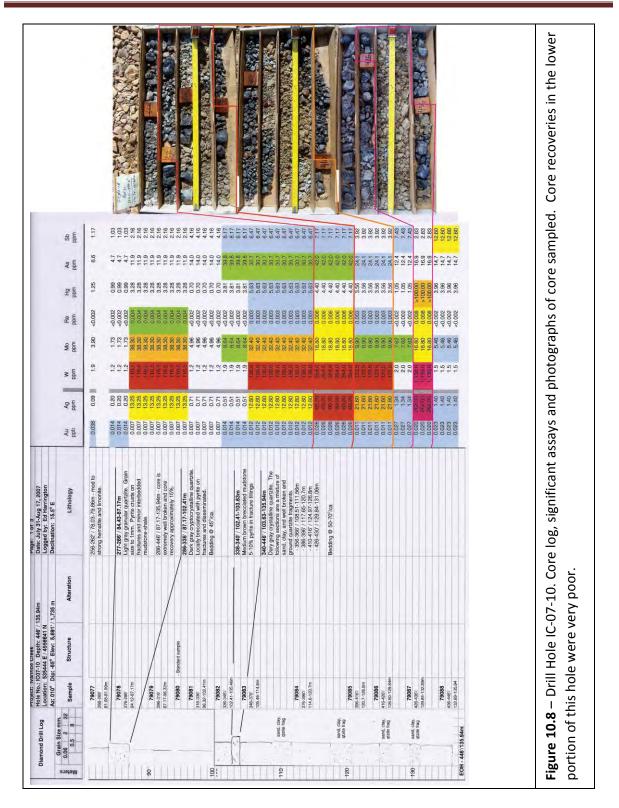
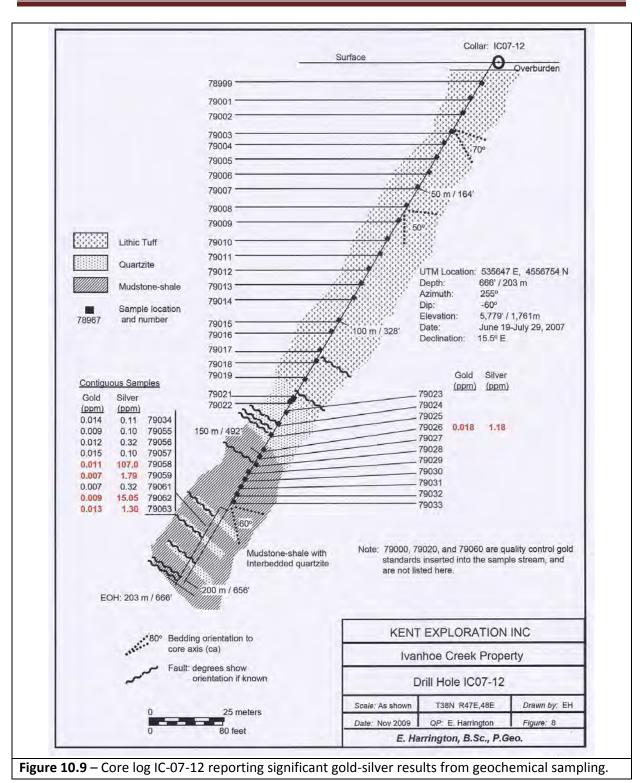
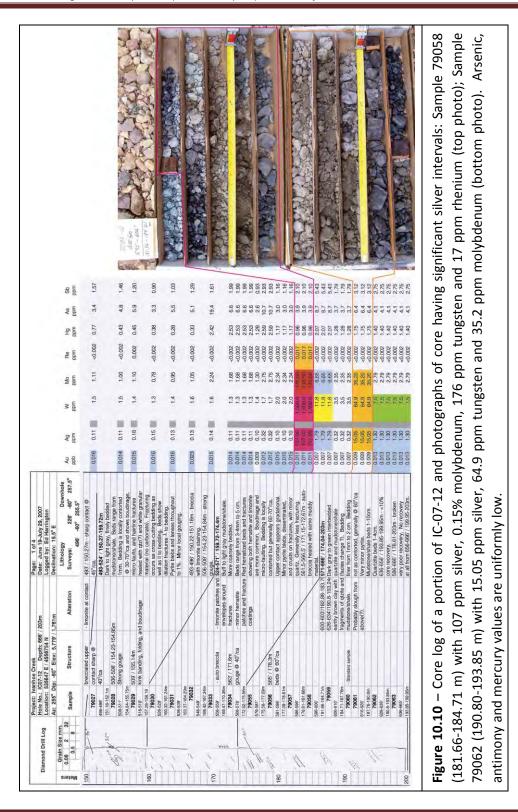

Sample	Inter	Intersection (feet)			ction (me	ters)	Assay ppm					
	From	То	Int.	From	То	Int.	Gold	Silver	Tungsten	Selenium	Mercury	
Note: app	roximately	15% core	recovery	from 266-4	46' (81.08	-135.94	m)					
79077	266.0	269.0	3.0	81.08	81.99	0.91	0.038	0.1	1.9	3	1.3	
79078	276.0	286.0	10.0	84.12	87.17	3.05	0.014	0.2	1.2	2	1.0	
79079	286.0	316.0	30.0	87.17	96.32	9.14	0.007	13.3	116.5	2	3.3	
79081	316.0	336.0	20.0	96.32	102.41	6.10	0.007	0.7	1.2	4	0.7	
79082	336.0	346.0	10.0	102.41	105.46	3.05	0.014	0,5	1.9	7	3.8	
79083	346.0	376.0	30.0	105.46	114.60	9.14	0.012	12.8	138.0	6	5.6	
79084	376.0	396.0	20.0	114.60	120.70	6.10	0.026	60.2	354.0	6	4.4	
79085	396.0	416.0	20.0	120.70	126.80	6.10	0.011	21.6	123.5	4	3.6	
79086	416.0	426.0	10.0	126.80	129.84	3.05	0.027	1.3	2.0	6	1.1	
79087	426.0	436.0	10.0	129.84	132.89	3.05	0.020	262.0	1130.0	4	>100	
79088	436.0	446.0	10.0	132.89	135.94	3.05	0.023	1.4	1.5	15	4.0	

 Table 10.6 – Significant results of geochemical sampling from core hole IC-07-10.


Note: 1 part per million (ppm) = 1 gram per tonne (g/t)

IC-07-12 (Figure 10.9) is located approximately 2,250 meters (7,380 feet east of IC-07-02 and is the most easterly drill site. IC-07-12 was drilled to a depth of 203 meters (666 feet). Lithology consists of lithic tuffs overlying interbedded Paleozoic quartzite and mudstone. Significant results are reported in Table 10.7. Samples were taken across a spectrum of Paleozoic lithologies varying from earthy brown clay containing fragments of quartzite and mudstone (samples 79058 and 79062) and dark grey quartzite. The clay mineralization here may indicate areas of faulting. There was very little core recovery (approximately 6.7%) below 190.8 meters (636 feet).

Sample 79058 (Figure 10.10) returned a high of silver grading 107 ppm (3.44 troy ounces per metric tonne), 1,500 ppm (0.15%) tungsten, 176.5 ppm molybdenum and 684 ppm copper (the highest values for those metals thus far obtained from the property), 17 ppb rhenium, 77.1 ppm nickel; rubidium and vanadium are somewhat anomalous. This sample is similar in chemistry to the high silver samples found in drill hole IC-07-10.

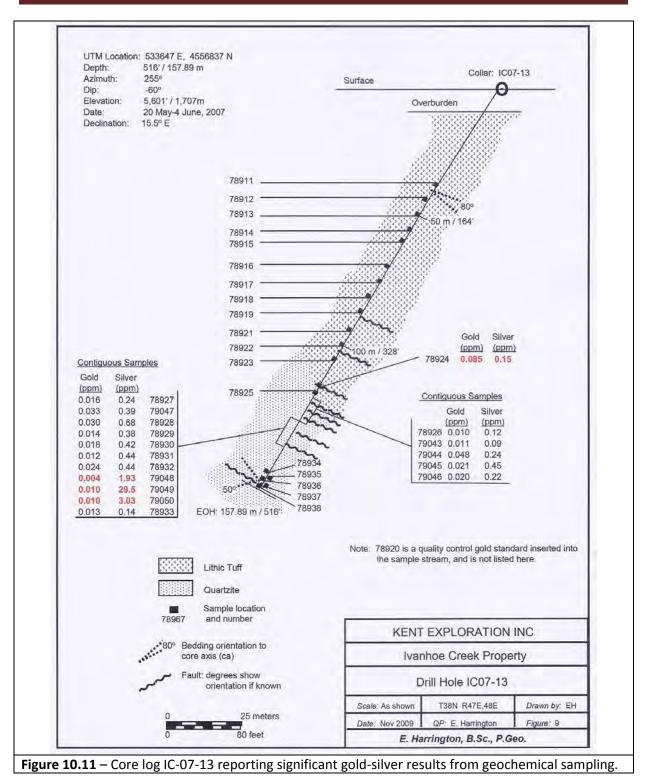


G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

Sample	Inte	Intersection (feet)			Intersection (meters)			Assay ppm				
	From	То	Interval	From	То	Interval	Gold	Silver	Sulfur	Selenium		
79055	576.0	581.0	5.0	175.56	177.09	1.52	0.009	0.1	0.5	2		
79056	581.0	586.0	5.0	177.09	178.61	1.52	0.012	0.3	1.0	5		
79057	586.0	596.0	10.0	178.61	181.66	3.05	0,015	0.1	0.8	2		
79058	596.0	606.0	10.0	181.66	184.71	3.05	0.011	107.0	0.4	4		
79059	606.0	616.0	10.0	184.71	187.76	3.05	0.007	1.8	2.1	4		
79061	616.0	626.0	10.0	187.76	190.80	3.05	0.007	0.3	0.4	3		
79062	626.0	636.0	10.0	190.80	193.85	3.05	0.009	15.1	0.5	6		
79063	636.0	656.0	20.0	193.85	199.95	6.10	0.013	1.3	0.5	5		

Note: 1 part per million (ppm) = 1 gram per tonne (g/t)

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021


IC-07-13 (Figure 10.11) is located approximately 400 meters (1312 feet) east-southeast of IC-07-02; it was drilled to a depth of 157.28 meters (516 feet) and was terminated due to poor recovery. Lithology consists of lithic tuff overlying Paleozoic quartzite. Significant results are displayed in Table 10.8.

Sample 79049 composed of mud and clay containing fragments of quartzite, returned 29.5 ppm silver; tungsten is 82 ppm and molybdenum 8 ppm. Antimony and selenium values are elevated where there are elevated gold values but low silver. Sample 79047 is composed of gouge, recovered from 126.8-128.93 meters (416-423 feet). From 128.93-129.84 meters (423-437 feet) samples 78928 through 78932 are composed of quartz healed breccia with up to 5% pyrite, this breccia immediately underlies the gouge zone.

In general, the volcanic tuffs show moderate to strong clay alteration with weak to moderate chlinochlore interpreted as present by the preponderance of green coloration.

Within the Paleozoic section significant assay results are found in areas showing faulting and or structural preparation indicated by the presence of breccia. However, these areas produced very limited recovery in the core drilling, with as little as 15% in any one interval. The quartz-healed breccia below the gouge interval at 128.93-129.84 meters indicates silicarich solutions were present, most likely during active tectonism.

Associations of gold, silver, arsenic, sulfur, selenium and antimony indicate a low sulfidation, epithermal system is present, perhaps peripheral to significant Midas-style mineralization.

Sample	Int	ersection	(feet)	Inter	section (n	neters)	Assay ppm				
	From	То	Interval	From	То	Interval	Gold	Silver	Antimony	Selenium	
78926	398.0	401.0	3.0	121.31	122.22	0.91	0.010	0.1	3.0	3	
79043	401.0	404.0	3.0	122.22	123.14	0.91	0.011	0.1	2.3	3	
79044	404.0	407.0	3.0	123.14	124.05	0.91	0.048	0.2	6.8	4	
79045	407.0	410.0	3.0	124.05	124.97	0.91	0.021	0.5	7.0	5	
79046	410.0	413.0	3.0	124.97	125.88	0.91	0.020	0.2	7.0	5	
78927	413.0	416.0	3.0	125.88	126.80	0.91	0.016	0.2	6.1	4	
79047	416.0	423.0	7.0	126.80	128.93	2.13	0.033	0.4	10.1	6	
78928	423.0	426.0	3.0	128.93	129.84	0.91	0.030	0.7	7.5	7	
78929	426.0	429.0	3,0	129.84	130.76	0.91	0.014	0.4	5.3	4	
78930	429.0	432.0	3.0	130.76	131.67	0.91	0.018	0.4	5.7	4	
78931	432.0	435.0	3.0	131.67	132.59	0.91	0.012	0.4	6.7	5	
78932	435.0	438.0	3.0	132.59	133.50	0.91	0.024	0.4	9.1	5	
79048	438.0	441.0	3.0	133.50	134.42	0.91	0.004	1.9	2.5	2	
79049	441.0	444.0	3.0	134.42	135.33	0.91	0.010	29.5	1.8	2	
79050	444.0	448.0	4.0	135.33	136.55	1.22	0.010	3.0	4.7	3	
78933	448.0	450.0	2.0	136.55	137.16	0.61	0.013	0.1	1.4	3	

 Table 10.8 – Significant results of geochemical sampling from core hole IC-07-13.

Note: 1 part per million (ppm) = 1 gram per tonne (g/t)

10.2 ACCURACY AND RELIABILITY

Accuracy and reliability of any drilling which took place prior to 2007 has not been verified save existing remnant materials in the form of cuttings at collar locations. The 2007 core program has been documented and recorded with corroborating evidence.

10.2.1 Verification of Previous Drilling

Little can be said of the drilling which took place prior to the 2007 program, save that drill collar locations identified in the field have been recorded and samples of some of the extant cuttings have been analyzed for multi-element geochemistry.

In regard to the Senator-Kent core drilling program of 2007, the data presented in Harrington (2009) are corroborated by accompanying photographs of recovered core and laboratory certificates from ALS Chemex.

10.2.2 Step-out Drilling

To date, no step out drilling has occurred on the Property.

10.2.3 Delineation of the Gold-Silver Mineralization

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

Aside from the data presented and discussed in section 10.1 of this report, no additional delineation of precious metals mineralization has been attempted.

10.3 DRILLING DETAILS

Most of the relevant details of the 2007 core drilling program have been discussed in section 10.1 of this document. Additional details are provided below.

10.3.1 Drill Hole Location, Setup and Relevant Sample Intervals

Drill sites were selected based on surface alteration, occurrence of silica mineralization, surface geochemical results, and CSAMT survey results that showed uplifted structural horst blocks on the Property. There are no recorded details on site preparation and rig setup. However, as all of the drilling was completed by competent professionals it is reasonable to assume the sites were prepared according to the regulations and industry norms for drilling at the time.

Sample intervals and results are unknown for all drilling save the 2007 core program. Sample intervals and results are fully documented for the core program; samples selected were representative of particular lithologic and alteration within both the volcanic and Paleozoic sedimentary rock sequences. Samples were sequential where structure and alteration were determined relevant to the project geologist.

10.3.2 Sample Length and True Thickness (if Known)

Sample length varied based on interpretation of the geology by the logging geologist; nominally 0.91 m to 1.52 m (3 to 5 feet). True thickness of each sample has not been determined.

10.3.3 Significant High Grade in Lower Grade Intervals

The principal components exploration efforts have focused upon are gold and silver resources. There are no reported drilling results for the RC drilling completed on the property, only data from the 2007 core program are available. As such only data from the core program regarding gold and silver will be discussed in this section.

Table 10.9 reports the significant intervals of gold and silver mineralization encountered in each of the five core holes drilled by Senator Minerals. High grade intervals are reported separately from lower grades.

10.4 INTERPRETATION OF DRILL RESULTS

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

Analyses of multi-element results from drilling has demonstrated there are two systems present on the Rimrock Property: a low grade precious metals system where silver is typically less than 10 ppm and gold reaches levels of 55 ppb, associated with elevated vanadium and tellurium along with weakly to moderately elevated selenium, antimony, and molybdenum, and weakly elevated arsenic, chromium and copper; a second high grade silver system, values to 262 ppm with low grade gold to 26 ppb, is associated with highly anomalous tungsten, moderate to strongly anomalous molybdenum and copper, weak to moderately anomalous nickel, rhenium, arsenic and phosphorous. The latter mineralization is significantly enriched in mercury as opposed to the lower grade silver system. Table 10.10 represents relative values of metals associated with each system.

Hole	Meters			Host	Au ^a	Ag ^a
ID	From	То	Interval	Lith	ppb	ppm
IC-07-02	60.05	67.67	7.62	Tv	56	0.71
IC-07-07	124.36	145.08	20.72 ^b	Ovss	26	3.21
IC-07-07	151.18	158.95	7.77 ^b	Ovms	18	0.27
IC-07-07	216.41	220.68	4.27	Ovms	23	0.75
IC-07-10	81.08	81.99	0.91	Ovms	38	0.09
IC-07-10	87.17	96.32	9.15 ^c	Ovms	7	13.25
IC-07-10	105.46	126.80	21.34	Ovss/fz	16	31.53
IC-07-10	129.84	132.89	3.05	Ovss/fz	20	262.00
IC-07-12	135.94	181.66	45.72 ^b	Ovms/ss	16	0.21
IC-07-12	181.66	184.71	3.05	Ovss/fz	11	107.00
IC-07-12	190.80	193.85	3.05	Ovss	9	15.05
IC-07-13	112.90	113.81	0.91	Tv	85	0.15
IC-07-13	121.31	133.50	12.19	OVss	21	0.34
IC-07-13	134.42	135.33	0.91	Ovss/fz	10	29.50

Table 10.9 – Relevant gold and silver intercepts in 2007 Senator Minerals core program. Tv = Tertiary volcanics; Ovss = Ordovician Vinini Sandstone; Ovms = Ordovician Vinini Mudstone; fz = fault zone.

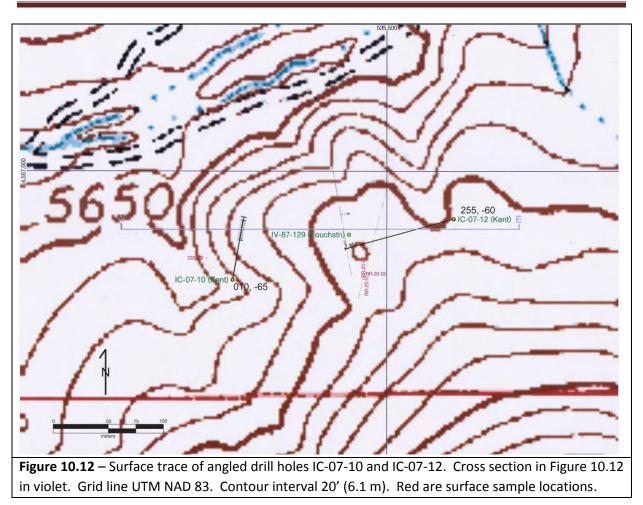
a - Unweighted average of all samples in interval. b - Incomplete sampling in interval. c - Core recovery in interval = 15%.

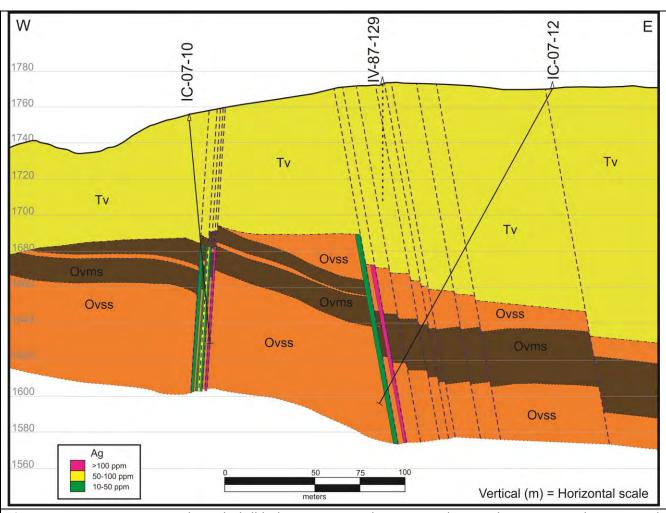
The >10 ppm silver system contains associated metals indicative of an igneous source likely representing a structurally hosted, distal disseminated system (as discussed in section 8.3 of this report). Silver to gold ratio in this system is 5,013:1.

The <10 ppm silver system contains elements typically associated with low sulfidation epithermal precious metals deposits, including those of the nearby Midas and Hollister/Ivanhoe deposits. Silver to gold ratio in this system is 123:1.

A third system, relatively enriched in gold, was identified in drill hole IC-07-02, hosted entirely within the Tertiary volcanics section. The highest gold values encountered in the drilling and the property as a whole were found here with a high of 187 ppb and an average of 56.4 ppb in the interval 60.05-67.67 m. Silver in this interval averages 0.71 ppm. Silver to gold ratio in this interval is 12.6:1. Associated elements are arsenic and antimony which are significantly higher than either of the above discussed precious metals systems, particularly with respect to antimony. Also associated but to a lesser degree are: mercury, tungsten, molybdenum, rhenium, sulfur and selenium. The unweighted average values of the elements in this system are reported in Table 10.10 as "Tv Au".

Table 10.10 – Relative values of metals associated with "high" and "low" silver systems identified via multi-element analyses of core samples recovered in the 2007 core program. Averages reported are unweighted. All values are ppm except sulfur which is percent.


System	n	Ag	Au	W	Hg	Ni	Мо	Re	Р
Ag >10	8	65.18	0.013	438.6	15.10	27.98	42.0	0.005	1,578
Ag <10	12	3.21	0.026	1.2	0.94	4.97	7.8	<0.001	528
Tv Au	10	0.71	0.056	6.0	0.61	1.80	4.5	0.002	500
		Cu	As	Cr	Se	Те	Sb	V	S
Ag >10	8	193	17.5	51.5	4.2	0.08	3.7	126	1.03
Ag <10	12	65	15.2	69.2	8.1	0.17	9.1	382	1.07
Tv Au	10	5	52.9	4.0	4.5	<0.05	12.9	38	1.56


Interpreting these systems in terms of known low sulfidation systems located nearby, the high silver:gold system likely represents an Eocene distal disseminated deposit probably related to the 39 Ma Hatter stock situated next to the Hollister-Ivanhoe Deposit south of Rimrock; it predates most of the volcanics in the area and is hosted entirely within Ordovician sedimentary rocks. The second system, also hosted with Ordovician sedimentary rocks, has geochemistry similar to that identified at Midas and Ivanhoe; it is probably related to those systems and is thus Middle Miocene, likely straddling the boundary of the latest Langhian to earliest Serravallian ages. The third system, hosted entirely within the volcanic sequence is either of the same age as the second, possibly within a few tens of thousands of years.

Controversy in regard to ages of mineralization observed at Rimrock and that at the various

known and active gold-silver mines in the area which are often discussed as separate events as opposed to different pulses of the same system. Arguments supporting this supposition have not taken into account observations from active hydrothermal systems where hydrothermal activity can be quite long lived on the order of hundreds of thousands to millions of years. During their active lives, hydrothermal systems are not steady state and tend to move based on the configuration of the plumbing which is often affected by earthquakes, phreatic explosions and simple plugging due to mineral build-up. Of note hydrothermal waters are still being emitted on the surface 7 km to the east-northeast of the project at Hot Creek and 12.5 km to the west at Hot Lake.

The most significant intercepts were encountered within core holes IC-07-10 and IC-07-12. Figures 10.12 and 10.13 represent the location of the drill collars and interpretive cross-section developed on the data presented by Harrington (2009). Mineralization here is interpreted as structurally controlled, a more conservative model than one where mineralization is lithologically hosted. Further, structural host is common in the Ivanhoe and Midas (Gold Circle) Mining Districts particularly in tight lithologies such as those encountered within the Ordovician sedimentary rock sequence. The area has been interpreted via geophysical surveys to be a horst block bounded by high-angle structures striking north-northwest to north-northeast and dipping west on the west side and east on the east side of the block. The grades encountered by these drill holes are of significant enough to be considered intercepts of feeder systems.

CAT Strategic Metals Corporation | Technical Report | Rimrock Project, Ivanhoe District, Elko Co., Nevada, USA

Figure 10.13 – Cross section through drill holes IC-07-10 and IC-07-12. Silver grades intercepted interpreted as structurally controlled. Tv is undivided volcanics over Ordovician Vinini sandstones (SS) and mudstone (MS).

11.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

Recorded sampling of the Rimrock Property is limited to about fifty reconnaissance scale rock chip geochemical samples. All of these were simply select samples of altered rock material. Most of these samples are accompanied by Certificates of Analyses which are in the possession of CAT Strategic Metals personnel and the author. No program has been initiated to systematically sample the property.

179 samples have been collected and analyzed from the 2007 core drilling program. COA's from these samples are all in possession of CAT personnel and the author.

No samples or sampling data from the RC drilling programs are in possession of the author or CAT personnel.

11.1 SAMPLE PREPARATION, HANDLING AND SECURITY

Rock and core samples collected were maintained in locked storage until submitted to ALS Chemex laboratories located in Elko, or Winnemucca, Nevada, or the Inspectorate-Bureau Veritas laboratory located in Sparks, Nevada.

11.1.1 Reverse Circulation Drill Sampling

It is unknown to the author what style of sampling was used for the reverse circulation drill sampling program. However, having worked for Newmont Exploration Ltd. during the period of this drilling, the author can say with first-hand experience that Newmont's sampling was standardized; they employed a rotary splitter mounted under the cyclone. Samples delivered to the sample discharge tube were collected in 1.5 m (5 feet) intervals in individually labeled cloth sample bags, changed by the rig geologist or one of the helpers. All samples were logged according to depth and individual sample numbers; upon completion of drilling, certified blanks and standards were inserted into the sample stream, usually one each every 30 meters (100 feet). All samples were collected at the completion of drilling, inventoried and taken to a Chemex (Later ALS Chemex) laboratory, in this case, most likely Elko as the Winnemucca lab was not yet open.

11.1.2 Core Sampling

During the 2007 drilling program, core was placed in uniquely marked waxed cardboard boxes capable of holding 3 meters (10 feet) of BTW-size (42.0 mm (1.656 inches) diameter) core. Selected core intervals were marked off and sampled. Core sampling consisted of hand splitting with a metal hand crank type core splitter (Harrington, 2009). Half the core was placed in a uniquely marked cloth sample bag and kept in a locked storage unit until delivered to ALS Chemex or Inspectorate Bureau Veritas Labs. The remaining portion of the

core was replaced sequentially in the core box, which was placed in locked storage. In zones of well broken core, samples consisted of selected fragments chosen to provide the best possible representation of the lithological intersection (Harrington, 2009).

11.1.3 Rock Chip Sampling

Rocks chip sampling consists of either gathering loose materials consisting of rocks of interest or breaking off materials from exposures or larger fragments placed in a uniquely identified cloth sample bag, noting the sample identification, location, area sampled and particulars of the material sampled. All samples were kept in the possession of the sampler until relinquished to laboratory personnel.

11.1.4 Soil Sampling

No soil sampling has been completed on the project to date.

11.1.5 Mine Dump and Tailings Sampling

Dump and tailings sampling consisted of selecting the most interesting looking material from the dump and placing it in a uniquely identified cloth sample bag, noting the sample identification, location, area sampled and particulars of the material sampled. All samples were kept in the possession of the sampler until relinquished to laboratory personnel.

11.2 LABORATORY INFORMATION

All samples collected between 2002 and 2010 and analyzed for geochemical data were submitted to ALS Chemex Laboratories located in Elko, or Winnemucca, Nevada where they were processed and prepared for analyses in either their Reno or Vancouver facilities. The ALS Chemex quality management system (QMS) complies with the requirements of the international standards ISO 9001:2000, ISO 17025:2005 or ISO 9001:2015 (dependent upon date of submission) for survey/inspection activity and ISO/IEC 17025:2017 UKAS ref 4028 for laboratory analysis and is implemented at all ALS Chemex sites.

Chemex's sample processing consists of:

- Bar code sample login;
- Weighing the received sample;
- Fine crushing to 70% < 2 mm;
- Crushing QC test;
- Split sample using a riffle splitter;
- Pulverizing to 85% <75 microns (μm);
- Pulverizing QC test;

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

- ME-MS61 a four-acid (HNO₃, HClO₄, HF, and HCl) digestion process resulting in 48 element values using inductively coupled plasma (ICP), atomic emission spectroscopy (AES) and mass spectroscopy (MS) technologies;
- Hg-CV41 trace mercury aqua regia digestion with cold vapor/atomic absorption spectroscopy (AAS) and;
- Au-ICP22 a fire assay (FA-ICP) process using 50 grams of sample material, and having a 0.001 parts per million (ppm) lower detection limit for gold.

More recent surface samples collected in 2012 were submitted to Bureau Veritas Inspectorate (now Bureau Veritas Minerals (BVM)) laboratory in Sparks, Nevada. All Bureau Veritas labs meet the requirements of ISO/IEC 17025 and ISO 9001 Quality Management Systems and use validated methods and processes which comply with global OH&S standards. The method 50-4A-UT is no longer a code used by BVM. It was essentially the same as ALS Chemex ME-MS61 four acid digestion and reporting 48 elements. It has been replaced with a 58 element Ultra-trace ICP-ES/MS analysis, BVM laboratory code MA250. This latter process notes: Ultra-trace ICP-ES/MS (MA250) analysis to give near total values for most elements; a 0.25 g split is heated in HNO₃, HClO₄ and HF to fuming and taken to dryness; the residue is dissolved in HCl; digestion is partial for some Cr and Ba minerals and oxides of Al, Fe, Hf, Mn, Sn, Ta, Zr and REEs; volatilization during fuming may result in loss of As, S, Se and Sb.

Sample prep code used at the time of submittal was: SP-RX-2K/Rock/... <2Kg and is now PRP70-250 comprised of crushing 1 kg to \geq 70% passing 2 mm - Pulverize 250 g \geq 85% 75 µm.

Gold fire assay analyses used were Au-1AT-AA, now FA-430: 30 g / Fire Assay / AAS; this is a lead collection fire assay fusion which is a classic method for total sample decomposition; total Au content is determined by digesting a Ag dore bead and then analyzing by AAS.

Mercury analyses method then used was Hg-AR-TR-CVAA which is an aqua regia – ICP-ES/MS Hg analysis and currently carries the BVM laboratory code: AQ200-Hg.

Both ALS Chemex and Bureau Veritas Minerals are considered to be the most reliable laboratories in the exploration and mining industry.

Sample 190006 was taken by Ed Harrington in 2003 and was sent to International Plasma Laboratory Ltd. (IPL) in Vancouver, British Columbia. The author is not familiar with this laboratory and the following discussion is from Harrington's 2009 report concerning this laboratory. "This laboratory is registered with and certified by the British Columbia Ministry of Environment, Lands and Parks (BCMOE) and the Canadian Association for Environmental Analytical Laboratories (CAEAL). IPL's analytical procedures comply with the applicable requirements of the BCMOE, Environment Canada, American Society for Testing and Materials (ASTM), American Water Works Association (AWWA) and United States

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

Environmental Protection Agency (USEPA). International Plasma Laboratory maintains an internal quality control program including use of blank, duplicate and standard samples inserted into the sample stream. IPL sample preparation and analytical methods are deemed by the author to conform to reasonable data verification controls."

11.3 QUALITY CONTROL / QUALITY ASSURANCE

All samples collected from the property were maintained in their possession or in secure locations by the respective exploration professionals who acquired them until relinquished to laboratory personnel. Standards and blanks were added to the core drilling samples; the same can be presupposed for the older reverse circulation drilling as well based on the author's personal experiences with the major mining and exploration companies extant at the time of drilling and personal knowledge of their standard procedures.

All laboratories reporting assays for samples collected from the Property have vigorous QA/QC programs using their own internal standards and blanks to assure accurate evaluation of submitted samples.

Laboratory Certificates of Analyses for all the drill submitted samples are in possession of CAT Minerals personnel and the author. Certificates of Analyses for most surface samples (save sample 190006 and those submitted under EL04053141 (15 samples total)) are in possession of CAT Minerals personnel and the author.

11.3.1 Historical Work

Recorded sampling of the Rimrock Property is limited to about fifty reconnaissance scale rock chip geochemical samples. All of these were simply select samples of altered rock material. Most of these samples are accompanied by Certificates of Analyses which are in the possession of CAT Strategic Metals personnel and the author. No program has been initiated to systematically sample the property.

179 samples have been collected and analyzed from the 2007 core drilling program. COA's from these samples are all in possession of CAT personnel and the author.

No samples or sampling data from the RC drilling programs are in possession of the author or CAT personnel.

11.3.2 CAT Strategic Metals Sampling

CAT has not undertaken any sampling on the Property as of the time of this writing.

11.4 AUTHOR'S OPINION REGARDING SAMPLE PROCEDURES

All samples were retrieved according to procedures considered industry norms and by professional explorationists. Each was held securely by the individual sampler until relinquished to laboratory personnel for analyses.

ALS Chemex and Inspectorate-Bureau Veritas Laboratory procedures are well documented. These laboratories are ISO certified and are well established entities within the mining community. Their QA-QC procedures are considered the industry standards.

All sample data are available from samples acquired from the Property, save those which do not have accompanying Certificates of Analyses, are considered 43-101 reportable. Those without such documentation, 15 of the 50 surface samples collected in 2003 and 2004, are not considered 43-101 reportable.

12.0 DATA VERIFICATION

Other than a review of the assay certificates, land status checks and the Property examination, the writer did not attempt to verify the information available for this specific property. The limited number of mildly anomalous geochemical results did not warrant independent check sampling.

During the 2007 drilling program, samples consisting of a prepared gold standard reference material OxA59 were inserted into the sample stream at 20-sample intervals and delivered to ALS Chemex with regular split core samples. OxA59 has a gold concentration of 0.0817 ppm, with a 95% confidence interval of ±0.0021 ppm and a standard deviation of 0.0052 ppm (Harrington, 2009).

Assay results from the nine gold standard samples submitted in 2007 varied from 0.070 to 0.088 ppm giving a standard deviation of 0.0060 ppm or 15% above the expected standard deviation (Harrington, 2009).

12.1 DATA VERIFICATION PROCEDURES APPLIED BY QP

Other than a review of the assay certificates, land status checks and the Property examination (site visit), the writer did not attempt to verify the information available for this specific property. The limited number of mildly anomalous geochemical results did not warrant independent check sampling of surface samples.

12.2 VERIFICATION LIMITATIONS (INCLUDING SITE VISIT)

There were no limitation with respect review of assay certificates, save those from the 2003-2004 sampling program where there were no available certificates, nor were there any data available to review for any work completed prior to 2002.

Land status was checked on the BLM LR2000 along with copies of Certificates of Location.

Property was examined by the author in October, 2020 and again in February, 2021. It was mapped, in part, in 2012 when geochemical samples were taken and submitted for assay (samples RMR-01 through RMR-18).

12.3 QUALIFIED PERSON'S OPINION ON ADEQUACY OF DATA

The author is satisfied that all geochemical data presented with an accompanying Certificate of Analyses are valid and reportable. Those data without the certificates are not reportable unless resampled at the coordinates given.

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

Geophysical data is believed valid as it agrees with surface observations and was collected and interpreted by qualified professionals.

Drilling data was collected by a professional Qualified Person, Edward Harrington and presented by him in his 2009 Technical Report.

The only detailed geologic mapping completed on the Property to date was accomplished by the author.

13.0 MINERAL PROCESSING AND METALLURGICAL TESTING

13.1 NATURE AND EXTENT OF TESTING, ANALYTICAL PROCEDURES AND SUMMARY OF RELEVANT RESULTS

No metallurgical testing for any metals save mercury has been carried out on any samples from the property to date.

13.1.1 Nature and Extent of Metallurgical Testing

Historic testing was likely performed on the early mercury ores, but those results are unavailable.

13.1.2 Analytical Procedures

Unknown.

13.1.3 Relevant Results

Mercury was produced from the Rimrock Mine.

13.2 BASIS FOR ASSUMPTIONS OR PREDICTIONS REGARDING RECOVERY ESTIMATES

Mercury was produced from the Rimrock Mine.

13.3 REPRESENTATIVE NATURE OF METALLURGICAL TEST SAMPLES TO MINERAL DEPOSIT

Mercury was produced from the Rimrock Mine.

13.4 DELETERIOUS PROCESSING OR ELEMENTS EFFECTING ECONOMIC EXTRACTION

Unknown.

14.0 MINERAL RESOURCE ESTIMATES

No mineral estimates have been completed for the Rimrock Property.

14.1 DISCUSSION OF KEY ASSUMPTIONS, PARAMETERS, AND METHODS USED FOR ESTIMATION

No mineral estimates have been completed for the Rimrock Property.

14.2 DISCLOSURE REQUIREMENTS

No mineral estimates have been completed for the Rimrock Property.

14.3 CONVERSION FACTORS FOR MULTI COMMODITY METAL EQUIVALENCY

No mineral estimates have been completed for the Rimrock Property.

14.4 IMPACTS ON MINERAL RESOURCE ESTIMATES

No mineral estimates have been completed for the Rimrock Property.

15.0 MINERAL RESERVE ESTIMATES

The Rimrock Property is an exploration level program and has no Mineral Resources or reserves yet developed for any metal.

A preliminary resource estimate of the bentonite deposit was made by Chemical and Petroleum Corporation of America in the late 1970's; they estimated the size of the deposit at 2 million tons. No data defining as to how that estimate was determined are in hand. Given the uncertainties of this estimate, it may be considered only historical in nature and not a qualified 43-101 resource at this time, and here presented for reference only.

15.1 DISCUSSION REGARDING CONVERTING RESOURCES TO RESERVES

There are no Resources yet developed on the Property.

15.2 DISCLOSURE REQUIREMENTS FOR MINERAL RESERVES

There are no Mineral Reserves developed for this Property.

15.3 CONVERSION FACTORS FOR MULTI COMMODITY MINERAL RESERVES

There are no Mineral Reserves developed for this Property.

15.4 IMPACTS ON MINERAL RESERVE ESTIMATES

There are no Mineral Reserves developed for this Property.

16.0 MINING METHODS

There are currently no resources developed for this property. Subsequently there are currently no plans for mining.

16.1 GEOTECHNICAL, HYDROLOGICAL AND OTHER PARAMETERS RELEVANT TO MINE DESIGN

There are currently no plans for mining on this Property.

16.2 PRODUCTION RATES, MINE LIFE, MINING DIMENSIONS, DILUTION FACTORS

There are currently no plans for mining on this Property.

16.3 MINING REQUIREMENTS: STRIPPING, DEVELOPMENT, BACKFILLING

There are currently no plans for mining on this Property.

16.4 REQUIRED MINE EQUIPMENT

There are currently no plans for mining on this Property.

17.0 RECOVERY METHODS

There are currently no plans for mining on this Property.

17.1 DESCRIPTION, FLOW SHEET OF PROCESSING PLANT

There are currently no plans for mining on this Property.

17.2 PLANT DESIGN, CHARACTERISTICS AND SPECIFICATIONS

There are currently no plans for mining on this Property.

17.3 REQUIREMENTS FOR ENERGY, WATER AND PROCESS MATERIALS

There are currently no plans for mining on this Property.

18.0 PROJECT INFRASTRUCTURE REQUIREMENTS

At present the Property is a grass roots exploration level play. Infrastructure is not required at this time.

19.0 MARKET STUDIES AND CONTRACTS

There are currently no plans for mining on this Property.

19.1 SUMMARY CONCERNING MARKETS

The principal commodities on this Property are precious metals, namely silver and gold. The precious metals markets are monitored by the second worldwide via the internet. It is subject to volatility as with any readily traded commodity or security. Trends tend to be relatively long lived with spikes, either up or down, are generally short lived returning to the normal longer lived trends, settling higher or lower than the previous trend, depending upon the last spike direction.

19.2 CONTRACTS REQUIRED FOR PROPERTY DEVELOPMENT

Currently there are no plans to develop this Property.

20.0 ENVIRONMENTAL STUDIES, PERMITTING, AND SOCIAL COMMUNITY IMPACT

Environmental studies, permitting, and social community impact studies have not been initiated for this Property. The present level of exploration does not require the initiation of these permitting processes.

20.1 RESULTS OF ENVIRONMENTAL STUDIES, DISCUSSION OF ISSUES

Environmental studies are unnecessary at this level of exploration.

20.2 WASTE AND TAILINGS DISPOSAL, SITE MONITORING, WATER MANAGEMENT

None of this applies at the current level of activity on the Property.

20.3 PERMITTING REQUIREMENTS

Permitting for surface disturbance will be required when additional drilling is planned.

20.4 SOCIAL AND COMMUNITY REQUIREMENTS

None required at this time and likely minimal in the future.

20.5 MINE CLOSURE REQUIREMENTS

There are no open mines on this property and none have been planned.

21.0 CAPITAL AND OPERATING COSTS

Currently there are no plans to develop this Property.

22.0 ECONOMIC ANALYSES

There are currently no economic analyses completed for this Property.

22.1 JUSTIFICATION FOR PRINCIPAL ASSUMPTIONS

The only assumptions being made for this Property are it is a valid exploration target based on the identification of silver and gold values in the 2007 core drilling program and the active precious metals mines in the vicinity of the Property.

22.2 CASH FLOW FORECASTS

There are currently no Cash Flow Analyses for this Property.

22.3 NET PRESENT VALUE (NPV)

No NPV studies have been completed for the Property at the time of this writing.

22.4 TAXES, ROYALTIES AND LEVIES

Currently there are no plans to develop this Property.

22.5 SENSITIVITY ANALYSES

No Sensitivity Analyses have been conducted on this Property as of the time of this writing.

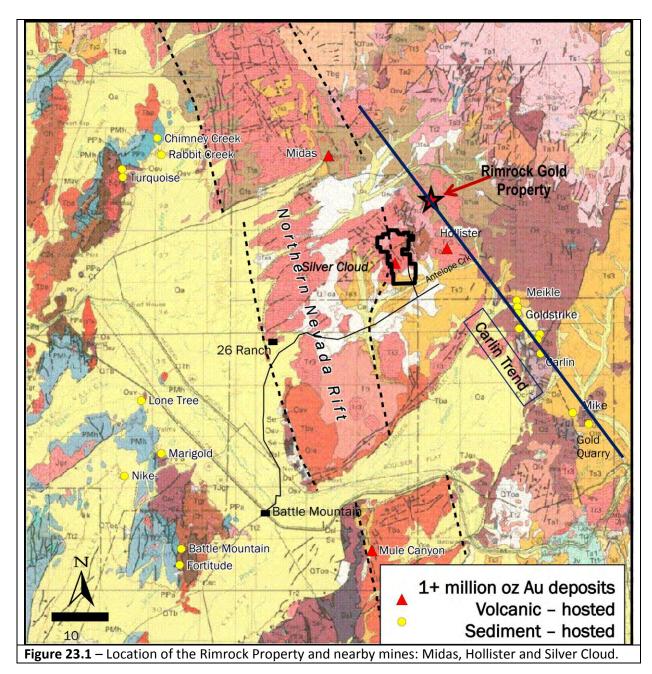
23.0 ADJACENT PROPERTIES

Three nearby properties, the Midas, Ivanhoe-Hollister, and Silver Cloud mines, offer good examples of district mineralization. The Midas mine is located approximately 18 km northwest of the Rimrock property, the Ivanhoe-Hollister main deposit lies 6 km south and the Silver Cloud mine is located approximately 12.4 km south-southwest (Figure 23.1). These three properties have been mined or explored for low-sulfidation, Midas-style gold silver deposits. Both of the properties owned by Hecla Mining Company, and are presently under care-and-maintenance condition at this date.

Other mines in the area include the Sheep Corral, Governor and Fox Mines. These latter were all small historic mercury mines and located approximately 3.25 to 4.5 km to the west and southwest of the Property, and also are owned by Hecla Mining Company.

23.1 OWNER(S) OF ADJACENT PROPERTIES

Much of the following has been taken directly from Harrington (2009) and updated with more recent information.


23.1.1 Hecla Mining Co. – Midas Mine

The Midas or Ken Snyder Mine, discovered in 1994, is a volcanic-hosted, low-sulfidation, selenium-rich, gold-silver bearing quartz-adularia vein deposit located in the Midas district of north-central Nevada, on the eastern flank of the Northern Nevada Rift and on the north-northwest strike continuation of the Carlin trend.

The Midas mine produced an approximate total of 2.2 million ounces of gold and 26.9 ounces of silver; measured, indicated and inferred resources at the end of 2020 were reported to be 457 thousand ounces of gold and 5.72 million ounces of silver using a gold equivalent underground cutoff grade of 7.37 grams (Hecla Mining Company website, accessed 15 April, 2021). The mine was acquired by Hecla Mining in July, 2018 and previously was operated by Klondex Midas Operations, Inc., and by Great Basin Gold. Production at the Midas Mine was suspended in the fourth quarter of 2019. The Midas Mine is the largest known Au-Ag epithermal deposit along the Northern Nevada Rift (Mining Data Solutions online, accessed 15 April, 2021).

Host rocks are mid-Miocene felsic tuffs, sediments and gabbro sills and dikes. Wall rock alteration is predominantly propylitic, and hydrothermal alteration is widespread. Vein mineralogy consists of gold and silver selenides (naumannite [Ag2Se] and aguilarite [Ag4SeS]), electrum; rare lead-, copper- and iron-selenides; and a gangue of banded quartz (at least eleven precipitation events), calcite and adularia containing pyrite, marcasite, chalcopyrite and sphalerite. Geochemical soil profiles in the Midas district indicate

anomalous gold, silver, selenium, mercury, arsenic and lead values. Deposit age is estimated to be 15.14±0.08 Ma (Wallace, 2003).

Host rocks are mid-Miocene felsic tuffs, sediments and gabbro sills and dikes. Wall rock alteration is predominantly propylitic, and hydrothermal alteration is widespread. Vein mineralogy consists of gold and silver selenides (naumannite [Ag₂Se] and aguilarite

[Ag₄SeS]), electrum; rare lead-, copper- and iron-selenides; and a gangue of banded quartz (at least eleven precipitation events), calcite and adularia containing pyrite, marcasite, chalcopyrite and sphalerite. Geochemical soil profiles in the Midas district indicate anomalous gold, silver, selenium, mercury, arsenic and lead values. Deposit age is estimated to be 15.14 ± 0.08 Ma (Wallace, 2003).

Fluid inclusion data indicate a mean temperature during ore formation of 240°C and very low salinities, possibly reflecting a strong groundwater influence on the epithermal system. The dominance of quartz, calcite and adularia in the open-space filling veins is indicative of a low-sulfidation system (Goldstrand et al, 2000).

Known reserves on the main Colorado Grande vein occurred over a strike distance of 6,500 feet (1,981 meters) and a vertical range of 1,700 feet (518 meters), exhibiting remarkable continuity (Goldstrand et al, 2000). Veining occupies faults oriented north-south to north-northwest and west-northwest, dipping steeply northeast. Mineable reserves were defined on seven veins by 2009. Hecla has been exploring east of the Midas Mine, and recently discovered the Green Racer Sinter vein systems (Hecla Mining, quarterly report, March, 2021), reportedly 5 km east of the Midas Mine, where local high grade gold and silver values have recently been found in their drilling program.

In the Midas district, siliceous sinters, always occurring in the 15.43±0.09 Ma Esmeralda mudstones and siltstones, are reported to overlie main mineralized structures. Examples of overlying Esmeralda "sinters" were examined and continuous laminations were noted. Although not conclusive, the laminations are thought to suggest that the "sinters" were the product of intense silica flooding of the Esmeralda mudstones and siltstones rather than being true hot spring sinters (Goldstrand et al, 2000).

23.1.2 Hecla Mining Company - Ivanhoe-Hollister Project

The Ivanhoe-Hollister gold deposit developed by Touchstone Resources and mined by Newmont and currently owned by Hecla Mining Company is approximately three miles south of the Property. The deposit was originally estimated to contain 18.4 million tons at .038 opt (699,000 ounces, 21.7 tonnes gold), and more than 115,000 ounces (3.5 tonnes) were produced from two open pits in the early 1990's (Tewalt, 1999). The gold deposit contains several orebodies that underlie mercury-bearing sinters and silicified zones. The mineralization in this deposit was interpreted to be predominately of the sediment-hosted disseminated type (Bartlett et al, 1991).

Deeper drilling in the district encountered narrow high-grade veins hosted within the Vinini (Valmy) Formation. Prior to 2007, Great Basin Gold issued a historical estimate of an inferred resource on their Ivanhoe property of 719,000 tons with a grade of 1.29 opt gold and 7.0 opt silver for a total of 927,510 oz gold and 5,033,000 oz silver (Great Basin Gold

website, 2003). Since 2007, production from these blind deposits amounts to more than 450,000 ounces of gold and more than 2.5 million ounces of silver (Hecla Mining Company website accessed 15 April, 2021).

The mine is located along the Northern Nevada Rift (NNR) which is a major, north-northwest to south-southeast trending structural feature that that extends for at least 300 miles (482 km), from south-central Nevada to the Oregon-Nevada border. Ivanhoe-Hollister is on trend with the north-western end of the Carlin Trend. Mineralization is related to the Miocene period of magmatic activity associated with the NNR while gold mineralization on the Carlin Trend has been dated to late Eocene/early Oligocene magmatism (Hecla Mining Company website accessed 15 April, 2021). The age of mineralization has been dated as Miocene 15.19±0.05 Ma (Wallace, 2003).

Epithermal disseminated gold mineralization is hosted in volcanic tuffaceous units, andesites, and the Ordovician Vinini (Valmy) Formation. High-grade gold and silver mineralization is hosted as banded quartz veins in a group of near-vertical faults and fissures that trend west-northwest to east-west. The amount of displacement across these faults is small and their strike continuity varies between one hundred to several thousand feet. Primary lithologies in the area have been strongly altered by hydrothermal fluids with large areas of chalcedonic replacement bodies at the paleo water table in addition to sinter deposits (Hecla Mining Company website accessed 15 April, 2021).

Surface alteration on the Ivanhoe property consists primarily of strongly silicified (primary opal and chalcedony, not quartz) lakebeds and air-fall tuff with areas of disseminated mercury sulfide (cinnabar) mineralization (Wallace, 2003b). Wallace attributes the silicification and mineralization to hot spring activity that occurred while sediments were being deposited. Wallace reports these "sinters" also contain trace levels of gold over the high-grade veins. The veins are not exposed at the surface, as they lie beneath the silicified sediments.

Three Miocene vein systems have been put into production, the Clementine, Gwenivere, and Gloria, and have only been investigated to a depth of 1,000 feet (305 m) below the adit portal elevation. Other vein systems have been identified on the property, with several holes intersecting gold-silver-mineralized veins in the older, Eocene-age Hatter system, east of the Hollister block. Mineralization of Eocene age likely is present in the area of the Hatter Stock at Hollister, and local high values of tungsten are also present (John Muntean pers comm. to R. Redfern, 2017), as on the Rimrock property to the north. The eastern, north-northwest-trending Eocene horst appears to extend from Rimrock southward through the Hollister Mine property.

Most of the veins identified to date are oriented east-west, and are believed to be splays from north-northwest-trending veins, which represent the major vein orientation at Hecla's

Midas Mine and other major mines in the area.

Productive Miocene veins at Hollister consist of banded, vuggy quartz, adularia, and calcite with pyrite, marcasite, electrum, and silver selenides. Higher-grade portions of veins also show quartz replacement of bladed calcite, often considered a sign of boiling. Alteration minerals are limited to sericite and kaolinite. Post ore-stage minerals fill open spaces around the mineralized veins. These minerals include Fe-Mg carbonate, barite, and quartz. It is probable that the same mineralizing fluids that formed the veins are also responsible for overlying mercury-silica mineralization.

Resources reported as of 31 December, 2020 by Hecla as measured, indicated and inferred are 324,000 ounces of gold and 2.13 million ounces of silver (Hecla Mining Company website accessed 15 April, 2021).

23.1.3 Silver Cloud Property

An epithermal vein-style gold target on the Silver Cloud property was identified by Teck-Placer Dome and now controlled by Blackrock Silver Corp. The Silver Cloud Mine was the largest mercury producer in the district accounting for 1,150 flasks out of a district total 2,180 flasks. Placer Dome entered into a joint venture with Teck-Cominco to explore Silver Cloud in 2002 and drilled some holes. In late 2003, Geologix acquired the Silver Cloud property and conducted the following exploration activities: geologic mapping, soil sampling, biogeochemistry, gravity survey, E-Scan survey and drilled 2 core holes. Rimrock Gold Corp. acquired Silver Cloud in 2013 (Rimrock, 2013), although they did not complete any exploration or drilling activities.

One report (Abbott and Redfern, 2002), based on an interview with the underlying claim owner, indicates that Teck encountered significant mineralization in at least one hole and that this mineralization extended from approximately 1000 to 1600 feet (305 to 488 m) below the surface. Drilling conducted by Placer Dome in December 2002 was apparently directed at following up on this intercept and tested a parallel structure to the west, between the Silver Cloud Mine and the West Silver Cloud property held by Senator Minerals Inc. In May 2003, Placer Dome drilled at least six more holes along this western structure, suggesting encouraging results from the December 2002 drilling (Morris, 2003).

Abbott and Redfern (2002) collected a sample of cinnabar-bearing sinter from an adit at the Silver Cloud Mine that assayed 19 ppb gold, 0.5 ppm silver, >100 ppm mercury, along with low arsenic and antimony. They also reported that a sample of rotary drill cuttings from the Silver Cloud property, adjacent to the main road, assayed 37 ppb gold, 5.93% mercury, and low arsenic and antimony.

Silver Cloud is underlain by Quaternary alluvium, landslides and debris and Tertiary gravel,

CAT Strategic Metals Corporation | Technical Report | Rimrock Project, Ivanhoe District, Elko Co., Nevada, USA

rhyolite tuffs, flows and intrusions and andesite. The volcanic section, from top to bottom, includes Upper Tuff, Craig Rhyolite, Middle Tuff, Lower Tuff, Silver Cloud Rhyolite and Rock Creek Rhyolite. Argillite, chert and quartzite of the Ordovician Valmy Formation (Ov) have been encountered in drill holes. These rocks were logged as both Valmy and Vinini by different previous operators; Blackrock is interpreting these siliceous metasedimentary rocks as Valmy. The Miocene volcanic rocks in the Ivanhoe mining district are part of the bimodal volcanic assemblage that is common with this portion of the 700 km-long, north-northwest trending Northern Nevada Rift, which includes the Ivanhoe mining district and Silver Cloud. The east-northeast and west-southwest directed extension of the rift resulted in the formation of north-northwest-striking faults that are such a prominent feature in the district and across the Silver Cloud property. Hydrothermal alteration at Silver Cloud includes silicification, argillization and propylitization. Silicification occurs as structurally controlled quartz veins and bedded opaline silica. Silicification and structures are common where gold has been encountered in drilling (Wolverson, 2020).

Blackrock drilled a total of 9,465 feet (2,885 m) in six core holes at Silver Cloud in 2019 and early 2020; the drill program was designed to test historical drill results (Wolverson, 2020). Local higher-grade gold mineralization was found in one Blackrock drillhole.

23.2 SOURCE OF INFORMATION

The above information concerning adjacent properties were derived mainly from Harrington (2009) who obtained his data from published and on-line resources. Additional data were obtained from more recently published 43-101 documents and on-line sources (2021).

23.3 VERIFICATION OF INFORMATION

The author has not attempted to verify the information concerning adjacent properties.

23.4 DISTINCTION OF INFORMATION

While mineralization suggested by information on the Midas, Ivanhoe-Hollister and Silver Cloud deposits is not necessarily indicative of mineralization on the subject Rimrock Property, similarities indicate exploration potential.

23.5 HISTORICAL ESTIMATES OF MINERAL RESOURCES

Resource estimates for the Hecla owned properties are up to date as of 31 December, 2020 and are reported on their website at:

www.hecla-mining.com/wp-content/uploads/2021/03/Hecla-2020-Reserves-Resources.pdf

There are currently no resources developed on the Silver Cloud Property.

24.0 OTHER RELEVANT DATA AND INFORMATION

No other relevant data and information are currently available to the author.

25.0 INTERPRETATION AND CONCLUSIONS

25.1 INTERPRETATION

The following is largely derived in part from Harrington (2009), with a local area framework provided in technical reports on the geology and mineralization in the Hollister Mine, e.g. Stone (2006), in various Hecla press releases and reports, and at Silver Cloud by Harbaugh (2001), Kuzma (2002), Hudson(2004), Loptien (2006), and (Wolverson (2020).

Necessary conditions for a Midas-type high-grade bonanza-style gold-silver deposit include a well-developed fracture system and a physical and chemical environment that will permit efficient gold-silver precipitation sufficiently long to form an economic deposit.

Favorable host rock types will be competent (brittle), which, under faulting stresses, are more likely to form through-going upward-branching open fractures. Less competent rocks under similar stresses tend to form stockworks. Strike slip and /or oblique normal faulting formed a major structural "fault jog" in the Dilation Target Area at Rimrock, which may extend to plus 1000 meter depths. This structure is up to 100 meters in width, as demonstrated by the CSAMT survey, and could have acted as a structural pipe, allowing metal-rich hydrothermal fluids from great depths and in multiple time periods, via reactivation.

Young mercury mineralization was deposited at the surface along this structure at Dilation, and this structure could have been present and open during the 3 main periods of gold-silver mineralization at Hollister and Midas (Eocene Hatter Stock (39 Ma); 15.14±0.08 Ma Midas (Leavitt and others, 2000) where mineralization continued for 100,000 years or more longer that at the nearby Eastern Star Mine (Wallace, 2000, 2003); the Hollister Deposit formed at 15.10±0.4 Ma, while the high grade veins of Ivanhoe, beneath the Hollister area, formed at 15.19±0.05 Ma (Wallace, 2003)). Wallace (2003) notes district-wide mineralization may have spanned 300,000 years and not necessarily at any one place. The 14.92 Ma "Columbus" Rhyolite is, in part, silicified and hydrothermally altered on the Rimrock property. Wallace (2003) interprets this to have occurred shortly after its emplacement.

The centroid of gold mineralization in the Hollister Mine is interpreted to be at approximately the 5100 foot level MSL (1550 m level). No drillholes have tested this hypothesis at Rimrock. This target zone lies directly on the Carlin Trend, and these NNW and NNE-trending structures likely were open during Carlin-age mineralization, as demonstrated

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

Page - 129 -

at Hatter.

Disseminated silver-(gold) deposits may have been formed at Rimrock in more permeable, non-quartzitic bedded sedimentary rocks in the Vinini Formation, such as found in Senator/Kent drillhole 2007-12. This latter model needs to be explored further at Rimrock.

The introduction of silica, as host rock replacement and as quartz gangue in vein and breccia fillings, is an important ground preparation event enhancing the host rock's ability to fracture and maintain open fissures.

Stone (2006) observes that the Hollister deposit shows some of the primary geological elements of sedimentary rock-hosted Carlin Trend gold deposits, including Tertiary (Eocene) intrusive rocks and the presence of lower plate carbonate rocks.

Tertiary (Miocene and younger) volcanic rocks at Hollister have been affected by only low grade (zeolite and lower) burial metamorphism. The Paleozoic stratigraphic section underlying the Tertiary rocks is dominated by the Ordovician Vinini (Valmy) Formation, which is part of the western assemblage "upper plate" of the Robert's Mountains Thrust. Vinini (Valmy) Formation rocks are characterized by coarsening upward sequences of orthoquartzites, muddy quartzites and sandy argillites and bedded to laminated argillites. Minor calcareous siltstone and sandstone are present in some fine-grained facies of the Valmy Formation. Drilling at Hollister encountered "lower plate" carbonate rocks of the Devonian Rodeo Creek Formation at depths of about 2,630 feet (802 m) below the surface.

The near-surface Hollister deposit was a large low-grade disseminated gold system in Miocene volcanic rocks. This previously exploited mineralization is thought to have been formed by leakage from a deeper, Vinini (Valmy) Formation hosted, high-grade gold feeder system. Within Tertiary rocks, silver and gold ratios tend to be in the range of 1:1, while the Ordovician rocks the Ag:Au ratio is approximately 8:1.

At Hollister, Glanville (Glanville and Banner, 2002) noted that depth may influence vein formation, as the relatively near-surface contacts of Tertiary and Ordovician commonly show diffuse hairline fractures, while at lower depths, banded and bladed adularia-sericite veins are common.

Some of the strongest vein breccias occur in the adjacent Hollister Mine at relatively deeper levels, centered at approximately the 5,100 feet (1,555 m) MSL elevation level, with vein breccias being extremely angular, forming "jig-saw" fit patterns, possibly the result of explosive de-gassing and/or de-watering. Veining is episodic, with the spatial relationship of breccias to vein forms suggesting that banded veins formed soon after the development of over-pressured breccias. Pyrite and marcasite are common gangue mineral constituents; neither sulfide exceeds 5% of the host rock.

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

The physical and chemical mechanisms under which gold-silver in solution will be deposited include oxidation, temperature decrease, and decrease in H_2S content. These changes can be brought about by the hydrothermal transporting solution reaching a boiling point or the mixing of the hydrothermal solution with cooler more oxygenated water. Under hydrostatic conditions, the gold-silver solution (250°C at 3% wt. NaCl) would boil at a depth below surface of approximately 450 meters (Romberger, 1993). Given temperature, pressure and fluid composition variability, the possible hydrothermal solution boiling point, and subsequent gold-silver deposition, could range from as little as 200 meters to more than 1,000 meters below paleosurface.

The following statements are consistent with the above observations:

The Rimrock property is situated along the eastern edge of the north-northwest trending NNR megastructure, which hosts the world-class Midas low-sulfidation epithermal gold-silver deposit. Mineralization at Midas is in vein systems 250-400 meters below surface silica-mercury sinters. A suite of metallic gangue minerals and silica flooding of wall rock accompanies gold-silver mineralization;

The Rimrock mercury mine, located on the Newmont patented ground within the confines of the Rimrock Property, contains a brecciated mercury-rich, high-selenium sinter with crosscutting chalcedony veins. A related fault system cuts the mine area and merges into one of the main Ivanhoe Creek structures;

Work carried out on the Silver Cloud property to the south-southwest of Rimrock, suggests gold-silver mineralization is overlain by a barren silica-mercury sinter;

The Rimrock property has silicified breccia containing fragments of sinter and opaline quartz, and is situated within 1,500 meters of two mercury sinters. Rocks exhibit silica replacement and brecciation healed by further silicification indicating competency suitable for hosting vein-style deposition;

Fault systems are interpreted to exist on the Property, providing likely-plumbing systems for the transport of mineralized hydrothermal fluids;

2007 drill program assay results returned strongly anomalous silver, tungsten and selenium values, as well as mildly anomalous gold values;

Anomalous geochemical values are hosted by Paleozoic quartzites, which show varying degrees of faulting, fracturing and brecciation; and

Quartzites are interbedded with mudstone-shale showing small scale faulting,

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

folding and displacement up to 5 centimeters.

Many volcanic-hosted gold deposits, including nearby Hollister deposit, as well as the Midway and Sleeper deposits, demonstrate spatial and/or genetic relationships to structural variations in the underlying basement. It is theorized that these basement structures act as feeders for the overlying gold deposits. Recent deep gold-silver discoveries at Hollister support this theory, demonstrating that reactivated basement structures, as well as overlying volcanic rocks, can host significant gold deposits.

Low-sulfidation epithermal veins are typically high-risk, high-reward exploration situations. The veins are often physically small, but occasionally are large and high-grade such as Sleeper and Midas. Veins often do not show large alteration aureoles, and may be completely hidden due to post-mineral cover. The potential profitability of these types of bonanza-type deposits makes them attractive exploration targets.

The Rimrock property is an early-stage prospect with very little detailed geologic work. Work to date indicates scattered alteration associated with north-south to north-northwest trending basement structures. Elevated barite and silver values, anomalous mercury, selenium and tungsten values along with mildly anomalous but significant gold values are possibly indicating the presence of a mineralizing system similar to those encountered at the nearby Midas, Silver Cloud and Ivanhoe-Hollister properties. These surface indications demonstrate the need to explore the Property at depth.

It should be recognized that observed rock alteration may or may not be indicative of economic mineralization. The alteration and geochemical anomalies found on the surface of the property are weak when compared to Midas, Silver Cloud or Ivanhoe-Hollister, but these differences could be the effect of multi-phase mineral systems, and height above the mineralized zone rather than mineralizing system intensity. Mineralized bodies of multiple different ages could be present in the main structures at Rimrock. Evaluation of the Rimrock Property was hindered by past poor core recovery from areas of very broken Paleozoic rocks that show anomalous gold, silver and tungsten mineralization.

Silver mineralization encountered in the 2007 drilling implies a potentially economic system exists on the property. These drill intercepts should be followed up with a twin hole to verify the intercept and then subsequent follow-on offset drilling to define the mineral system.

25.2 CONCLUSIONS

The objectives of this technical report are to review past work, report on results from the 2007 core drilling program and to assess the potential for the Rimrock Property to host low-sulfidation epithermal vein-style gold-silver mineralization similar to the nearby Midas and

Ivanhoe-Hollister deposits.

The Property is considered to have good potential to host an economic vein-style gold-silver deposit because:

The Property exhibits argillic alteration, opaline and chalcedonic silica, sinter, and hydrothermal brecciation;

Mines and prospects in the Ivanhoe district have demonstrated gold-silver mineralization underlying siliceous mercury sinters at depth;

Geophysical surveys have identified four major north-south oriented basement structures controlling basement uplift as well as clay and silica alteration in overlying volcanic rocks;

Several sets of north-northeast and north-northwest trending faults could be the source(s) of mineralizing fluids and are interpreted northward extensions of fault structures present in the Hollister property of Hecla Mining;

Drilling in 2007 demonstrated the existence of Paleozoic basement sedimentary rocks that underlie younger Tertiary tuffaceous rocks likely belonging to Wallace's lower volcanic tuff unit, and are immediately underlain by mudstone and quartzites of the Vinini Formation;

The Property is situated along the north-northwest trending North Nevada Rift, which hosts the Hollister, Midas and Mule Canyon low-sulfidation epithermal gold-silver deposits;

The projection of the Carlin Trend, due to sinistral displacement along east-northeast structures, projects immediately below the Hollister and Rimrock Properties. The 39 Ma Hatter Stock sits astride the eastern edge of this ancient and deep seated structural zone;

Plus 100 ppm silver intercepts in the 2007 core drilling indicate potentially economic silver-(gold) mineralization does exist on the Property. This mineralization is hosted within the Paleozoic Vinini section where it is cross-cut by high angle fault structures. This mineralization has yet to be followed up by additional drilling;

Local high-grade tungsten intercepts were found in drillholes 2007-10 and -12. The main Hollister Mine also has local high grade tungsten drill intercepts. The origin of this tungsten mineralization is not yet known, but could be associated with Carlinage Eocene intrusions of the Hatter Stock complex, or with older Mesozoic granitic

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

rocks that possibly could be present locally at depth. This tungsten mineralization should be investigated further in future exploration programs.

26.0 RECOMMENDATIONS

In the writer's opinion, the Rimrock property is of sufficient merit to justify the following two-phase exploration program.

26.1 GENERAL RECOMMENDATIONS

It is imperative that a detailed geologic map of lithology, alteration and structures must be developed in order to properly interpret and define drill targets in conjunction with known geophysical surveys. Then drilling may commence to test the delineated gold-silver-tungsten targets.

26.2 PROPOSED EXPLORATION PROGRAM

Phase 1 – work should comprise detailed geological mapping, additional surface geochemical sampling and additional geophysical surveys. This program is estimated to cost approximately US \$180,000.

Phase 2 – comprises a combination of diamond drilling, perhaps with reverse circulation pre-collar drillholes, of targets defined by Phase 1 work. The drill holes may be expected to reach vertical depths of 500 feet (150 m) up to 1,750 feet (530 m). It is estimated that a minimum of six holes, with a combined length of up to 7,000 feet (2,134 m), may be necessary. This program is estimated to cost approximately US \$590,000.

26.3 PROPOSED BUDGET

Proposed Budgets for Phase 1 and Phase 2 (all currency is USD).

PROPOSED BUDGET – Phase 1 – Exploration Program – Rimrock Project, Elko County, Nevada

Project Preparation Mobe/Demobe (inclu	\$ \$	2,800 8,000			
Field Crew	<u>Rate</u>	<u>Days/Units</u>	<u>Gross</u>		
Project Geologist Geotechnician	\$ 650 \$ 300	30 30	\$19,500 <u>\$ 9,000</u>	\$	28,500
Field Costs					
Lodging and Food	\$150	60	\$ 9,000		

CAT Strategic Metals Corpo	oration Technical Rep	oort Rimrock Project,	Ivanhoe District, Elko	o Co., Neva	da, USA
Communications	\$ 15	60	\$ 900		
Supplies	\$ 25	60	\$ 1,500 \$ 200		
Shipping Vehicle Rental	\$135	30	\$ 200 \$ 4,050		
Other Rentals	\$ 25	30	<u>\$ 750</u>	\$	16,400
Rock & Soil Sampling					
Trace Elements	\$47	200		\$	9,400
<u>Contracts</u>					
Consulting	\$650	10	\$ 6,500		
Drone Mag Survey Magnetics (report, Bolin)			\$ 25,000 \$ 3,500		
Gravity (Magee)			\$ 38,000		
Gravity (report, Bolin) IP (data)	\$2,750	2 miles	\$ 3,500 \$ 15,000		
IP (report, Bolin)	+_)/ 00		<u>\$ 3,500</u>	\$	95,000
Final Report					
Report Preparation and Edit	ting		\$ 2,500		
Data Processing, Copying, B	inding		<u>\$ 600</u>	\$	3,100
<u>Subtotal</u>				\$	163,200
Contingency (10%)				\$	16,320
NET (rounded)				\$	180,000
PROPOSED BUDGET, Phase	2, Exploration	Program, Rim	rock Project, E	Elko Co	unty, Nevada
Project Preparation Mobe/Demobe (including fr	eight, transpo	rtation and wa	ges)	\$ \$	3,600 8,000
Field Crew	<u>Rate</u>	Days/Units	<u>Gross</u>		

 Project Geologist
 \$ 650
 36
 \$ 23,400

 Geotechnician
 \$ 300
 36
 \$ 10,800
 \$ 34,200

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

Page - 136 -

CAT Strategic Metals Corporation | Technical Report | Rimrock Project, Ivanhoe District, Elko Co., Nevada, USA

Field Costs

Lodging and Food Communications Supplies Shipping Vehicle Rental Other Rentals	\$150 \$ 15 \$ 25 \$135 \$ 25	72 36 36 36 36 36	\$ 10,800 \$ 540 \$ 900 \$ 1,000 \$ 4,860 <u>\$ 900</u>	\$ 19,000
<u>Assays & Analyses</u>				
Core Samples	\$ 47	1500		\$ 70,500
<u>Contracts</u>				
Site Preparation Drilling - Reverse Circulation Drilling – Diamond Dill Mobe/Demobe, Field co Reclaimation, including refu	\$ 55/ft sts	1,500 ft 5,500 ft	\$ 10,000 \$ 54,000 \$302,500 \$ 9,600 <u>\$ 18,000</u>	\$ 394,100
<u>Report</u>				
Report Preparation and Edit Data Processing, Copying, Bi	0		\$ 3,750 <u>\$ 600</u>	\$ 4,350
<u>Subtotal</u>				\$ 533,750
Contingency (10%)				\$ 53,375
NET (rounded)				\$ 590,000

27.0 REFERENCES

- Abbott, E.W., and Redfern, R.R., 2002, Qualifying Report on the Rock Creek South Silver Cloud Property, Argenta Mining District, Lander and Eureka Counties, Nevada, USA; unpublished report for Duncan Park Holdings, Vancouver, B.C.
- Bartlett, M.W., Enders, M.S., and Hruska, D.C., 1991, Geology of the Hollister Gold Deposit, Ivanhoe District, Elko County, Nevada; *in* Raines, G. L., Lisle, R. E., Schafer, R. W., and Wilkinson, W. H., eds., *Geology and Ore Deposits of the Great Basin Symposium Proceedings,* Geological Society of Nevada, Reno, Nevada, pp. 957–978.
- Best, M.G., Christiansen, E.H., Deino, A.L., Gromme, C.S., McKee, E.H., and Noble, D.C., 1989, Eocene through Miocene volcanism in the Great Basin of the western United States; *in* Chapin, C.E., and Zidek, J. (eds.), Field excursions to volcanic terranes in the western United States, Volume II: Cascades and Intermountain West, (1989 IAVCEI Assembly), New Mexico Bureau of Mines & Mineral Resources, Memoir 47, p. 91-133.
- Boyle, R.W., 1979, Geochemistry of Gold and its Deposits; Geological Association of Canada, Bulletin 280.
- Cain, P., 2007, Technical report on the feasibility study for the Hollister Development block gold project, Elko County, Nevada; unpublished report prepared for Great Basin Gold, 132 p.
- Camp, V.E., Wells, R.E., 2021, The Case for a Long-Lived and Robust Yellowstone Hotspot; GSA Today, 31 (1), pp. 4-10.
- Corbett, G., 2007, Controls to low sulfidation epithermal Au-Ag mineralization; presentation to the Sydney Mineral Exploration Discussion Group, 6 p.
- Dennis, B., 2006, Vinini Formation, Western Cordillera on line source; <u>http://www.westerncordillera.com/vinini.htm</u>.
- Elston, R.G., 2006, An intensive reconnaissance of the Tosawihi Quarries Archaeological District (Site 26EK3032); U.S. Department of the Interior, Bureau of Land Management, Nevada, Cultural Resource Series No. 16, 3284 p.
- Evolving Gold Corporation, 2010, Evolving Gold Discovers Gold Mineralization at Jake Creek in Nevada - 45.7 Meters at 0.97 gpt Au, Including 28.9 Meters at 1.33 gpt Au -Increases its 100% Owned Land Position: press release 18 November, 2010.

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

- Ferdock, G.C., 2012, Rimrock property brief: report to accompany geologic map, interpretations and cross-sections; unpublished report prepared for Zahav Resources, 8 p.
- Glanville, R.O., and Banner, R., 2002, Summary report for the Ivanhoe Project, Elko County, Nevada; unpublished report *for* Great Basin Gold Ltd.
- Goldstrand, Patrick M. and Schmidt, Kirk W., 2000, Geology, mineralization, and ore controls at the Ken Snyder Gold-Silver Mine, Elko County, Nevada; *in* Cluer, J.K., Price, J.G., Struhsacker, E.M., Hardyman, R.F., and Morris, C.L., eds. *Geology and Ore Deposits* 2000: The Great Basin and Beyond Symposium Proceedings, Geological Society of Nevada, Reno, Nevada, pp. 265-287.
- Harbaugh, D., 2001, Summary Report Geology of the Silver Cloud Property, Elko County, Nevada, USA with recommendations for gold exploration outside of the immediate Silver Cloud mine area: Consulting report for Teck Resources, Inc., 23 p.
- Harrington, E., 2004, Technical report on the Ivanhoe Creek Property, Ivanhoe Mining District, Elko County, Nevada, USA; unpublished report for Senator Minerals Inc., 49 p.
- Harrington, E., 2005, Technical report on the Ivanhoe Creek Property, Ivanhoe Mining District, Elko County, Nevada, USA; unpublished report for Senator Minerals Inc., 49 p.
- Harrington, E., 2005, Technical report on the Ivanhoe Creek Property, Ivanhoe Mining District, Elko County, Nevada, USA; unpublished report for Senator Minerals Inc., 52 p.
- Harrington, E., 2009, Technical report on the Ivanhoe Creek Property, Ivanhoe Mining District, Elko County, Nevada, USA; unpublished report for Kent Exploration Inc., 167 p.
- Hecla Mining Company, 2021, Hecla Reports Fourth Quarter and Full-year 2020 Results; press release dated 18 February, 2021.
- Henry, C.D., Castor, S.B., Starkel, W.A., Ellis, B.S., Wolff, J.A., Laravie, J.A., McIntosh, W.C., Heizler, M.T., 2017, Geology and evolution of the McDermitt caldera, northern Nevada and southeastern Oregon, western USA; Geosphere, 13 (4), pp. 1066-1112.
- Hosterman, J.W. and Patterson, S.H., 1992, Bentonite and Fuller's Earth resources of the United States; U.S. Geological Survey Professional Paper 1522, 45 p.

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

- Hudson, D. M., 2004, Geologic maps, north and south sheets, prepared for Geologix Explorations (US) Inc., 2 sheets.
- John, D.A., 2001, Miocene and early Pliocene epithermal gold-silver deposits in the northern Great Basin, western United States: characteristics, distribution, and relationship to magmatism; *Economic Geology*, Vol. 96, No. 8, pp. 1827–1853.
- John, D.A. and Wallace, A.R., 2000, Epithermal gold-silver deposits related to the northern Nevada rift; in Cluer, J.K., Price, J.G., Struhsacker, E.M., Hardyman, R.F., and Morris, C.L., eds., Geology and Ore Deposits 2000: The Great Basin and Beyond Symposium Proceedings, Geological Society of Nevada, Reno, Nevada, pp. 155–175.
- John, D.A., Vikre, P.G., du Bray, E.A., Blakely, R.J., Fey, D.L., Rockwell, B.W., Mauk, J.L., Anderson, E.D., and Graybeal, F.T., 2010, Descriptive Models for Epithermal Gold-Silver Deposits: Chapter Q of Mineral Deposit Models for Resource Assessment; USGS Scientific Investigations Report 2010-5070-Q, 246 p.
- Kuzma, G., 2002: Internal summary report, Silver Cloud drilling, drillholes SCT-1 to SCT-10; Teck Resources Inc., unpublished, 15p.
- LaPointe, D.D., Tingley, J.V., and Jones, R.B., 1991, Mineral Resources of Elko County, Nevada; Nevada Bureau of Mines and Geology, Bulletin 106, 236 p.
- Leavitt, E.D., 2001, Hydrothermal alteration and geochronology of the Colorado Grande vein, Ken Snyder mine, Elko County: Ralph J. Roberts Center for Research in Economic Geology, Annual Research Meeting 2000, Program and Reports, Feb. 7-8, 2001, 15 p.
- Leavitt, E.D., 2004, Geochronology of the Midas low-sulphidation epithermal gold-silver deposit, Elko County, Nevada; *Economic Geology*, v. 99, no. 8, pp. 1665-1686.
- Leavitt, E.D., Goldstrand, P., Schmidt, K., Wallace, A.R., Spell, T., and Arehart, G.B., 2000, Geochronology of the Midas gold-silver deposit and its relationship to volcanism and mineralization along the northern Nevada rift, *in* Wallace, A.R., and John, D.A., eds., Volcanic history, structure and mineral deposits of the north-central northern rift Nevada rift: Field Trip Guidebook No. 8, Geological Society of Nevada Symposium 2000, The Great Basin and Beyond, p. 157-162.
- Loptien, G., 2006, Technical report on the Silver Cloud property, Elko, Co., Nevada: Consulting report prepared for Geologix Explorations, Inc., 117 p.
- Morris, A.J., 2003, Technical Report West Silver Cloud Gold-Silver Property; unpublished report for Senator Minerals Inc.

- Nash, J.T., Utterback, W.C., and Saunders, J.A., 1991, Geology and geochemistry of the Sleeper gold deposits, Humboldt County, Nevada, an interim report; *in* Raines, G.L., Lisle, R.E., Schafer, R.W., and Wilkinson, W.H., eds., *Geology and ore deposits of the Great Basin*, Symposium proceedings: Reno, Geological Society of Nevada and U.S. Geological Survey, p. 1063-1084.
- Nash, J.T., Utterback, W.C., and Trudel, W.C., 1995, Geology and geochemistry of Tertiary volcanic host rocks, Sleeper gold-silver deposit, Humboldt County, Nevada; U.S. Geological Survey Bulletin 2090, 63 p.
- Nevada Bureau of Mines and Geology, 2002, The Nevada Mining Industry 2002, Nevada Bureau of Mines and Geology Special Publication MI-2002.
- Rodionov, S.M., Fredericksen, R.S., Berdnikov, N.V., and Yakubchuk, A.S., 2014, The Kuranakh epithermal gold deposit, Aldan Shield, East Russia: Ore Geology Reviews, v. 59, p. 55–65.
- Romberger, S.B., A model for bonanza gold deposits; *in* Sheahan, P.A., and Cherrey, M.E., Geoscience Canada Reprint Series 6, Ore Deposit Models Vol. 2, p. 77-86.
- Rhys, D.A., Lewis, P.D., and Rowland, J.V., 2020, Structural controls on ore localization in epithermal Gold-Silver deposits: A mineral systems approach; Society of Economic Geologists, Reviews in Economic Geology, v. 21, p. 83-145.
- Ruvalcaba-Ruiz, D.C., Thompson, T.B., 1988, Ore Deposits at the Fresnillo Mine, Zacatecas, Mexico; Economic Geology, v. 83, p. 1583-1598.
- Rytuba, J.J. and Miller, W.R., 1990, Geology and Geochemistry of epithermal precious metal vein systems in the intra-oceanic arcs of Palau and Yap, western Pacific; Journal of Geochemical Exploration, volume 32, issues 1-3, p. 413-447.
- Stewart, J.H., 1980, Geology of Nevada: A discussion to accompany the Geologic Map of Nevada; Nevada Bureau of Mines and Geology Special Publication 4, 136 p.
- Stone, D.M.R., 2006, Technical Report and updated preliminary assessment of the Ivanhoe Gold Project, July 17, 2006.
- Tewalt, N.A., 1999, Subtle surface expression of high grade veins at the Ivanhoe project: Fall 1998 Field Trip Guidebook; Geological Society of Nevada Special Publication 28, p. 149-161.

- Wallace, A.R., 1991, Effect of late Miocene extension on the exposure of gold deposits in north-central Nevada; in Raines, G.L., Lisle, R.E., Schafer, R.W., and Wilkinson, W.H., eds., Geology and ore deposits of the Great Basin, Geological Society of Nevada, Symposium Proceedings, p. 179-183.
- Wallace, A.R., 2003, Geology of the Willow Creek Reservoir SE Quadrangle; Nevada Bureau of Mines and Geology Map 136, 15 p., 1 plate.
- Wallace, A.R., 2003a, Geology of the Willow Creek Reservoir Quadrangle, Nevada Bureau of Mines and Geology Map 135, 16 p., 1 plate.
- Wallace, A.R. 2003b, Geology of the Ivanhoe Hg-Au District, Northern Nevada: Influence of Miocene Volcanism, Lakes, and Active Faulting on Epithermal Mineralization; Economic Geology, vol. 95, p. 400-424.
- Wallace, A.R., and John, D.A., 1998, New studies of Tertiary volcanic rocks and mineral deposits, Northern Nevada Rift; in *Contributions to the gold Metallogeny of Northern Nevada*; U.S. Geological Survey Open-File Report 98-338, p. 264-278.
- Wilson, S.E., Brechtel, C., and Pennstrom, W.J., 2015, Preliminary Economic Assessment Paramount Gold Nevada Corp., Sleeper Project, Humboldt County, Nevada: Metal Mining Consultants Inc., 221 p.
- Wolverson, N.J., 2020, Technical report on the Silver Cloud Property, Elko County, Nevada, USA; Blackrock Gold Corp., 75 p.
- Wright, J.L., 2004, Summary of geophysical surveys, Ivanhoe Creek Property, Elko County, Nevada; unpublished report, 14 p.
- Wright, J.L., 2005, Battle Mtn.-Eureka Trend discussion: Internal report for Mexivada Mining Corp., 5 p.
- Wright, J.L., 2013, Rimrock Property CSAMT survey, GIS compilation: unpublished report prepared for Rimrock Gold Corp., 19 p.
- Zoback, M.L., and Thompson, G.A., 1978, Basin and Range rifting in northern Nevada: clues from a mid-Miocene rift and its subsequent offsets; Geology, v. 6, p. 111-116.
- Zoback, M.L., McKee, E.H., Blakely, R.J., and Thompson, G.A., 1994, The northern Nevada rift
 Regional tectono-magnetic relations and middle Miocene stress direction;
 Geological Society of America Bulletin, v. 106, p. 371-382.

Zonge Geosciences Inc., 2004, CSAMT survey on the Ivanhoe Creek Project, Elko County,

Nevada for Reliance Geological Services data acquisition report; unpublished report, 10 p.

28.0 CERTIFICATES OF AUTHOR

A. I, Gregory C. Ferdock, do hereby certify that:

1. I am a Consulting Economic Geologist whose principal contact is P.O. Box 769, Virginia City, Nevada 89440.

2. I graduated with a Bachelor of Science degree in Geology from Bloomsburg University of Pennsylvania in 1984. In addition, I obtained a Master's Degree in Geology from the Idaho State University in 1987. I attended MacKay School of Mines, on the campus of the University of Nevada Reno to work on a Ph.D. in Economic Geology after completing all classwork, several iterations of the dissertation and all requisite testing, re-entered industry prior to attaining the degree.

3. I am a member of the American Institute of Professional Geologists (CPG #11060).

4. I have worked as a professional geologist for a total of 37 years since my attendance at university. My career has focused on the exploration and exploitation of economic mineral deposits varying from precious to base metals and industrial minerals. I have worked extensively in Nevada including assignments as both an exploration and mine geologist throughout Nevada. I have completed NI 43-101 Technical Reports for projects in Nevada.

5. I have read the definition of "qualified person" in National Instrument 43-101 and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.

6. I authored this Technical Report, and as a "Qualified Person" reviewed the ongoing exploration program of CAT Strategic Nevada Inc., now managed by Robert Rossner. I am responsible for the preparation of the technical report titled "Technical Report, Rimrock Property, Ivanhoe Mining District, Reno County, Nevada, USA" – dated April 15, 2021 - for CAT Strategic Nevada Inc., based upon my critical review of current and historical technical information and association to the project as a consulting geologist.

7. I visited the property most recently 11 February, 2021.

8. I am responsible for this report and the opinions expressed therein.

9. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required

to be disclosed to make the technical report not misleading.

10. I am independent in all respects of the Rimrock property and of CAT Strategic Nevada Inc., the property owner and issuer, applying all of the tests in Section 1.5 of NI 43-101. I am and have only been a geological consultant to them and own no interest in the company or in the Rimrock property, nor have I ever owned such interests.

11. I have read National Instrument 43-101 and Form 43-101F1, updated June 30, 2011, and the Technical Report has been prepared in compliance with that instrument and form.

12. I consent to the use and public filing of this Technical Report prepared for Soloro Boss Metals Inc. and to the filing of extracts from or a summary of the Technical Report in the written disclosure of CAT Strategic Metals Corporation as required, and confirm that it fairly represents the data of the Rimrock project.

To: British Columbia Securities Commission:

I, Gregory C. Ferdock, do hereby consent to the public filing of technical report entitled Technical Report On The Rimrock Project, Elko County, Nevada, U.S.A. and dated April 15, 2021 (the "Technical Report") by CAT Strategic Metals Corporation (the "Issuer"), with the TSX Venture Exchange under its applicable policies and I acknowledge that the Technical Report will become part of the Issuer's public record.

"Gregory C. Ferdock", 15 April, 2021 Signed and Dated this 15th day of April, 2021

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

29.0 GLOSSARY AND ABBREVIATIONS

GLOSSARY

Alluvium - Stream deposits of comparatively recent time.

Argillic - Pertaining to clay or clay minerals. Disseminated precious metal deposits may exhibit "argillic" alteration characterized by the formation of the clay minerals kaolinite and montmorillonite. Epithermal precious metal deposits may exhibit "advanced argillic" alteration characterized by the clays dickite, kaolinite and pyrophyllite.

Chalcedony - Quartz consisting of crystals that are extremely fine-grained. Grain texture is only visible using a microscope.

Colloform - A textural term applied to finely crystalline, concentric mineral layering. Individual layers commonly feature radial crystal growth (example: chalcedony).

Colluvium - Loose or incoherent deposits, usually at the foot of a slope or cliff and brought there chiefly by gravity.

Hydrothermal - An adjective applied to heated or hot aqueous-rich solutions, to the processes in which they are concerned, and to the rocks, ore deposits and alteration products produced by them.

Ignimbrite - A fine-grained rhyolitic tuff composed of viscous volcanic glass shards that when cooling wrapped around crystals of quartz, feldspar and occasionally amphiboles (hypersthene and/or hornblende) creating a "welded" texture.

Paleosurface - A ground surface that existed in the past.

Phenocrysts - The relatively large crystals in a porphyritic rock. Size usually indicates a longer growing time, so phenocrysts are generally the first minerals formed in magma.

Pluvial - Pertaining to deposits by rain water or ephemeral streams. Deposition due to the action of rain water.

Porphyritic - A textural term igneous rocks in which large crystals (phenocrysts) are set in a finer groundmass which may be crystalline, glassy or both.

Propylitic - Alteration characterized by the mineral assemblage chlorite + epidote + calcite. Due to the presence of the green minerals chlorite and epidote, propylitic alteration is usually easily recognized by its color. Often this zone is quite large, forming a halo around

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

mineralization centers.

Pyroclastic - A general term applied to volcanic materials that have been explosively or aerially ejected from a volcanic vent. Also, a general term for the class of rocks made up of these materials.

Sinter - A chemical sediment deposited by a mineral spring, either hot or cold.

Stockwork - A rock mass interpenetrated by small veins.

Subduction - Descent of one tectonic unit under another.

Vitrophyre - Porphyritic volcanic glass.

Xenolith - Rock fragments foreign to the body of igneous rock in which they occur; an inclusion.

ABBREVIATIONS

\$	United States Dollar	MSL	Mean Sea Level
#	Number	MVT	Mississippi Valley Type
		MWMP	Meteoric Water Mobility Procedure
μm	Micrometer(s)	N	North
°C	Degree Celsius	NA	Not Available/No Assay
°F	Degree Fahrenheit	NAD27	North American Datum 1927
2WD	Two Wheel Drive	NAD83	North American Datum 1983
4WD	Four Wheel Drive	NBMG	Nevada Bureau of Mines and Geology
AA	Atomic Absorption	NDEP	Nevada Department of Environmental
AA		NDEP	Protection
ABA	Acid-Base Accounting	Ni	Nickel
		NEPA	National Environmental Policy Act
AEC	Atomic Energy Commission	NNP	Net Neutralization Potential
٨σ	Silver	NOAA	National Oceanic and Atmospheric
Ag	Silver	NOAA	Association
AGP	Acid Generating Potential	NOI	Notice of Intent
a.k.a.	also known as	NOS	National Ocean Service
AMSL	Above Mean Sea Level	NP	Neutralizing Potential
ANP	Acid Neutralizing Potential	NPR	Neutralization Potential Ratio
AP	Acid Potential	opt	Ounces (troy) per (short) ton
APP	Acid Production Potential	oz/st	Troy ounces per short ton
ARD	Acid Rock Drainage	POO	Plan of Operations
Au	Gold	ppb	Parts Per Billion

AZ	Azimuth	ppm	Parts Per Million
BLM	U.S. Bureau of Land Management	QA/QC	Quality Assurance / Quality Control
Со	Cobalt	Q.E.D.	Quod Erat Demonstrandum (which was to be demonstrated)
Cu	Copper	Pb	Lead
Comp(s)	Composite(s)	PGMs	Platinum Group Metals
ea.	Each	S	South
Elev.	Elevation	SOP	Standard Operation Procedure
EPA	Environmental Protection Agency	SPCC	Spill Prevention Control and Countermeasures Plan
Ft (or ft)	Feet or Foot (measurement)	SRCE	Standard Reclamation Cost Estimator
Ft (or ft) ft ²	Square Feet	st	Short Ton
ft ³	Cubic Feet	SWPPP	Storm Water Pollution Prevention Plan
g	Grams	t	Short ton (2000 pounds = 0.90718474T)
g/t (or g/T)	Grams per (Metric) Tonne	Т	(Metric) Tonne
GIS	Geographical Information Services	TD	Total Depth (drill holes)
GPS	Global Positioning System	Toz	Troy Ounces
ha	Hectare(s)	T/d	Tonnes per Day
ICP	Inductively Coupled Plasma	Tr	Trace
ID	Identification	UPS	United Parcel Service
in	inches	U.S.(US)	United States of America
JV	Joint Venture	USBM	United States Bureau of Mines
kg	Kilogram	USD	United States Dollars
lb	Pound	USFS	United States Forest Service
m	Meter(s)	USGS	United States Geological Survey
Μ	Million or Mega	UTM	Universal Transverse Mercator
Ma	Mega Annum (million years)	WGS84	World Geodetic Survey 1984
MDBM	Mount Diablo Base and Meridian	WWI	World War I (1914-1918)
mg/L	milligrams per liter	WWII	World War II (1939-1945)
mi	mile(s)	Zn	Zinc

CAT Strategic Metals Corporation | Technical Report | Rimrock Project, Ivanhoe District, Elko Co., Nevada, USA

CAT Strategic Metals Corporation | Technical Report | Rimrock Project, Ivanhoe District, Elko Co., Nevada, USA

APPENDIX A

Claim Information

G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

Page - 149 -

CLAIM NAME	ORIGINAL	FILING NAME	FILE NO.	SECTIONS	TOWNSHIP	RANGE
	LOCATION DATE		BLM NV-			
IC No. 1	10-Feb-2021	R. R. Redfern	105229345	18	38N	48E
IC No. 2	11-Feb-2021	R. R. Redfern	105229346	17	38N	48E
IC No. 3	10-Feb-2021	R. R. Redfern	105229347	18,19	38N	48E
IC No. 4	8-Sep-2008	R. R. Redfern	101765904	17	38N	48E
IC No. 5	10-Feb-2021	R. R. Redfern	105229348	13;18	38N	47E;48E
IC No. 6	8-Sep-2008	R. R. Redfern	101657371	17	38N	48E
IC No. 7	10-Feb-2021	R. R. Redfern	105229349	13,24;18,19	38N	47E;48E
IC No. 8	8-Sep-2008	R. R. Redfern	101657372	17	38N	48E
IC No. 9	10-Feb-2021	R. R. Redfern	105229350	13	38N	47E
IC No. 10	19-Oct-2018	R. R. Redfern	101765905	17	38N	48E
IC No. 11	10-Feb-2021	R. R. Redfern	105229351	13,24	38N	47E
IC No. 12	19-Oct-2018	R. R. Redfern	101765906	17	38N	48E
IC No. 13	19-Oct-2018	R. R. Redfern	101765907	17,18	38N	48E
IC No. 15	19-Oct-2018	R. R. Redfern	101765908	8	38N	48E
IC No. 16	19-Oct-2018	R. R. Redfern	101766061	8;17	38N	48E
IC No. 17	11-Feb-2021	R. R. Redfern	105229352	8	38N	48E
IC No. 18	11-Feb-2021	R. R. Redfern	105229353	8,17	38N	48E
IC No. 19	11-Feb-2021	R. R. Redfern	105229354	8	38N	48E
IC No. 20	11-Feb-2021	R. R. Redfern	105229355	8,17	38N	48E
IC No. 21	19-Oct-2018	R. R. Redfern	101766062	17	38N	48E
IC No. 22	19-Oct-2018	R. R. Redfern	101766063	17,20	38N	48E
IC No. 23	9-Sep-2008	R. R. Redfern	101657373	17,20	38N	48E
IC No. 24	9-Sep-2008	R. R. Redfern	101657374	20	38N	48E
IC No. 25	9-Sep-2008	R. R. Redfern	101657375	17,20	38N	48E
IC No. 26	9-Sep-2008	R. R. Redfern	101657376	20	38N	48E
IC No. 27	9-Sep-2008	R. R. Redfern	101657377	17,20	38N	48E
IC No. 28	9-Sep-2008	R. R. Redfern	101657378	20	38N	48E
IC No. 29	10-Feb-2021	R. R. Redfern	105229356	20	38N	48E
IC No. 30	10-Feb-2021	R. R. Redfern	105229357	20	38N	48E
IC No. 31	14-Mar-2012	R. R. Redfern	101543796	7,18	38N	48E
IC No. 33	9-Sep-2008	R. R. Redfern	101656970	7,18	38N	48E
IC No. 35	9-Sep-2008	R. R. Redfern	101656971	18	38N	48E
IC No. 36	9-Sep-2008	R. R. Redfern	101656972	7,18	38N	48E
IC No. 37	14-Mar-2012	R. R. Redfern	101543797	7,8	38N	48E
IC No. 38	14-Mar-2012	R. R. Redfern	101543798	8	38N	48E
IC No. 39	14-Mar-2012	R. R. Redfern	101543799	7,18	38N	48E
IC No. 40	10-Feb-2021	R. R. Redfern	105229358	7,18	38N	48E
IC No. 41	14-Mar-2012	R. R. Redfern	101543800	7,18	38N	48E
IC No. 43	19-Oct-2018	R. R. Redfern	101766064	17;18	38N	48E
IC No. 44	19-Oct-2018	R. R. Redfern	101766065	17,18,19,20	38N	48E
IC No. 47	11-Feb-2021	R. R. Redfern	105229359	18	38N	48E
IC No. 48	11-Feb-2021	R. R. Redfern	105229360	17	38N	48E

Claim Information - Ivanhoe Creek Property

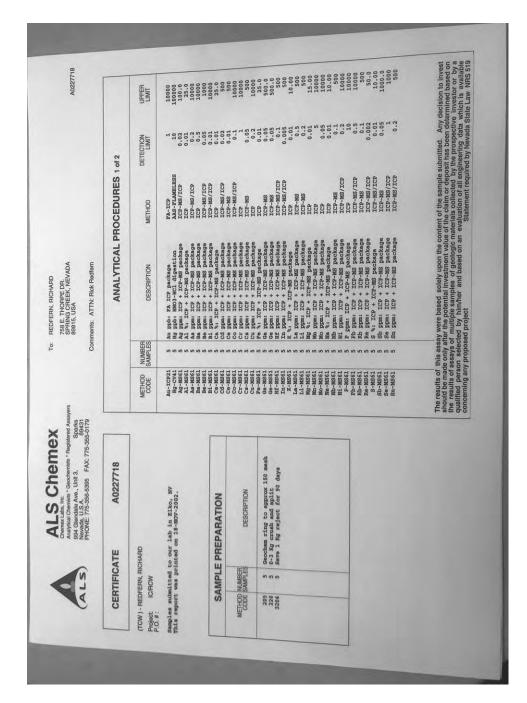
G. C. Ferdock, PhD (abd), MSc, QP, P.O. Box 769, Virginia City, Nevada 89440 | 15 April 2021

Page 150

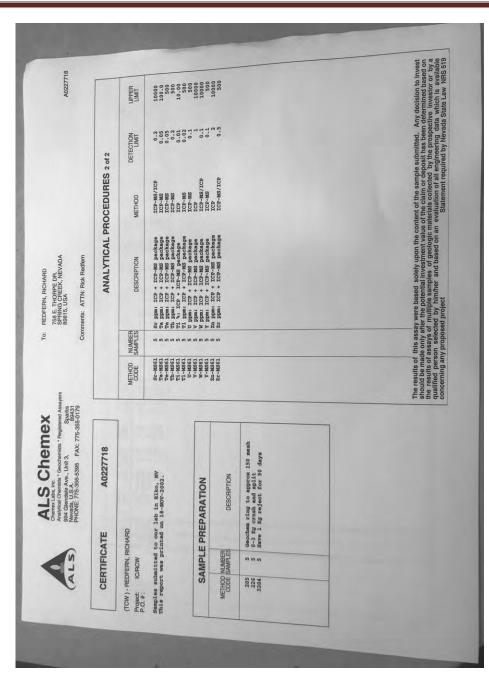
IC No. 50	11-Feb-2021	R. R. Redfern	105229361	20	38N	48E
IC No. 53	10-Feb-2021	R. R. Redfern	105229362	18	38N	48E
IC No. 54	10-Feb-2021	R. R. Redfern	105229363	18,19	38N	48E
IC No. 55	10-Feb-2021	R. R. Redfern	105229364	18	38N	48E
IC No. 56	10-Feb-2021	R. R. Redfern	105229365	18,19	38N	48E
IC No. 57	10-Feb-2021	R. R. Redfern	105229366	18	38N	48E
IC No. 58	10-Feb-2021	R. R. Redfern	105229367	18,19	38N	48E
IC No. 59	10-Feb-2021	R. R. Redfern	105229368	18	38N	48E
IC No. 60	10-Feb-2021	R. R. Redfern	105229369	18,19	38N	48E
IC No. 61	10-Feb-2021	R. R. Redfern	105229370	18	38N	48E
IC No. 62	10-Feb-2021	R. R. Redfern	105229371	18,19	38N	48E
IC No. 63	10-Feb-2021	R. R. Redfern	105229372	18	38N	48E
IC No. 64	10-Feb-2021	R. R. Redfern	105229373	18,19	38N	48E
IC No. 65	10-Feb-2021	R. R. Redfern	105229374	18	38N	48E
IC No. 66	10-Feb-2021	R. R. Redfern	105229375	18,19	38N	48E
IC No. 67	10-Feb-2021	R. R. Redfern	105229376	18	38N	48E
IC No. 68	10-Feb-2021	R. R. Redfern	105229377	18,19	38N	48E
IC No. 69	11-Feb-2021	R. R. Redfern	105229378	8	38N	48E
IC No. 70	11-Feb-2021	R. R. Redfern	105229379	8,17	38N	48E
IC No. 71	11-Feb-2021	R. R. Redfern	105229380	8	38N	48E
IC No. 72	11-Feb-2021	R. R. Redfern	105229381	8,17	38N	48E
IC No. 77	11-Feb-2021	R. R. Redfern	105229382	8	38N	48E
IC No. 78	11-Feb-2021	R. R. Redfern	105229383	8	38N	48E
IC No. 81	11-Feb-2021	R. R. Redfern	105229384	8	38N	48E
IC No. 82	11-Feb-2021	R. R. Redfern	105229385	8	38N	48E
IC No. 83	11-Feb-2021	R. R. Redfern	105229386	8	38N	48E
IC No. 84	11-Feb-2021	R. R. Redfern	105229387	8	38N	48E
IC No. 85	11-Feb-2021	R. R. Redfern	105229388	8	38N	48E
IC No. 86	11-Feb-2021	R. R. Redfern	105229389	8	38N	48E
IC No. 87	14-Mar-2012	R. R. Redfern	101543801	8	38N	48E
IC No. 88	14-Mar-2012	R. R. Redfern	101543802	8	38N	48E
IC No. 89	14-Mar-2012	R. R. Redfern	101543803	8	38N	48E
IC No. 90	14-Mar-2012	R. R. Redfern	101543804	8	38N	48E
IC No. 91	9-Sep-2008	R. R. Redfern	101656973	8	38N	48E
IC No. 92	9-Sep-2008	R. R. Redfern	101656974	8	38N	48E
IC No. 93	8-Sep-2008	R. R. Redfern	101657364	8	38N	48E
IC No. 94	8-Sep-2008	R. R. Redfern	101657365	8	38N	48E
IC No. 95	8-Sep-2008	R. R. Redfern	101657366	7,8	38N	48E
IC No. 96	8-Sep-2008	R. R. Redfern	101657367	7,8	38N	48E
IC No. 97	14-Mar-2012	R. R. Redfern	101543805	17	38N	48E
IC No. 98	8-Sep-2008	R. R. Redfern	101657368	17	38N	48E
IC No. 99	9-Sep-2008	R. R. Redfern	101657369	17	38N	48E
IC No. 100	9-Sep-2008	R. R. Redfern	101657370	17	38N	48E
IC No. 102	14-Mar-2012	R. R. Redfern	101543806	7	38N	48E
IC No. 103	14-Mar-2012	R. R. Redfern	101545127	7	38N	48E
IC No. 104	14-Mar-2012	R. R. Redfern	101545128	7	38N	48E
IC No. 105	14-Mar-2012	R. R. Redfern	101545129	7	38N	48E

CAT Strategic Metals Corporation | Technical Report | Rimrock Project, Ivanhoe District, Elko Co., Nevada, USA

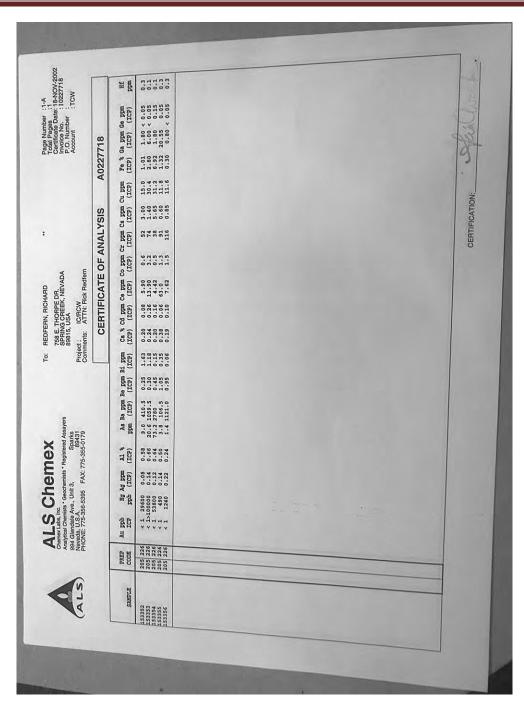
IC No. 106	14-Mar-2012	R. R. Redfern	101545130	7	38N	48E
IC No. 108	14-Mar-2012	R. R. Redfern	101545131	7	38N	48E
IC No. 148 Fraction	10-Feb-2021	R. R. Redfern	105229390	19,20	38N	48E
IC No. 149 Fraction	10-Feb-2021	R. R. Redfern	105229391	20	38N	48E
IC No. 150	10-Feb-2021	R. R. Redfern	105229392	20	38N	48E
IC No. 151	10-Feb-2021	R. R. Redfern	105229393	20	38N	48E
IC No. 152	10-Feb-2021	R. R. Redfern	105229394	20	38N	48E
IC No. 153	10-Feb-2021	R. R. Redfern	105229395	20	38N	48E
IC No. 154	10-Feb-2021	R. R. Redfern	105229396	20	38N	48E
IC No. 155	10-Feb-2021	R. R. Redfern	105229397	20	38N	48E
IC No. 156	10-Feb-2021	R. R. Redfern	105229398	20	38N	48E
IC No. 157	10-Feb-2021	R. R. Redfern	105229399	20	38N	48E
IC No. 158	10-Feb-2021	R. R. Redfern	105229400	20	38N	48E
IC No. 159	10-Feb-2021	R. R. Redfern	105229401	20	38N	48E
RMB #1	4-Nov-2005	Soloro Cobalt and Gold Corp.	101734616	17	38N	48E
RMB #2	4-Nov-2005	Soloro Cobalt and Gold Corp.	101734617	17	38N	48E
RMB #3	4-Nov-2005	Soloro Cobalt and Gold Corp.	101734618	17	38N	48E
RMB #4	4-Nov-2005	Soloro Cobalt and Gold Corp.	101734619	17	38N	48E
RMB #5	4-Nov-2005	Soloro Cobalt and Gold Corp.	101734620	17	38N	48E
RMB #6	4-Nov-2005	Soloro Cobalt and Gold Corp.	101734621	17	38N	48E
RMB #8	27-Oct-2005	Soloro Cobalt and Gold Corp.	101734622	17	38N	48E
RMB #9	27-Oct-2005	Soloro Cobalt and Gold Corp.	101734623	17	38N	48E
RMB #10	27-Oct-2005	Soloro Cobalt and Gold Corp.	101734624	17	38N	48E
RMB #11	27-Oct-2005	Soloro Cobalt and Gold Corp.	101735645	17	38N	48E
RMB #13	4-Nov-2005	Soloro Cobalt and Gold Corp.	101735646	17,18	38N	48E
		Soloro Cobalt				
RIMRMB #1	27-Oct-2005	and Gold Corp.	101735647	18	38N	48E
RIMRMB #2	27-Oct-2005	Soloro Cobalt and Gold Corp.	101735648	18	38N	48E
RIMRMB #3	27-Oct-2005	Soloro Cobalt and Gold Corp.	101735649	18	38N	48E
RIMRMB #4	4-Nov-2005	Soloro Cobalt and Gold Corp.	101735650	18	38N	48E

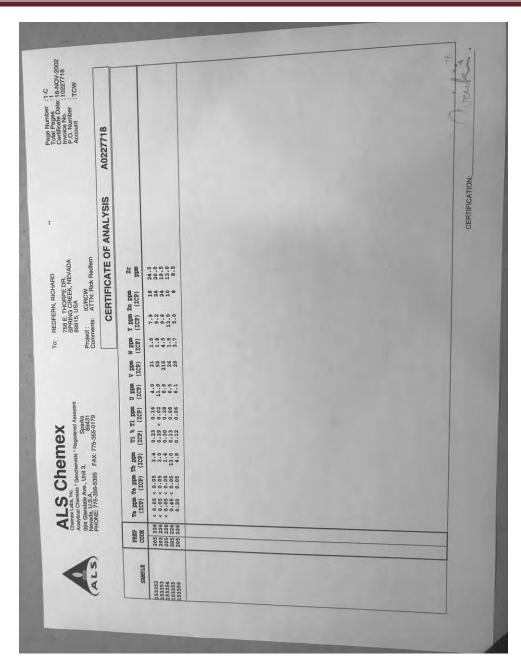

CAT Strategic Metals Corporation Technical Report Rimrock Project, Ivanhoe District, Elko Co., Nevada, USA	А
--	---

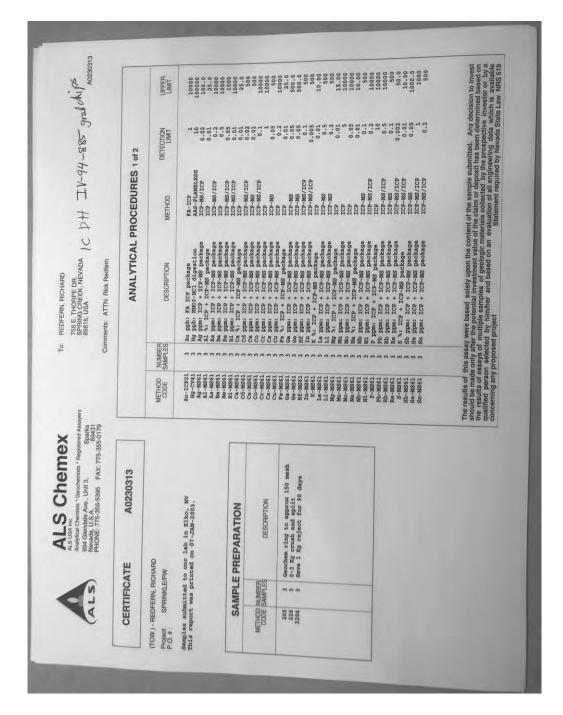
RIMRMB #5	4-Nov-2005	Soloro Cobalt and Gold Corp.	101735651	18	38N	48E
RIMRMB #6	4-Nov-2005	Soloro Cobalt and Gold Corp.	101735652	18	38N	48E
RIMRMB #7	4-Nov-2005	Soloro Cobalt and Gold Corp.	101735653	18	38N	48E
RIMRMB #8	4-Nov-2005	Soloro Cobalt and Gold Corp.	101735654	18	38N	48E
RIMRMB #9	27-Oct-2005	Soloro Cobalt and Gold Corp.	101735655	18	38N	48E
RIMRMB #10	27-Oct-2005	Soloro Cobalt and Gold Corp.	101735656	18	38N	48E
RIMRMB #11	27-Oct-2005	Soloro Cobalt and Gold Corp.	101735657	18	38N	48E
RIMRMB #12	27-Oct-2005	Soloro Cobalt and Gold Corp.	101735658	18	38N	48E
IC No. 226	10-Feb-2021	CAT Strategic Metals Corporation.	105229260	20	38N	48E
IC No. 227	10-Feb-2021	CAT Strategic Metals Corporation.	105229261	20	38N	48E
IC No. 228	10-Feb-2021	CAT Strategic Metals Corporation.	105229262	20	38N	48E
IC No. 229	10-Feb-2021	CAT Strategic Metals Corporation.	105229263	20	38N	48E
IC No. 230	10-Feb-2021	CAT Strategic Metals Corporation.	105229264	20	38N	48E
IC No. 231	10-Feb-2021	CAT Strategic Metals Corporation.	105229265	20	38N	48E

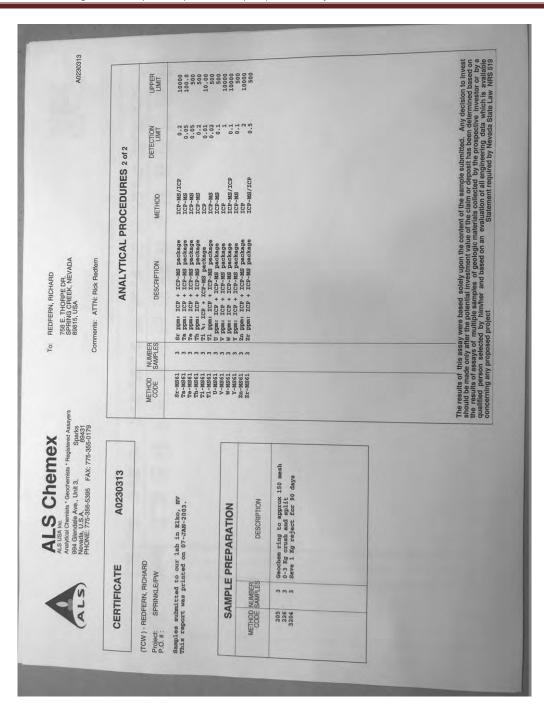

APPENDIX 2 – LABORATORY ASSAY CERTIFICATES

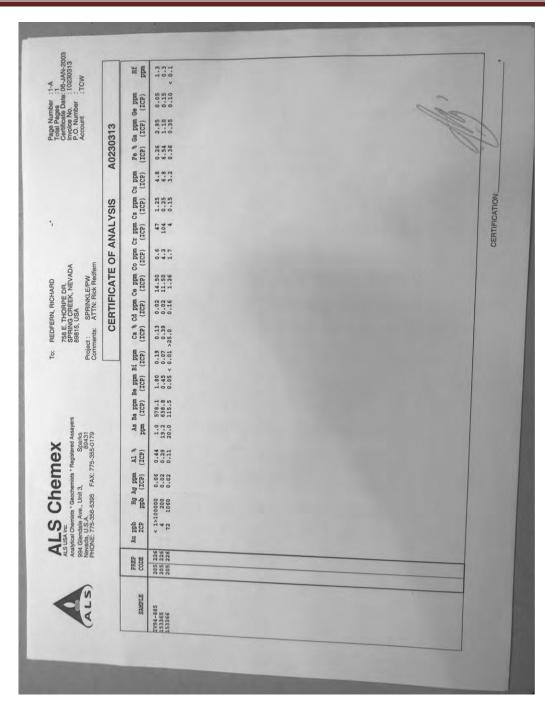
INCLUDED RESULTS:

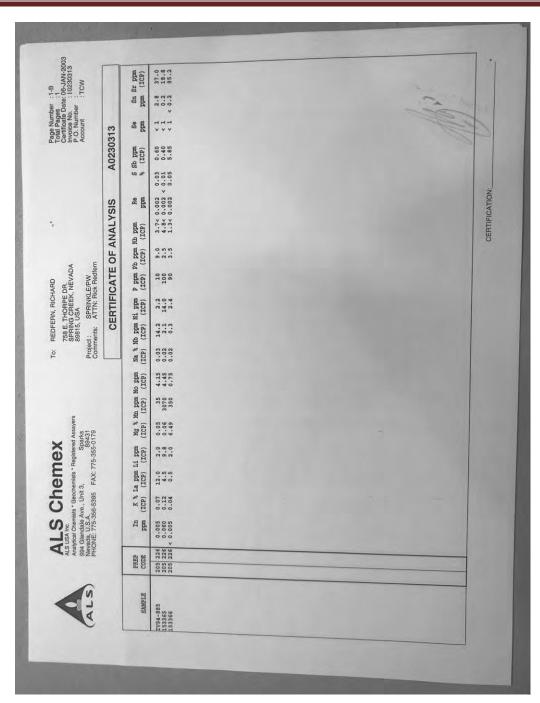

A0227718 A0230313 EL02006581 EL03013432 EL03038710 EL03048427 EL04053141 EL18269901 WN07053030 WN07056006 WN07059081 WN07067510 WN07082588 WN07091102 12-338-08679-01

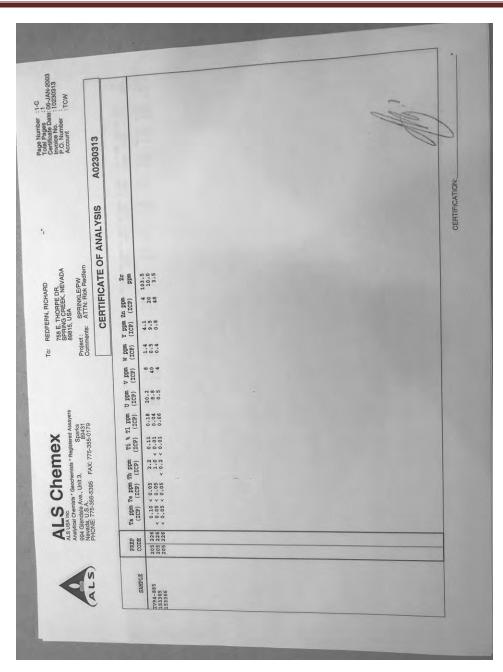

A0227718

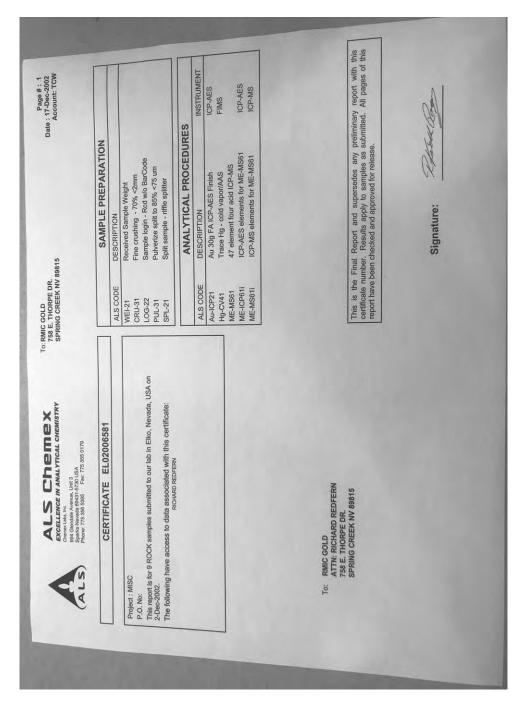


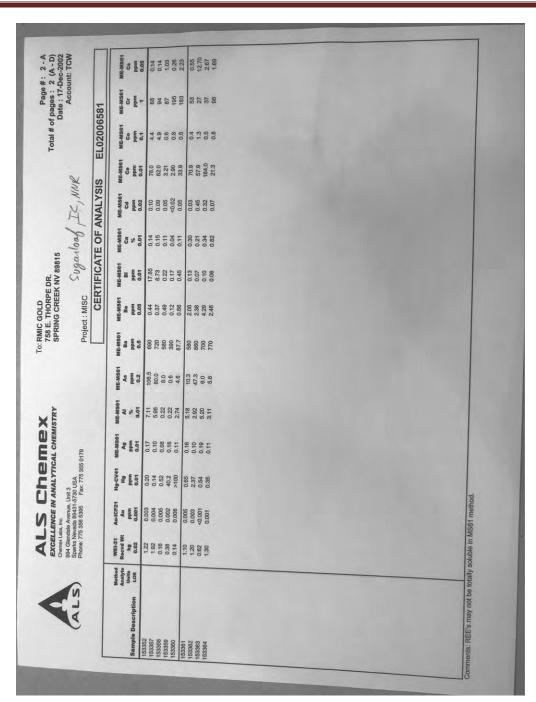



Page 159

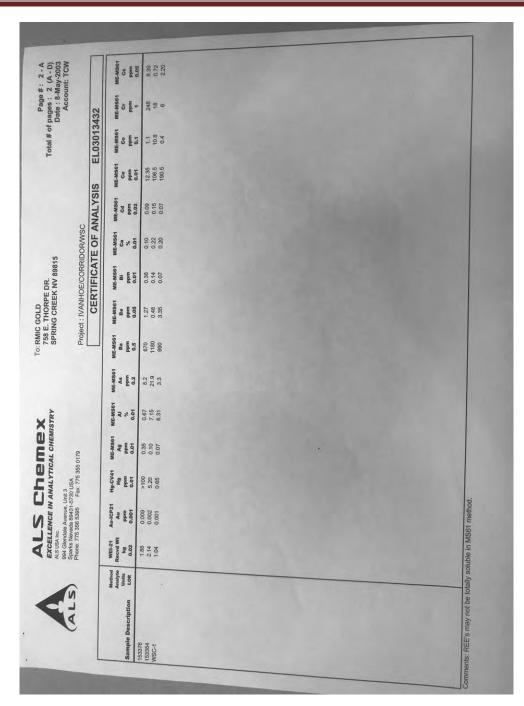

A0230313





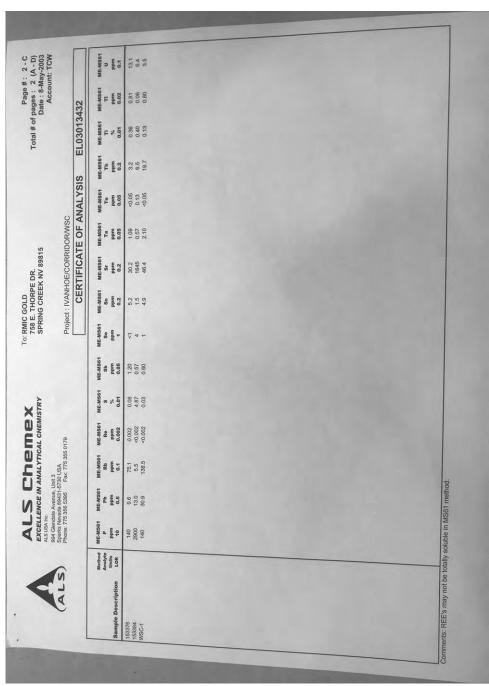


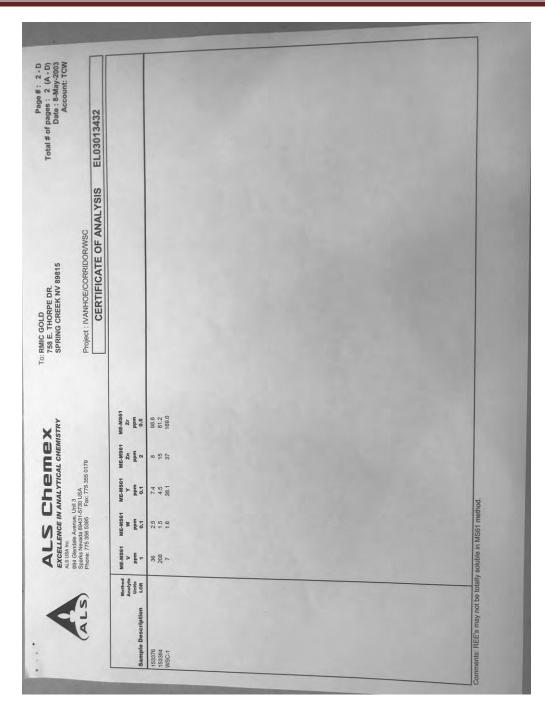
EL02006581


EXCELLENCE IN ANALYTICAL CHEMISTRY 578 E. THORP Communication. In ANALYTICAL CHEMISTRY SPRING CREE Communication. In Analytical Chemistry Spring Creek Statistical Statistical Chemistry Spring Creek Statistical Chemistry Spring Section Sec		Method ME-44561 <	22.3 1.1 0.003 0.24 25.9 1.1 0.003 0.24 5.1 2.7 0.002 0.20 3.4 2.3 0.002 0.02 14.2 5.3 0.002 0.02 14.2 5.1 0.002 1.00	250 17.4 85.0 -0.00 0.01 7.00 250 32.6 118.0 -0.003 0.01 7.00 251 75.5 -0.002 0.01 7.00 0.02 0.01 7.00 260 15.1 75.5 -0.002 0.02 -0.05 0.02 -0.05 2.1 27 75.5 -0.002 0.02 -0.02 0.02 -0.05 2.1 7.5 26 15.1 75.5 -0.002 0.02 -0.05 -0.05 -0.05 2.1 2.5	Comments: REE's may not be totally soluble in MS61 method.
Project : MISC	CERTIFICATE OF ANALYSIS	ME-MS61 ME-MS61 ME-MS61 Sn Sr Ta ppm ppm ppm 0.05 0.05		2.7 4.2 406 3.1 4.8 4.05 2.5 380 0.14 2.5 380 0.14	
		ME-MS61 ME-MS61 To Th ppm ppm 0.05 0.2	1.53 0.87 <0.05 <0.05	40.05 40.05 8.18 40.05 7.18 7.18 7.18	
local # of pages - z va - u) Date : 17-Dec-2002 Account: TCW	EL02006581	1 ME-MS61 ME-MS61 ME-MS61 T1 T1 U % ppm 0.01 0.02 0.1	0.42 0.13 0.44 0.15 0.03 0.06 0.13 0.03 0.13 0.03	0.21 0.09 0.09 0.07 0.07 0.90	

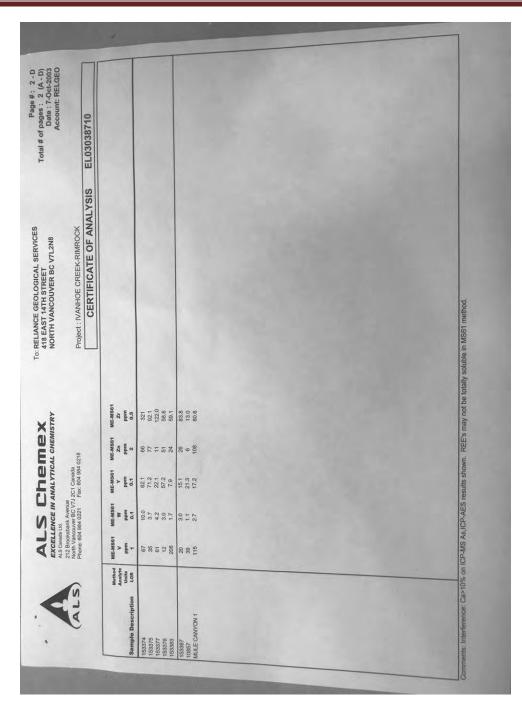


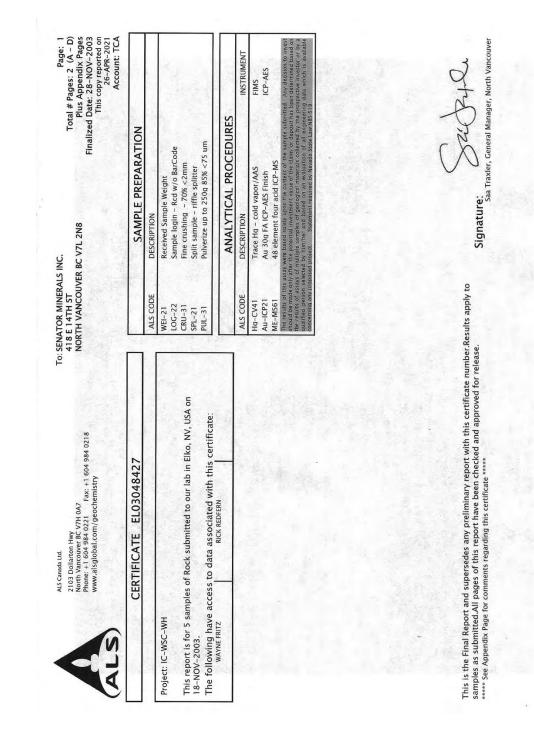
		39815	Account: TCW
CERTIFICATE EL03013432		SAMPLE PREPARATION	NO
	ALS CODE	DESCRIPTION	
Project : IVANHOE/CORRIDOR/WSC P.O. No: This report is for 3 ROCK samples submitted to our lab in Elko, Nevada, USA on 29-Apr-2000. Any access to data associated with this certificate: The following	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample Iogin - Rod wo BarCode Fine crushing - 170%-22mm Split sample - rifle splitter Pulverize split to 85% - 75 um	
RICHARD REDFERN		ANALYTICAL PROCEDURES	URES
	ALS CODE	DESCRIPTION	INSTRUMENT
	Hg-CV41 Au-ICP21 ME-MS61	Trace Hg - cold vapor/AAS Au 30g FA ICP-AES Finish 47 element four acid ICP-MS	FIMS ICP-AES
	The needles of the gas made only after the gas of mittige samples of femther and based to Statement required to	The reals of the acay we have clock provit the control files anote a strates. Any determined factor to meet strated for anote and anote on the acay acay acay acay acay acay acay aca	mentals. Any statem to mean anound a determined based on the state of associated based on the state of associated based on consenting any proposed project
To: RMIC GOLD ATTN: RICHARD REDFERN 758 E. THORPE DR. SPRING CREEK NV 89815			
This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.	rr. Results apply to ase.	Signature:	K


EL03013432



CAT Strategic Metals Corporation	Technical Report	Rimrock Project,	Ivanhoe District,	Elko Co.,	Nevada,	USA


CERTIFICATE EL03038710 Project : IVANHOE CREEK-RIMROCK ALS CODE P.O. No: ALS CODE P.O. No: Nei 2-3 This report is for 8 ROCK samples submitted to our lab in Elko, Nevada, USA on WEI-21 This report is for 8 ROCK samples submitted to our lab in Elko, Nevada, USA on PUL-31 The following have access to data associated with this certificate: PUL-31 RICK REDEERN TONY SMON	E DESCRIPTION Received Sample Weight Fine cutshing - 70% <2mm	
USA on		
USA on	Received Sample Weight Fine crushing - 70% <2mm	
NOWS AND I	Sample login - Rcd w/o BarCode Putverize split to 85% <75 um Split sample - riffe splitter	
	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
Hg-CV41 Au-ICP21 ME-MS61 ME-MS61	Trace Hg - cold vapor/AAS Au 30g FA ICP-AES Finish 47 element four acid ICP-MS	FIMS ICP-AES
the result must configure to the result of multi- patients balances balances	The earlier of this easisy we based solely upon the context of the sample submitted. Any decision to traves should be autoe any attribute particular submitted or the cubic of popular laws been drammatizabased from the sub-to- of mupple sample of geological materials contexted by the prospective reveaux or by a stalling parent sector of the analysis and the submitted of a suppression of an whole is measure or to particular provided parent attravelysis and the submitted of a suppression of an whole is measured with the proposed proped attravent restributed of the anymeter of data whole is measured attravely any proposed proped attravent restributed of the anymeter of data whole is measured attravely any proposed proped.	ecision to invest should ad on the results of assa tailited person selected any proposed project.
To: RELIANCE GEOLOGICAL SERVICES ATTM: RUCK REDFERN 758 E. THORPE DRIVE SPRING CREEK NV 89815 USA		
This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.	to Signature:	A


EL03038710

		ALS C North Phone	ALS EXCELLENCE ALS Canada LIG. 212 Brooksbank Av North Vancouver B Phone: 604 984 022	Nenue BCV7J 2C	ALS CHEM EXCELLENCE IN ANALYTICAL C ALS Cando Int ALS Constants AND Winnew ECV/JS CC Cando Phone Edv 9201 Fax 649 4021	ALS Chemex Excellence in ANALYTICAL CHEMISTRY EXCELLENCE IN ANALYTICAL CHEMISTRY 212 BLOOSSIAN ANNO. 212 B	STRY		To: REI 418 NOI	To: RELIANCE GEOLOGICAL SERVICES 418 EAST 14TH STREET NORTH VANCOUVER BC V7L2N8 Denioa - MANULOE COEEX DIMPOCAN	RELIANCE GEOLOGICIAL SERVIC 418 EAST 14TH STREET NORTH VANCOUVER BC V7L2N8 DOGOM - NVANUOE CEPEEV DIMEOR	T SC V7L2N8	S		Total # c	Page #: 2 - A Total # of pages: 2 (A - D) Date : 7-Oct-2003 Account: RELGEO	Page #: 2 - A pages: 2 (A - D) Date : 7-Oct-2003 Account: RELGEO
Name Name <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>CE</th><th>RTIFIC/</th><th>ATE OF</th><th>ANALYS</th><th></th><th>EL0303</th><th>8710</th><th></th></th<>										CE	RTIFIC/	ATE OF	ANALYS		EL0303	8710	
	Met Ana Un Sample Description Lo					ME-MS61 AI % 0.01	ME-MS61 As Ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	1.1	1	No.				ME-MS61 Cu ppm 0.2
	53374 53375 53377 53378 53378 53378 53383	1.1 2.05 0.66 0.56 2.42			0.30 0.06 0.17 0.31 0.09	8.13 5.34 4.11 4.95 8.80	9.8 9.5 8.7 10.8 22.0	210 210 180 390	7.15 8.18 1.40 13.55	0.56 0.23 0.81 0.17	0.58 0.47 0.25 0.26 0.38	0.27 0.27 0.12 <0.02 <0.02	113.0 72.5 55.7 42.5 114.6	2.7 3.2 1.0 0.7 5.1	43 88 89 28 48 68	7.22 7.13 2.20 8.47 8.47	228 7.0 10.2 7.5
	20387 867 ULE CANYON 1	1.90			0.11 0.15 83.5	0.58 0.26 3.01	9.9 9.8 1680	840 2610 120	1.31 0.55 0.63	0.38	0.14 0.14 14.20	0.15 0.15 0.28	6.76 8.13 21.1	0.9 2.4 16.2	13 41 212 24	0.35 0.35 1.39	6.6 10.1 35.7

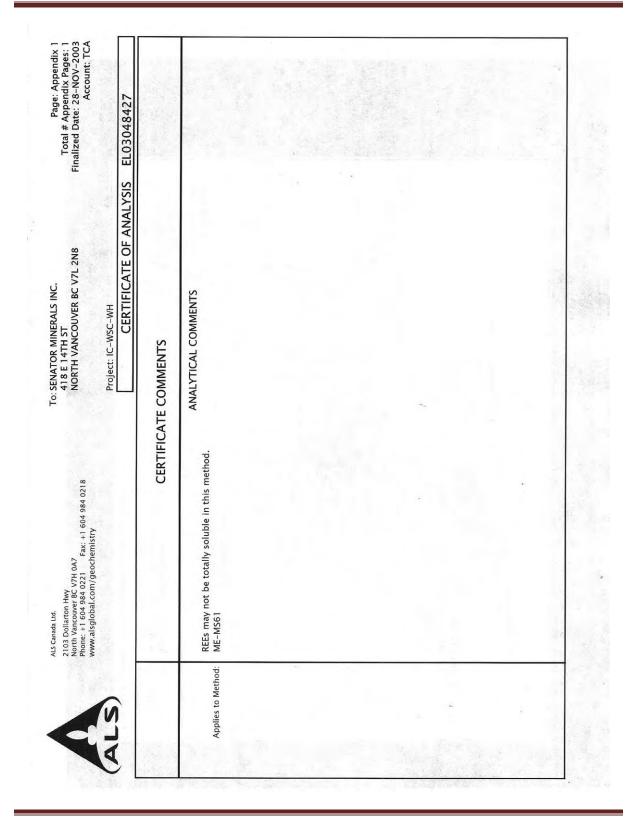
EXCELLENCE IN ANALYTICAL CHEMINAL ALS Consolin ALS Consolin ALS Consolin ALS Consolin ALS Consolin ALS Consolin ALS Consolin ALS Consolin Printi Vaccover BC V12 Cit Extendi Fis Extendi Extendi AL Extendi Extendi Extendi Extendi	Activity		HEMISTRY HEMISTRY HEMISTRY HEMISTRY HEMISTRY Hamin Ham	HEMISTRY AREMISTRY AREMISTRY <th< th=""><th>ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS</th><th></th><th>Method Method Method Sample Description Lon ou</th><th>153374 1. 153375 1. 155377 1. 153378 1. 153378 1. 153378 5.4</th><th>10657 10657 MALE CANYON 1 15.55</th></th<>	ALS		Method Method Method Sample Description Lon ou	153374 1. 153375 1. 155377 1. 153378 1. 153378 1. 153378 5.4	10657 10657 MALE CANYON 1 15.55
MANALTTGAL CHEM Provide Stands 1. Fac 604 984 0216 1. Fac 604 984 0216 1. Fac 604 984 0216 1. Fac 604 984 0216 0.02 011 17 0.03 011 0.12 02 0.13 01 0.12 27 0.23 114 0.12 23 0.13 01 0.12 23 0.13 01 0.13 0		HEMISTRY HEMISTRY HEMISTRY HI HI HI HI HI HI HI HI HI HI	HEMISTRY HEMISTRY HEMISTRY HE HE-CVAI HE HE-CVAI HE HARA A 9.37 0.140 2.38.4 0.073 3.8.8 0.104 2.2.3 0.073 3.2.3 0.073 3.2.3 0.047	HEMISTRY AREMISTRY AREMISTRY <th< td=""><td>EXCELLENCE ALS Canada Lid. 212 Brooksbank Ave North Vancouver BC Phone: 604 984 022</td><th></th><td>ME-MS61 ME-MS Fe Ga % ppm 0.05</td><td>1.25 32.1 1.90 25.1 1.49 25.9 1.02 25.9 5.40 29.2</td><td></td></th<>	EXCELLENCE ALS Canada Lid. 212 Brooksbank Ave North Vancouver BC Phone: 604 984 022		ME-MS61 ME-MS Fe Ga % ppm 0.05	1.25 32.1 1.90 25.1 1.49 25.9 1.02 25.9 5.40 29.2	
ICAL CHEM ICAL CHEM PM 04 114 114 114 114 114 114 114 114 112 25 21 25 114 12 25 21 23 25 21 23 25 21 23 25 25 25 25 25 25 25 25 25 25 25 25 25	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HEMISTRY HIB HACVA1 HI HACVA1 HI HACVA1 HA 937 7 4 937 7 4 937 2 344 3 223 3 223	HEMISTRY HEM	HEMISTRY NORTHY HEMISTRY	IN ANALYT				
	₩9-CV41 ₩9-CV41 ₩9 ₩9.2 0.049 24.4 22.3 2.2.3		44 Mile Mager Mile Mile Mager Mile Mager Mile Mager Mile Mager Mile Mile Mile Mile Mile Mile Mile Mile	41 MEASING MEA	ICAL CHEM			11.4 117 155 27 14	2 7 2 2 4 2
ANR LAS		AST 14TH STREET H VANCOUVER BC CERTIFICAT CERTIFICAT Metaler measer bas 0.8 31,4 0.0 33,4 0.0 33,4 0.0 52.0 0.2 52.0 0.0	STREET UVER BC DE CREEK Mathematical S37 009 120 120 33 10.8 10.8 10.8		V7L2N8 -RIMROCH	TE OF A	ME-MS61 Mg % 0.01	0.40 0.33 0.19 0.03 0.06	0.04
ANR LAS		AST 14TH STREET H VANCOUVER BC VTL2N8 4.: IVANHOIC CREEK-RIMROC CERTIFICATE OF A ME-MS01 ME-MS01 ME-MS01 Lan U Data 22 0.03 52.6 22.2 0.06 52.6 22.2 0.06 52.6 22.2 0.06 52.6 0.05 10.4 10.8 0.01 10.4 10.8 0.01	STREET UVER BC VTL2NB DE CREEK-RUNROC TIFICATE OF A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	V7L2N8 E OF A MEMBER 0.04 0.05	~	NALYSI	Me-MS61 Mn ppm 5	167 217 69 91	14 25 14 26 26 26 26 26 26 26 26 26 26 26 26 26
ANR LAS		AST-14TH STREET AST-14TH STREE	STREET STREET UVER BIC VTL2NB E CREEK-RIMROCK JE CREEK-RIMROCK IFFICATE OF ANALYSI Reader NE-MBON NE-MBON Reader	V1L2N8 -RIMROCK E OF ANALYSI E OF ANALYSI E OF ANALYSI memory and			ME-MS61 Mo ppm 0.05	2.52 3.22 5.48 4.53 5.59	6.44 270 270
418 EAST TATH STREET 418 EAST TATH STREET Fojledt : IVANHOE CREEK-RIMROCK Fojledt : IVANHOE CREEK-RIMROCK Amenie mener and an and and	EAST 14TH STREET RTH VANCOUVER BC VILNB Edit 1 VANHOE CREEKAINACK Edit 2 VIL VIL Edit 2 VIL VIL Manie Manie Manie Manie Manie Manie Manie Manie Manie Manie Manie Manie Manie Manie Manie Manie Manie Manie Manie Manie Silo	Main Main <th< td=""><td>ALLYSIS E terminer termi</td><td>ALYSIS E Remain memory mon pon 102 545 102 545 102 545 102 545 103 5</td><td>d 10.4 mm</td><th>03038</th><td>ME-MS61 Na % 0.01</td><td>0.81 1.05 0.16 1.72 0.31</td><td>0.003</td></th<>	ALLYSIS E terminer termi	ALYSIS E Remain memory mon pon 102 545 102 545 102 545 102 545 103 5	d 10.4 mm	03038	ME-MS61 Na % 0.01	0.81 1.05 0.16 1.72 0.31	0.003
VISITIATISTICAT VISITIATISTICAT VISITIATISTICAT VISITIATISTICAT Project: IVANHOE CREEK-RINIMOCK Kernet in the state in t	Least 147H Streter RtH VANCOUVER EC VILINS Total # of least 147H Streter CERTIFICATE OF ANALYSIS Total # of least 147H Streter Description else: IVANHOC RREKRIMROCK Last 147H Streter Description Total # of least 147H Streter Description Total # of least 147H Streter Description Memory and Last 147 120 013 227 013 231 14 013 222 013 217 222 013 231 14 013 222 013 117 222 013 231 14 013 222 013 117 222 013 241 15 013 222 013 104 117 1183 221 013 104 117 1183 221 013 104 117 1183 221 013 105 117 1183 210 013 105 117 1183 210 013 105 1118 118 118 118 1	Total # of Cotal # of Of Notal # of O	Total # of the manual bin Total # of the manual bin Total # of the manual bin Total # of the the manual bin Total # of the the the the the the the the the the	Total # of Total # of ALVSIS EL03038 ALVSIS EL03038 ALVSIS EL03038 Mon No Mon Na Mon<	Preges U) Date : 7-Oct-2003 Account: RELGEO	710	ME-MS61 Nb ppm 0.1	37.1 17.0 8.7 15.0 6.7	3.0.2 3.8 5.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2
VANIAUSCOURE BCYLIANS AIS EAST 14TH STREET ATT 47H ASTREE CYLIANS Total For ALL AND COURE BCYLIANS Froject: IVANHOE CREEK-RINKTOCK Amenetic meaner Amenetic meaner And and and and and and and and and and a	Least 147H Streter RtH VANCOUVER EC VILINS Total # of least 147H Streter CERTIFICATE OF ANALYSIS Total # of least 147H Streter Description else: IVANHOC RREKRIMROCK ILE OF ANALYSIS Total # of least 147H Streter ILE OF ANALYSIS CERTIFICATE OF ANALYSIS ELO3038 Sign colspan="2">OF OF	Total # of Cotal # of Manual # of	Total # of Total # of ALVSIS EL03038 ALVSIS EL03038 All YSIS EL03038 Remention Managed Managed Managed Managed No Display Of Sign Zign Of Sign Zign Of Sign Zign Of	Total # of Total # of ALVSIS EL03038 ALVSIS EL03038 ALVSIS EL03038 Mon No Mon Na Mon<	ct-2003 Cct-2003 RELGEO		ME-MS61 NI ppm 0.2	3.4 3.6 5.3 4.2 2.9	22 98 9

Image: line biase in the biase in	Implement Implement <t< th=""><th></th><th>Phone 604 0021 Face 60</th><th>NORTH VANCOUVER BC V7L2N8</th><th></th><th>Date : 7-Oct-2003 Account: RELGEO</th></t<>		Phone 604 0021 Face 60	NORTH VANCOUVER BC V7L2N8		Date : 7-Oct-2003 Account: RELGEO	
Mathem F P <th>Mathematical Provide the section of the s</th> <th>Mathematical Mathematical Mathematical<</th> <th>Hermiteti and Hermiteti and Hermiteti andand Hermiteti and</th> <th>CATE OF ANALYSIS</th> <th></th> <th>8710</th>	Mathematical Provide the section of the s	Mathematical Mathematical<	Hermiteti and Hermiteti andand Hermiteti and	CATE OF ANALYSIS		8710	
No No<			No 23 13.5 0.001 23 13.7 0 200 329 13.4 0.003 2.4 13.4 3 9.0 210 329 13.4 0.003 2.44 13.4 3 3.0 310 13.4 50 0.003 2.44 13.4 3 3.0 310 13.4 51 0.003 3.00 0.13 1 1 3.1 310 14.4 51 0.003 3.00 0.13 1 1 1 1 170 15.4 51 0.003 3.00 0.13 1 <th>s61 ME-MS61 ME-MS61 1 Ta Ta Pr 0.05 0.05</th> <th>E-MS61 ME Th ppm 0.2</th> <th>ME-MS61 ME-I TI ppm P</th>	s61 ME-MS61 ME-MS61 1 Ta Ta Pr 0.05 0.05	E-MS61 ME Th ppm 0.2	ME-MS61 ME-I TI ppm P	
JU HO HO<	010 101 <td></td> <td>710 710 710 711 <th 711<="" td="" th<=""><td>2.05 0.09 <0.05 0.52 0.38</td><td></td><td>0.69 0.89 0.31 1.36 0.06</td></th></td>		710 710 710 711 <th 711<="" td="" th<=""><td>2.05 0.09 <0.05 0.52 0.38</td><td></td><td>0.69 0.89 0.31 1.36 0.06</td></th>	<td>2.05 0.09 <0.05 0.52 0.38</td> <td></td> <td>0.69 0.89 0.31 1.36 0.06</td>	2.05 0.09 <0.05 0.52 0.38		0.69 0.89 0.31 1.36 0.06
				0.17 <0.05 0.05			

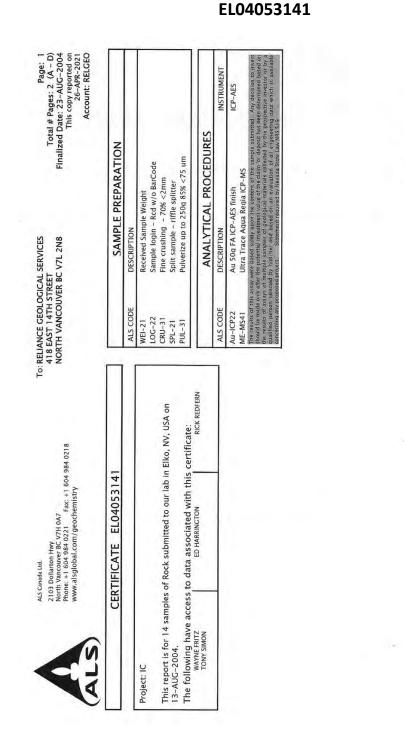
EL03048427

		2103 Dolla North Vanc Phone: +1 www.alsgl	2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 1 www.alsglobal.com/geoch	2103 Dollarton Hwy North Varouver BC VTH 0A7 Phone: +1 604 984 0221 Fax: +1 6 Phone: +1 604 984 0221 Fax: +1 t www.alsglobal.com/geochemistry	, Fax: +1 604 984 0218 nemistry	0218		418 NOR	418 E 14TH ST NORTH VANCOUVER BC V Brainer: IC MISC MU	COUVER BC	418 E 14TH ST NORTH VANCOUVER BC V7L 2N8 Protect: IC MKC MU		L.	Tota P inalized C	l # Pages. Ius Appel Date: 28-1 Acc	Total # Pages: Ž (A – D) Plus Appendix Pages Finalized Date: 28-NOV-2003 Account: TCA
ALN	~							2		CERTIFI	CERTIFICATE OF ANALYSIS	F ANAL	YSIS	EL03048427	18427	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 AI & 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba Ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2
10866 10867 10868 10871 10871		1.14 0.58 0.53 0.55 0.24	0.004 0.003 <0.001 0.018 0.004	0.06 0.14 0.07 0.54 0.29	0.21 4.82 3.35 7.49 0.39	33.0 5.5 24.2 256 3.9	1160 130 640 50	3.53 0.74 1.10 1.85 0.20	0.04 0.20 0.23 0.05 0.19	0.22 0.12 0.51 0.06	0.96 0.02 0.17 0.14	8.44 65.8 43.0 93.0 9.75	3.9 0.5 3.6 0.6	102 18 13 104	3.43 1.07 0.63 0.43 0.35	10.8 7.9 9.3 24.4 7.6
														- 12		

***** See Appendix Page for comments regarding this certificate *****

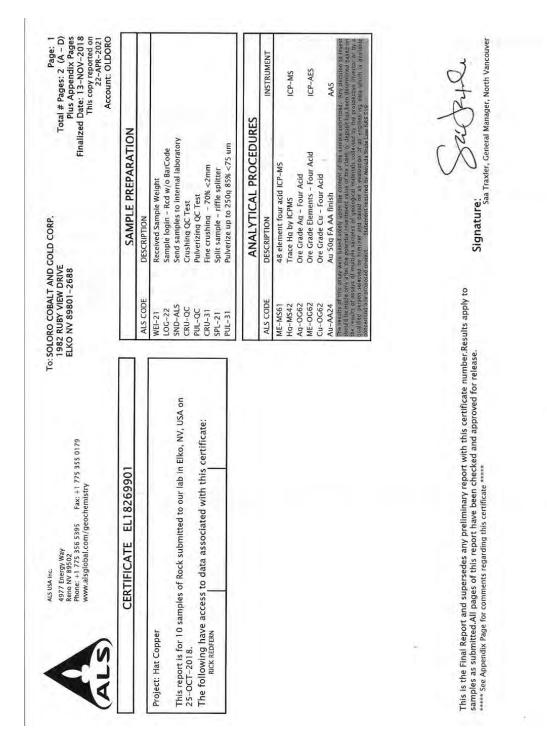

Notice Notice<			ALS Canada Ltd. 2103 Dollarto North Vancou Phone: +1 60 www.alsglob	ALS Canada Ltd. 2103 Dollarton Hwy North Varcouver BC V7H 0A7 Phone: +1 604 984 0221 Phone: +1 604 984 0221 www.alsglobal.com/geochemistry	H 0A7 21 Fax: ·	Fax: +1 604 984 0218 hemistry	0218		To: SEN 418 NOR	SENATOR MINE 418 E 14TH ST NORTH VANCO	To: SENATOR MINERALS INC. 418 E 14TH ST NORTH VANCOUVER BC V Proiser: IC_MSC_MH	SENATOR MINERALS INC. 418 E 14TH ST NORTH VANCOUVER BC V7L 2N8 Protect: IC_MKSC_MH			Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 28-NOV-2003 Account: TCA	Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages ced Date: 28-NOV-2003 Account: TCA	Page: 2 - B ges: 2 (A - D) ppendix Pages (8-NOV-2003 Account: TCA
Her Ansol Her - Ansol	AL	-									CERTIFI	ICATE C	IF ANAL	-YSIS	EL0304	48427	
	Sample Description	Method Analyte Units LOD	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	Hg-CV41 Hg ppm 0.01	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2
	10866 10867 10868 10871 10872		2.85 0.70 3.71 6.53 0.52	1.24 19.10 6.61 19.80 3.02	0.09 0.27 0.14 0.25 0.30	0.2 15.8 0.6 0.4	1.96 >100 1.19 21.1 >100	<0.005 0.036 0.015 0.126 0.126 0.126	0.11 0.88 3.93 1.84 0.07	7.6 34.8 21.7 36.3 5.0	8.4 9.8 44.7 4.8 4.9	0.06 0.06 0.16 0.10 0.10	4660 50 172 28 30	3.00 4.69 3.96 7.64 3.85	0.02 0.15 0.17 0.67 0.03	1.5 36.7 6.1 11.0 13.0	6.5 3.0 4.1 1.8 6.8
																	and the second
							*										
	•																

CAT Strategic Metals Corporation | Technical Report | Rimrock Project, Ivanhoe District, Elko Co., Nevada, USA


		North Vanc Phone: +1 u www.alsgl	North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 www.alsglobal.com/geoch	North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 6 www.alsglobal.com/geochemistry	, Fax: +1 604 984 0218 nemistry	0218		NORTH VANCO	NORTH VANCOUVER	OUVER BC	NORTH VANCOUVER BC V7L 2N8 Proiest: IC-WSC-WH			Finalized Date: 28–NOV–2003 Account: TCA	Plus Appendix Pages red Date: 28-NOV-2003 Account: TCA	pendix Pages 8-NOV-2003 Account: TCA
YLS	-									CERTIFICATE OF ANALYSIS	CATE O	F ANAL	YSIS	EL03048427	18427	
Sample Description	Method Analyte Units LOD	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 5 % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME-MS61 Ti % 0.01	ME-MS61 TI ppm 0.02	ME-MS61 U ppm 0.1
10866 10867 10868 10871 10872		530 130 750 4660 30	4.9 25.4 12.2 12.4 5.1	9.7 22.1 109.5 32.4 3.3	<0.002 <0.002 <0.002 <0.002 <0.002	0.01 1.26 0.92 5.71 0.08	7.93 1.04 0.85 7.26 4.14	∑ ω ω 4 ∑	0.3 7.1 2.2 2.2 2.2	41.6 50.0 244 448 19.4	<0.05 1.50 0.07 0.22 0.26	0.05 0.05 <0.05 <0.05	0.5 16.2 5.2 3.2	0.01 0.26 0.51 0.89 0.28	1.58 0.34 0.45 0.44 0.05	11.0 3.5 3.5 5.1

ALS	ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 F www.alsglobal.com/geoche	td. ton Hwy ouver BC V7I 504 984 022 obal.com/ç	ALS Canada Lid. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 6 www.alsglobal.com/geochemistry	, Fax: +1 604 984 0218 iemistry	218		Project: IC-WSC-WH		rage: 2 - U Total # Pages: 2 (A - D) Plus Appendix Page Finalized Date: 28-NOV-2003 Account: TCA
Method Analyte	ME-MS61 V	ME-MS61 W	ME-MS61 Y	ME-MS61 Zn	ME-MS61 Zr		CERTIFICATE OF ANALYSIS	IF ANALYSIS	EL03048427
Sample Description Units 10866 10867 10868 10851 10871 10871	ppm 1 15 374 374	ррш 0.1 3.7 3.2 3.2 1.8	ррш 0.1 6.7 27.4 7.9 69.1 5.0	ррш 2 117 35 8 8 8 35 7	ррт 0.5 11.0 47.7 32.3 155.0				
									,
				a de	-	-1			

Page 184

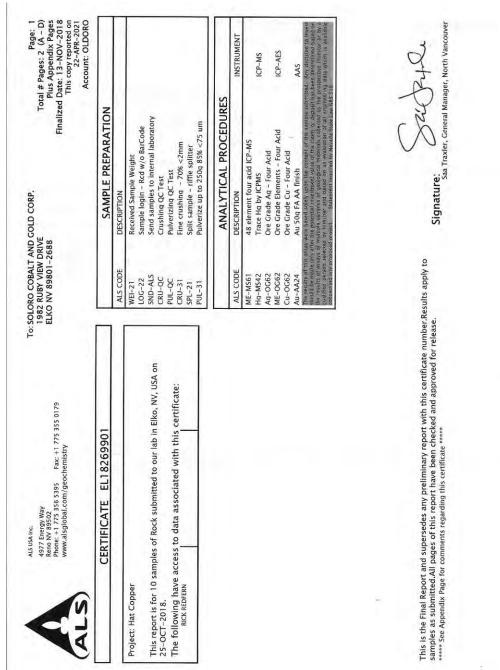

Page 185

Signature: Ceneral Manager, North Vancouver Sail

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release.

Page 186

EL18269901


4		2103 Dollarto North Vancou Phone: +1 60 www.alsglob	rton Hwy ouver BC V7 604 984 02. lobal.com/	2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 6 www.alsglobal.com/geochemistry	Fax: +1 604 984 0218 nemistry	0218		418 NOR	EAST 141 TH VANC	418 EAST 14TH STREET NORTH VANCOUVER BC V7L 2N8	418 EAST 14TH STREET NORTH VANCOUVER BC V7L 2N8			Total # Pages: 2 (A - D) Finalized Date: 23-AUG-2004 Account: RELGEO	# Pages Date: 23-) Accour	Total # Pages: 2 (A - D) zed Date: 23-AUG-2004 Account: RELGEO
ALS	~							Proje	Project: IC		-					
										CERTIFI	CATE C	CERTIFICATE OF ANALYSIS	YSIS.	EL0405314	53141	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au-ICP22 Au ppm 0.001	ME-MS41 Ag ppm 0.01	ME-MS41 AI % 0.01	ME-MS41 As ppm 0.1	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME-MS41 Cr ppm 1	ME-MS41 Cs ppm 0.05
335754 335755 335755		0.94 0.95	0.001	0.03	0.25 0.04	25	<10 <10	270 110	0.83	0.44 0.48	0.63 0.02	0.15 0.11	37.9 4.52	1.3 <0.1	87 128	0.95 0.18
335762 335763 335763		0.73 1.23 0.62	<0.001 <0.001 0.001	0.02	0.06 0.06 0.04	8.7 2.7	0000	360 2000 220	0.12 0.15 0.12	0.22 3.67 0.04	0.02 0.04 0.02	0.02 0.06 0.03	1.8 10.25 6.97	0.8 0.5 0.4	112 124 54	0.14 0.07 0.1
335764 335765 335766 335767 335767		0.82 0.62 0.52 0.64 0.67	 <0.001 0.008 <0.001 <0.001 <0.001 <0.001 	0.02 0.01 0.02 0.04	0.15 0.07 0.19 0.19 0.12	52.6 10.7 1.3 8.4	\$ \$ \$ \$ \$ \$	530 180 60 820	2.25 0.89 0.08 0.45 0.16	0.01 0.01 0.03 0.03	0.19 0.09 0.12 0.44 0.05	0.14 0.18 0.02 0.11	3.26 3.4 6.2 18.45 4.92	1.9 0.9 1.2 1.2	66 106 39 115 150	0.09 0.32 0.46 0.23 0.12
335770 335772 355772 355772		1.000	0.00 40.00 100.06 100.06	0.00 4	0.0 0.0 0.0 0.0	3.3 5 6 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		1550 1550 1280 1280	0.00 4 4:0 8 1:1	0.05 0.63 0.63 0.63	0.03 0.03 0.05 0.05	0.0	2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12	8 ci 1 0 2 7 1 0 1 7 1 0	143 143 188	0.00 0.00 0.00

E		ALS Canada Ltd 2103 Dollarti North Vancol Phone: +1 60 www.alsglo	Ltd. arton Hwy couver BC V; 604 984 02 lobal.com/	ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 6 Phone: +1 604 984 0221 Fax: st1 6 www.alsglobal.com/geochemistry	, Fax: +1 604 984 0218 nemistry	0218		To: RELI 418 NOR	ANCE GEC EAST 14T TH VANG	To: RELIANCE GEOLOGICAL SERVICES 418 EAST 14TH STREET NORTH VANCOUVER BC V7L 2N8	SERVICE	10	-	Page: 2 - B Total # Pages: 2 (A - D) Finalized Date: 23-AUG-2004 Account: RELGEO	F # Pages: Date: 23-/ Accoun	Page: 2 - 8 Pages: 2 (A - D) te: 23-AUG-2004 Account: RELGEO
ALS	~							Proje	Project: IC							
										CERTIFI	CATE C	CERTIFICATE OF ANALYSIS	YSIS.	EL0405314	3141	
Sample Description	Method Analyte Units LOD	ME-MS41 Cu ppm 0.2	ME-MS41 Fe % 0.01	ME-MS41 Ga ppm 0.05	ME-MS41 Ge ppm 0.05	ME-MS41 H ppm 0.02	ME-MS41 Hg ppm 0.01	ME-MS41 In ppm 0.005	ME-MS41 K % 0.01	ME-MS41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME-MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME-MS41 Mo ppm 0.05	ME-MS41 Na % 0.01	ME-MS41 Nb ppm 0.05
335754 335755		8 23.3	0.58	1.6	0.08	0.75 0.38	0.36	0.14	0.11	19.8 3.1	10.8	0.25	130	4.18	0.06	3.05
335761 335762		4 9,4	0.28 0.8	0.32 0.84	<0.05	0.18	4.18	<0.005	0.03	1.8	0.5	10.0	8 4	4.97	0.01	0.13
335763		2.2	0.47	0.31	<0.05	0.24	24.5	0.048	0.02	4.9	0.3	0.01	42	0.41	0.02	0.19
335764 335765 335765		3.1 2.3	>15.0 1.92	2.5 0.33	0.49 0.21	0.21	3.58	0.006	0.03	2.8	1.9 0.6	0.03	221 236	1.94 1.64	0.02 0.02	0.12 0.09
335767 335768 335768		2.5	0.71	1.06	0.05	0.21	25.6 0.72	0.011	0.06	3.5 12.8 4 5	1.5	0.03	503 103	1.12	0.03	0.19
335769		5.9	0.69	0.69	0.11	1	RDF	200.05	0.01	3.1	4.0	10.0	56	1 30	20.0	0.00
335770		4.3	0.35	0.75 0.46	0.06	0.29	145.5 22	<0.005	0.03	3.8 1.4	1.5	0.04	61 64	5 1.62	0.02	0.23
335772		13.1	0.37	1.25	0.62	0.41	8390	<0.005	0.02	2.7	2.8	0.02	50	5.93	0.01	0.84
										1						

CAT Strategic Metals Corporation | Technical Report | Rimrock Project, Ivanhoe District, Elko Co., Nevada, USA

	_	21 03 Dollarto 21 03 Dollarto North Vancou Phone: +1 60 WWW.alsglob	active ac	2013 Dollaton Hwy North Vancouver BC V7H 0A7 North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 (Www.alsglobal.com/geochemistry	Fax: +1 604 984 0218 hemistry	0218		Project: IC	418 EAST 141 NORTH VANC Proiect: IC	418 EAST 14TH STREET NORTH VANCOUVER BC V7L 2N8 Project: IC	. V7L 2N8			Total # Pages: 2 (A - D) Finalized Date: 23-AUC-2004 Account: RELGEO	al # Pages Date: 23- Accour	Total # Pages: 2 (A - D) zed Date: 23-AUG-2004 Account: RELGEO
										CERTIFICATE OF ANALYSIS	CATE O	F ANAL	VSIS	EL04053141	53141	
Sample Description	Method Analyte Units LOD	ME-MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME-MS41 Re ppm 0.001	ME-MS41 S % 0.01	ME-MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0.2	ME-MS41 Ta ppm 0.01	ME-MS41 Te ppm 0.01	ME-MS41 Th ppm 0.2	ME-MS41 Ti % 0.005
335754 335755 335761 335762 335762		6.8 9.3 2.8 7.5	130 20 120 30	8.2 24.9 4.6 24.9 8.3	13.5 2.7 1.2 0.7	 <0.001 <0.003 <0.001 <0.016 <0.016 	0.03 0.03 0.14 0.14	0.31 5.2 0.46 1.12	1.1 60.1 60.1 60.1	0.9 38.9 2.5 2.5	5.9 0.9 4.4	38.3 24 10.4 51.6	0.0 0.0 0.0 0.0 0.0	0.02 0.08 0.02 0.02	13.8 3.6 0.4 0.6	0.012 0.005 0.005 0.006 0.006
335764 335766 335766 335766 335766 335768		2.7 3.3 3.6 6.6	1140 260 40 360 100	3.1 3.1 3.1 3.1 3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.7 2.8 2.8 2.8	 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 	0.03 0.03 0.04 0.08	4.42 4.55 0.21 0.79 0.34	15 12 12 12 12 12 12 12 12 12 12 12 12 12	0.2 0.2 0.6 0.6	0.6 0.7 0.5 0.5	28.8 28.8 24.4 36.8 21.4	10.00 10.000	0.02 0.03	- 0.0 - 2.0 - 4.0 - 4.0	0.005 0.005 0.005 0.005
335769 335770 335777 3357772 3357772	- 1. C	ය ස ස භ ස ස	8 8 8 8	23.1 8.6 4.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5	τ α δ μ	0.00 10.0 0.00 0.00 0.00 0.00	000 200 201 201 201 201 201 201 201 201	1.3 0.74 0.43 4.58 4.58	ර 1 3 0 0 5 1 ල්	လ က က က က စ ဗ ဗ ဗ.	2 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33.6 18.1 29.5 29.5	10.65 10.55 10.55	0.00 0.00 0.00 0.00 0.00 0.00	0 0 2 2 0 0 2 2 0 0 2 3	0.008
															4	

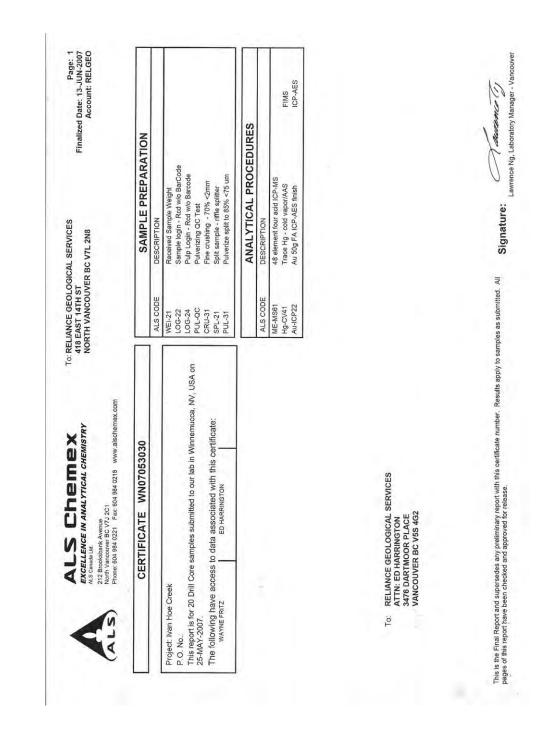
	ALS 21 C Pho	ALS Canada Ltd. 2103 Dollarton Hwy North Vacuver BC VTH 0A7 Phone: +1 604 084 0221 Phone: e604 084 0221 www.alsglobal.com/geochemistry	Hwy er BC V7H (984 0221 ul.com/ge	0A7 Fax: +1 ochemistr	Fax: +1 604 984 0218 hemistry	218		To: RELIANCE 418 EAST NORTH V/	To: RELIANCE GEOLOGICAL SERVICES 418 EAST 14TH STREET NORTH VANCOUVER BC V7L 2N8 Project: IC		Page: 2 - D Total # Pages: 2 (A - D) Finalized Date: 23-AUG-2004 Account: RELGEO
									CERTIFICATE OF ANALYSIS	F ANALYSIS	EL04053141
N A Sample Description	Method Analyte Units LOD	ME-M541 ME TI ppm 0.02	ME-MS41 M U Ppm 0.05	ME-MS41 V ppm 1	ME-MS41 W ppm 0.05	ME-MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5			
335754 335755 335761 335761 335762		0.32 <0.02 <0.02 0.04	2.51 0.86 1.14 2.48 2.48	6 7 6 23	1.72 0.54 0.17 0.54 0.54	53.8 4.98 1.93 5.61	4 co o o u	24 16.2 11.4 10.9			
335764 335765 335766 335766 335768 335768			0.35 1.22 1.18 0.72 1.18	a 144 8 12 8 32 4	0.74 0.56 0.56 0.12 0.12 0.21	5.41 5.41 6.98 6.98 2.59	ი წაი 4 ო	0.7 5.9 32.8 32.8			
335770 335770 335771 335771			0.5	o 約45 倍	0.0285	2.13 3.02 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.7	n m 4* m m	2.2.8 1.4.6 2.3.1 2.3.1 2.3.1 2.3.1 2.3.8 2.3.8 2.3.8 2.3.8 2.3.8 2.3.8 2.3.8 2.3.8 2.3.8 2.3.8 3.4 2.4 3.5 3.5 3.5 4 2.5 3.5 5 3.5 5 3.5 5 5 5 5 5 5 5 5 5 5 5			

EL18269901

Page 192

SIN SIN		Reno NV 83 Phone: +1 7 WWW.alsglv	1502 775 356 535 obal.com/i	Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 7 www.alsglobal.com/geochemistry	Fax: +1 775 355 0179 temistry	6210		ELKC	ELKO NV 89801-2688 Proiect: Hat Conner	01-2688				Iotal # Pages: 2 (A - U) Plus Appendix Pages Finalized Date: 13-NOV-2018 Account: OLDORO	I # Pages lus Appe Date: 13-l Account	Total # Pages: 2 (A - D) Plus Appendix Pages ed Date: 13-NOV-2018 Account: OLDORO
ZIN	-									CERTIFICATE OF ANALYSIS	CATE O	IF ANAL	YSIS	EL18269901	10665	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au-AA24 Au ppm 0.005	ME-MS61 Ag ppm 0.01	ME-MS61 AI % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2
14807 14803 14808		0.38 0.64 1.44	2.73 0.022 0.044	1.07 79.9 >100	6.54 5.78 4.54	72.5 74.1 71.8	760 970 860	0.84 1.03	0.90 0.25 0.20	2.85 0.10 0.11	1.53 0.98 0.30	36.7 40.4 54.2	24.2 4.1	5 9 0 0	3.03 6.63 7.24	>10000 149.5
14809 14802A		1.34	0.015	6.80	5.93	89.3	1520	1.17	0.20	0.09	0.33	44.3	26.0	25 22	7.30	50.7
14801 14804 14805 14805 1934		1.42 2.10 2.66 1.58 1.34	0.031 0.007 0.005 0.024 0.005	1.44 0.12 0.14 0.19 0.07	7.02 2.84 2.93 3.25 6.03	25.9 14.4 6.0 47.2	1160 80 190 1270	0.97 1.23 0.93 2.38 2.74	0.36 0.09 0.12 47.0 0.31	6.81 0.07 0.05 0.10 0.27	0.23 0.02 0.03 0.08 0.15	41.7 40.3 22.1 80.9 80.1	15.7 0.5 0.9 28.7 2.0	6 ∕ 6 8 8	2.19 0.39 0.33 0.95 2.66	136.0 10.1 25.6 47.1 5.0

***** See Appendix Page for comments regarding this certificate *****


V		ALS USA Inc. 4977 Energy Way Freno NV 95502 Phone: +1 775 356 5395 Fax: +1 7 Www.alsglobal.com/geochemistry Www.alsglobal.com/geochemistry	way 02 75 356 539 bal.com/ç	is Fax: + jeochemisi	Fax: +1 775 355 0179 emistry	6/10		To: SOU 198. ELK(To: SOLORO COBALT AND GOLD CORP. 1982 RUBY VIEW DRIVE ELKO NV 89801-2688 Proiect: Hat Conner	ALT AND EW DRIVE 01-2688	COLD CO	RP.		Tota P Finalized [F II # Pages: Plus Apper Date: 13-N Account	Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 13-NOV-2018 Account: 0LD0R0
ñ										CERTIFI	CERTIFICATE OF ANALYSIS	DF ANA	VSIS	EL18269901	10665	
M Ai Sample Description	Method Analyte Units LOD	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	Hg-MS42 Hg ppm 0.005	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 U Dpm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2
		7.76 1.00 0.71 0.97 7.35	18.35 14.00 12.55 14.70 20.6	0.07 0.10 0.09 0.08	0.4 1.0 0.7 1.1 0.5	<0.005 0.287 1.050 0.115 0.009	0.622 0.022 0.019 0.024 0.773	3.51 4.58 3.52 4.42 3.32	18.9 20.8 27.2 23.1 20.4	16.9 17.8 42.6 22.1 20.3	3.89 0.16 0.15 0.14 3.91	892 1940 411 539 891	4.34 14.80 5.66 3.07 4.91	2.30 0.12 0.08 0.12 2.79	6.6 8.1 6.0 6.0	42.7 8.9 6.4 5.5 41.1
		3.50 0.68 0.53 7.00 1.86	17,10 6.54 7.06 12.75 18.85	0.10 0.14 0.13 0.16 0.16	1.3 0.4 0.5 7.2	0.007 <0.005 <0.005 0.007 6.02	0.061 0.060 0.028 0.215 0.148	2.60 0.37 0.19 1.11 0.68	20.5 18.4 10.9 43.7 44.9	15.8 8.3 9.5 21.3 33.9	1.40 0.05 0.04 0.45 0.05	531 57 139 643 72	2.80 0.47 0.41 1.45 1.10	2.24 1.72 1.81 0.24 0.36	5.9 6.7 6.3 29.4	25.0 2.7 2.5 10.0 2.7

Page 194

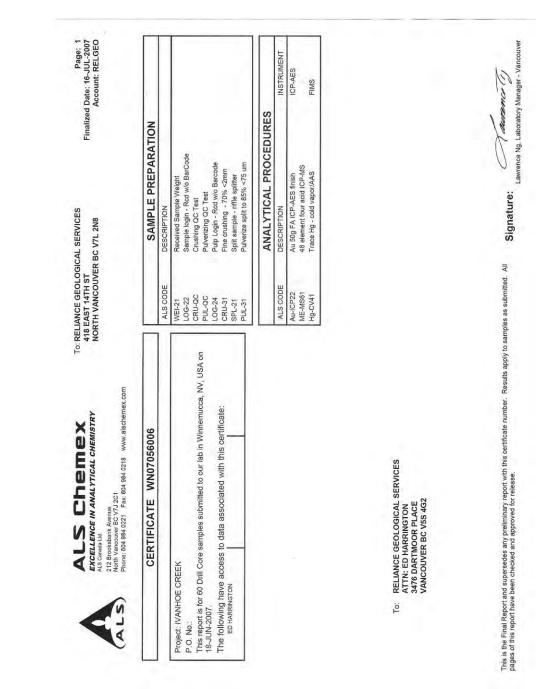
		Reno NV 89502 Phone: +1 775 35 www.alsglobal.c	Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 www.alsglobal.com/geochemistry	oct	Fax: +1 775 355 0179 nemistry	6/10		ELK	ELKO NV 89801-2688	01-2688		1925 KUBY VIEW DKIVE ELKO NV 89801-2688	-	I ota F Finalized [Total # Pages: 2 (A - D) Plus Appendix Pages zed Date: 13-NOV-2018 Account: OLDORO	Iotal # Pages: 2 (A - U) Plus Appendix Pages Finalized Date: 13-NOV-2018 Account: OLDORO
ALS	~							ſo	ברוי חמו רו	CERTIFI	CERTIFICATE OF ANALYSIS	F ANA	LYSIS	EL18269901	10665	
Sample Description	Method Analyte Units LOD	ME-MS61 P Ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 5 % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-M561 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti %. 0.005	ME-MS61 TI ppm 0.02
14807 14803 14808 14808 14802A		1690 140 250 130	22.1 684 465 278 74.7	207 257 211 247 179.5	0.008 0.002 0.002 0.002 0.002	0.07 0.07 0.07 0.07 0.05	0.56 17.55 34.1 7.80 0.58	10.4 1.6 1.4 1.6 10.5	~~~~	3.7 0.4 0.3 3.8	422 43.8 40.9 47.6 47.6	0.33 0.55 0.46 0.59 0.33	1.10 <0.05 <0.05 0.06 0.06	4.04 5.26 5.83 5.83 4.21	0.490 0.039 0.030 0.040 0.40	0.40 2.94 1.96 2.61 0.34
14801 14804 14805 14805 14806 10934		790 70 220 320	20.5 6.0 36.6 19.6	86.2 26.3 16.9 59.0 59.0	<0.002 <0.002 <0.002 <0.002 <0.002	0.04 0.01 0.01 0.24	0.47 0.46 0.35 0.37 5.70	8.6 1.5 0.8 2.7 5.3	∞ 2 2 ~ 2	0.6 1.1 0.5 1.7 4.3	575 62.2 51.9 21.4 150.0	0.48 0.16 0.37 2.02	0.07 <0.05 <0.05 0.21 <0.05	6.39 14.70 6.52 12.90 16.20	0.335 0.060 0.027 0.053 0.124	0.73 0.10 0.07 0.38 0.38

4		ALS USA Inc. 4977 Energy Way Reno NV 89502 Phone: +1 775 35 www.alsglobal.c	an ear and the. 497 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 3 www.alsglobal.com/geochemistry	95 Fax: + geochemis	Fax: +1 775 355 0179 hemistry	6/10		To: SOL 198 ELK	To: SOLORO COBALT AND GOLD CORP. 1928 RUBY VIEW DRIVE ELKO NV 89801-2688	Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 13-NOV-2018 Account: OLDORO
ALN	~							Proj	Project: Hat Copper	
									CERTIFICATE OF ANALYSIS	EL18269901
Sample Description	Method Analyte Units LOD	ME-MS61 U ppm 0.1	ME-MS61 V ppm	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm Z	ME-MS61 Zr ppm 0.5	Ag-OG62 Ag ppm 1	Cu-OG62 Cu 8 0.001	
14807 14803 14808 14809 14809 14802A		3.3 2.3 1.9 2.6 6.1	156 17 13 163	10 10 10 10	13.5 13.5 13.8 13.8 16.3	604 674 250 360 864	11.7 21.7 15.8 27.8 27.8	163	1.255 0.984	
14801 14804 14805 14805 10934		1.9 7.1 7.1 7.1 8.9	101 9 6 50	1.5 0.7 3.0 2.4	13.8 11.3 6.1 33.1	101 8 116 28	33.2 8.1 11.0 8.0 233			
-										
2										ñ
ľ										- 11

ALS USAINE. ALS USAINE. Renor XN 8502 Phone: +1 775 33 Www.alsglobatic ME-M561 ME-M561 ME-M561 Al2-44 Processed at Ag-OG62 at Ag-OG62 at ME-OG62 at	AIS USA INF. To SUBJOR COBATT AND COLD CORP. Page: Appendix 1 1932 RUBY VIEW DRIVE TO al # Appendix 1 1932 RUBY VIEW DRIVE TO al # Appendix Pages: 1 1932 RUBY VIEW DRIVE TO al # Appendix Pages: 1 1932 RUBY VIEW DRIVE TO al # Appendix Pages: 1 1932 RUBY VIEW DRIVE TO al # Appendix Pages: 1 1932 RUBY VIEW DRIVE TO al # Appendix Pages: 1 1932 RUBY VIEW DRIVE TO al # Appendix Pages: 1 1932 RUBY VIEW DRIVE TO al # Appendix Pages: 1 1932 RUBY VIEW DRIVE TO al # Appendix Pages: 1 1932 RUBY VIEW DRIVE TO al # Appendix Pages: 1 1932 RUBY VIEW DRIVE TO al # Appendix Pages: 1 1932 RUBY VIEW DRIVE TO al # Appendix Pages: 1 1932 RUBY VIEW DRIVE TO al # Appendix Pages: 1 1932 RUBY VIEW DRIVE TO al # Appendix Pages: 1 1932 RUBY VIEW DRIVE TO AD ALTYSIS Project: Hat Copper TO al # Appendix Pages: 1 2002 RUBY VIEW DRIVE TO AD ALTYSIS CERTIFICATE COMMENTS CERTIFICATE COMMENTS	ANALYTICAL COMMENTS REEs may not be totally soluble in this method. ME-MS61 Processed at ALS Reno located at 4977 Energy Way, Reno, NV, USA. Au-AA24	PUL-31 PUL-31 PUL-31 PUL-31 PUL-31 PUL-31 PUL-31 PUL-31 SND-ALS SPL-21 SPL-QC SPL-21 WEI-21 WEI-21 PUL-QC SPD-ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC. Canada. ME-MS61 Ag-OG62 Cu-OG62 ME-OG62 ME-OG62 ME-OG62 ME-OG62 ME-OG62 ME-OG62 ME-OG62 ME-OG62 ME-OG63 ME-OG64 ME-OG63 ME-OG6	
---	--	--	--	--

WN07053030

Cale of the second seco		ALS C EXCELLENCE IN A ALS Canada Ltd. ALS Condisbank Avenue North Vancouver BC 77J Phone: 604 894 0221 C	LLENCE IN AL ada Ltd. oksbank Avenue ancouver BC V7J 2 604 984 0221 Fa	NALYTICA NALYTICA ICI ICI ICI ICI ICI ICI ICI ICI ICI	ALS Chemex Excellence in AMALYTICAL CHEMISTRY ALS Contact IN A 20 Contact Advance A 20 Contac	K stray	E	To: RELI 418 E NOR Project	To: RELANCE GEOLOGICAL SERVICES 418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8 Drived: Iven Los Cread	RELIANCE GEOLOGICAL SERVICI 418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8 Deniest Iven Lies Creation	L SERVICI	S		Tota Finalized	Page: 2 - A Total # Pages: 2 (A - D) Finalized Date: 13-JUN-2007 Account: RELGEO	Page: 2 - A s: 2 (A - D) 3-JUN-2007 t: RELGEO
							F		C Main	CERTIFICATE OF ANALYSIS	CATE O	F ANAL	YSIS	WN07053030	53030	
Samula Description	Method Analyte Units	WEI-21 Recyd Wt. kg	Au-ICP22 Au ppm	ME-MS61 Ag ppm	ME-MS61 AI %	ME-MS61 As ppm	ME-MS61 Ba ppm	ME-MS61 Be ppm	ME-MS61 Bi ppm	ME-MS61 Ca	ME-MS81 Cd ppm	ME-MS61 Ce ppm	ME-MS81 Co	ME-MS61 Cr ppm	ME-MS61 Cs ppm	ME-MS61 Cu ppm
aumpie nescription	LOR	0.02	0.001	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	F	0.05	0.2
78901 78902	5	0.60	0.001	0.05	9.13	4.7	130	2.07	0.22	1.53	0.09	28.80	15.5	28	6.22	29.3
78903		0.66	0.002	0.10	8.86	3.1	130	3.60	0.31	1.57	0.07	52.70	7.9	16	8.13	49.9
78905		0.78	0.001	0.16	7.70	2.2	160 1270	2.68	0.22	1.73	0.12 0.03	41.00	9.2	15 6	9.53	29.7
78906		0.72	0.001	0.06	7.34	2.7	1200	2.14	<0.01	1.38	0.05	60.80	4.1	2	13.40	4.0
78907		0.84	0.054	0.51	7.89	36.5	810	1.81	<0.01	0.38	0.05	76.30	3.9	6	11.95	3.9
	1	0.76	0.024	0.26	7.30	32.9	720	1.90	0.03	0.36	0.07	74.00	2.9	~	14,65	4.4
78910		1.86	0.035	0.30	11.1	40.9	1490	2.16	0.0	0.41	0.07	70.80	4.5	ი თ	15.95	4.4
78911		0.96	<0.001	0.05	6.47	2.6	830	1.53	0.12	4.40	0.27	51.00	20.7	20	2.45	12.0
78912		0.56	0.001	0.06	6.50	6.0	460	1.66	0.06	6.15	0.38	55.50	15.2	e	2.90	11.7
78914		0.66	0.001	0.07	0.07 6.47	0.7	0/1	3.54	0.27	3.40	0.26	83.30	9.3	4 0	4.01	6.1
78915		0.66	0.001	0.06	6.45	3.1	190	3.10	0.30	1,99	0.41	74.70	8.3	n m	4,03	10.6
78916		0.66	0.001	20.07	7.60	4.1	370	3.41	0.29	1.81	0.22	104.00	8.4	9	3.26	15.0
		0.72	0.001	0.08	7.51	4.0	1090	3.45	0.34	3.51	0.21	88.00	7.6	4	2.61	19.4
18910		0.00	20070	80.0	9.21	5.7	290	1.73	0.21	4.34	0.31	31.80	18.4.	27	4.38	52.9
78920		90.0	0.074	0.07	8.06	1.2	1640	1.38	0.03	0.83	0.08	59,40	8.5	9	4.01	10.7
	15															
	-															
10																
	11.1															


INTRUCTOR NUMBER IN TRANSPORT INTRUCTOR NUMBER IN TRANSPORT INTRUCTOR NUMBER IN TRANSPORT INTRUCTOR NUMBER IN TRANSPORT INTRUCTOR NUMBER IN TRANSPORT Amplie Description Frage Realise MEANIER M	11()	~	ALS EXCELLENCE ALS Canada Ltd. 212 Brooksbank Avv North Vancouver BC	ALS CHANNAN EXCELLENCE IN ANAL ALS Canada Ltd. 212 Brooksbank Avenue North Varrouver BC V7J 2C1 Phone BC 0221 Favr 16	NALYTICA NALYTICA 201 201 201 201 201 201 201 201 201 201	ALS CHEMEX EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Elonokatik Nati Vanue Stati Vanue Stati Vanue Stati Vanue Stati	STRY schemex co	E	To: RELL 418 E NOR1	To: RELIANCE GEOLOGICAL SERVICES 418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8 Devicet from Lion Croads	DLOGICAI IST DUVER BC	V7L 2N8	ŝ		Tota Finalized	Page: 3 - B Total # Pages: 2 (A - D) Finalized Date: 13-JUN-2007 Account: RELGEO	Page: 2 - B s: 2 (A - D) 3-JUN-2007 t: RELGEO
Method bulk RE-MISPI F ME-MISPI S ME-MIS										C	ERTIFIC	CATE O	F ANAL		WN070	53030	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ample Description	Method Analyte Unita	ME-MS01 Fe %	ME-MS61 Ga ppm	ME-MS61 Ge ppm	ME-MS61 Hf ppm	Hg-CV41 Hg ppm	ME-MS61 In ppm	ME-MS81 K	ME-MS61 La ppm	ME-MS61 U ppm	ME-MSB1 Mg	ME-MS61 Min ppm	ME-MS61 Mo ppm	ME-MS61 Na %	ME-MS61 Nb ppm	ME-MS61 Ni ppm
453 7060 011 9.4 0.01 0.00 121 117 266 0.67 622 0.77 0.08 233 388 2270 0.13 61 0.10 0.006 1.21 121 275 0.64 564 0.77 0.08 135 388 2270 0.13 61 0.03 0.032 337 416 257 0.51 0.34 125 246 2180 0.13 2.4 0.39 0.023 337 416 257 0.36 0.36 135 126 127 121 127 124 127 124 127 124 127 124 127 126 123 0.35 554 0.35 616 0.36 0.36 126 123 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 <td< th=""><td>78901</td><td></td><td>5.08</td><td>26.10</td><td>0.05</td><td>4.8</td><td>0.02</td><td>0.073</td><td>1.39</td><td>12.3</td><td>18.0</td><td>0.01</td><td>233</td><td>0.79</td><td>0.09</td><td>12.0</td><td>0.2</td></td<>	78901		5.08	26.10	0.05	4.8	0.02	0.073	1.39	12.3	18.0	0.01	233	0.79	0.09	12.0	0.2
368 27.0 0.13 6.1 0.10 0.066 1.11 2.65 0.64 0.95 0.16 0.16 1.31 367 216 0.13 5.1 0.10 0.066 1.11 2.65 0.61 0.26 0.06 1.3 246 2180 0.13 2.4 0.39 0.023 3.13 3.13 3.13 3.13 3.14 0.34 0.34 1.21 246 2180 0.13 2.4 0.39 0.03 0.03 0.34 1.21 246 2170 0.13 2.4 0.37 0.36 3.27 2.54 0.36 0.37 1.26 0.34 1.21 246 2170 0.13 2.4 0.37 0.36 3.27 2.14 0.36 0.37 1.26 0.37 1.26 0.37 1.26 0.37 1.26 0.37 1.26 0.37 1.26 0.37 1.26 0.37 1.26 0.37 1.26 0.3	78902		4.53	30.60	0.11	9.4	0.01	0.100	1.21	1.11	26.6	0.67	532	0.77	0.08	23.9	1.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	78905		3,88	22.70	0.13	4.0 1.0 1.0	0.10	0.066	1.30	18.8	40.8	0.38	624	0.79	0.06	13.5	10.0 6.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2000		10.0	10.02	0.40	2.0	1.00	700.0	80'0	30.2	8.07	10.0	107	10.0	0.34	12.7	6.
24 2050 013 2.6 0.39 0.031 3.72 39.8 25.4 0.32 111 2.15 0.46 122 2.46 21.70 0.13 2.4 0.37 0.030 3.86 3.87 7.71 0.28 7.65 0.46 1.25 0.46 1.23 5.17 0.13 2.4 0.37 0.030 3.86 3.87 7.71 1.26 0.39 0.06 1.18 5.81 2030 0.16 5.1 0.06 0.087 0.82 2.44 1.24 1.26 0.39 0.06 1.18 5.87 2310 0.16 5.1 0.06 0.16 2.12 3.76 1.24 1.26 0.37 1.18 2.87 2310 0.16 5.1 0.06 0.16 2.12 3.76 1.24 0.30 0.16 2.1 3.55 22.00 0.16 5.1 0.06 2.12 3.74 1.67 1.69 0.	8907		2.46	21,80	0.13	2.6	0.50	0.023	3.13	21.9	31.0	0.45	395 91	3.79	0.34	12.1	1. i 1. i
	8908	Ó	2.84	20.50	0.13	2.6	0.39	0.031	3.72	39.8	25.4	0.32	tit	2.15	0.45	12.2	6
6.11 20.30 0.16 5.1 0.08 0.087 0.82 24.3 27.6 1.54 1500 0.39 0.06 11.8 5.87 2310 0.16 5.1 0.06 0.077 1.45 26.4 1.92 1.46 1850 0.39 0.06 11.8 5.87 2310 0.16 1.1 0.06 0.077 1.45 26.4 1.92 1.46 1850 0.39 0.07 12.2 4.82 20.80 0.16 1.15 0.08 1.16 163 12.2 146 1850 0.39 0.07 12.2 4.82 20.80 0.16 1.15 0.08 1.16 12.3 12.2 147 12.2 3.55 22.20 0.17 1.26 0.09 2.43 36.8 30.5 0.31 11.9 16.1 147 3.55 23.64 0.17 1.26 0.09 0.075 0.18 14.7 0.13 18.1 3.55 23.64 0.17 1.26 0.09 0.077 0.13 <t< th=""><td>78910</td><td></td><td>1.95</td><td>20.50</td><td>0.13</td><td>24</td><td>0.37</td><td>0.027</td><td>3.69</td><td>38.7</td><td>23.4</td><td>0.28</td><td>76</td><td>5.55</td><td>0.38</td><td>11.8</td><td>1.5</td></t<>	78910		1.95	20.50	0.13	24	0.37	0.027	3.69	38.7	23.4	0.28	76	5.55	0.38	11.8	1.5
588 2380 016 51 0.08 0.07 1.45 264 192 146 1860 0.38 0.07 122 482 2310 0.16 1.1 0.06 0.08 1.16 53 0.17 122 482 2331 0.16 6.13 0.06 0.08 1.18 55.3 27.4 1.07 1780 0.17 0.08 1.47 3.55 22.20 0.17 7.8 0.10 0.093 2.43 36.8 30.5 0.81 1790 0.74 0.13 181 3.55 0.17 0.26 0.017 0.13 183 0.14 0.18 147 3.56 0.17 126 0.07 0.013 146 2.3 161 1790 0.74 0.13 181 3.56 0.17 0.16 0.033 2.43 36.5 30.5 171 103 131 2.98 250 0.17 0.16 <t< th=""><td>78911</td><td></td><td>6.11</td><td>20.30</td><td>0.16</td><td>5.1</td><td>0.08</td><td>0.087</td><td>0.82</td><td>24.3</td><td>27.6</td><td>1.54</td><td>1500</td><td>0.39</td><td>0.08</td><td>11.8</td><td>7.6</td></t<>	78911		6.11	20.30	0.16	5.1	0.08	0.087	0.82	24.3	27.6	1.54	1500	0.39	0.08	11.8	7.6
287 23.10 0.16 11.1 0.06 0.16 11.1 0.06 0.16 11.1 0.06 0.17 100 980 0.70 0.10 0.27 355 2220 0.15 7.9 0.10 0.083 1.43 3.63 2.74 1.07 1760 0.10 0.23 355 2220 0.15 7.9 0.10 0.083 2.43 3.63 3.05 0.81 1190 0.74 0.13 181 356 2540 0.17 1.10 1.60 1.60 4.80 2.84 3.81 0.13 181 356 2540 0.17 1.16 1.190 0.74 0.13 181 368 2550 0.17 3.10 0.12 3.8 3.05 1.81 0.13 1.81 4.66 3.11 0.75 1.45 1.31 0.75 1.12 7.3 3.8 4.66 258 3.11 0.75 1.31	8912		5.98	20.80	0.16	5.1	0.08	220.0	1.45	26.4	19.2	1.46	1850	0.98	0.07	12.2	2.8
355 22.00 0.15 7.9 0.10 0.033 2.43 5.83 2.74 1.700 4.11 0.10 1.81 356 22.00 0.17 7.5 0.10 0.033 2.43 5.83 2.04 1.790 4.11 0.10 1.81 350 28.40 0.17 1.26 0.07 0.115 1.80 4.80 2.92 0.92 6.44 1.54 0.21 2.73 288 23.50 0.12 8.8 0.02 0.003 1.30 456 3.11 0.76 1.21 27.3 289 25.50 0.12 4.8 0.003 1.30 456 3.11 0.76 0.12 2.38 456 25.50 0.12 3.4 0.033 1.45 13.1 3.7 0.59 1570 0.71 0.11 10.0 2.35 21.00 0.12 3.45 0.033 3.75 2.77 4.03 0.50 0.511 10.17	2013 2014		2.97	23.10	0.16	1.11	0.06	0.106	2.12	37.0	31.2	1.00	608	0.70	0.10	22.7	1.8
3.40 0,17 1.26 0.07 0,15 1.80 4.80 29.2 0.92 6.44 1.54 0.21 27.3 2.88 23.50 0,15 8.8 0.02 0.083 1.30 45.6 31.1 0.76 1.24 0.71 0.12 2.8 2.89 25.50 0,12 4.8 0.00 0.367 1.45 1.31 3.37 0.59 1577 0.17 0.17 0.17 10.0 2.35 21.00 0,12 3.9 0.04 0.032 3.75 27.7 40.8 0.60 22.8 1.17 0.56 13.7	78915		3.55	22.20	0.15	2.9	0.10	0.093	2.43	36.8	30.5	0.81	1190	0.74	0.13	14.7	2.4
289 2350 015 8.8 0.02 0.083 1.30 45.6 31.1 0.76 12.40 0.71 0.12 23.8 4.96 255.90 0.12 4.8 0.01 0.067 1.45 13.1 33.7 0.59 157 100 2.35 2100 0.12 3.9 0.04 0.032 3.75 27.7 40.8 0.60 0.58 13.7 10.0 2.35 21.00 0.12 3.9 0.032 3.75 27.7 40.8 0.60 2.28 13.7 0.58 13.7	8916		3.90	26.40	0.17	12.6	20.0	0.115	1.80	48.0	29.2	0.92	644	1.54	0.21	27.3	4.9
488 2590 0,12 4.8 0.01 0.067 1,45 13,1 33.7 0.59 1570 0.81, 0.11 10.0 2.35 2100 0.12 3.9 0.04 0.032 3.75 27.7 40.8 0.60 228 1.17 0.58 13.7	8917		2.89	23.50	0.15	8.8	0.02	0.093	1.30	45.6	31.1	0.76	1240	0.71	0.12	23.8	6.2
2.35 21.00 0.12 3.9 0.04 0.032 3.75 27.7 40.8 0.60 228 1.17 0.58 13.7	8918		4.96	25.90	0.12	4.8	0.01	0.067	1.45	13.1	33.7	0.59	1570	0.81	0.11	10.0	21.4
	8920	Ī	2.35	21.00	0.12	3.9	0.04	0.032	3.75	27.7	40.8	0.60	228	1.17	0.58	13.7	3.2

Manualization Event in terms Result in terms Manualization Manualizatio Manualizatio Manuali			EXCELLENCE ALS Canada Ltd. 212 Brooksbank Avv North Vancouver BC	K AV	CTETEZZ IN ANALYTICAL CHEMISTI IN ANALYTICAL CHEMISTI IN ANALYZICAL CV12 2C1 CV12 CV12 CV12 CV12 CV12 CV12 CV12 CV12		STRY stran	E	418 E NOR	418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8	UVER BC	: V7L 2N8	1		Tota Finalized	Total # Pages: 2 - 0 Finalized Date: 13-JUN-2007 Account: RELGEO	Page: 2 - C # Pages: 2 (A - D) Date: 13-JUN-2007 Account: RELGEO
Method built Mc-MS81						0.4			Liger	C IVAN HO	ERTIFI	CATE O	F ANAL	YSIS	WN070	53030	
	Sample Description	Method Analyte Units LOR	ME-MS61 P ppm	ME-MS81 Pb ppm	ME-MS61 Rb ppm	ME-MS81 Re ppm	ME-MSB1 S %	ME-MS61 Sb ppm	ME-MS61 Sc ppm	ME-MS61 Se ppm	ME-MSB1 Sn ppm	ME-MS61 Sr ppm	ME-MS61 Ta ppm	ME-MS61 Te ppm	ME-MS61 Th ppm	ME-MS61 Ti %	ME-MS61 TI ppm
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	78901 78902		1330	13.3	46.6	<0.002	<0.01 0.01	0.95	19.4	- 00	1.7	212.0	0.80	80.0	5.4	0.467	0.62
	78903 78904 78905		250 220 240	28.3 20.1 18.4	63.9 54.1 121.0	<0.002 <0.002 <0.002	0.01 <0.01	1.26 1.44 1.83	14.5 12.1 6.6	1 9 9 9	2.5	196.5 162.5 164.5	0.87	0.10	12.5 8.5 14.0	0.431 0.451 0.258	0.69 0.59 0.93
1100 9.7 4.36 -0.02 0.05 0.47 3 1.9 17.0 0.49 0.40 0.40 1900 101 90.6 -0.02 0.02 0.65 24.7 3 1.9 187.0 0.49 0.40 0.40 2900 1051 106.6 -0.02 0.02 0.02 0.02 0.02 0.65 24.9 3 1.9 187.0 0.49 0.05 6.1 200 1051 106.6 -0.002 0.02 0.02 0.02 0.02 1.6 0.05 1.46 0.05 6.1 200 145.5 12.5 -0.002 0.03 1.08 1.26 3 2.4 153.0 0.46 0.05 6.1 200 145.5 12.5 -0.002 0.03 1.08 1.26 3 2.4 153.0 0.19 4.05 12.6 200 146.5 147.5 0.02 0.03 1.08 1.26 0.03 1.08 1.26 0.05 12.6 200 18.9 5.1 13.0 1.07 1.07 3 3.7 1.44 0.05 12.6 1700 211 4.51 0.03 1	78906 78907 78909 78909 78910		520 510 460 580	22.2 22.4 18.6 20.3 20.6	137.0 173.0 173.0 173.5	 <0.002 <0.002 <0.002 <0.002 <0.002 	0.13 1.70 1.79 1.33 0.94	4.54 10.85 10.75 16.15 11.40	5.9 5.8 5.7	<i>6</i> 14 თ თ ო	0.7 0.9 0.9 0.1	118.5 121.0 114.0 107.0	0.78 0.83 0.82 0.79	40.05 40.05 40.05	13.0 15.9 15.0 15.0	0.233 0.241 0.232 0.226 0.226	0.67 0.84 0.91 1.07
220 18.9 96.3 <0.002 0.11 0.78 13.9 3 3.7 154.0 2.00 <0.03 18.2 1700 20.1 64.3 ~0.002 0.04 0.52 10.7 3 3.8 194.5 1.62 0.05 16.3 960 15.5 45.1 ~0.002 <0.01	78911 78912 78913 78913 78914 78915		1100 1900 290 850 280	9.7 10.1 19.5 16.0	43.6 90.6 110.5 108.0 122.5	 <0.002 <0.002 <0.002 <0.004 <0.002 	0.05 0.02 0.13 0.03	0.65 0.65 1.45 0.88 1.08	24.7 24.9 12.6 20.7		6, 7, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	186.0 135.5 135.5 123.5	0.69 0.70 1.46 0.86 1.19	0.05 0.05 0.05 0.05	6.8 6.1 9.8 9.8	0.682 0.896 0.328 0.642 0.642	0.33 0.33 0.33 0.33 0.55 0.33 0.55 0.55
	78916 78917 78918 78919 78920		220 1700 960 150	18.9 20.1 15.5 21.0	96.3 64.3 45.1 132.0	 0.002 0.002 0.002 0.002 	0.11 0.04 <0.01 0.03	0.78 0.52 0.70 0.59	13.9 10.7 17.1 11.0	6 6 6 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6	3.7 3.8 1.7	154.0 194.5 204.0 162.0	2.00 1.62 0.66 0.92	<0.05<0.05<0.11<0.05	19.2 16.3 5.1 14.0	0.375 0.349 0.500 0.274	0.71 0.48 0.49 0.98

Page 201

		EXCELLEN EXCELLEN ALS Canada Ltd. 212 Brooksban North Vancouw North Vancouw	Id. Mark Avenue Uver BC V7J 984 0221 Fe	ALS CREMERZ EXCELLENCE IN ANALYTICAL CHEMISTRY ALS COMBALIN 212 Brooksbank Annue 212 Brooksbank Annue 212 Brooksbank Annue 212 Brooksbank Annue Phone: 604 984 0221 Force 604 0218 Www.alschemex.com Phone: 604 984 0221 Force 604 0218 Www.alschemex.com	AL CHEMI:	STRY schemex.co	E	Protect Variation of the services of the servi	Page: 2 - D Total # Pages: 2 (A - D) Finalized Date: 13-JUN-2007 Account: RELGEO
								FICATE OF ANALYSIS	WN07053030
Sample Description	Method Analyte Units LOR	ME-MS61 U ppm 0.1	ME-MS81 V ppm	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS81 Zr ppm 0.5		
78901 78902 78903 78904 78904		2.6 3.1 3.2 4.5	101 101 114 101	1.3 2.2 7.8 1.8	22.0 17.7 22.2 21.1 20.5	79 80 58 71	167.5 323.0 202.0 205.0 80.2		
78906 78907 78908 78909 78909 78910		3.5 9.4.4.4 2.2 2.4 2.4 2.4 2.4 2.4 3.5 4 3.5 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	35 36 37 37 41	5,4,4,4,8,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6	19.1 17.4 15.7 16.5 17.9	. 09 4 8 8 8 8 8 8 8 8	68.7 71.7 70.8 66.2 61.9		
78911 78912 78913 78914 78915		2.1 1.7 5.8 6.3	158 223 48 139 52	0.6 0.9 1.6 2.6 2.9	35.0 34.7 34.7 58.7 37.6 42.1	95 89 105 90	191.0 187.0 364.0 229.0 249.0		
78916 78917 78918 78919 78920		6.5 2.4 5.4	58 42 137 51	2.5 5.5 7.7	52.7 59.1 13.5 13.5	102 81 82	417.0 289.0 169.0 122.0		
-									

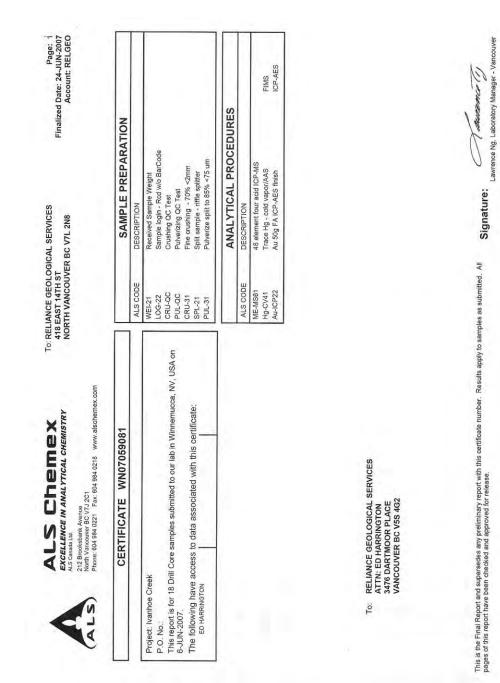
Page 202

WN07056006

ALS A		ALS Canada Ltd. 212 Brooksban North Vancouv Phone: 604 98.	EXCELLENCE IN ANA ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax:6	ALS SCIELLENCE IN ANALYTICAL CHEMISTRY ALS Samabu du 212 Brooksbenk Avenue 212 Brooksbenk Avenue 213 Brooksbenk Avenue 214 Stronovers 604 384 0221 Fax: 604 384 0215 www.alschemex.com	EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Grandea Lud 212 Brooksbank Avenue Vonth Vancoure EX V/J 2015 Ex Vonth Vancoure Phone 604 922 1 Fax: 604 984 0218 Vvvvv alsohem	ISTRY alschemex.c	Ĩ	NOF	NORTH VANCOUVER BC	OUVERB	NORTH VANCOUVER BC V7L 2N8			Finalize	Finalized Date: 3 (A - U) Account: RELGEO	# rages: 5 (A - U) Date: 16-JUL-2007 Account: RELGEO
										CERTIF	ICATE C	CERTIFICATE OF ANALYSIS	LYSIS	WN070	WN07056006	
Sample Description	Method Analyto Units LOR	WEI-21 Reord Wt. kg 0.02	ME-MS01 Ag ppm 0.01	ME-MS61 AI % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS01 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS01 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0,1	ME-MS01 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
78939		0.56	0.08	6.38	3.2	320	0.94	0.05	6.79	0.21	35.60	23.4	67	3.92	14.0	5.68
78941		0.06	0.08	9.67	1.6	100	1.81	0.58	3.86	0.02	33.00	18.2	52	3.19	18.7	2.71
78942		0.56	0.07	69.9	5.5	2080	0.59	+0.01	8.54	0.17	22.20	22.3	82	2.27	11,8	5,58
0240		0.00	12.0	1.10	A.4	200	2,08	0.15	2.03	0.24	00.0/	8.11	87	3,04	L'IL	86.5
78945		0.54	0.12	6.97	5.0	100	1.05	0.11	20.0	0.38	64.70	18.6	40	1.26	13.4	4.09
78946		0.62	0.06	6.74	2.7	06	1.56	0.10	2.44	21.0	41.70	20.1	26	3.04	12.8	6.13
78948		0.64	0.09	5.97	2.4	490	2.58	0.18	1.13	0.12	54.80	13.4	m 0	3.50	E'11	4.14
78949		0.62	0.12	6.67	9.4	810	2.30	0,19	3,40	0.81	69,00	27.0	7	3,80	10.3	4.82
78950		0.72	0.15	2,19	3.8	230	3.01	0.53	1,89	0.25	96,40	5.7	5	3.07	10.0	3.01
16852		0.64	0.09	7.92 8.83	2 2	370	2.93	0.26	1.81	0.18	80,90	11.1	00 Ț	4,03	20.8	3.88
78953		0.72	0.11	8.89	2.0	370	1.87	0.31	3,06	0.19	59.60	19.4	33	2.57	53.9	5.38
78954		0.74	0.12	8.91	2.3	320	1,46	0.15	3.41	0.07	26.20	16.9	26	3.98	74.2	4.41
78955		0.52	0.11	8,63	3,3	200	2.26	0.19	3.04	0.20	77.60	8.0	10	4.30	30.6	2.97
/8956		0.88	0.18	8.11	- + - +	2140	1.45	<0.01	1.75	0.03	67.90	4 u 10 u	m m	3.03	6.9 8	2.19
78958		1.26	2.00	5.99	20.2	640	2.02	0.11	0.49	0.25	61.10	9.2	48	6.68	74.1	1,99
78959		0.78	5.27	2.90	11.9	500	1.52	0.08	0.32	0.06	23.60	1.0	123	3.76	108.5	2.85
78960		0.06	0.05	9.71	0.5	100	1.64	0.86	1.82	<0.02	22.20	17.7	53	18.25	17,8	2.76
78961		1,50	2.83	0.82	9.4	420	0.38	0.02	0.07	<0.02	12.15	10	43	0.81	38.1	1.23
78963		1.26	3.12	1.30	4.3	560	0.78	90.0	0.08	0.05	30.40	0.7	11	1 43	51.7	1.39
78964		0.74	2.13	4.01	8.2	960	1.08	0.01	0.25	0.06	42.50	2.7	39	5.83	27.9	1.53
78965		0.94	2.72	1.55	49.8	300	0.96	0.05	0.12	0,35	40,50	6, 4	67	2.47	59,6	2.57
78967		1.12	0.11	0,30	0.9	60	0.10	×0.01	0.01	<0.02	9.88	9.0	3 22	0.21	5 G	0.25
78968		1.48	0.44	5.49	2.8	1230	1.18	60.0	0.27	0.83	59.60	1.7	22	4.26	56.7	1.79
78969		1.06	0.20	5.72	3.0	1010	1.08	20.0	0.15	0.66	63,10	2.0	64	4,60	37,6	11.1
18971		0.56	0.20	6.12	3.9	620	2.56	0.07	0.13	0.74	49.30	1.4	46	14.70	85.2	3.51
78972		1.26	0.20	5.87	1.1	750	2.38	0.11	0.13	0,92	58,80	2.3	27.5	17.45	40.1	2.11
8974		0.96	0.14	5.48	2.2	800	2.09	0.08	0.15	1 05	56.10	10.3	48	10.30	0.07	2.05
78975		1.06	0.08	4.41	11	1140	1.52	60.0	0,10	1.27	48.90	12.0	31	8.29	54.7	1.43
78976		1.72	0.14	4.58	1.6	880	1.90	0.11	0.15	4,38	46.90	0.7	46	7.24	58.9	1.47
11801		40.1	10.0	20.9	0,1	ORA	20.1	10.0	0.14	01.01	39.10	1.0	24	3.13	19.4	80.1

Method Method Augine Junis Me.MiSBI (a) Me.MiSBI (b) Me.MiSBI (c) Me.MiSBI (c) <th< th=""><th></th><th>Project: IVANHOE CREEK</th><th>Project IVANHOE CREEK</th><th></th><th></th><th></th><th></th><th>Account: RELGEO</th><th>Finalized Date: 16-JUL-2007 Account: RELGE0</th></th<>		Project: IVANHOE CREEK	Project IVANHOE CREEK					Account: RELGEO	Finalized Date: 16-JUL-2007 Account: RELGE0
Method total ME-MIS61 ME ME ME 0.00 0.01 0.01 0.01 0.001 0.002 0.01 0.003 0.01 0.0		0	ERTIFIC	CATE O	CERTIFICATE OF ANALYSIS	YSIS	WN07056006	56006	
Manual Answert Gat (a) (b) (c)	-MS61 ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS81	ME-MS61	ME-MS61	ME-MS61	ME-MS61
Until ppm ppm </th <th></th> <th>n</th> <th>Mg</th> <th>Min</th> <th></th> <th>Na</th> <th>qN</th> <th>ż</th> <th>a</th>		n	Mg	Min		Na	qN	ż	a
Uns Cost Cost <thc< td=""><td></td><td>udd</td><td>*</td><td>udd</td><td>midd</td><td>%</td><td>mdd</td><td>udd</td><td>udd</td></thc<>		udd	*	udd	midd	%	mdd	udd	udd
16.5 0.25 3.6 0.04 0.025 1.4 77.30 0.27 3.6 0.04 0.025 1.0 77.30 0.27 3.6 0.04 0.025 1.0 77.30 0.27 5.6 0.07 0.07 0.05 1.0 7.30 0.27 5.0 0.27 5.0 0.07 0.07 0.05 7.30 0.27 5.0 0.07 0.07 0.08 1.0 7.30 0.27 5.0 0.07 0.08 1.0 0.7 7.30 0.27 5.0 0.07 0.08 1.0 0.7 7.30 0.27 7.3 0.07 0.08 1.0 7.30 0.27 7.3 0.07 0.14 1.0 7.30 0.27 7.3 0.07 0.14 1.0 7.30 0.71 7.3 0.07 0.14 1.0 7.30 0.71 7.3 0.07 0.14		0.2	10'0	0	60'0	10'0	10	0.2	01
74.0 0.77 2.1 -0.01 0.02 5.0 73.0 0.77 3.0 0.065 0.05 0.05 0.05 14.35 0.27 0.07 0.099 0.65 0.05 0.66 23.00 0.77 5.0 0.07 0.099 0.67 0.99 0.67 21.80 0.77 5.0 0.77 0.099 0.67 0.099 0.67 27.00 0.271 15.6 0.07 0.099 0.67 1.03 27.00 0.271 15.6 0.07 0.099 0.67 1.03 26.10 0.271 15.6 0.07 0.096 1.60 1.61 26.00 0.271 7.6 0.07 0.096 1.61 1.63 27.00 0.271 7.5 0.04 0.067 1.61 1.61 27.01 0.71 2.7 0.06 0.065 1.61 1.61 27.01 0.71 0.71 0.71		28.6	1,78	1610	0.44	0.08	9.7	8.8	1300
1730 0.27 3.6 0.03 0.065 1.08 2230 0.22 103 0.04 0.111 0.73 2230 0.22 103 0.04 0.111 0.73 21930 0.27 5.3 0.07 0.087 1.08 21930 0.27 5.3 0.07 0.087 1.08 2050 0.27 15.3 0.07 0.087 1.08 2050 0.27 15.4 0.07 0.087 1.08 2050 0.27 15.6 0.07 0.086 1.03 2050 0.27 15.6 0.07 0.085 1.89 2050 0.27 7.3 0.066 1.04 1.03 2050 0.27 7.3 0.066 1.04 1.03 2051 0.27 0.26 0.044 0.027 0.68 2051 0.21 1.2 0.066 1.04 1.03 2051 0.21 0.7		4.4	1.49	434	1.50	3.69	15.4	58.7	1150
1426 0.20 0.20 0.20 0.01 0.014 0.75 1830 0.21 5.8 0.07 0.08 0.017 0.03 20.80 0.21 5.3 0.07 0.08 0.06 0.047 0.05 20.80 0.21 5.3 0.07 0.08 0.06 0.07 20.80 0.21 5.6 0.07 0.097 0.057 1.00 20.80 0.21 5.6 0.07 0.067 0.067 1.05 20.610 0.21 5.6 0.07 0.062 1.87 1.03 24.00 0.21 5.6 0.07 0.052 1.89 1.26 25.00 0.21 7.5 0.06 0.041 1.05 1.44 27.00 0.21 7.5 0.06 0.027 1.41 27.00 0.17 2.7 0.09 0.007 1.41 27.00 0.17 2.7 0.09 0.007 1.41		29.1	1.94	687	0.23	0.08	6.9	6.6	1160
1.000 0.71 0.00 0.001 0		15.4	1.65	1690	0.23	0.07	4.5 7 2 2	10.5	760
19.00 0.27 5.9 0.04 0.082 0.66 20.60 0.27 5.3 0.07 0.087 120 20.60 0.27 5.3 0.07 0.087 120 27.20 0.27 15.6 0.07 0.087 120 27.00 0.27 15.6 0.07 0.087 120 26.00 0.27 15.6 0.07 0.087 120 26.00 0.27 15.6 0.07 0.087 103 27.00 0.27 7.3 0.06 0.104 1.03 27.00 0.71 2.7 0.06 1.36 2.4 27.00 0.71 2.3 0.06 1.01 1.01 27.00 0.71 2.3 0.06 0.07 0.067 0.14 27.00 0.71 2.1 0.07 0.061 0.7 0.14 27.00 0.71 0.71 0.7 0.061 0.7 0.14		0.03	00-1	ot.	5.0	21.0	0.01	2.1	202
2180 0.17 5.0 0.07 0.089 0.26 27.20 0.21 5.6 0.17 5.0 0.07 0.089 0.26 25.00 0.21 5.6 0.14 0.084 0.26 1.87 25.00 0.21 5.6 0.14 0.084 0.26 1.87 25.00 0.21 7.5 0.07 0.039 0.26 1.87 25.00 0.21 7.5 0.04 0.066 1.87 1.89 25.00 0.21 7.5 0.06 0.062 1.01 1.02 27.00 0.21 7.7 0.09 0.007 0.164 1.03 27.00 0.17 2.1 0.01 0.027 1.41 27.00 0.17 2.1 0.01 0.027 1.03 27.00 0.11 0.17 0.26 0.14 1.05 27.00 0.11 0.17 0.26 0.014 1.05 27.00		25.5	12.1	595	0.50	0.13	11.6	9.2	1110
Zubol D.21 15.5 U.01 U.07 U.097 I.007 19.20 0.27 16.6 0.07 0.067 0.067 1.007 25.00 0.27 16.8 0.07 0.067 0.066 2.06 25.00 0.27 16.8 0.07 0.065 1.09 2.05 25.00 0.27 7.3 0.06 0.104 1.03 1.89 25.00 0.27 7.3 0.06 0.104 1.03 1.98 25.01 0.17 7.3 0.06 0.104 1.03 1.01 27.01 0.17 2.7 0.04 0.037 1.08 1.03 27.01 0.17 2.5 0.14 0.07 0.035 1.01 27.03 0.17 1.7 0.04 0.037 0.04 1.03 27.03 0.17 1.1 0.7 0.096 0.014 1.03 27.04 0.17 1.1 0.7 0.039		28.0	1.69	980	0.28	0.12	16.7	2.5	130
1920 0.20 7.00 0.00 2.05 1950 0.21 1.6 0.14 0.06 2.05 24.00 0.21 1.6 0.14 0.06 2.05 24.00 0.21 7.8 0.07 0.06 2.05 25.00 0.21 7.8 0.04 0.08 2.68 25.00 0.21 7.3 0.04 0.08 1.87 25.00 0.21 7.3 0.06 0.104 1.03 25.00 0.21 5.9 0.04 0.08 1.36 25.00 0.19 4.4 0.04 0.07 4.14 20.10 0.17 2.9 0.05 1.01 20.10 0.17 2.9 0.05 0.07 4.14 20.10 0.17 2.1 0.01 0.07 0.05 14.4 0.13 0.14 0.07 0.05 0.05 20.11 1.1 0.20 0.07 0.05		10.07	22	057	1.10	210	226	000	1050
15:50 0.21 6.6 0.14 0.084 1.87 26:10 0.221 11.9 0.07 0.155 1.98 25:00 0.221 7.8 0.07 0.165 1.89 25:00 0.21 7.8 0.06 0.062 1.80 25:00 0.21 7.5 0.064 0.066 1.36 27:00 0.21 2.7 0.064 0.062 1.41 27:00 0.17 2.7 0.062 1.41 1.41 27:40 0.17 2.7 0.060 1.36 1.41 27:40 0.17 2.7 0.01 0.027 0.41 27:30 0.19 1.1 0.7 0.36 0.14 27:30 0.19 1.1 0.7 0.36 0.14 13:70 0.18 2.1 0.01 0.027 0.41 23:30 0.16 1.1 0.7 0.36 0.14 14:30 0.12 1.1		28.4	0.95	135	0.85	0.11	13.7	4.0	560
26/0 0.21 11/3 0.07 0.135 199 2300 0.21 7.5 0.07 0.135 189 2300 0.21 7.5 0.07 0.135 180 2300 0.21 7.5 0.06 0.065 1.56 2300 0.21 7.5 0.04 0.025 1.80 2300 0.21 7.5 0.04 0.025 1.80 2300 0.21 7.5 0.04 0.027 1.80 2300 0.17 2.5 0.04 0.027 1.61 21.40 0.17 2.5 0.09 0.07 4.14 23.30 0.17 1.0 0.26 0.17 4.14 23.30 0.17 1.0 0.26 0.17 4.14 23.30 0.18 2.1 0.26 0.07 0.46 23.30 0.18 2.1 0.28 0.01 0.26 23.31 0.10 0.26		24.2	1.00	1060	1.09	0.12	13.4	12.3	1930
2400 0.20 58 007 0.065 258 2550 0.21 7.3 0.04 0.06 0.104 1.30 2350 0.21 7.3 0.04 0.065 1.36 2360 0.19 4.4 0.04 0.065 1.36 2360 0.17 2.7 0.04 0.065 1.36 2010 0.17 2.7 0.04 0.065 1.41 2010 0.17 2.5 1.55 0.60 0.101 1.161 2011 2.7 0.05 0.16 1.4 0.36 0.11 1.01 2011 0.7 0.93 0.017 0.46 0.26 0.14 2035 0.16 1.8 0.60 0.017 0.46 0.26 0.26 0.27 0.26 0.27 0.26 0.27 0.26 0.27 0.26 0.27 0.26 0.27 0.26 0.27 0.26 0.27 0.26 0.27 0.27 <td></td> <td>22.8</td> <td>0.76</td> <td>401</td> <td>0.54</td> <td>0.16</td> <td>23.7</td> <td>3.2</td> <td>260</td>		22.8	0.76	401	0.54	0.16	23.7	3.2	260
2500 0.21 7.6 0.04 0.04 1.00 2360 0.19 4.4 0.04 0.08 1.00 2360 0.19 4.4 0.04 0.08 1.03 2140 0.17 2.7 0.09 0.067 1.41 2140 0.17 2.7 0.09 0.067 4.14 200 0.17 2.5 0.09 0.007 4.14 2140 0.17 2.5 0.09 0.007 4.14 2330 0.19 1.7 0.39 0.007 4.14 14.7 0.30 1.1 0.7 0.36 0.017 0.36 544 0.30 1.1 0.7 0.36 0.017 0.36 543 0.13 1.1 0.7 0.36 0.017 0.36 544 4.33 0.16 1.6 0.067 0.41 0.4 750 0.13 1.1 0.7 0.36 0.17 0.36<		21.1	0.76	552	0.80	0.24	18.8	4.9	260
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		19,6	1.00	521	0.79	0.15	1.71	12.3	820
2360 0.19 9.44 0.044 0.0066 1.36 2010 0.71 2.7 0.044 0.0027 4.14 2010 0.71 2.7 0.044 0.027 4.14 2010 0.71 2.5 1.55 0.09 0.091 0.01 13740 0.76 2.5 1.55 0.03 0.036 1.01 23.30 0.717 2.73 0.20 1.7 0.29 0.036 1.01 23.30 0.13 1.1 0.7 0.99 0.007 0.46 4.33 0.11 0.7 0.49 0.027 0.47 0.47 23.45 0.16 1.8 0.60 0.017 1.66 0.47 7.60 0.20 1.6 2.77 0.019 0.63 0.12 7.60 0.77 0.47 0.019 0.03 0.14 0.15 1.14 0.15 1.14 7.80 0.77 0.47 0.73 <td< td=""><td></td><td>22.8</td><td>0.99</td><td>938</td><td>0,93</td><td>0.14</td><td>15.6</td><td>22.0</td><td>630</td></td<>		22.8	0.99	938	0,93	0.14	15.6	22.0	630
22.80 0.21 5.9 0.14 0.062 1.01 21.40 0.17 2.5 0.09 0.037 4.14 18.70 0.17 2.5 0.09 0.037 4.14 18.70 0.17 2.5 1.69 0.037 4.14 18.70 0.17 2.5 1.09 0.037 4.14 14.35 0.20 1.1 0.7 0.39 1.01 14.35 0.13 1.1 0.7 0.36 1.01 14.35 0.13 1.1 0.7 0.36 0.01 0.01 15.4 0.33 0.12 1.4 0.05 0.06 0.07 17.3 0.12 1.4 0.05 0.01 0.07 1.66 7.00 0.20 1.6 1.8 0.06 0.07 0.46 7.00 0.20 1.6 1.8 0.06 0.07 0.46 7.00 0.20 0.16 1.8 0.01		22.9	0.76	898	0.72	0.15	8.6	16.6	520
110 0.17 2.7 0.04 4.14 2.4.10 0.17 2.5 0.09 0.07 4.14 18.70 0.17 2.5 1.55 0.060 0.08 18.70 0.17 2.5 1.55 0.060 0.08 24.35 0.13 0.7 0.93 0.07 0.08 23.80 0.11 0.7 0.99 0.076 0.08 25.9 0.12 1.4 0.095 0.077 0.56 5.81 0.12 1.4 0.060 0.077 0.56 5.80 0.71 1.8 0.017 0.56 0.77 5.80 0.77 0.53 0.14 0.75 0.46 7.50 0.77 0.53 0.14 0.75 0.47 7.80 0.77 0.53 0.14 0.75 0.47 7.81 0.77 0.53 0.76 0.76 0.75 7.82 0.77 0.25 0.76		27.3	0.83	1180	0.53	0.22	0.0F	n, t 0) +	1000
18.70 0.17 2.3 1.55 0.056 0.89 14.35 0.20 1.7 0.39 0.036 1.01 23.30 0.18 2.7 0.03 0.01 2.14 23.30 0.13 0.1 0.7 0.39 0.036 1.01 23.35 0.13 1.4 0.49 0.001 0.26 6.22 0.13 1.4 0.46 0.077 0.36 8.44 0.12 1.4 0.46 0.077 0.36 7 0.16 1.8 0.40 0.017 0.46 7 0.16 1.8 0.60 0.17 1.66 7 0.16 1.8 0.60 0.017 0.47 6.8 0.17 3.3 1.14 0.03 0.12 1.47 7 0.66 0.17 3.2 1.14 0.04 0.23 1.41 6.8 0.17 3.2 1.14 0.03 2.17 1.41 </td <td></td> <td>184</td> <td>0.74</td> <td>397</td> <td>0.35</td> <td>020</td> <td>12.6</td> <td>17</td> <td>270</td>		184	0.74	397	0.35	020	12.6	17	270
14.35 0.20 1.7 0.39 0.036 1.01 2.350 0.18 2.1 -0.01 0.021 5.14 4.38 0.11 0.7 0.95 0.007 5.14 4.38 0.11 0.7 0.95 0.007 5.14 4.39 0.11 1.4 0.95 0.017 0.36 5.04 0.12 1.4 0.46 0.37 0.36 7.00 0.20 1.6 2.77 0.019 0.65 7.00 0.50 1.6 2.77 0.019 0.63 7.00 0.50 1.6 2.77 0.019 0.63 7.00 0.50 1.6 2.77 0.019 0.63 5.20 0.51 1.2 0.016 0.63 2.37 14.60 0.77 3.3 1.14 0.036 2.37 15.65 0.17 3.3 1.14 0.037 2.52 15.66 0.17 3.2		28.9	0.45	88	13.60	0.08	10.2	4.0	860
2330 0.18 2.1 -0.01 0.23 5.14 4.35 0.11 0.7 0.89 0.07 0.36 6.43 0.12 1.0 0.99 0.07 0.36 6.43 0.12 1.4 0.60 0.35 0.46 6.43 0.16 1.8 0.60 0.35 0.46 7.63 0.16 1.8 0.60 0.17 1.66 7.83 0.16 1.8 0.014 0.45 0.35 7.83 0.17 3.3 1.14 0.018 0.47 7.85 0.17 3.3 1.14 0.036 2.37 7.85 0.17 3.3 1.14 0.036 2.25 7.85 0.17 3.3 1.14 0.037 2.52 7.86 0.17 3.2 1.14 0.037 2.52 7.86 0.17 3.2 1.14 0.037 2.52 7.86 0.16 2.7		18.7	0.36	306	7 19	0.07	2.7	5.8	1150
4.39 0.11 0.7 0.99 0.009 0.26 6.82 0.13 1.0 0.95 0.009 0.26 6.82 0.13 1.0 0.45 0.27 0.46 7.50 0.23 1.4 0.45 0.27 0.46 7.50 0.20 1.2 1.4 0.46 0.47 0.46 7.60 0.53 1.2 1.8 0.06 0.017 1.56 7.50 0.51 1.2 1.8 0.019 0.47 0.47 6.88 0.77 0.55 1.28 0.77 0.53 0.77 0.47 7.88 0.77 3.3 1.14 0.036 2.73 1.75 15.65 0.17 3.2 1.18 0.007 2.63 1.77 15.65 0.17 3.2 0.17 0.27 0.027 2.53 15.65 0.17 2.7 0.07 0.036 2.73 16.65 0.16		4.2	1.52	444	1,40	3.78	15.6	56.9	1170
642 0.13 1.0 0.95 0.077 0.46 8.4 0.12 1.4 0.49 0.077 0.46 7.60 0.50 1.6 1.8 0.60 0.017 1.66 7.60 0.50 1.6 1.8 0.60 0.017 1.66 7.60 0.50 1.6 1.8 0.60 0.017 1.66 7.80 0.50 1.6 1.8 0.60 0.017 1.66 7.80 0.70 0.5 1.6 2.77 0.019 0.67 15.65 0.17 3.3 1.14 0.036 2.37 15.65 0.17 3.3 1.22 0.037 2.52 15.65 0.17 3.2 1.14 0.037 2.53 15.65 0.17 3.2 1.18 0.037 2.53 15.65 0.16 0.16 0.37 0.04 0.047 2.59 15.65 0.16 0.16 0.16		14.8	0.08	75	71.1	0.05	4.2	2.6	100
5.4 0.12 1.4 0.48 0.07 0.46 7.53 0.16 1.8 0.60 0.17 0.46 7.50 0.26 1.8 0.60 1.6 0.7 7.50 0.75 1.6 1.2 1.14 0.045 0.63 7.50 0.77 0.55 1.2 1.87 0.017 0.45 1585 0.17 5.3 1.14 0.036 2.37 1585 0.17 5.3 1.14 0.036 2.37 1585 0.17 3.3 1.14 0.036 2.37 1585 0.17 3.3 1.14 0.036 2.37 1585 0.13 3.2 1.14 0.036 2.37 1555 0.17 3.2 1.14 0.037 2.52 1556 0.13 3.2 0.04 0.037 2.52 1565 0.16 2.7 0.04 0.036 2.73 1555 0		11.6	0.10	35	2,88	0.05	6.1	4.3	210
12.35 0.16 1.8 0.60 0.017 1.56 7.80 0.20 1.8 2.71 0.019 0.63 5.80 0.55 1.2 1.87 0.019 0.63 5.80 0.77 3.5 1.66 0.005 0.12 5.80 0.77 3.3 1.14 0.035 0.12 1568 0.17 3.8 1.22 0.037 2.83 1568 0.13 3.2 1.18 0.037 2.83 1568 0.17 2.8 1.22 0.037 2.83 1568 0.17 2.7 0.04 0.037 2.83 1566 0.15 2.7 0.07 0.04 2.037 2.83 1566 0.15 2.7 0.07 0.036 2.73 1.83 1566 0.16 0.16 2.7 0.07 0.036 2.73 1566 0.16 0.16 0.036 2.73 1.83 1.14		13.3	0.17	496	1.40	0,05	7.5	3.4	320
760 0.20 1.6 2.71 0.019 0.63 5.20 0.55 1.6 1.87 0.019 0.63 0.89 0.07 0.5 1.87 0.019 0.63 1.655 0.17 3.3 1.14 0.023 2.37 1.656 0.13 3.2 1.18 0.037 2.52 1.656 0.13 3.2 1.18 0.037 2.52 1.656 0.13 3.2 1.18 0.037 2.52 1.645 0.17 3.2 1.18 0.037 2.52 1.645 0.13 3.2 1.18 0.037 2.52 1.645 0.15 3.7 0.04 0.047 2.23 1.645 0.16 2.7 0.07 0.047 2.23 1.645 0.16 2.7 0.04 0.036 2.73 1.645 0.16 3.3 0.04 0.035 2.23 1.656 0.16 3.3 <td>1</td> <td>15.3</td> <td>0,28</td> <td>103</td> <td>4.08</td> <td>0.19</td> <td>8,4</td> <td>2.7</td> <td>390</td>	1	15.3	0,28	103	4.08	0.19	8,4	2.7	390
5.20 0.15 1.2 1.87 0.014 0.47 0.58 0.17 0.3 1.14 0.035 0.17 1568 0.17 0.3 1.14 0.036 2.37 1568 0.17 0.3 1.14 0.036 2.37 1568 0.17 3.3 1.14 0.036 2.37 1568 0.17 3.2 1.18 0.037 2.25 1556 0.17 3.2 1.18 0.037 2.25 1556 0.17 3.2 1.18 0.037 2.25 1556 0.16 3.7 0.04 0.036 2.33 1566 0.16 2.7 0.07 0.036 2.79 1505 0.16 2.7 0.04 0.036 2.79 1155 0.16 3.3 0.04 0.036 2.73 1155 0.16 3.3 0.04 0.036 2.51		10.0	0.16	82	19.25	0.05	17	5.9	560
108 0.07 0.0 0.08 0.000 0.17 1585 0.17 3.3 1.16 0.001 2.37 1565 0.17 3.8 1.22 0.037 2.53 1565 0.13 3.2 1.18 0.037 2.53 1565 0.13 3.2 1.18 0.037 2.53 1565 0.15 3.7 0.07 0.037 2.53 1565 0.15 3.7 0.04 0.037 2.53 1565 0.16 2.77 0.07 0.036 2.79 1565 0.16 2.77 0.04 0.036 2.79 1565 0.16 0.16 2.7 0.04 0.036 2.79 11455 0.10 0.33 0.04 0.036 2.71		8.5	0.11	108	18.9	0.04	0.7	89.0	450
1400 0.11 0.01 1.11 0.02 2.01 1565 0.13 3.2 1.12 0.027 2.53 1565 0.13 3.2 1.18 0.037 2.53 1545 0.17 2.7 0.07 0.037 2.53 1545 0.15 3.2 0.07 0.067 2.53 1545 0.15 3.2 0.04 0.047 2.29 1545 0.16 2.77 0.07 0.056 2.73 1545 0.15 2.7 0.07 0.056 2.73 1550 0.16 2.7 0.07 0.056 2.73 1550 0.16 2.3 0.04 0.056 2.73 11455 0.10 3.3 0.04 0.058 2.51		0 F F	0.63	263	2000	20.05	0.0	18.1	1120
1565 0.12 2.2 1.12 0.07 2.22 1565 0.17 2.7 0.07 0.04 2.23 1646 0.17 2.7 0.07 0.04 2.23 1646 0.16 3.7 0.07 0.04 2.23 1566 0.16 2.7 0.07 0.036 2.73 1566 0.16 2.7 0.07 0.036 2.73 1566 0.16 2.7 0.07 0.036 2.73 1565 0.16 2.7 0.07 0.036 2.73 1165 0.10 3.3 0.04 0.035 2.73 1145 0.10 3.3 0.04 0.035 2.51		10.01	0.50	ge	Tag	A Ma	0.7	A AC	UC2
1365 0.17 2.7 0.07 0.34 2.33 15.45 0.15 3.2 0.04 0.36 2.33 15.05 0.16 3.2 0.07 0.034 2.33 15.05 0.16 2.7 0.07 0.036 2.83 15.05 0.16 2.7 0.04 0.035 2.83 11.05 0.10 3.3 0.04 0.035 2.51		13.2	0.67	35	02.0	0.06	10.01	1.12	1420
16.45 0.15 3.2 0.04 0.047 2.89 16.05 0.16 2.77 0.07 0.036 2.73 15.05 0.15 2.7 0.04 0.036 2.73 11.05 0.16 3.3 0.04 0.036 2.73 11.05 0.10 3.3 0.04 0.038 2.51		13.6	0.53	35	2.11	0.06	8.8	89.6	410
15.05 0.16 2.7 0.07 0.036 2.79 15.05 0.15 2.7 0.04 0.038 2.83 11.55 0.10 3.3 0.04 0.038 2.51		9.8	0.77	39	0.64	20.0	10.3	87.7	260
15,05 0,15 2.7 0,04 0,038 2.83 11.65 0,10 3.3 0,04 0,028 2.51		11.6	0.70	44	111	20.0	9,4	92.3	290
11.65 0.10 3.3 0.04 0.028 2.51		6.6	0.76	47	0.44	0.07	9.5	92.4	420
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		13.7	0.58	40	0.37	0.06	7.1	90.2	270
857 5500 L/0 2'S 0L/0 657L		10.5	0.57	37	0.65	0.05	7.6	65.8	510
3.1 0.85 0.019 2.08 0.2 0.01 0.000 1.50		10.0	54.0	82	0.38	CO.0	4, 6 0, 4	1.00	0420

ALS		ACCELLEN ALS Canada Ltd ALS Canada Ltd 212 Brooksbar North Vancouv Phone: 604 98	Address of the second states o	ALS CHEMEX ALS CHEMEX Associations in AMALYTICAL CHEMISTRY Association & AMALYTICAL CH	AL CHEM	K ISTRY alschemex.c	що	To: REL 418 NOR NOR Proje	RELIANCE GEOLO 418 EAST 14TH ST NORTH VANCOUVI Prolect: IVANHOE C	418 ELIANCE GEOLOGICAL SERVICI 418 EAST 141H ST NORTH VANCOUVER BC V7L 2N8 Project: IVANHOE CREEK	10: RELANCE GEOLOGICAL SERVICES 10: RELATH SE 10: REAT 14TH ST 10: ATH VANCOUVER BC V7L 2N8 Project IVANHOE CREEK	ŝ		Tot. Finalize	Page: 2 - C Total # Pages: 3 (A - D) Finalized Date: 16-JUL-2007 Account: RELGEO	Page: 2 - C # Pages: 3 (A - D) Date: 16-JUL-2007 Account: RELGEO
								Ľ		CERTIFICATE OF ANALYSIS	CATE C	JF ANA	LYSIS	WN07(WN07056006	
Samula Description	Method Analyte Units	ME-MS61 Pb ppm	ME-MS61 Rb ppm	ME-MS61 Re ppm	ME-MS01 S	ME-MS61 Sb ppm	ME-MS61 Sc ppm	ME-MS61 Se ppm	ME-MS01 Sn ppm	ME-MS61 Sr ppm	ME-MS61 Ta ppm	ME-MS01 Te ppm	ME-MS61 Th ppm	ME-MS61 Ti %	ME-MS61 T1 ppm	ME-MS61 U ppm
ample pesciption	TOX	0.5 F B	1.0	200.0	10.0	0.05	0.1 A 22		0.2	206.0	0.05	0,05	0.2	0.005	0.02	0.1
78940		23.8	770.0	<0.002	0.01	0.09	5.0		1.6	274.0	1.06	<0.05	1.9	0.465	4.69	0.8
78941		4 c	59.4	<0.002	0.02	0.37	28.7		1.1	223.0	0.39	<0.05	2.6	0.601	0.23	0.6
78943		15.8	42.6	<0.002	0.01	1.00	19.3		3.6	236.0	1.25	90.0	1.11	0.551	110	2,4
78944		12.6	38.6	<0.002	0.01	0.66	19.7	-	23	248.0	0.78	0.05	6.9	0.587	0.23	2.1
78945		8.11	19.4	0.002 <0.002	0.04	0.73	21.4		1 13	233.0	1.03	<0.05	10.5	0.489	0.22	5.0
78947		17.7	63.7	<0.002	0.07	0.67	18.5	-	3.9	242.0	1.59	<0.05	16.9	0.638	0.30	5.5
/8948		11.0	130.0	<0.002	0.02	1.38	12.8	-	2.5	127.0	0.93	0.06	10.2	0.546	0.48	2.4
78050		13.7	116.5	<0.002	0.16	1.08	15.3		22	169.5	0.92	0.05	9.2	0.581	1.23	3.6
78951		13.4	139.0	<0.002	0.02	06.0	14.4		2.8	166.0	1.38	0.05	13.6	0.540	0.66	4.2
78952		14.1	138.5	<0.002	0.01	0.57	17.2	F	2.6	226.0	1.16	0.08	11.3	0.648	0.61	2.8
78953		12.6	53.7	<0.002	0.01	0.51	16.0	1	2,3	254.0	1.03	0.30	7.7	0.692	0.39	1.7
78954		12.2	52.0	<0.002	0.01	0.45	13.6		9.F	244.0	0.61	0.07	4.2	0.480	0.42	0.8
78956		20.5	153.5	<0.002	0.14	0.49	5.3		6.0	187.0	0.84	<0.05	16.3	0.264	0.74	3.7
78957		25.4	104.5	<0.002	0.06	0.75	5.6	1	1.7	221.0	0.87	<0.05	12.9	0,271	0.82	3.4
78958		17.0	75.4	<0.002	1.05	8.22	8.4	7	1.5	91.5	0.67	0.20	10.7	0.255	1.13	6.8
78959		8.5	62.7	<0.002	1.39	10.50	7.4	21	1.0	106.5	0.47	0.26	4.8	0.166	0.51	6.7
78061		6.1 6.1	13.6	200.05	1.00	80.0	2. 6	- u	0,0	2/8/2	21.13	40.05 AF 0	8.6	0.048	4.74	0.0
78962	1	10.9	21.8	<0.002	1.35	11.35	5.2		4.0	63.9	0.26	0.16	3.1	0.068	0.55	3.6
78963		12.3	26.8	<0,002	0.38	5.60	6.2	5	9.0	62.0	0.32	0.26	3.9	0.090	0.31	4.0
78964		13.3	78.9	<0.002	0.64	6.37	5.5	e 1	0.6	89.8	0.48	0.12	8.4	0.150	0.58	3.8
(8800 CODD		12.2	36.0	<0.002	2.63	12.10	5.9	n a	0.0	104.5	95.0	0.18	4.6	860.0	1.35	6.7
006R/		0.9	4.07	200.02	95.1	10.0	9.0	x0 •	4.0	9.62	06.0	0.12	8.0	0.076	0.82	n 1
78968		15.6	106,5	<0.002	0,16	4.23	1.7	- 01	1.7	120.5	0.63	<0.05	9.8 8.6	0.280	0.69	4.8
69682		12.0	111.5	<0.002	0.08	3.61	7.6	5	1.6	116.0	0.66	<0.05	10.6	0.275	0.58	4.2
028370		12.3	115.0	<0.002	0.09	5.79	9.1	m	1.7	239.0	0.66	0.05	10.6	0.269	0.47	3.6
LIAR		1.11	140.0	200.02	10.0	16.35	1.1	N	n n	62.5	89.0	\$0.05	4.8	0.267	1.74	3.6
78973		12.7	140.0	<0.002	0.01	4,00	0.1	5	15	6.69	0.63	<0.05	9.6	0.258	0.82	2.7
78974		80.0	134.5	<0.002	\$0.01	2.50	4.8	- (1.6	61.6	0.63	<0.05	9.4	0.273	0.75	2.4
6/80/		1.0	108.5	<0.002	0.05	1.74	2.4	4 6	4 6	55.4	0.53	50.05	50	0.219	12.0	1.1
78977		7.4	72.4	<0.002	<0.01	1.13	5.2	. 67	0.9	51.2	0.39	<0.05	7.2	0.154	0.39	2.2

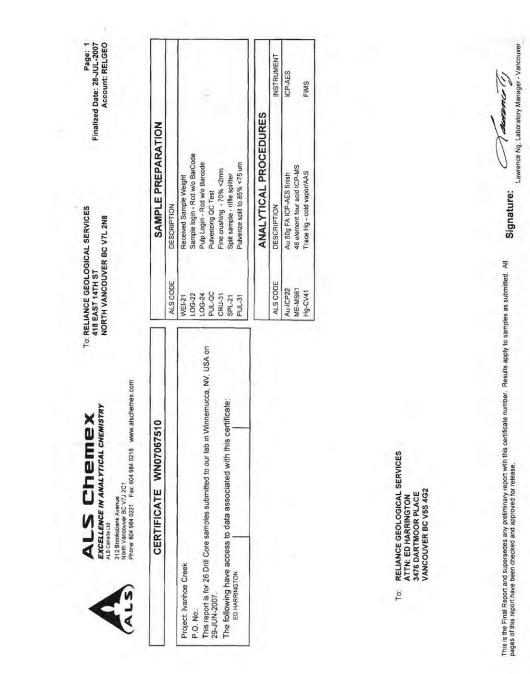

	-	EXCELLEN ALS Canada Ltd 212 Brooksban North Vancouv Phone: 604 98.	EXCELLENCE IN ANAL EXCELLENCE IN ANAL 21.5 Econsbank North Varnouver BC V7J 2C1 North Varnouver BC V7J 2C1 Phone: 604 984 0221 Fax: 61	ALS Chemex Excellence IN ANALYTICAL CHEMISTRY ALS Compated ACT Dookstank Awenue North Vancouver BC V71.2 ct North Vancouver BC V71.2 ct Phone: 004 984 0221 Fax: 604 984 0218 WWW.alsohemex.com	ALS CHEMEX EXELLENCE IN ANALYTICAL CHEMISTI A Comode La 12 Bootsbank Amue Vorth Vancouve BC V7J 201 None 604 984 0221 Fax: 604 984 0218 Www.alsch	STRY stray schemex.o	щ	To: RELIANCE GEOLOGICAL SERVICES 418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8 Project: IVANHOE CREEK	Page: 2 - D Total # Pages: 3 (A - D) Finalized Date: 16JUL-2007 Account: RELGEO
								CERTIFICATE OF ANALYSIS WN07056006	WN07056006
	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	Au-tCP22		
Sample Description	Analyte Units LOR	h	mqq 0.1	ppm 0.1	ppm 2	ppm 0.5	mdd 0.001		
78939		131	9.0	25.9	96	130.5	0.004		
78940	ĺ	59	0.3	6.2 24.8	39	132.0	0.088		
78942		112	25	19.7	88	84.8	0.003		
044		142	20	26.1	07	0 206	0000		
78945		150	2.5	48.3	205	298.0	0.003		
78946		246	1.1	29.6	97 151	183.0	0.001		
3948		124	2.1	31.6	78	236.0	0.002		
78949		133	1.7	46.8	66	219.0	0.001		
78950		37	1.6	60.5	130	365.0	<0.001		
1952		94	4.1	33.1	108	250.0	<0.001		
78953		112	0.9	25.6	102	249.0	0.001		
78954	1	127	0.8	13.8	78	147.0	0.001		
78955		55	1.5	35.0	09	218.0	0.001		
78950		52	2. C	17.2	66	81.7	<0.001		
1958		294	1.5	25.2	67	90.6	0.008		
78959		612	1.1	28.3	17	80.2	0.025		
3960		09	0.3	0.1 1	40	84.2	0.074		
78067		1/3	9.0	9.1	o ç	29.9	0.026		
78963		449	0.7	18.0	13.5	65.0	0.041		
78964		220	47.4	14.2	28	66.2	0.031		
78966		408	5.0	20.2	2 2	54.5	0.025		
78967		22	0.6	5.5	6	17.2	0.002		
3968		263	1.1	22.8	81	119.0	0.014		
78969		156	1.4	18,3	134	131.0	0.027		
128371	0	258	12	38.2	610	91.4	0.015		
78972 78973		207	1.2	15.2	773 866	109.0 97.9	0.002		
78974		124	1.0	13.8	958	94.8	0.001		
78975		17	6.0	13.3	676	93.8	0.002		
126		82	0.6	12.0	393	86.2	0.002		
				94					

Metric Metric<	Mutual biology (motivity (motivity) (motivi	ALS	~	ALS EXCELLEN ALS Canada Ltd ALS CANADA ALS CANADA ALS CANADA ALS CANADA ALS CANADA ALS CANADA ALS CANADA ALS CANADA ALS CANADA ALS CANADA ALS CANADA ALS	S C NA M. Ad Autor BC V7J 984 0221 F,	ALS Chemex Excellence IN ANALYTICAL CHEMISTRY ALS Camba Lik North Vancouver BC V71 2C1 North Vancouver BC V71 2C1 Phone: 604 984 0221 Fax: 604 984 0218 WWW.alschemex.com	AL CHEM	STRY Ischemex.c	шо	To: REL 4181 NOR Proje	RELIANCE GEOLOGICAL 418 EAST 14TH ST NORTH VANCOUVER BC Protect: IVANHOE CREEK	OLOGIC# H ST OUVER B	To: RELIANCE GEOLOGICAL SERVICES 418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8 Project: IVANHOE CREEK	ES		Tota Finalize	Page: 3 - A Total # Pages: 3 (A - D) Finalized Date: 16-JUL-2007 Account: RELGEO	Page: 3 - A # Pages: 3 (A - D) Date: 16-JUL-2007 Account: RELGEO
Motion below Motion (W11) WE-MS01 (R=MS01) ME-MS01 (R=MS01) ME-MS01	Method VELAT RE-MISH R											CERTIFI	ICATE C	DF ANA	LYSIS	WN070	056006	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ample Description	Method Analyte Unite LOR	WEI-21 Recvd Wt. kg 0.02	ME-MS81 Ag ppm 0.01	ME-MS61 AI % 0.01	ME-MS01 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MSB1 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS81 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	- ME-MS61 Cr ppm	ME-MS81 Cs Ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	78979 78980 78981 78982 79983		1.38 0.06 1.26 1.02	0.15 <0.01 0.28 0.71 0.17	5,61 9,70 6,92 5,14 6,22	1.1 0.5 0.7 8.1	900 90 1080 750 950	1,99 1,68 1,52 2,39	0.13 0.66 0.11 0.10 0.12	0.19 1.81 0.15 0.15 0.17	5.10 0.04 9.71 0.55 0.23	65.20 26.30 54.30 55.50 64.80	9.7 16.7 12.0 7.7 16.6	- 44 59 59 50 50 50 50 50 50 50 50 50 50 50 50 50	6.64 18.85 3.40 4.95 4.76	63.6 17.1 35.8 22.4 22.2	1.62 2.68 1.50 1.65
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.70 0.55 5.87 6.3 970 136 0.16 0.25 0.04 52.00 14.4 35 0.44 0.56 5.47 5.47 0.34 0.05 1.54 0.01 31 0.31 0.12 27.70 11.0 31 0.80 0.57 1.53 4.5 4.50 0.76 0.02 0.12 27.70 11.0 31 0.80 0.57 1.53 4.5 4.50 0.76 0.09 0.02 0.34 25.4 13.4 697 13.6 13.6 13.6 13.6	8984 78985 18986 78987 78987		1.08 1.06 0.88 1.28 0.84	0.07 0.23 0.19 0.05 0.05	6.10 7.01 5.87 5.52 5.16	3.0 9.3 2.7 2.5 2.5	1010 820 910 1120 880	2.38 2.52 2.12 1.99	0,12 0,15 0,15 0,13 0,13	0.24 0.26 0.32 0.68 0.24	0.82 0.45 0.57 0.18 0.08	61.90 72.70 57.20 46.70 47.50	13.0 20.1 13.3 9.3	50 57 57 36	5.55 5.81 4.57 4.33 4.80	31.5 25.3 33.6 35.2 35.2	1,74 2,64 2,49 2,08 1,65
0.50 1.02 2.52 5.3 2.40 1,15 0.17 0.08 0.16 2.4,10 2.6 100 4.08 0.36 0.20 0.72 2.0 270 0.38 0.08 0.03 0.43 8.16 6.9 26 0.97 0.36 0.24 0.38 0.08 0.03 0.43 8.16 6.9 26 0.97 0.56 0.24 0.86 0.37 0.06 0.03 0.32 10.75 7.9 21 1.00 0.58 0.04 1.90 0.37 0.10 0.11 0.55 9.7 27 1.44 0.80 0.04 1.90 6.3 490 0.65 0.11 0.05 0.53 16.25 3.3 1.98	0.50 1.02 2.52 5.3 240 1.15 0.17 0.08 0.16 24,10 2.6 100 0.56 0.24 0.77 2.0 0.38 0.08 0.03 0.24 13.15 5.9 26 0.56 0.24 0.72 2.10 2.7 200 0.34 0.17 5.15 5.9 26 0.58 0.24 0.85 2.3 490 0.44 0.11 0.35 12.75 9.7 27 0.38 0.04 1.90 6.3 490 0.65 0.11 0.05 0.33 16.25 11.5 33 0.30 0.04 1.90 6.3 490 0.66 0.11 0.05 0.33 16.25 11.5 33 0.30 0.04 1.90 6.3 490 0.66 0.11 0.05 0.33 16.25 11.5 33 0.30 0.04 1.90 0.35 0.65 0.11	78989 78990 78991 78992		0.70 0.54 0.84 0.50 0.80	0.55 0.08 0.57 0.57 0.85	5.87 4.49 5.67 2.28 1.65	6.3 6.4 6.5 6.5 9.9	970 1080 460 540	1.95 1.54 1.05 0.79	0.16 0.18 0.29 0.08 0.09	0.25 0.22 0.16 0.06 0.05	0.04 0.12 0.14 0.29 0.08	52,60 42,70 53,70 20,40 15,35	14.4 11.0 13.4 7.4 2.5	35 8 1 1 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	4.51 3.92 6.21 2.59 2.43	33.9 54.7 52.3 74.9	2,56 1,99 1,70
		78994 18995 18996 18998 18998		0.50 0.36 0.58 0.58 0.80	1.02 0.20 0.05 0.05	2.52 0.72 0.85 1.28 1.90	613 2.2 3.9 6.3	240 270 350 490 480	1.15 0.38 0.43 0.49 0.65	71.0 80.0 80.0 71.0	0.08 0.03 0.11 0.11	0.16 0.43 0.32 0.53 0.53	24.10 8.16 10.75 12.75 16.25	2.6 6.9 7.9 9.7 11.5	100 26 27 33	4.08 0.97 1.41 1.41	83.6 63.3 62.4 68.3 77.8	2.38 0.90 1.66 1.59

Memory to the field		EXCELLEN ALS Canada Ltd. 212 Brooksban North Vancouw Phone: 604 98	EXCELLENCE IN A ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J Phone: 604 984 0221 F	ALS CLAENER X ASCLEACE IN ANALYTICAL CHEMISTRY AS Conside IN AS Conside IN AS Conside IN AS Conside IN AS CONSIDENT ANALY MANUNE OF AS A 2216 Monte 604 384 0221 Far. 604 984 0218 Monte 604 384 0221 Far. 604 984 0218 Monte 604 384 0221 Far. 604 984 0218	AL CHEM	ISTRY ISTRY alschemex.o	щœ	418 NOF	418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8 Project IVANHOF CRFFK	418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8 Protect IVANHOF CRFFK	C V7L 2NB	}		Tot Finalize	al # Page: id Date: 1(Account	Page: 3 - B Total # Pages: 3 (A - D) Finalized Date: 16-JUL-2007 Account: RELGEO
Method beschiption ME-MISFI Case ME-MISFI F ME-MISFI F <										CERTIFI	CATE C	DF ANA	LYSIS	WN07	056006	
	ample Description	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	Hg-CV41 Hg ppm 0.01	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg %	ME-MS61 Min ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na %	ME-MS81 Nb ppm 0.1	ME-MS61 Ni Ppm 0.2	ME-MS61 P ppm 10
	8979 8980 78981 78982 78983	15.60 21.30 12.10 13.25 15.55	0.13 0.11 0.15 0.12 0.12	3.9 3.3 3.6 3.6	0.04 <0.01 0.15 0.45 0.16	0,041 0.025 0.034 0.035 0.035	3.05 5.07 2.45 2.57 3.06	32.4 13.8 27.3 28.7 30.6	14.1 4.4 19.3 19.4 27.3	0.76 1.48 0.75 0.94	53 414 75 72 154	0.34 1.39 0.16 3.79	0.06 3.59 0.07 0.07	8.8 14.7 7.6 8.2 8.2	88.5 56.7 64.8 61.7 85.8	650 1110 500 380 500
1540 0.12 3.9 0.40 0.049 2.56 26.1 30.7 1.09 192 6.11 0.10 11.5 50.5 1200 0.12 3.3 0.18 00368 2.24 21.3 27.0 0.83 112 4.31 0.06 7.6 58.5 1200 0.13 3.6 0.036 2.24 21.3 27.0 0.83 112 4.31 0.06 7.6 58.5 1050 0.03 1.3 0.23 0.025 0.91 9.9 16.6 0.48 85 2.71 0.06 7.0 8.47 0.08 1.1 0.32 0.021 0.70 8.5 12.2 0.25 66 1.20 3.0 410 730 0.12 0.37 8.5 12.2 0.25 66 1.20 0.03 3.0 410 8.47 0.08 1.1 0.36 0.37 8.7 0.06 7.10 8.5 8.5 <	8984 8985 8986 8987 8988	15.50 17.80 15.45 13.90 13.85	0.12 0.14 0.13 0.10 0.12	3.6 3.1 3.1 3.1	3.71 1.29 0.43 0.44 0.10	0.035 0.045 0.050 0.041 0.038	3.12 3.26 2.82 2.67 2.89	31.3 35.0 28.5 23.9 23.9 23.9 23.9	20.3 27.5 33.2 28.4 28.2	1.08 1.37 1.56 1.06	104 162 134 127 86	0.61 3.49 5.18 1.01 0.33	0.10 0.11 0.06 0.06 0.06	9.1 10.7 8.6 8.7	76.7 87.9 95.5 65.6 47.0	730 760 1250 2980 890
1390 0.12 1.8 0.94 0.040 1.07 11.5 1.20 0.44 1.26 2.24 0.04 4.5 52.4 4.88 0.05 0.4 0.18 0.019 0.28 4.0 9.4 0.11 49 1.2 6.64 1.3 65.8 5.86 0.05 0.5 0.015 0.20 5.2 13.4 0.17 49 1.2 6.64 1.3 65.8 5.86 0.05 0.5 0.015 0.20 5.2 13.4 0.17 51 0.94 1.3 65.8 5.79 0.08 0.7 0.50 5.2 13.4 0.17 51 0.98 61.5 61.5 5.79 0.08 1.7 1.28 0.023 0.23 0.02 13.2 0.24 1.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5	8989 8990 8991 8992 8993	15.40 12.30 19.00 10.50 8.47	0.12 0.13 0.08 0.08	3.9 3.3 3.6 1.3	0.40 0.18 0.36 0.31 0.38	0.049 0.036 0.054 0.025 0.025	2.56 2.84 3.20 0.91 0.70	26.1 21.3 25.6 9.9 8.5	30.7 27.0 20.2 16.6 12.2	1.09 0.83 0.98 0.48 0.48	192 112 117 86 66	6.11 4.31 3.39 2.71 1.20	0.10 0.05 0.06 0.05 0.03	11.5 7.6 10.1 4.0 3.0	50.5 59.5 84.7 70.0 41.0	360 830 480 120 110
	8994 8995 8996 8997 8998	13.90 4.88 5.56 5.79 8.87	0.12 0.05 0.06 0.06 0.06	1.8 0.4 0.7 1.1	0.94 0.18 0.65 1.28	0.040 0.019 0.015 0.020 0.033	1.07 0.28 0.30 0.53 0.53	11.5 5.2 6.0 8.0	12.0 9.4 13.4 13.2 17.5	0.44 0.11 0.22 0.31	126 49 51 63 62	2.24 1.29 0.96 1.65 0.87	0.04 0.04 0.04 0.04	4.5 1.5 2.1 3.1 2.1 5.4	52.4 65.8 61.5 49.8 57.9	180 60 80 380 70

Mathod Re-Miseli MetAlseli M	Dject: IVANY R 64/86/ 14 6 14 6 14 14 14 14 14 14 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 16 16 16 16 17 17 17 16 17 17 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17 1	OLE UKELEK ME-MBH ME-MBH </th <th>A ME.MS801 ME.MS801 Ta ppm 0.05 0.05 0.71 0.78 0.78 0.78 0.78 0.78 0.78 0.66</th> <th>ANA ME-MS61 Te ppm 0.05</th> <th>LYSIS</th> <th></th> <th>Account</th> <th>Finalized Date: 16-JUL-2007 Account: RELGEO</th>	A ME.MS801 ME.MS801 Ta ppm 0.05 0.05 0.71 0.78 0.78 0.78 0.78 0.78 0.78 0.66	ANA ME-MS61 Te ppm 0.05	LYSIS		Account	Finalized Date: 16-JUL-2007 Account: RELGEO	
Method bettod ME-MS91		ME-M801 Sr 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ME-M501 Ta Pm 0.05 0.64 0.55 0.55 0.55 0.55 0.55 0.55 0.56 0.71 0.66	ME-MS01 Te ppm 0.05 0.06		WN07(WN07056006		
103 1205 <1002		61.4 274.0 274.0 51.1 52.5 58.5 58.5 58.5 50.3 50.3 50.3 50.3 50.3 50.3 50.3 50	0.64 1.00 0.55 0.55 0.71 0.66 0.66 0.66	0.06	ME-MS61 Th ppm 0.2	ME-MS81 Ti 0.005	ME-MS61 TI ppm 0.02	ME-MS61 U ppm 0.1	
14.2 8.3.1 0.007 0.41 114 7.8 5.4 17.5 10.25 0.002 0.47 15.7 10.9 7.9 113.5 0.002 0.43 0.74 1.73 10.9 32.9 115.0 -0.002 0.18 0.82 11.1 11.4 32.9 110.0 0.015 0.95 2.23 10.3 70 107.0 0.017 0.18 12.2 97 5.1 111.0 0.003 0.56 2.23 10.3 5.1 111.0 0.003 0.70 2.23 10.3 7.1 111.0 0.003 0.70 2.23 10.3 7.1 111.0 0.003 0.70 2.23 10.4 112 97.0 0.003 0.70 2.27 19.4 7.5 119.5 0.003 0.62 1.47 8.3 112 97.0 0.003 0.62 1.47 8.3 <tr< td=""><td></td><td>49.9 51.1 52.5 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58</td><td>0.55 0.55 0.71 0.78 0.66 0.66 0.66</td><td><0.05</td><td>11.9</td><td>0.267 0.434</td><td>0.67</td><td>4.9</td></tr<>		49.9 51.1 52.5 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58	0.55 0.55 0.71 0.78 0.66 0.66 0.66	<0.05	11.9	0.267 0.434	0.67	4.9	
13.8 115.0 <10.02 0.16 0.82 10.0 32.9 124.0 0.016 0.95 2.11 11.4 13.4 110.0 0.016 0.95 2.11 11.4 13.6 107.0 0.017 0.36 2.55 2.11 11.4 13.6 107.0 0.017 0.36 1.22 9.7 14.1 199.0 0.003 0.70 2.05 19.4 11.1 97.0 0.003 0.70 2.05 19.2 11.2 97.0 0.003 0.70 2.05 19.2 11.2 97.0 0.003 0.70 2.07 19.3 11.2 97.0 0.003 0.70 2.07 19.3 11.2 97.0 0.003 0.70 2.17 15.6 11.3 34.9 0.003 1.20 1.50 4.8 13.1 34.9 0.003 1.20 1.50 4.8 4.4		56.3 59.5 59.5 50.0 50.3 57.3 41.0 24.1	0.66 0.78 0.60 0.60	0.05 <0.05	9.6 9.8 11.3	0.236 0.268 0.322	0.47 0.47 0.61	4.0 1.7 3.1	
32.9 124.0 0.016 0.95 2.11 11.4 13.1 110.0 0.017 0.36 2.11 11.4 7.0 107.0 0.017 0.36 2.17 11.4 7.0 107.0 0.017 0.38 122 9.7 7.1 111.0 0.002 0.003 0.70 2.02 10.2 11.2 97.0 0.003 0.70 2.02 10.2 13.3 11.2 97.0 0.003 0.70 2.02 14.7 8.3 11.2 97.0 0.003 0.70 2.02 14.7 8.3 11.2 97.0 0.003 0.70 2.02 14.7 8.3 12.5 11.3 0.004 1.16 2.36 12.6 13.4 5.6 1.20 15.0 4.8 5.6 1.20 1.50 4.8 5.6 1.24 5.6 5.6 4.8 7.4 5.0 5.6 5.6 5.6 5.0		59.5 48.9 50.0 50.3 57.3 41.0 24.1 24.1	0.78 0.66 0.60	<0.05	10.5	0.296	0.52	2.7	
70 107.0 0.017 0.18 1.22 9.7 18.1 114.0 0.002 0.002 0.51 9.4 18.1 109.0 0.003 0.70 2.02 10.2 11.2 97.0 0.003 0.70 2.02 10.2 11.2 97.0 0.003 0.70 2.02 10.2 11.2 97.0 0.003 0.82 1.47 8.3 12.5 19.5 0.004 1.16 2.26 5.6 13.1 34.9 0.008 1.20 1.50 4.8 5.4 4.3 5.4.1 <0.002		50.0 50.3 47.3 41.0 24.1	0.60	<0.05	12.0	0.348	0.70	4.4 3.5	
18.1 109.0 0.003 0.70 2.02 10.2 11.2 97.0 0.003 0.65 1.47 8.3 12.5 97.0 0.004 0.65 1.47 8.3 12.5 97.6 0.004 1.65 1.47 8.3 12.6 14.5 0.004 1.52 1.56 5.8 5.6 44.2 0.006 1.20 1.50 4.8 13.1 34.9 0.008 1.20 1.50 4.8 13.1 54.1<<		57.3 47.3 41.0 24.1	0.63	<0.05	8,8 8,9	0.268	0.51	2.6	
11.2 97.0 0.003 0.62 1.47 8.3 12.5 119.5 0.004 1.16 2.36 12.8 5.6 4.4.2 0.004 1.16 2.58 5.8 13.1 3.4.9 0.008 1.20 1.50 4.8 13.1 3.4.9 0.008 1.20 1.50 4.8 4.4 13.7 <0.002		47.3 41.0 24.1	0.80	<0.05	10.3	0.332	0.64	3.3	
F.2 113:0 0004 1.10 2.00 F.2 1.24 5.5 1.34 5.5 1.34 5.5 1.34 5.5 1.34 5.5 1.34 5.5 1.34 5.5 4.8 7.30 1.34 5.5 4.8 7.30 1.34 5.5 4.8 7.30 1.30 1.30 1.30 4.8 4.8 7.4 4.8 7.002 1.70 3.17 7.39 4.8 7.4 4.8 7.002 3.17 7.39 5.1 4.9 7.60 2.10 2.10 2.11 7.39 5.1 4.9 7.6 2.12 7.10 2.11 7.39 5.1 4.4 7.10 2.11 7.31 <th 7.<="" td=""><td></td><td>24.1</td><td>0.54</td><td>0,15</td><td>0.0</td><td>0.203</td><td>0.50</td><td>3.1</td></th>	<td></td> <td>24.1</td> <td>0.54</td> <td>0,15</td> <td>0.0</td> <td>0.203</td> <td>0.50</td> <td>3.1</td>		24.1	0.54	0,15	0.0	0.203	0.50	3.1
13.1 34.9 0.008 1.20 1.50 4.8 19.3 54.1 <0.002		100	0.26	0.08	3.1	0.122	00.03	2.4	
19.3 54.1 <0.002 1.70 3.17 7.9 4.4 13.7 <0.002 0.43 1.00 2.1		18.3	0.19	60'0	5.3	0.095	0.21	3.9	
		23.4	0.28	0.13	3.4	0.143	0.36	5.5	
4.9 15.3 <0.002 0.43 0.94 2.6		16.5	0.08	0.08	10	0.042	80.0	0.4	
3.8 25.1 <0.002 1.09 0.96 4.1		28.2	0.13	0.07		0.063	0.14	100	
3.4 37.6 <0.002 0.81 1,48	2 0.6	19.5	0,19	0.10	2.3	0.085	2170	9.0	

		EXCELLEN ALS Canada Ltd. 212 Brooksban	ENCE IN A Ltd. Dank Avenue	EXCELLENCE IN ANALYTICAL CHEMISTR ALS Comada Lud. 212 Brooksbank Avenue	EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Lid. 212 Brooksbank Avenue	STRY		418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8	Total # Pages: 3 (A - D) Finalized Date: 16-JUL-2007 Account: RELGEO
(ALS	-	North Vance Phone: 604	ouver BC V7J 984 0221 F	2C1 ax: 604 984 (North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com	alschemex.c	mo	Project IVANHOE CREEK	
								CERTIFICATE OF ANALYSIS	WN07056006
Sample Description	Method Analyte Units LOR	ME-MS61 V ppm	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn Ppm 2	ME-MS61 Zr ppm 0.5	Au-ICP22 Au ppm 0.001		
78979 78980 78981 78982 78983		112 54 120 58 80	1.1 0.3 3.8 1.1	18.1 6.5 15.6 14.1 16.2	505 37 434 280 671	111.5 79.0 96.4 91.3 95.3	0.013 0.070 0.006 0.003 0.003		
78984 78985 78986 78987 78987		69 106 95 74	0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1	17.6 23.4 22.6 15.8 16.3	592 460 693 520 82	103.0 111.5 86.1 81.0 89.1	0.003 0.003 0.003 0.002		
78989 78990 78992 78992 78993		72 79 150 109 116	2.9 1.4 0.8 0.6	16.1 17.7 18.1 9.2 11.4	84 67 97 34	107.0 99.1 108.5 44.0 41.6	0.001 0.003 0.015 0.010 0.032		
78994 78995 78997 78997 78998		174 52 48 44 50	1.0 0.6 1.0 1.1	16.4 5.5 7.6 6.8	70 50 77 76	65.2 19.6 21.3 25.5 37.0	0.035 0.006 0.007 0.007 0.004	×	
					0.00				


WN07059081

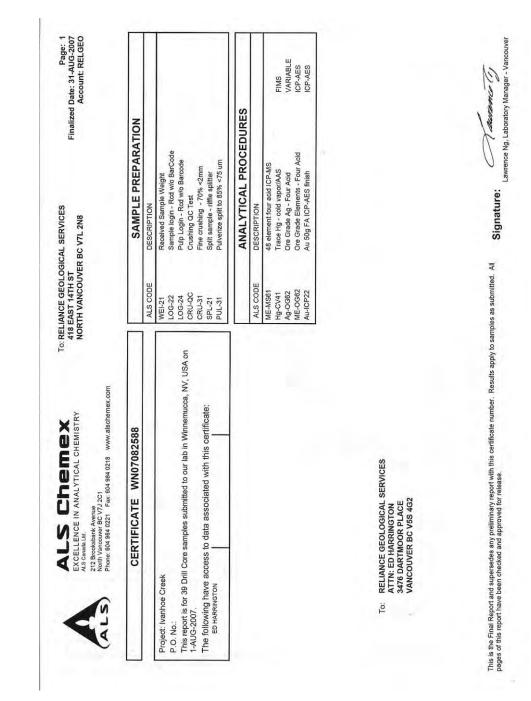
		ALS EXCELLEN ALS Canada Ltd ALS Canada Ltd ALS Canada Ltd TS Brooksbar North Vancouv Phone: 604 98	Mark Avenue Aver BC V7J 2 84 0221 Fa	ALS Chemex EXELLENCE IN ANALYTICAL CHEMISTRY A.S. Camada Lid 212 Booksbank Avenue 212 Booksbank Avenue Phone: 604 840 C271 2C1 Phone: 604 840 C271 2C1 Phone: 604 840 C271 2C1	UL CHEMI:	STRY StRY	Ę	To: RELL 418 E NORT Projec	RELIANCE GEOLOGI 418 EAST 14TH ST NORTH VANCOUVER Prolect: Ivanhoe Creek	RELIANCE GEOLOGICAL SERVICI 418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8 Prolect: Ivanhoe Creek	To: RELIANCE GEOLOGICAL SERVICES 418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8 Project: Ivanhoe Creek	សួ		Tota Finalized	Page: 2 - A Total # Pages: 2 (A - D) Finalized Date: 24-JUN-2007 Account: RELGEO	Page: 2 - A # Pages: 2 (A - D) Date: 24-JUN-2007 Account: RELGEO
									0	ERTIFI	CERTIFICATE OF ANALYSIS	F ANAL	YSIS.	WN07059081	59081	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP22 Au Ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS01 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS81 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS81 Cd ppm 0.02	ME-MS01 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS81 Cr ppm	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2
78921 78922 78923 78924 78925		0.88 0.76 0.84 0.98 0.64	0.018 0.001 -0.001 0.085 0.003	0.13 0.10 0.15 0.15 0.17	7.14 7.78 7.23 0.97 9.83	4.5 1.9 80.0 18.5	1780 1820 850 450 620	1.37 1.49 2.51 0.66 2.17	0.03 0.01 0.10 0.10	1.19 1.31 3.59 0.08 0.56	0.12 0.05 0.15 0.02 0.06	71.00 71.90 52.90 18.45 78.00	5.2 5.3 13.0 19.0	n n 4 5 6	9.21 6.20 6.01 1.53 6.29	9.8 6.2 6.7 25.4 89.7
78926 78927 78928 78928 78929		0.82 0.92 0.52 0.58	0.010 0.016 0.030 0.014 0.018	0.12 0.24 0.68 0.38 0.42	2.06 2.84 3.44 1.73 2.66	6.8 12.4 12.5 12.5 9.0	390 590 640 390	1.08 2.00 1.14 1.40	0.10 0.17 0.20 0.08 0.09	0.08 0.13 0.13 0.13 0.13	0.06 0.08 0.08 0.02 0.04	33.40 51.00 59.00 29.30 39.60	1.4 1.9 1.6 1.6 1.2 1.2	2 8 8 9 7 8 8 8 9 8 9 8 8	263 3.81 2.18 2.18 2.73	26.9 52.7 82.1 45.8 56.0
78931 78932 78933 78934 78934		0.40 0.46 0.74 1.90 1.00	0.012 0.024 0.013 0.006 0.012	0.44 0.44 0.05 0.05 0.09	3.14 2.32 0.25 0.34 0.34	7.2 31.0 4.3 5.7 14.0	250 320 20 30	1.34 1.19 0.08 0.15 0.15	0.12 0.09 0.01 0.01	0.22 0.15 0.02 0.04	0.04 0.03 0.11 0.16	38.30 38.40 9.96 10.70 8.54	1.5 1.4 0.7 0.7	38 21 2 38 23 23 28 29 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	2.81 2.31 0.20 0.28	68.7 60.3 12.9 32.6 49.1
9068/ 9068/		116 116 138	0.001 2.002 	0,12 0.05 0.05	0.23 0.23 0.20 0.20	21 27 1.9	2 2 2 2	0.14 0.14 0.11	000 100 1000	0.02	40.02 40.02 40.02 40.02 40.02	9.82 13.20 9.99 9.99	000 6 0 0	3 15 12 12	0.23	2 00 00 01 2 00 00 01

		ALS EXCELLEI ALS Canada Lid ALS Canada Lid ALS Canada Lid 212 Brooksha North Vancour	ALS CHEMEX EXELLENCE IN ANALYTICAL CHEMISTI US Canada Lu. US Canada Lau Vari Vinnoure EC V71 251	ALS CHEMEX EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canda Lut. Also Rootsdamk Appendent North Visnouver EC V71 201		STRY		To: RELIJ 418 E NORT	RELIANCE GEOLO 418 EAST 14TH ST NORTH VANCOUVI	To: RELIANCE GEOLOGICAL SERVICES 418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8	- SERVICE V7L 2N8	S		Tota Finalized	Page: 2 - B Total # Pages: 2 (A - D) Finalized Date: 24-JUN-2007 Account: RELGEO	Page: 2 - B s: 2 (A - D) 4-JUN-2007 it: RELGEO
	2	Phone: 604 5	384 0221 Fe	ax: 604 984 02	18 www.a	lschemex.o	mo	Projec	Project: Ivanhoe Creek CERTI	Creek	De Creek CERTIFICATE OF ANALYSIS	F ANAL	YSIS.	WN07059081	59081	
Sample Description	Method Analyte Units LOR	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	Hg-CV41 Hg ppm 0.01	ME-MSB1 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 LI ppm 0.2	ME-MS61 Mg %	ME-MS61 Mn ppm 5	ME-MS81 Mo ppm 0.05	ME-MS81 Na %	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2
78921 78922 78923	1	2.42 2.56 2.35	19.35 20.00 21.50	0.15 0.13 0.09	24 24 29	0.08 0.01 0.06	0.026 0.032 0.041	3.59 3.78 1.79	47.4 40.0 27.3	36.7 30.9 24.7	0.68 0.70 0.76	371 327 752	1,20 0.87 0.70	0.59 0.58 0.11	11.2 12.4 2.4	22
78925		2.74	4.10	0.12	5.4	2.42	0.010	0.36	7.8 49.5	11.1 53.2	0.10	44 67	1.68 8,99	0.06	2.2 16.2	5.1 9.8
78926 78927 78928		0.95 1.30 1.52	6.83 10.35 14.95	0.07 0.12 0.12	1.7	0.19 0.30 0.66	0.014 0.025 0.050	0.71 1.09 1.28	16.5 24.5 29.2	11.6 13.8 14.5	0.20 0.32 0.38	65 64 74	1.54 1.86 3.38	0.03 0.04 0.04	3.9 6.2 7.0	6.7 10.0 11.4
78930		1.30	6.58 9.33	0.09	1.1	0.25	0.021	0.62	14.9	11.9	0.17	35	2.12	0.04	6 6 4	5.5 6.6
78931 78932 78933		1.39 1.51 0.89	10.15 8.17 0.71	0.09 0.10 <0.05	2.3 1.7 0.5	0.59 0.39	0.024 0.021 <0.005	1.06 0.77 0.07	20.5 19.9 6.1	9.6 11.3 1.8	0.27 0.21 0.02	55 29	5.78 3.41 4.32	0.03 0.03 <0.01	5.2 3.9 0.7	10.4 10.0 5.0
8935		1.17	0.66	<0.05 <0.05	0.5	1.51	<0.005	0.08	6.1	1.7	0.02	37	1.21 3.08	<0.01	0.6	4.4
78936		0.1500.0.2550.0.255	0.00	800 800 800 800 800 800	2 0 0 0 2 7 7 4 2 7 7 4	100 1210 000 000	800 00 200 00 200 2	0.11 0.08 0.08	μ το το το Ο το τό τ α	2 0 0 1 1 2 1 1 2 1 1	0.02 0.02 0.02 0.02	5 3 8 8	0.12 1.00 0.75	10.00 10.00 10.00 10.00	ο Ο Ο Ο Ο Ο Ο Ο Ο	8. 4. M. 0. 6. F. 6.

	-	ALS Canada LId. ALS Canada LId. 212 Brooksban North Vancouv Phone: 604 98.	ACS IC CONTRACTION CONTRACTION CONTRACTION AND ALS Canada Lud. ALS Canada Lud. ALS Conodebate Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 6	ALS CHERCE X EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Conduction 212 Brookshik Avenue 212 Brookshik Avenue 212 Brookshik Avenue 213 Brookshik Avenue 214 Brookshik Avenue 215 Brook	L CHEMIS 11 CHEMIS 18 WWW.at	STRY schemex.co	E	418 E NOR1	418 EAST 14TH STORE BC V7L 2N8 NORTH VANCOUVER BC V7L 2N8 Project Ivanhoe Creek	418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8 Protect: Lvanhoe Creek	CVTL 2N8	2		Tota Finalized	Finalized Date: 2 - 0 Finalized Date: 2 (A - D) Account: RELGEO	Page: 2 - C # Pages: 2 (A - D) Date: 24-JUN-2007 Account: RELGEO
									o	ERTIFIC	CERTIFICATE OF ANALYSIS	F ANAL	YSIS	WN07059081	59081	
Sample Description	Method Analyte Units LOR	ME-MS61 P ppm 10	ME-MS01 Pb ppm 0.5	ME-MS01 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS81 S % 0.01	ME-MS01 Sb ppm 0.05	ME-MS01 Sc ppm 0.1	ME-MS81 Se ppm 1	ME-MS01 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME-MS61 TI % 0.005	ME-MS81 TI ppm 0.02
78921 78922 78923 78924 78925	5 40	140 240 520 90 730	21.5 24.4 5.8 5.8 32.3	135.0 150.5 64.4 21.5 66.7	 40.002 40.002 40.002 40.002 40.002 	0.01 0.01 0.57 2.04	0.69 0.91 1.12 6.17 9.04	6.0 6.2 5.8 3.3 11.0	00040	0.8 1.1 0.5 2.6	165.5 175.0 173.5 31.1 92.8	0.86 0.90 0.94 0.15	<pre><0.05</pre> <pre><0.05</pre> <pre><0.05</pre> <pre>0.05</pre> <pre>0.05</pre>	16.5 17.8 12.5 2.1 21.2	0.223 0.237 0.256 0.053 0.449	0.68 0.87 0.79 0.19 0.91
78926 78927 78928 78929 78930	1	220 350 860 310	7.9 9.2 12.6 7.7 9.7	40.5 63.0 35.8 35.8	 <0.002 <0.002 <0.002 <0.002 <0.002 	0.33 0.69 0.89 0.48	2.99 6.12 7.53 5.27 5.68	6.6 10.0 12.2 5.0 7.1	M41244	0.6 0.9 0.7 0.8	34.2 51.8 59.7 45.6	0.28 0.45 0.55 0.25 0.36	0.06 0.09 0.05 0.05	4.4 8.8 4.2 4.2 4.2	0.100 0.151 0.176 0.087 0.120	0.15 0.24 0.41 0.17 0.27
78931 78932 78933 78934 78934		740 500 30 340 340	12.1 9.7 1.8 1.5	57.3 43.4 3.9 4.1	 <0.002 <0.002 <0.002 <0.002 <0.002 	0.93 1.10 0.69 0.86 1.52	6.65 9.10 1.43 1.32 2.72	8.3 6.2 1.0 0.9 0.9	พทพงม	0.9 0.7 0.2 0.2	41.8 42.8 5.6 8.8 5.1	0.41 0.31 0.05 0.05 <0.05	0.07 0.05 <0.05 <0.05	6.3 4.9 1.0 0.9	0.146 0.108 0.020 0.018 0.016	0.29 0.53 0.06 0.05 0.10
80282 78933 8938		8 8 8	6, 1 0 0 1 0 0 1 0 1 1	9 4 M	-60 002 -0.002 -0.002	0.12 0.03 0.09	65.0 05.0 05.0	9 γ γ 9 0 0	(N (N (N	0.2 6.0.2 6.0.2	54 3 73 3 7	40.05 0.05 0.05 0.05	80.05 80.05	17 C 80	0.020 0.018 0.016	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

		ALS EXCELLEN ALS Canada Ltd. 212 Brooksban North Vancouve Phone: 604 98-	In the second se	NALYTIC. 2C1 2C1 2C1 2C1	ALS Chemex Annual Stream Chemistry Als Canada Lud Chemistry Als Canada Lud 212 Biotsbank Annual 212 Biotsbank Annual Phone 604 994 021 Fare 604 994 0218 WWW alsohemex.com	STRY schemex.co	Ę	To: RELIANCE GEOLOGICAL SERVICES 418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8 Project Ivanhoe Creek	Page: 2 - D Total # Pages: 2 (A - D) Finalized Date: 24-JUN-2007 Account: RELGEO
					•			CERTIFICATE OF ANALYSIS WN07059081	WN07059081
Sample Description	Method Analyte Units LOR	ME-MS61 U ppm 0.1	ME-MS81 V ppm	ME-MS81 W ppm 0.1	ME-MS81 Y ppm 0.1	ME-MS81 Zn ppm 2	ME-MS61 Zr ppm 0.5		
	8.6	4.8	44 :	1.6	19.5	02	72.9		
78923		3.9	45	22	15.2	02	79.9		
78924 78925	10 I	1.1 5.9	29 105	0.6 9.1	5.0 21.0	131	30.1		
78926		1.7	78	1.7	13.9	11	49.4		
78927		2.3	148	1.6	19.2	18	62.6		
78929		5.4	187	0.8	21.9	13	43.4		
78930	1	2.7	26	1.0	28.2	19	62.6		
78931		2.9	119	1.2	31.5	20	82.6		
78932		2.5	93	0.0	27.9	17	60.2		
78934		0.9	31	0.3	5.1	• E	16.4		
78935		1.8	40	0.4	5.3	28	15.7		
78936		0.5	20	0.3	4.8	с (19.5		
78938		4.0	0 4	0.2	2.3	9 64	13.0		
1									

WN07067510


		ALS EXCELLEN ALS Canada Ltd ALS CANA	ALS CI EXCELLENCE IN ANA 4LS Canada Lid. 212 Brooksbank Avenue North Vancouver BC V12 2C1 Phone: 604 984 0221 Fax 6	ALS CHEMEX EXCELLENCE IN AMALYTICAL CHEMISTRY ACCENARIA ACCINARIA	AL CHEMI	STRY Streve	E	10: REL 418 NOF	RELIANCE GEOLOGI 418 EAST 14TH ST NORTH VANCOUVER Project: Ivanhoe Creek	RELANCE GEOLOGICAL SERVICI 418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8 Project Ivanhoe Greek	10: RELANCE GEOLOGICAL SERVICES 10: RELANCE GEOLOGICAL SERVICES NORTH VANCOUVER BC V7L 2N8 Project Ivanhoe Creek	8		Tot Finalize	Page: 2. A Total # Pages: 2 (A - D) Finalized Date: 28-JUL-2007 Account: RELGEO	Page: 2 - A s: 2 (A - D) 8-JUL-2007 t: RELGEO t: RELGEO
										CERTIFICATE OF ANALYSIS	CATE (DF ANA	LYSIS	WN07(WN07067510	
	Method	WEI-21 Recvd Wr	ME-MS61 Ad	ME-MS61	ME-MS61	ME-MS61 Ra	ME-MS61	ME-MS61 BI	ME-MS61	ME-MS61	ME-MS61	ME-MSB1	ME-WS61	ME-MS61	ME-MS61	ME-MS61
		6x	mdd	*	udd	wdd	mdd	mdd	*	udd	Linda	udd	bbm	Edd	mdd	%
Sample Description		0.02	0.01	100	0.2	10	0.05	0.01	10.0	0 02	100	D.1	÷	0.05	02	10.01
78999		1.00	0.15	7.30	3.3	720	2,89	0.51	1.78	2.69	69.90	21.2	31	4.49	21.4	6.54
23000	Ì	0,06	0.04	8.82	0.8	80	1.88	0.73	1.75	0.03	23.00	18.3	51	17.10	20.4	2.66
1008/		0.80	60.0	999	2.2	580	2.57	0.25	1.29	0.51	96.40	10.3	15	4.71	12.9	4.58
2003		0,82	0.06	7.26	2.8	340	1.48	20.0	2.01	101	48.90	26.3	12	3.63	13.2	7.87
79004		06'0	90'0	7.86	2.5	120	1.39	0.03	1.87	5.18	35.40	25.3	64	3.74	13.3	6.98
79005		0.80	0.05	7,80	2.6	40	1.22	0.05	1.97	0.19	44.00	69.3	125	3.15	17.8	7.67
79006		0.84	0.09	8.03	1.4	260	2.22	0.23	1.83	0.86	66.50	24.9	81	2.20	14.5	6.13
2008/		0.60	0.05	6.69	3.8	06	1.80	0.02	2.28	0.93	37.00	33.3	85	3.46	15.3	8.45
70000	T	N D N	0.0	7.67		100		0.00		0.40	or co	1.01		100		
79010	1	0.72	60.0	7.28	6.2	310	277	0.37	1.27	0.28	81.70	17.6	10	7.23	10.6	3.76
79011		0.78	60'0	7.50	3.0	410	2.60	0.30	1.72	0.29	70.60	16.2	2 10	5,81	14.5	6.30
79012		0.80	0.09	7.36	6.2	400	2.72	0.36	1.55	0.36	65.00	12.7	80	6.22	23.9	3.35
79013		0.74	60'0	6.81	3.6	490	4.13	0,33	1.28	0.24	76.50	12.4	18	8.43	19.2	4.02
79014		0.68	60.0	8.05	80.1	1050	3,82	0.38	1.74	0.29	95.60	20.6	14	6.52	28.1	5.11
GIOR/		0.96	50.0	9.32	8.	180	1.91	0.23	1,41	0,11	34.40	20.0	58	4.02	13.9	5.47
79017		0.04	80.0	15.8	2.1	240	2.07	67.0	1.66	0.02	41.90	16.0	30	3.97	52.1	4.96
79018		0.98	0.12	9.12	1.4	270	2.33	0.36	1.19	0.05	56.60	10.3	21	10.4	2.66	3 40
79019		1 02	0.08	9.47		000	0.50	AC N	1 06	0.00	106 50	120	4	10 76	2.40	2.64
79020		0.06	0.03	9.07	0.8	80	1.87	0.70	1.75	0.03	23.70	4.8	48	17,65	21.1	2.66
79021		1.12	0.07	10.15	4.5	330	3.11	0.53	0.32	0.02	44.30	0.6	36	16.25	48.6	6.52
79022		1.06	0.17	4.40	14.7	480	1,30	0.30	0.09	0,28	33.50	21.6	39	4.81	53.9	1.31
79023		1.26	0.08	1.21	1.9	450	0.59	0,07	0.05	0,06	14.80	3.2	26	1.73	26,9	0.98
79024		1.06	60'0	2,38	1.3	390	1.10	0,14	0.10	0.04	36.20	5.0	29	3.65	53.7	1.75

CAT Strategic Metals Corporation	Technical Report	Rimrock Project.	Ivanhoe District, Elko Co., Nevad	a. USA
erti strategie metals corporation	reconneurnepore			a, 05/ (

SIS.		ALS EXCELLEN ALS Canada Lld ALS Canada Lld Z12 Brooksban North Vancouv	ENCE IN LIL LIL Duank Avenue Duver BC V7J 984 0221 F	ALS ChemeX Excellence IN AMALYTICAL CHEMISTRY ALS Consults Als Consult Amune Dem Varouver 66 V71 2C1 Phone 644 9221 Fax 604 984 0218 WWW.alschemex.com	AL CHEM.	STRY ISTRY	Ę	To: REL 418 NOR Proje	RELIANCE GEOLOGI 418 EAST 14TH ST NORTH VANCOUVER Project: Ivanhoe Creek	To: RELIANCE GEOLOGICAL SERVICES 418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8 Project: Ivanhoe Creek	C V7L 2N8	S		Tot Finalize	al # Page d Date: 28 Account	Page: 2 - B Total # Pages: 2 (A - D) Finalized Date: 28-JUL-2007 Account: RELGEO
										CERTIFICATE OF ANALYSIS	CATEC	DF ANA	LYSIS	WN07	WN07067510	
Sample Description	Method Analyte Units LOR	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	Hg-CV41 Hg ppm 0.01	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 LI ppm 0.2	ME-MS61 Mg %	ME-MS61 Mn ppm 5	ME-MS61 Mo PPm 0.05	ME-MS61 Na %	ME-MS61 Nb ppm 0.1	ME-MS61 N ppm 0.2	ME-MS61 P ppm
78999 79000 79001 79003 79003		21.80 21.10 23.70 21.00	0.20 0.14 0.23 0.18 0.17	5.9 2.0 6.6 6.6	7.40 <0.01 0.34 0.15	0.166 0.028 0.157 0.127 0.088	0.41 4.95 1.72 0.49 0.37	32.6 10.9 34.0 34.0	31.0 4.4 18.8 23.3 27.9	1.01 1.47 0.72 1.08	3050 430 484 247 1105	1.54 1.38 1.27 0.98	0.35 3.68 0.51 0.38 0.38	15.4 14.5 25.5 14.8 9.6	59.8 9.1 9.3	1070 1100 1420
79004 79005 79005 79007 79007		18.80 18.50 21.40 16.00 23.50	0,16 0,18 0,19 0,19	3.9 3.6 7.3 2.8	0.05 0.09 0.12 0.14	0.082 0.082 0.135 0.064	0.99 0.37 0.83	16.8 21.5 34.0 19.3	27.7 27.7 12.9 21.1 13.3 13.3	172 152 151	1585 1155 326 7470	0.69 0.27 0.27	0.18 0.07 0.16 0.35	8.1 8.4 9.45 7.5 7.5	7.3 23.6 10.6 18.2	970 1630 590 2070
79000 79010 79012 79013 79014 79015 79015 79015 79018		23.10 23.50 23.50 23.50 23.50 23.50 23.50 23.40 23.40 23.40 23.70 23.70	0,18 0,18 0,18 0,18 0,18 0,18 0,18 0,18	70.7 10.7 10.4 10.4 10.4 5.5 5.5 5.5 5.5 5.5	0.04 0.09 0.111 0.02 0.09 0.09 0.02 0.03	0.119 0.126 0.126 0.114 0.113 0.114 0.118 0.118 0.086 0.086	0.34 1.87 1.187 1.18 1.146 1.46 1.46 1.46 0.72 0.80	26.0 40.0 38.4 34.8 34.8 34.8 38.1 38.1 14.9 18.6 18.6 24.2 24.2 25.6	14.8 14.8 8.0 8.0 7.5 7.5 7.5 7.5 7.5 22.1 10.3 3.4 33.4	0.78 0.78 0.63 0.45 0.44 0.41 0.45 0.69 0.69 0.69	13/0 816 565 565 565 565 164 1040 503 503 503 503 1040 1040 1040 1040 1040 1040 1040 10	0.73 2.61 3.56 1.70 2.64 3.03 3.70 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.5	0.13 0.60 0.74 0.74 0.75 0.75 0.26 0.32 0.37 0.37	16.0 20.6 21.2 19.1 19.1 24.5 24.5 24.5 24.5 19.6 9.9 14.6 14.6	9.9 3.9 4.6 6.4 11.1 11.1 19.8 10.0 10.6	940 640 530 530 530 1050 1050 1010 1010 870 880 880 880 880 880 880
79019 79020 79021 79023 79023		24.10 21.70 26.90 14.10 5.38	0.21 0.15 0.16 0.11 0.08	3.3 2.0 2.7 0.9	0.04 0.39 5.45 0.39	0.055 0.024 0.088 0.048 0.013	0.81 5.00 0.78 0.82 0.41	58,6 11,5 21,9 21,9 9,8	12.1 4.2 33.4 9.3	0.85 1.47 0.25 0.26 0.12	235 425 225 150	0.66 1.36 1.23 0.35	1,36 3.70 0.08 0.05 0.05	15.1 14.5 8.2 3.9	20.1 61.5 16.1 24.3 8.6	190 1100 430 40
4706		2	800 800	¢.	0 4	5000	8	0. 0.	12.6	0.22	126	0.0	0.04	n, N	a ri	99

	<i>(</i>	EXCELLEN ALS Canada Ltd. 212 Brooksban North Vancouv Phone: 604 98	EXELLENCE IN AMAL VTICAL CHEMISTRY ALS Consults AMAL VTICAL CHEMISTRY ALS Consults AMAL North Vancoure 160, V71 201 North Vancoure 160, V71 201 Phone: 604 894 0221 Fax 604 984 0219 Www.alschemex.com	2C1 ax 604 984 0	AL CHEM	STRY Ischemex.c	E	418 NOR Proje	418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8 Project: Ivanhoe Creek	H ST OUVER BI	418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8 Project Ivanhoe Creek	1		Tot Finalize	Total # Pages: 2 (A - D) Finalized Date: 28-011-2007 Account: RELGEO	1# Pages: 2 (4 - D) Date: 28-JUL-2007 Account: RELGEO
										CERTIFI	CERTIFICATE OF ANALYSIS	DF ANA	LYSIS	WN07(WN07067510	
	Mothod Analyte	ME-MS61 Pb	ME-MS61 Rb	ME-MS61 Re	ME-MS61 S	ME-MS61 Sb	ME-MS61 Sc	ME-MS61 Se	ME-MS61 Sn	ME-MS61 Sr	ME-MS61 Ta	ME-MS61 Te	ME-MS61 Th	ME-MS61 Ti	ME-MS61 TI	ME-MS61 U
Sample Description	LOR	0.5	t 0	0 002	\$0 001	0 05	bpm 1 0	-	ppm 0 2	02	50.0	0,05	0.2	0 005	0.02	E dd
18999		14.8	37.1	<0.002	0.02	0.97	26.0	2	2.3	271.0	76.0	0.07	6'2	0.764	2.31	3.3
79001		23.0	690.0	<0.002	0.01	0.08	5.0	~ ~	4.1	268.0	1.13	<0.05	2.0	0.450	4.94	0.9
79002		12.3	43.2	<0.002	0.02	0.45	23.9	200	20	300.0	86.0	0.06	2,9	0.856	0.21	2.2
79004		6.3	50.2	<0.002	0.02	0.26	31.4	2	1.2	192.0	0.49	<0.05	3.4	0.702	0.16	0.9
79005		7.6	48.3	<0.002	0.09	0.40	33.6	~	11	154.0	0.48	<0.05	2.9	0.660	0.41	1.1
20062		4.7	53,5	0.004	0.23	0.56	22.0	4 4	2.3	174.5	0.32	<0.05	2.4	0.458	0.13	12
79008		13.7	42.5	<0.002	0.15	0.51	26.7	9	2.5	190.0	1.11	0.05	11.0	0.821	0.29	3.0
79009		19.5	159.0	0.002	0.19	1.21	14.0	2	3.2	196.0	1.51	0.05	16.9	0.487	0.94	6.8
79011		16.6	88.3	<0.002	80.0	BZ'L	2.91	NC	4.6	230.0	1.57	0.06	18.0	0.516	0.74	5.3
79012		20.4	127.0	0.002	0.16	1.04	13.9	2	2.8	236.0	1.41	0.07	12.3	0.548	1.54	3.9
79013		19,8	198.0	0.002	0.03	0,66	12.6	2	3.5	156.0	2.00	0.06	16.5	0.490	0.91	6.1
79014 79015		25.3	99'8 98'0	0,002	1.00	1.57	11.7	~ ~	3.8	239.0	2.02	80'0	18.4	0.432	9.30	7.6
9016		13.5	48.2	<0.002	0.01	0.50	15.0	4 -	21	182.0	0.91	010	200	0.474	14.0	
79017		22.2	56.2	<0.002	0.04	1.05	8.7		6.1	236.0	1.15	60'0	10.7	0.328	0.66	2.9
79018		55.1	55.2	<0.002	0.01	0.87	12.9	2	2.2	153.5	1.15	0.12	10.7	0.450	0,42	2.8
79019		31.0	105.5	<0.002	0.03	0.64	9.0	2	2.1	458.0	21-1	<0.05	17.6	0.347	1.39	4.0
79021		16.2	124.0	<0.002	0.0	3.03	125	* 0	4.6	718	201	60.05 0 14	2.0	0 575	48.4	0.9
79022		11.8	53.1	<0.002	0.61	1.55	9.5	~	1.2	37.7	0.61	0,13	2.3	0.258	1.09	3.2
9023		3.2	25,8	<0.002	0,10	0.38	3.6	~	9.0	20.7	0.27	0.06	2.5	0,067	0,16	0.8
79024		9 10	00 97	×0.002	0,06	0.55	6.7		2.0	24.4	0.39	01.0	ຕ	0.123	0.23	ار ک

Image Call Call <t< th=""><th></th><th></th><th>ALS EXCELLEN ALS Canada Ltd. 212 Brooksban North Vancouw Phone: 604 984</th><th>Ltd. Ltd. bank Avenue puver BC V7J 984 0221 F</th><th>CHE INALYTIC</th><th>ALS Chemer A Excellence IN AMALYTICAL CHEMISTRY ALS CONSIDENT ALS CONSIDENT AND ALS CONSIDENT ALS CO</th><th>STRY Ischemex.c</th><th>Ę</th><th>To: RELIANCE GEOLOGICAL SERVICES 418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8 Project Manhoe Creek</th><th>Page: 2 - D Total # Pages: 2 (A - D) Finalized Date: 28-JUL-2007 Account: RELGEO</th></t<>			ALS EXCELLEN ALS Canada Ltd. 212 Brooksban North Vancouw Phone: 604 984	Ltd. Ltd. bank Avenue puver BC V7J 984 0221 F	CHE INALYTIC	ALS Chemer A Excellence IN AMALYTICAL CHEMISTRY ALS CONSIDENT ALS CONSIDENT AND ALS CONSIDENT ALS CO	STRY Ischemex.c	Ę	To: RELIANCE GEOLOGICAL SERVICES 418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8 Project Manhoe Creek	Page: 2 - D Total # Pages: 2 (A - D) Finalized Date: 28-JUL-2007 Account: RELGEO
Method Amontosi por tucks ME-MSS1 por por por por por por por por por por									CERTIFICATE OF ANALYSIS	WN07067510
129 3.3 30.2 135 216.0 62 1.3 55.2 131 377.8 165 0.3 55.8 131 377.8 165 0.3 55.8 131 375.5 178 0.4 22.1 102 139.5 178 0.4 22.1 102 139.5 178 0.4 22.1 102 139.5 179 0.6 431 177 135.5 199 1.5 46.1 102 139.5 199 1.5 46.1 131 378.0 199 1.5 46.1 134 378.0 199 1.5 46.1 134 378.0 199 1.5 46.1 134 378.0 190 1.7 48.1 134 378.0 190 1.7 48.3 134 378.0 119 0.8 1.5 134 378.0 119 0.8 1.6 43.3 134 378.0 119 0.8 1.6 141 378.0 141.5 119 0.8 1.6 1.6 37.0 141.5 119 0.8 <td>Sample Description</td> <td>Method Analyte Units LOR</td> <td>ME-MS61 V</td> <td>ME-MS61 W ppm 0.1</td> <td>ME-MS61 Y Dpm 01</td> <td>ME-MS61 Zn ppm 2</td> <td>ME-MS61 Zr ppm 05</td> <td>Au-ICP22 Au ppm 0 001</td> <td></td> <td></td>	Sample Description	Method Analyte Units LOR	ME-MS61 V	ME-MS61 W ppm 0.1	ME-MS61 Y Dpm 01	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 05	Au-ICP22 Au ppm 0 001		
178 0.4 22.1 102 138.5 119 0.6 4.9 1.2 136.5 177 0.6 4.9 1.2 136.5 177 0.6 4.9 1.2 136.5 199 1.5 4.6.1 1.30 263.0 199 1.5 4.6.1 1.4 378.0 199 1.5 4.6.1 1.4 378.0 119 1.6 4.5 1.1 38.0 119 1.5 4.6.1 1.4 378.0 119 1.5 4.6.1 1.4 379.0 119 1.6 4.5 1.4 36.0 119 1.6 4.6.3 1.3 37.2 119 1.6 4.6.3 7.3 188.0 120 0.8 1.6 4.6.3 7.3 188.0 130 0.8 7.4 26.0 96.5 5.3 16.6 107 2.6 1.4.5 5.1 96.7 96.7 107 2.6 1.4.5 5.1 96.7 96.7 107 2.6 1.4.5 5.1 96.7 96.7 107 2.6 1.4 5.3 6	78999 79000 79002 79003 79003		129 56 62 132 165	3.3 0.3 0.8 0.6	30.2 5.8 55.2 40.8 32.3	135 38 151 144 93	216.0 77.8 395.0 242.0 159.5	0.004 0.080 0.001 0.019 <0.019		1
199 1,5 46,1 134 379.0 111 1,5 46,1 134 358.0 111 1,5 1,3 141 269.0 157 1,6 48.3 141 269.0 159 1,6 48.3 141 269.0 159 1,6 48.3 128 73 198.0 119 0,9 15,8 73 198.0 120 0,8 1,0 135 73 198.0 130 0,8 20,3 86.5 71 175.5 96 1,7 215 73 198.0 100 2,8 1,0 135 73 198.0 101 2,8 3,0 38.5 74 175.5 96 1,7 2,15 61 115.5 107 2,6 14.5 51 96.7 107 2,6 14.5 51 96.7 53 1,2 11.9 61 61.0 107 2,5 14.5 53 96.7 107 2,6 14.5 51 96.7 53 1,2 11.9 61 61.0 53 <t< td=""><td>79004 79005 79005 79007 79008</td><td></td><td>178 165 119 171</td><td>4.0 0.6 0.9 0.1</td><td>22.1 31.2 46.9 32.5 39.1</td><td>102 121 127 100 130</td><td>139.5 135.5 254.0 103.0 269.0</td><td>0.001 0.001 0.001 0.001 0.001</td><td></td><td></td></t<>	79004 79005 79005 79007 79008		178 165 119 171	4.0 0.6 0.9 0.1	22.1 31.2 46.9 32.5 39.1	102 121 127 100 130	139.5 135.5 254.0 103.0 269.0	0.001 0.001 0.001 0.001 0.001		
57 1.6 48.3 1.28 34.20 119 0.9 1.58 73 188.0 130 0.8 20.9 73 188.0 140 0.8 20.9 73 185.5 153 1.7 218 67 115.5 16 1.7 218 67 115.5 16 3.0 36.5 105 36.5 55 5.1 2.14 50 74.5 107 2.6 1.4.5 51 36.7 205 5.1 2.14 51 96.7 107 2.6 1.4.5 51 96.7 107 2.6 1.4.5 51 96.7 107 2.6 1.4.5 51 96.7 53 1.2 11.9 61 61.0	79009 79010 79011 79012 79013		199 89 80 85	1.5 2.0 1.6 1.7	46.1 49.5 41.3 42.1 59.8	134 111 134 141	379.0 358.0 269.0 272.0 361.0	 40.001 0.001 40.001 40.001 40.001 		
66 30 36,5 105 36,6 36,6	79014 79015 79016 79017 79018		57 119 130 53 96	1.6 0.9 0.8 1.0 1.7	48.3 15.8 20.9 18.5 22.8	128 73 78 76 66	342.0 158.0 188.0 175.5 181.5	40.001 0.001 0.002 0.001		
53 1.2 11.9 61 61.0	79019 79020 79021 79022		66 55 205 107	3.0 0.3 2.6 0.6	36.5 6.0 22.4 14.5 7.4	105 38 51 23	98.5 78.5 161.0 96.7 36.8	0.001 0.077 40.001 0.001 0.007		
	70024		ŝ	5	9.11	5	61.0	0.018		

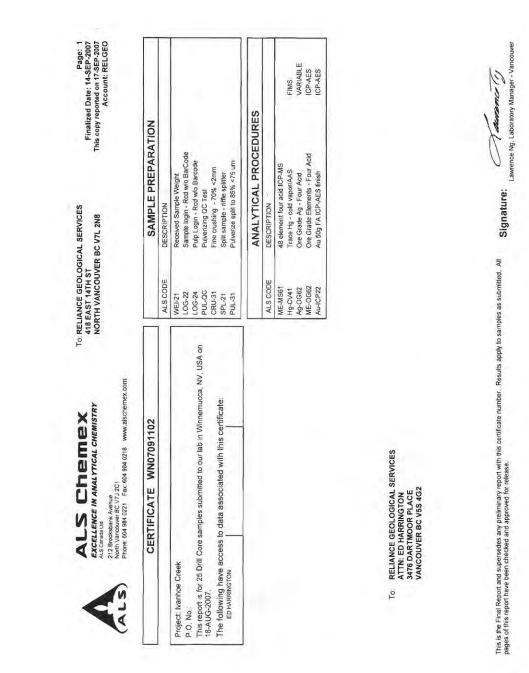
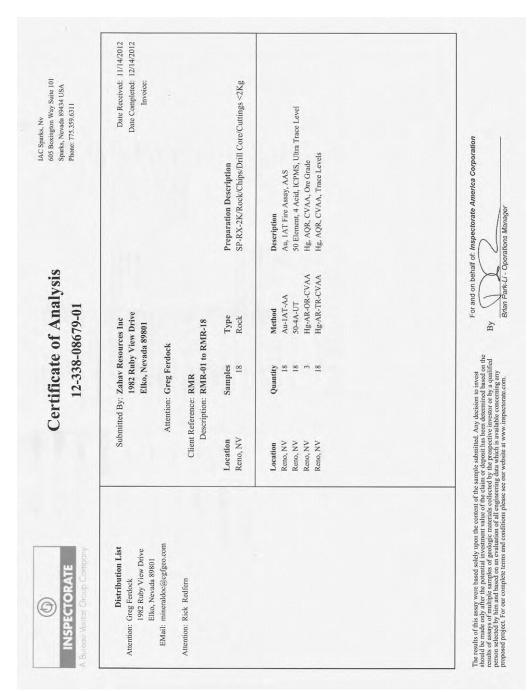

WN07082588

Image: colspan="12">Image: colspan="12" 7301 11 11 010 011 511 512 512 512 512 512 512 512 512 512 512 512 512 512 512 512 512 512		-	EXCELLENCE I ALS Canada Lld. 212 Brooksbank Ave North Vancouver BC Phone: 604 984 022	EXCELLENCE IN A ALS Canada Lld 212 Brooksbank Avenue North Vancouver BC 77J Phone: 604 984 0221 F	EXELLENCE IN ANALYTICAL CHEMISTRY As Camada und VTICAL CHEMISTRY As Constants Analytical Chemistry North Variouser BC V71.2C1 Month Variants 2014 984 0218 WWW.alschemers.com	AL CHEM	STRY ischemex.o	ш	A18 NOR Proje	ANS EAST 14TH ST NORTH VANCOUVER Project: Ivanhoe Creek	H ST OUVER BI	Project: Ivanhoe Creek	3		Tot Finalized	Page: 2. A Total # Pages: 2 (A - D) Finalized Date: 31-AUG-2007 Account: RELGEO	Page: 2 - A # Pages: 2 (A - D) Date: 31-AUG-2007 Account: RELGEO
Method by Method Method (1) M											CERTIFI	ICATE C	DF ANA	LYSIS	WN07	082588	
112 0.001 0.05 2.4 3.0 400 101 703 2.40 131 731	ımple Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP22 Au ppm 0.001	ME-MS81 Ag ppm 0.01	ME-MS61 AI % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS01 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS81 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm	ME-MS61 Cs ppm 0.05	ME-MS81 Cu ppm
122 0000 011 7.70 3.4 300 1.10 0.10 7.70 3.4 300 1.10 7.70 3.1 3.70 </td <td>19025 10026</td> <td></td> <td>1.12</td> <td>0.018</td> <td>0.05</td> <td>2.24</td> <td>3.6</td> <td>450</td> <td>1.09</td> <td>0.14</td> <td>0.13</td> <td>0.05</td> <td>28.50</td> <td>8.4</td> <td>25</td> <td>3.49</td> <td>0.77</td>	19025 10026		1.12	0.018	0.05	2.24	3.6	450	1.09	0.14	0.13	0.05	28.50	8.4	25	3.49	0.77
138 0016 0116 717 518 710 529 025 023 011 700 149 700 149 700 149 700 149 700 149 700 149 700 149 700 149 700 149 700 140 140 140 140 </td <td>9027</td> <td></td> <td>1.22</td> <td>0.016</td> <td>0.11</td> <td>7.07</td> <td>3.4</td> <td>300</td> <td>2.10</td> <td>0.12</td> <td>0.15 0.18</td> <td>0.18</td> <td>29.70</td> <td>5.1</td> <td>33</td> <td>4.83</td> <td>107.5 56.4</td>	9027		1.22	0.016	0.11	7.07	3.4	300	2.10	0.12	0.15 0.18	0.18	29.70	5.1	33	4.83	107.5 56.4
134 0.016 0.15 5.4 3.870 1.76 0.23 0.23 7.10 5.0 7.10 5.0 7.10 7	19028 19029		1.26	0.014	0.11 0.18	7.17 6.40	4.8 0.5	210	2.29	0.30	0.25	0.11	70.00	14.9 33.7	73	8.79 8.06	47.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0206,		1.34	0.016	0.15	5.84	3.3	1870	1.76	0.25	0.29	<0.02	67.10	5.0	67	10.00	23.6
	9032		1.36	0.016	0.13	6.73 6.75	5.5	3660	1.67	0.27	0.19	×0.02	71.80	4.4	80	13.40	26.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19033 19034	1	1.10	0.015	0.14	6.42	19.4	1050	1.79	0.29	0.13	×0.02	67.70	0 00 a	11	8.82	57.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9035		1.18	0.018	0.87	7.95	36.2	1360	2.05	0.01	0.36	0.04	77 10	4.0	5 0	13.40	6.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9036	-	1.00	0.025	0.23	7.87	31.1	1150	2.00	0.01	0.36	<0.02	77.80	4.7	9 9	13,40	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2037	~	1.36	0.042	0.48	7.95	44.8	066	2.12	0.01	0.37	0.07	76.70	4.2	9	15.60	5.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6006	1	1.06	0.187	1.28	7.73	34.1	300	1.67	0.01	0.32	0.05	71.60	3.7	ഗഗ	11.10	4.3
1/10 0.002 0.13 8.2 4.3 1960 2.21 0.01 0.06 75.6 5.3 5 16.60 0.38 0.011 0.04 0.34 0.36 0.37 0.36 5.3 5 16.60 0.42 0.021 0.45 2.44 16.7 530 1.72 0.01 0.33 2.33 3.74 0.42 0.020 0.24 0.36 0.47 0.04 0.06 7.50 1.3 3.74 0.24 0.021 0.45 2.44 16.7 530 1.72 0.01 0.33 2.33 3.74 0.24 0.031 0.32 0.33 1.45 5.0 1.75 0.10 0.33 2.34 3.0 0.24 0.011 3.44 5.10 1.76 0.17 0.02 0.23 2.40 1.6 1.76 0.24 0.011 3.74 0.03 0.23 0.03 0.23 2.40 1.76 0.17	9040		0.04	0.086							- Anna				ξ, s		
038 0371 039 0371 039 0371 039 0371 039 0371 039 0371 039 0371 039 0371 039 0371 039 0371 039 039 0311 039 039 0311 039 039 0311 039 039 0311 031	9042		0.00	0.008	110	8.08	0.40	1680	17.7	10.0	0.40	0.05	19.50	20.0	10 1	15.80	2.6
0.46 0.248 0.24 2.34 155 0.17 0.16 0.06 2.240 157 0.17 0.01 0.23 2.290 13 317 0.42 0.021 0.45 2.44 167 136 0.12 0.01 0.23 2.290 13 317 400 0.82 0.033 0.25 141 500 173 0.17 0.10 0.23 2.290 23 37 400 0.82 0.033 0.26 113 3.47 200 0.33 0.17 0.10 0.23 2.290 3.3 740 1.00 0.010 25.60 113 3.47 200 0.33 0.17 0.17 0.17 0.16 0.14 0.01 2.00 2.2 2.3 3.6 3.74 1.10 0.010 25.60 113 3.7 2.00 0.33 0.14 0.01 0.02 2.2 0.03 0.14 0.01 0.02 0.02	9043		0.58	0.011	0.09	1.30	5.2	360	0.47	0.04	0.06	<0.02	24.80	0.1	D BC	1 10	B.UC
042 0.021 0.45 244 187 500 156 0.12 0.10 0.23 42.90 21 36 346 0.02 0.020 0.32 2.93 164 54 500 1,73 0.11 0.10 0.12 21 36 346 0.02 0.000 253 0.11 0.10 0.22 20.03 3.3 7 400 0.06 0.010 23.03 0.74 7.3 0.17 0.10 0.22 20.30 3.3 7 400 0.64 0.010 3.03 0.74 7.3 70 0.29 0.03 2.03 3.3 7 400 0.64 0.010 3.03 0.74 7.3 70 0.22 0.03 3.23 29 0.17 0.64 0.010 3.03 0.74 7.3 70 0.23 0.03 3.23 29 0.73 0.64 0.010 0.22 0.010	9044		0.46	0.048	0.24	2.95	9'6	570	1.72	0.16	0.09	0.09	42.40	1.8	38	3.74	58.2
0.24 0.020 0.22 2.93 154 540 175 0.13 0.75 0.33 33 37 400 0.68 0.004 1.83 3.07 166 5.4 310 0.05 0.13 0.75 33 37 400 0.68 0.004 1.83 3.7 700 0.23 0.16 0.33 33 37 400 0.64 0.011 3.44 2.13 2.10 770 0.23 0.017 323 23 0.41 0.64 0.011 3.44 2.13 2.10 770 0.23 0.017 9.25 10 9.25 0.03 0.64 3.05 1.78 0.04 3.05 1.78 0.04 3.05 1.78 0.04 3.05 1.78 0.04 3.05 1.78 0.04 3.05 1.78 0.04 3.05 1.78 0.04 0.04 0.07 0.02 0.07 0.02 0.01 0.02 0.01	9045		0.42	0.021	0.45	2.44	18.7	530	1.56	0.12	0.10	0.23	42.90	2.1	36	3.46	79.0
088 0000 1(33 1(36 5,4 3(0 0,53 0,10 0,00 0,33 0,10 0,11 0,10 0,11 0,10 0,10 0,10 0,10 0,11 0,10 0,11 0,10 0,10 0,10 0,10 0,11 0,10 0,11 0,10 0,10 0,10 0,10 0,11 0,	0405		0.62	0.023	27.0	2.93	4.01	540	1.96	0.18	0.10	0.12	37.50	3.3	37	4.00	56.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9048	-	0.88	0.004	1.93	1.66	5.4	310	0.53	0.10	0.30	0.04	30.80	3.0	14	4.09	57.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9049		1.00	0.010	29.50	1.13	3.7	200	0.39	0.05	0.22	<0.02	20.80	3.2	29	0.84	49.4
0.06 0.011 3.44 2.73 2.10 4.70 1.54 0.08 0.02 0.07 1925 1.0 60 3.65 1.02 0.009 2.86 1.38 8.2 460 0.77 0.07 10.25 0.07 10.6 0.07 10.6 0.07 10.6 3.64 0.24 0.019 2.86 1.38 11.2 500 0.83 0.07 0.16 2.65 1.6 4.69 0.24 0.017 0.13 3.27 2.6 960 1.83 0.17 0.017 0.10 2.17 1.1 88 2.65 1.1 1.65 2.65 1.1 1.65 2.65 1.1 1.65 2.65 1.1 1.65 2.65 1.1 1.65 2.65 1.65 2.65 1.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 <	9050		1.32	0.010	3.03	0.74	7.3	170	0.29	0.03	0.18	0.02	17.50	2.3	26	0.55	18,2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1005		0.56	0.016	3.44	2.13	21.0	670	1.54	0.08	0.22	20.0	19.25	1.0	80	3.95	85.0
034 0309 226 1,39 1,2 500 031 031 031 2310 1,10 85 1,39 022 0309 0,10 327 26 960 1,02 0,10 0,21 2,10 1,1 85 2,65 032 0409 0,10 327 26 960 1,02 0,13 2,06 3,9 4,4 3,59 154 0,017 5,10 1,12 680 1,02 0,13 2,00 3,9 4,4 3,59 024 0,011 ×100 5,35 3,9 5,00 1,71 0,13 0,07 0,16 2,750 8,1 4,4 3,59 024 0,007 0,37 0,37 0,46 -0,02 2,560 8,1 4,4 3,59 040 0,007 0,32 0,37 0,46 -0,02 2,560 8,1 4,4 3,4 0,40 0,07 0,16 0,17 0,13 </td <td>9053</td> <td></td> <td>1 02</td> <td>0000</td> <td>98.0</td> <td>82 1</td> <td>0.0</td> <td>150</td> <td>0.77</td> <td>11.0</td> <td>0.20</td> <td>80.0</td> <td>27.00</td> <td>0.8</td> <td>106</td> <td>4.09</td> <td>91.4</td>	9053		1 02	0000	98.0	82 1	0.0	150	0.77	11.0	0.20	80.0	27.00	0.8	106	4.09	91.4
022 0.009 0.10 3.27 2.6 960 1.02 0.13 0.08 0.03 26.00 3.9 44 3.59 1.00 0.012 0.13 0.13 0.13 0.13 0.10 0.02 33.50 5.5 5.0 4.8 0.24 0.011 ×100 5.35 3.9 5.0 4.8 3.59 0.24 0.011 ×100 5.35 3.9 5.00 1.7 5.6 5.6 5.6 4.8 0.24 0.011 ×100 5.35 3.9 5.00 2.0 4.8 7.45 0.24 0.007 1.77 0.13 0.07 0.16 2.7.60 2.9 4.7 4.4 0.40 0.007 0.32 0.87 1.77 0.13 0.07 0.16 7.45 4.4 0.40 0.007 0.32 0.87 3.7.60 2.9 4.7 4.4 0.36 0.007 0.32 0.07	9054	1	0.54	0.019	2.26	1.39	11.2	200	0.93	0.07	0.09	0.21	21.70	212	68 88	2.05	55.2 94.8
1.00 0.012 0.32 3.54 10.7 600 1.83 0.21 0.10 0.022 39.50 55 50 4.99 0.82 0.011 >100 5.35 3.0 960 1.83 0.21 0.10 -0.02 39.50 55 50 4.99 0.82 0.011 >100 5.35 3.0 960 1.71 0.13 0.10 -0.02 35.00 8.7 4.93 0.40 0.000 1.79 3.68 3.7 1.90 1.71 0.13 0.07 0.16 2.760 2.9 4.7 4.46 0.40 0.000 0.32 0.87 3.7 0.04 0.07 0.16 2.760 2.9 4.7 4.46 0.30 0.003 0.32 0.87 3.7 0.04 0.07 0.16 2.46 4.46 0.45 0.003 15.05 4.4 1040 2.00 0.21 0.21 0.76 1.74 4	9055		0.92	600'0	0.10	3.27	2.6	960	1.02	0.13	0.08	0.03	26.00	3.9	44	3.59	47.1
0.22 0.010 0.10 5.12 3.0 930 1.16 0.13 0.00 2.10 5.15 3.0 930 1.16 0.13 0.02 4.11 4.6 4.03 0.40 0.007 1.79 3.68 8.7 140 1.71 0.13 0.07 0.16 2.760 8.3 4.46 4.46 0.40 0.007 1.79 3.68 8.7 140 1.71 0.13 0.07 0.16 2.760 2.9 4.7 4.46 0.40 0.007 0.32 0.87 3.7 8.0 1.71 0.18 2.760 2.9 4.7 4.46 0.04 0.030 0.32 0.87 3.7 8.07 0.04 0.76 0.43 4.46 4.46 0.10 0.030 0.32 0.87 3.7 8.07 0.04 0.76 0.46 4.46 0.10 0.030 0.32 0.37 0.04 0.07 0.16 3.4	9056		00.1	0.012	0.32	3.54	10.7	680	1.83	0.21	0.10	0.02	39,50	5.5	50	4.69	98.1
0.00 0.00 1.00 0.00 1.70 0.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01 1.71 0.13 0.07 0.16 27.60 2.9 47 4.46 0.04 0.080 0.37 0.13 0.07 0.16 27.60 2.9 47 4.46 0.04 0.080 0.37 0.04 0.07 0.16 27.60 2.9 47 4.46 0.36 0.007 0.32 0.37 0.04 0.07 0.16 27.60 2.9 47 4.46 0.36 0.037 0.37 0.04 0.07 0.16 2.0 47 4.46 0.37 0.031 15.02 4.4 4.40 2.0 2.3 0.21 4.0 4.46 0.36 0.31 15.02 4.4 4.40 2.0 0.21 4.0 6.7 4.46	200/68		10.0	0.013	0.10	3.12	0.0	086	1.16	0.13	0.10	<0.02	30.20	4.1	46	4.03	40.7
0.04 0.080 0.36 0.007 0.32 0.87 3.7 620 0.37 0.04 0.07 0.18 6.12 1.8 34 1.17 1.0 0.000 15.05 4.88 6.4 1.40 2.00 0.22 0.28 0.21 4.0.56 7.65 0.54 0.013 1.30 1.52 4.1 1010 2.00 0.77 0.05 0.14 0.42 3.0 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57	6906		0,40	0.007	1.79	3.68	8.7	190	1.71	0.13	0.07	<0.02 0.16	27.60	8.3	47	7.45	71.1
U-JO U.UUV U-J2 U.BY 3.7 620 0.37 0.04 0.07 0.16 6.12 18 34 1.17 1.10 0.009 15.05 4.68 6.4 1640 2.00 0.22 0.28 0.21 40.50 4.0 68 7.68 0.54 0.013 1.30 1.52 4.1 1010 0.00 0.016 0.14 0.45 4.0 53 33 33 33	9060		0.04	0.080					-		-						
0.54 0.013 1.20 4.00 68 0.4 1940 2.00 0.22 0.26 0.21 40.90 4.0 66 7.65 0.54 0.013 1.30 1.52 4.1 1010 5.7 0.66 0.28 0.21 4.030 4.0 56 7.65	1000		00	100.0	0.32	18.0	1.5	620	0.37	0.04	0.07	0,18	6.12	1.8	34	21.1	20.7
	9063		0.54	0.013	1.30	1.52	4.0	1010	2.00	27.0	0.26	0.21	40.90	0.4	99	7.65	90.6

Mutuality Filtering Filtering <t< th=""><th>ALS</th><th>-</th><th>ALS Canada Ltd 212 Brooksban North Vancouv Phone: 604 98</th><th>ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 6</th><th>ALS Canada Lid Schoolsbank Avenue North Vancourer BC V712 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com</th><th>218 www.a</th><th>ALS Chindra Lit</th><th>Б</th><th>Proje</th><th>NORTH VANCOUVER BC V7L 2N8 Project: Ivanhoe Creek</th><th>OUVER B(</th><th>C V7L 2NE</th><th></th><th></th><th>Finalizet</th><th>Finalized Date: Z (A - U) Account: RELGEO Account: RELGEO</th><th># rages. z (A - U) Date: 31-AUG-2007 Account: RELGEO</th></t<>	ALS	-	ALS Canada Ltd 212 Brooksban North Vancouv Phone: 604 98	ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 6	ALS Canada Lid Schoolsbank Avenue North Vancourer BC V712 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com	218 www.a	ALS Chindra Lit	Б	Proje	NORTH VANCOUVER BC V7L 2N8 Project: Ivanhoe Creek	OUVER B(C V7L 2NE			Finalizet	Finalized Date: Z (A - U) Account: RELGEO Account: RELGEO	# rages. z (A - U) Date: 31-AUG-2007 Account: RELGEO
Method											CERTIFI	CATE (DF ANA	LYSIS	WN07	082588	
Members No.		Method	ME-MS61	ME-MS61	ME-MS61	ME-MS01	Hg-CV41	ME-MS01	ME-MS61	ME-MS61	ME-MS61	ME-MS01	ME-MS61	ME-MS01	ME-MS01	ME-MS61	ME-MS81
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	umple Description	Analyte Units LOR	*	mdd	bpm boo	uda	DH Wdd	udd	× % 2	bpm	bpm	BW %	hpm	Mo	Na %	4N Mg	Mdd
1 5 0.0 1.4 0.55 0.00 1.4 0.55 0.00 1.4 0.55 0.00 1.4 0.55 0.00 1.4 0.55 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.01 0.16 0.15 0.01 0.15 0.01 0.15 0.01 0.15 0.01 0.15 0.01 0.15 0.01 0.15 0.01 0.15 0.01 0.15 0.01 0.15 0.01 0.15 0.01 0.15 0.01 0.15 0.01 0.15 0.01 0.15 0.01 0.15 0.01 0.15 0.01 0.15 0.01 0.15 0.01 0.11 0.15 0.01 0.11 0.15 0.01 0.11 0.15 0.01 0.11 0.15 0.01 0.11 0.15 0.01 0.15 0.01 0.15 0.01 <th0.01< th=""> <th0.01< th=""> <th0.01< th=""></th0.01<></th0.01<></th0.01<>			100	00.0	0000	1.0	inin	conin	LOTO	0.0	2.0	0.01	ġ.	0.05	0,01	1.0	0.2
257 250 010 30 077 000 240 117 000 117 000 117 777 310 010 20 000 23 30 110 000 101 000 117 777 310 010 23 030 23 32 010 100 000 117 779 1610 011 22 030 234 32 32 010 101 010 011 117 210 011 22 030 030 234 412 730 010 111 010 011 111 210 011 22 030 030 234 412 730 034 111 110 010 111	9026		1.93	8.67	0.10	4.4	0.43	0.028	0.90	14.2	12.5	0.25	179	1.08	0.06	60 F	27.2
572 2010 0.01 3.0 0.04 0.080 2.84 313 130 170 100 0.04 105 770 100 0.01 2.0 0.04 0.080 2.84 313 130 100 0.04 115 370 2160 0.01 2.7 0.03 0.06 2.84 313 110 0.06 111 370 2160 0.11 2.1 0.23 0.06 2.84 313 110 0.06 112 210 210 0.11 2.1 0.23 0.06 2.84 314 410 7.1 0.05 111 210 0.11 2.11 0.11 2.14 2.10 0.11 2.14 2.14 2.14 2.14 2.14 2.14 2.14 2.14 2.15 0.03 1.15 1.15 0.03 1.15 1.15 0.15 0.11 1.15 1.15 1.15 1.15 0.15 0.15	2027		2.52	22.60	0.19	3.0	0.77	0.070	2.66	34.8	11.7	0.64	02	111	0.05	13.5	34.4
0/1 0/1 <td>9028</td> <td></td> <td>2.82</td> <td>23.00</td> <td>0.17</td> <td>3.0</td> <td>0.43</td> <td>0.066</td> <td>2.84</td> <td>31.9</td> <td>13.0</td> <td>0.70</td> <td>195</td> <td>1.00</td> <td>0.05</td> <td>13.6</td> <td>57.3</td>	9028		2.82	23.00	0.17	3.0	0.43	0.066	2.84	31.9	13.0	0.70	195	1.00	0.05	13.6	57.3
770 771 770 <td>8708</td> <td></td> <td>2119</td> <td>20.10</td> <td>0.20</td> <td>2.6</td> <td>0.45</td> <td>0.060</td> <td>2,48</td> <td>30.9</td> <td>11.5</td> <td>0.79</td> <td>4710</td> <td>1.10</td> <td>0.04</td> <td>11.7</td> <td>82.4</td>	8708		2119	20.10	0.20	2.6	0.45	0.060	2,48	30.9	11.5	0.79	4710	1.10	0.04	11.7	82.4
346 540 0.16 2.7 0.36 2.44 0.16 2.7 0.36 0.46 0.34 0.06 173 0.06 173 231 2340 0.17 2.1 0.23 0.064 2.43 0.36<	9030		7.90	19.35	0.20	2.3	0.38	0.058	2.28	35.2	8.5	0.67	363	0.78	0.05	11.3	23.2
233 2140 017 25 0061 245 374 66 16 223 0061 121 236 2310 018 25 084 0303 34 430 271 066 134 046 121 236 2310 018 25 036 0303 34 440 271 034 046 121 245 2310 018 25 036 033 34 445 217 034 046 121 245 230 018 23 036 033 34 445 217 034 046 121 246 230 017 25 036 033 34 445 217 034 146 217 034 141 121 141 121 141 121 046 121 141 141 141 141 141 141 141 141 141 141 1	9032		3.48	21.60	0.18	27	0.33	0.058	2.64	40.5	0.8	0.66	113	1.05	0.06	12.5	16.2
293 1646 013 21 253 0061 013 21 013 21 013 014 015 015 015 016 013 016 013 016 013 016 013 016 013 014 125 2147 2140 0171 2.4 054 0035 344 413 27.3 034 66 033 044 125 2147 2210 017 2.4 056 0035 344 415 27.3 034 116 014 123 2165 3210 017 2.4 035 013 117 013 117 014 113 2165 340 013 117 013 116 014 123 014 123 1168 1230 013 117 013 116 014 123 013 116 014 123 1168 1230 0131 117<	EE06.	1	3.13	21.40	0.17	2.6	2.42	0.064	2.48	37.4	9.8	0.66	118	2.24	0.05	12.1	27.5
236 2310 018 25 064 0007 354 440 27 230 0.42 125 247 2390 018 25 038 0007 354 413 273 0.44 151 247 2390 018 25 038 0007 354 413 273 0.45 113 247 2310 017 25 058 0007 354 413 273 0.46 113 266 2310 017 25 058 0003 374 455 7 245 034 116 216 3210 017 25 058 003 314 415 7 120 046 121 216 3210 017 25 038 133 344 415 7 326 041 120 216 1140 114 010 117 023 113 116 116 <	9034	Ĩ	2.93	16.95	0.18	2.1	2.53	0.052	1.95	28.6	10.8	0.52	195	1.68	0.05	9.6	25.6
2.35 2.30 0.18 2.5 0.33 0.45 12.1 2.14 2.100 0.17 2.4 0.34 0.5 0.34 0.5 0.35 0.46 12.1 2.14 2.100 0.17 2.4 0.34 0.45 7.3 0.35 0.46 12.1 2.14 2.100 0.17 2.4 0.34 3.45 2.15 0.34 13.5 0.31 11.3 2.16 1.40 1.50 0.31 1.1 0.33 3.44 4.5 2.17 0.34 13.5 0.31 11.3 2.16 1.40 1.50 0.31 1.7 0.33 13.6 0.37 13.7 0.31 13.3 2.16 1.40 1.30 0.33 1.31 1.36 0.37 1.34 1.35 0.35 1.1 1.35 2.16 1.40 1.50 0.33 1.34 4.45 1.17 0.37 1.34 1.35 0.35 1.11 </td <td>.9035</td> <td>1</td> <td>2.36</td> <td>23.10</td> <td>0.18</td> <td>2.5</td> <td>0.64</td> <td>0:030</td> <td>3.54</td> <td>43.0</td> <td>27.1</td> <td>0.36</td> <td>160</td> <td>3.34</td> <td>0,42</td> <td>12.5</td> <td>2.1</td>	.9035	1	2.36	23.10	0.18	2.5	0.64	0:030	3.54	43.0	27.1	0.36	160	3.34	0,42	12.5	2.1
244 2100 010 24 010 24 010 24 010 24 010 24 010 24 010 24 010 24 010 24 010 24 010 24 010 010 24 010 010 24 010 011 25 035 031 34 375 256 026 545 035 041 123 266 3210 017 25 033 34 375 366 023 126 033 136 136 041 123 140 1160 013 17 023 033 136 133 169 163 104 123 140 1160 013 17 023 013 136 013 163 014 123 014 123 014 123 014 123 014 123 014 123 014 123 014 123 <td>9036</td> <td>~~</td> <td>2.35</td> <td>22.30</td> <td>0.18</td> <td>2.5</td> <td>0.63</td> <td>0.027</td> <td>3.54</td> <td>42.7</td> <td>28.0</td> <td>0.34</td> <td>98</td> <td>6,93</td> <td>0,46</td> <td>12.1</td> <td>2.0</td>	9036	~~	2.35	22.30	0.18	2.5	0.63	0.027	3.54	42.7	28.0	0.34	98	6,93	0,46	12.1	2.0
266 2310 020 23 060 034 340 750 250 035 67 545 035 116 206 2300 017 25 055 034 445 217 039 141 201 041 123 206 330 015 17 038 037 139 176 037 131 132 041 123 140 1160 013 15 013 034 145 177 039 143 132 044 123 140 1160 013 15 013 134 135 035 141 123 046 123 140 1195 015 15 023 013 134 133 035 141 1195 013 113 013 113 013 133 133 134 133 035 141 1136 013 113	9038		2.14	21.90	0.10	2.4	0.54	0.036	3.05	808	21.3	0.34	86	2,15	0.47	12.5	0,1
223 2340 017 2.5 0.55 0.01 3.4 44.5 217 0.36 120 0.41 123 206 23.10 0.15 2.3 0.31 0.35 3.70 40.5 217 0.36 171 0.01 171 0.035 3.70 40.5 217 0.36 0.41 123 10.6 11.60 0.13 1.7 0.203 0.035 3.70 40.5 213 136 0.07 33 0.40 123 10.6 11.60 0.13 1.6 0.23 0.03 136 0.13 116 123 0.03 27 11.8 12.6 0.13 1.6 0.23 0.03 136 0.13 112 0.04 123 0.05 27 11.20 0.36 0.13 1.1 0.023 1.12 118 0.04 26 0.04 26 0.05 26 0.04 26 0.05 26 0.04 </td <td>6206.</td> <td>1</td> <td>2.65</td> <td>23.10</td> <td>0.20</td> <td>23</td> <td>0.86</td> <td>0,034</td> <td>3.49</td> <td>37.5</td> <td>25.6</td> <td>0.28</td> <td>22</td> <td>5,45</td> <td>0.35</td> <td>11.6</td> <td>1.1</td>	6206.	1	2.65	23.10	0.20	23	0.86	0,034	3.49	37.5	25.6	0.28	22	5,45	0.35	11.6	1.1
Zie Zie <thzie< th=""> <thzie< th=""> <thzie< th=""></thzie<></thzie<></thzie<>	9040										1		W		1		
056 359 0.09 1.1 0.03 1.2 0.040 1.2 0.04 1.2 0.040 1.2 0.040 1.2 0.040 1.2 0.041 1.2 0.041 1.2 0.041 1.2 0.041 0.2 1.2 0.041 1.2 0.041 0.2 1.2 0.041 0.2 1.2 0.041 1.2 <td>1408</td> <td></td> <td>57.5</td> <td>03.10</td> <td>11.0</td> <td>0.0</td> <td>0.02</td> <td>150.0</td> <td>3.94</td> <td>0.44</td> <td>21.7</td> <td>0.39</td> <td>141</td> <td>2.01</td> <td>0.41</td> <td>12.3</td> <td>2.1</td>	1408		57.5	03.10	11.0	0.0	0.02	150.0	3.94	0.44	21.7	0.39	141	2.01	0.41	12.3	2.1
	9043		0.55	3.59	60.0	11	0.13	0.008	0.32	10.0	11.62	0.07	30	1.20	0.40	12.0	2.1
2/16 9/29 0.15 1,5 0.24 0.028 0.63 2/13 1/3 0.27 25/7 1,81 0.04 5/6 1,16 1,23 0.13 1,6 0.28 0.03 1,03 1,03 1,50 0.05 7,2 1,28 1,33 0.13 1,6 0.23 0.03 1,13 1,12 0.13 1,26 0.05 7,2 1,20 3,39 0.03 1,3 0.23 0.13 1,1 0.05 7,3 0.05 0.14 2,16 0.05 7,2 1,31 3,45 0.13 1,1 0.23 0.13 1,1 0.13 1,1 0.05 5,2 1,31 4,46 0.13 1,1 0.23 0.13 1,1 1,1 0.14 1,1 1,1 0.15 1,1 0,13 1,1 1,1 0,13 1,1 1,1 0,13 1,1 1,1 1,1 1,1 1,1 1,1 0,13	9044	1	1.40	11.60	0.13	1.7	0.29	0.029	1.09	21.3	13.6	0.33	149	1.63	0.05	4.9	0.8
168 1230 013 16 041 0.028 108 185 140 0.35 258 0.00 72 122 538 0.01 13 0.31 0.023 0.03 223 185 0.34 295 0.00 35 122 5.38 0.01 13 0.23 0.03 103 237 0.04 258 0.00 35 123 5.39 0.03 10 0.23 0.13 113 0.23 0.14 265 0.04 25 130 9.43 0.13 11 0.23 0.16 135 135 0.3 136 0.05 35 133 6.45 0.13 11 0.53 0.03 172 148 0.05 35 135 6.45 0.13 11 0.53 0.03 172 148 0.03 47 26 136 6.45 0.14 136 0.3 0.3	9045		2.15	9.29	0.15	1.5	0.34	0.028	0.83	21.3	17.8	0.27	267	1.81	0.04	5.6	8.1
112 113 016 113 013 013 013 014 013 014 015 016 014 015 016 014 015 016 016 016 016 016 016 <td>9046</td> <td></td> <td>1.68</td> <td>12.30</td> <td>0.13</td> <td>1.6</td> <td>0.41</td> <td>0.028</td> <td>1.08</td> <td>18.5</td> <td>14.0</td> <td>0.35</td> <td>94</td> <td>1.50</td> <td>0.05</td> <td>7.2</td> <td>12.3</td>	9046		1.68	12.30	0.13	1.6	0.41	0.028	1.08	18.5	14.0	0.35	94	1.50	0.05	7.2	12.3
015 339 010 13 010 033 010 010 033 010 010 036 010 036 010 036 010 036 010 036 010 036 010 036 010 036 010 036 010 036 010 036 010 036 010 036 010 036 010 036 010 036 010 036 010 036 010 036 037 036 037 036 037 036 037 036 037 037 036 037 037 036 037 037 037 037 037 037 037	1408		CC +	CA.LI	0.10	8. F	40.0	650.0	60.1	22.2	18.6	0.34	129	2.58	0.04	6.8	15.9
104 2.39 0.08 0.8 0.43 0.007 0.18 10.3 3.7 0.09 117 4.07 0.06 2.0 1.30 9.45 0.13 1.7 0.51 0.024 0.98 17.5 14.6 0.05 4.2 1.30 9.45 0.13 1.7 0.25 0.024 0.98 15.6 18.6 0.02 37 13.65 0.05 4.2 1.35 6.52 0.10 1.1 0.36 15.1 18.0 0.11 50 6.91 0.05 4.7 1.35 6.56 0.10 1.1 1.08 0.05 14.7 13.65 0.05 5.5 2.13 8.56 0.11 1.1 1.08 0.006 4.16 0.07 5.5 2.13 8.12 1.64 0.13 2.14 1.53 0.36 1.42 0.06 6.6 3.06 1.17 1.23 1.16 0.13 0.23 1.42	9049	1	0.89	3.59	0.09	1.0	0.25	0.010	0.26	11.6	8.4	0.12	132	80'S	0.04	3.5 2.6	5.6 6.3
130 9.43 0.13 1,1 0.51 0.024 0.78 136 136 0.02 47 136 0.05 42 135 1465 0.13 1,1 0.22 0.002 0.39 245 0.05 42 135 652 0.10 1,1 0.22 0.002 0.39 17.2 14.8 0.30 245 0.05 8.0 056 559 0.11 1,1 0.22 0.002 1,1 1.33 43 11.65 0.03 47 136 5.4 0.00 1,1 1.28 0.00 1,1 1.33 43 11.65 0.03 47 2.01 1.03 1.6 1.28 0.000 1,1 1.33 1.06 46 2.02 0.10 1.1 1.28 0.000 1,1 1.33 0.33 1.06 46 2.03 10.15 1.2 0.33 1.24 1.33 0.36 1.06	9050		1.04	2.39	0.08	0.8	0,43	0.007	0.18	10.3	3.7	0.09	117	4.07	0.06	2.0	89
1.3 14.55 0.13 1.7 0.22 0.026 0.99 17.2 14.8 0.13 54 45.3 0.05 8.0 0.86 5.90 0.11 1.1 0.82 0.017 0.86 15.0 14.8 0.30 45 0.05 8.0 0.86 5.90 0.11 1.1 0.82 0.001 0.86 15.0 16.4 0.13 43 17.8 0.03 47 2.13 8.74 0.09 1.4 1.28 0.000 1.4 15.3 0.38 108 1.30 0.06 4.6 2.17 1.03 1.2 1.3 1.3 1.3 1.3 0.35 1.6 0.03 4.7 1.7 1.3 0.05 4.6 0.03 4.7 4.7 1.7 0.35 4.7 1.7 0.35 4.7 1.85 0.03 4.7 4.7 1.7 1.3 0.35 1.6 0.35 5.6 5.5 5.5 5.5<	9051		1.30	9.43	0.13	11	0.51	0.024	0.78	13.6	18.6	0.22	37	13.65	0.05	4.2	6,1
1.45 5-22 0.10 1.1 0.23 0.017 0.54 15.1 18.0 0.11 50 6.91 0.07 5.5 2.13 8.74 0.09 1.1 1.28 0.026 1.17 13.3 12.9 0.35 106 1.36 5.7 5.7 0.07 5.5 3.06 1.205 0.15 1.6 1.28 0.026 1.17 13.3 12.9 0.35 106 1.36 4.7 3.07 1.735 0.15 1.6 1.70 0.35 106 1.36 0.06 6.6 3.17 17.35 0.12 1.17 13.3 12.4 12.2 0.06 6.6 3.17 17.35 0.12 1.6 0.30 1.47 14.4 12.2 0.06 6.6 5.2 2.03 0.13 2.36 0.03 1.47 13.4 12.2 0.06 6.6 5.2 2.03 0.15 1.65 0.03	9052 2002		1.73	14.65	0.13	1.7	0.22	0.029	66.0	17.2	14.8	0.30	245	4.53	0.05	8.0	5,1
213 8.74 0.09 1,1 1.38 0.026 1,17 1.33 1.29 0.35 0.60 1,10 3.06 12.05 0.15 1.6 2.59 0.040 1.25 21.7 1.53 0.35 1.61 1.00 0.66 6.6 3.06 12.01 0.12 1.17 0.030 1.14 15.3 1.29 0.35 1.12 0.06 4.6 3.17 17.35 0.15 1.17 10.30 1.14 15.4 15.3 0.39 142 2.75 0.06 6.6 3.17 17.35 0.15 2.07 0.032 1.47 13.4 15.2 0.36 1.75 0.06 5.2 2.63 10.55 0.12 1.6 2.07 0.032 1.47 13.4 12.2 0.46 5.6 2.63 3.17 10.55 0.12 1.6 0.003 1.47 13.4 12.2 0.46 5.6 2.63 3.17 0.08 0.14 12.2 0.46 5.6 5.6 2.63 15.75 0.19 0.33 1.47 13.4 12.2 0.46 5.6 2.63 15.75 0.19 2.3<	9054		96.0	5.99	0.11	5 2	0.30	0.017	0.58	15.0	16.4	0.11	50	11 65	0.07	5.5	6.8
306 1205 015 16 258 0040 125 217 153 038 142 275 006 6.6 317 1735 013 12 117 0040 114 154 153 0.38 142 2.34 0.06 5.5 317 1735 013 12 2.07 0.030 147 144 122 0.46 5.6 243 1055 012 1.6 0.032 147 144 122 0.46 5.6 263 3.11 0.09 0.4 1.28 0.007 0.29 3.2 106 5.6 275 157.5 0.19 0.32 1.47 124 122 0.46 5.6 267 157.6 0.19 0.23 1.76 0.005 5.6 5.6 5.6 275 157.5 0.19 2.3 105 5.6 5.6 5.6 5.6 5.6 5.6 5.6 <td>9055</td> <td></td> <td>2.13</td> <td>8.74</td> <td>0.09</td> <td>1.1</td> <td>1.28</td> <td>0.026</td> <td>1.17</td> <td>13.3</td> <td>12.9</td> <td>0.35</td> <td>106</td> <td>1 30</td> <td>0.06</td> <td>46</td> <td>10.7</td>	9055		2.13	8.74	0.09	1.1	1.28	0.026	1.17	13.3	12.9	0.35	106	1 30	0.06	46	10.7
217 1010 012 12 117 0.000 114 154 153 0.29 108 2.34 0.006 5.2 243 10.55 0.12 12 203 163 234 1055 5.2 243 10.55 0.12 16 2007 0.032 147 144 125 0.45 5.7 1765 0.04 5.6 243 10.55 0.12 16 0.032 147 144 125 0.46 5.6 0.04 5.6 262 3.11 0.00 0.4 128 0.007 0.29 3.2 105 0.07 4.8 5.6 267 15.75 0.19 2.3 105 0.07 0.29 3.2 10.6 0.14 1.2 267 15.75 0.19 2.3 10.6 0.07 0.3 2.3 10.6 0.14 1.2 267 15.75 0.19 2.3 17.8	9056		3.06	12.05	0.15	1.6	2.59	0.040	1.25	21.7	15.3	0.38	142	2.75	0.06	9.9	202
317 17.35 0.15 2.9 0.38 0.049 1.63 2.36 1.56 0.57 2.17 176.50 0.14 9.5 2.03 10.55 0.12 1.6 2.07 0.032 1.47 14.4 12.2 0.46 57 6.65 0.06 5.6 0.22 3.11 0.08 0.4 1.28 0.007 0.29 3.2 10.6 0.06 5.6 2.57 15.75 0.19 2.3 1.76 0.046 1.79 2.44 1.1 0.55 0.04 1.2 0.04 1.2 2.35 0.04 1.2 2.35 0.04 1.2 0.04 1.2 0.04 1.2 0.04 1.2 0.04 1.2 0.04 1.2 0.04 1.2 0.04 1.2 0.04 1.2 0.04 1.2 0.04 1.2 0.04 1.2 0.04 0.04 1.2 0.04 1.2 0.04 1.2 0.04 0.04 1.2 <td>9057</td> <td></td> <td>2.02</td> <td>10.10</td> <td>0.12</td> <td>1.2</td> <td>1,17</td> <td>0:030</td> <td>1.14</td> <td>15.4</td> <td>15.3</td> <td>0.29</td> <td>108</td> <td>2.34</td> <td>0.06</td> <td>5.2</td> <td>18.8</td>	9057		2.02	10.10	0.12	1.2	1,17	0:030	1.14	15.4	15.3	0.29	108	2.34	0.06	5.2	18.8
0.82 3.11 0.08 0.4 1.28 0.007 0.29 3.2 105 0.07 49 2.35 0.04 1.2 257 1575 0.19 2.3 1.75 0.046 1.79 2.44 1.10 0.06 7.9 7.9 7.4 7.1 0.08 7.9	8059 8059		2.63	17.35	0.15	1.6	0.96	0.049	1.63	23.6	15.6	0.57	217	176.50	0.14	9.5 8.6	11.1
0.92 3.11 0.09 0.4 1.28 0.007 0.29 3.2 10.6 0.07 49 2.35 0.04 1.2 2.57 15.75 0.19 2.3 1.75 0.046 1.79 2.44 1.10 0.60 1.31 3.520 0.08 7.9 0.60 1.77 0.11 0.7 1.0 0.01 0.01 1.3 3.520 0.08 7.9	0906		3	1			1		1	e							
	1906		26.0	3.11	0.09	4.0	1.28	20000	0.29	3.2	10.6	0.07	48	2.35	0.04	1.2	8.7
	9063		66.0	4.74	0.11	2.0	1 40	0.011	0.56	7.47	0.11	0.00	131	07.65	80.0	B.)	1.61

Method built RE-MIS01 ME-MIS01	212 Brocksbank Avenue Natiti Varicouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 Www.alschemex.com	đ.	Project: Ivanhoe Creek	De Creek	NORTH VANCOUVER BC V7L 2N8 Project: Ivanhoe Creek			Finalized	Finalized Date: 31-AUG-2007 Account: RELGEO	lized Date: 31-AUG-2007 Account: RELGEO
Monitor analysis McMisbi prof. McMisbi		-		CERTIF	CERTIFICATE OF ANALYSIS	DF ANA	LYSIS	WN07(WN07082588	
Units P Pic Fin Men Units 10 0.5 0.1 0.02 100 7.4 64.3 0.002 200 7.4 64.3 0.002 270 16.4 16.4 165.5 0.002 270 16.9 44.5 0.002 0.002 270 16.9 44.5 0.002 0.002 270 16.9 44.5 0.002 0.002 270 16.9 44.5 0.002 0.002 270 20.1 166.5 0.002 0.002 270 20.1 166.5 0.002 0.002 270 20.1 166.5 0.002 0.002 270 21.2 180.5 0.002 0.002 570 22.1 180.5 0.002 0.002 570 22.1 180.5 0.002 0.002 570 22.0 186.5 0.002 0.002	ME-MS61 ME-	ME-MS81 ME-MS61	61 ME-MS81	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS81
Unter Ipm Ipm Ipm Ipm Ipm Ipm 100 4.7 54.8 -0.002 4.00 16.4 155.0 -0.002 720 16.4 155.0 -0.002 720 16.4 155.5 -0.002 720 16.4 155.5 -0.002 720 16.1 165.5 -0.002 960 16.1 165.5 -0.002 970 20.0 13.3 14.10 -0.002 970 20.1 165.5 -0.002 -0.002 970 20.1 165.5 -0.002 -0.002 970 20.1 165.5 -0.002 -0.002 970 23.3 138.0 -0.002 -0.002 970 23.2 186.5 -0.002 -0.002 970 22.1 186.5 -0.002 -0.002 970 22.1 186.5 -0.002 -0.002 970 23.1				Sn	Sr	ta	Te	Ŧ	¢.	F
100 4.7 54.8 -0.002 200 7.4 69.3 -0.002 670 16.4 185.5 -0.002 720 16.4 185.5 -0.002 720 16.4 185.5 -0.002 960 16.1 165.6 -0.002 970 16.4 185.5 -0.002 970 16.1 165.5 -0.002 970 20.1 16.1 165.5 -0.002 980 21.2 134.0 -0.002 980 21.2 136.5 -0.002 980 22.4 180.5 -0.002 980 22.1 180.5 -0.002 980 22.2 138.6 -0.002 980 22.1 180.5 -0.002 980 22.1 188.5 -0.002 980 22.1 188.5 -0.002 980 22.1 188.5 -0.002 980 23.0	% D1	DDF 01	hqq	mqq 0.2	undq	mqq	bpm 0.05	udd	%	udd
100 7.4 53.8 -0.002 720 16.4 165.0 -0.002 720 16.4 165.0 -0.002 720 16.4 165.0 -0.002 720 16.4 165.0 -0.002 720 16.4 165.5 -0.002 720 16.4 165.5 -0.002 700 20.0 166.5 -0.002 700 20.0 164.6 -0.002 700 20.1 164.6 -0.002 700 20.1 164.5 -0.002 700 20.1 164.6 -0.002 700 20.1 164.6 -0.002 700 20.1 164.6 -0.002 700 20.1 166.5 -0.002 700 20.1 166.6 -0.002 700 20.1 166.6 -0.002 700 20.1 166.6 -0.002 700 20.1 166.6 <				4.4	de	PANO 1		N'N	cno'n	7N'N
400 16.4 16.3 4000 720 16.4 16.3 40002 720 16.4 145.5 40002 720 16.4 145.5 40002 700 70.0 16.4 145.6 40002 700 70.0 16.4 145.6 40002 700 70.0 166.5 40002 460 70002 700 20.1 166.5 40002 460 70002 700 20.1 166.5 40002 460 70002 700 20.2 186.0 70002 460 7002 570 22.2 176.5 0004 7002 570 22.1 186.5 0002 260 570 22.1 186.5 0002 260 700 23.1 186.5 0002 260 700 23.0 166.5 0002 260 700 24.1 166.5 0002 <t< td=""><td>0.11 10</td><td>10.00 7.1</td><td>20</td><td>8.0</td><td>30.0</td><td>0.52</td><td>0.11</td><td>4.6</td><td>0.115</td><td>0.29</td></t<>	0.11 10	10.00 7.1	20	8.0	30.0	0.52	0.11	4.6	0.115	0.29
970 16.4 183.5 -0.002 720 16.9 14.3 -0.002 960 16.1 14.50 0.002 970 16.9 14.3 141.0 0.002 970 16.9 14.3 141.0 0.002 970 16.9 14.3 141.6 0.002 970 17.2 154.0 -0.002 980 2.1.2 129.6 -0.002 480 2.4.1 180.5 -0.002 480 2.3.3 134.0 0.002 480 2.2.2 178.5 -0.002 470 2.2.2 178.5 -0.002 570 2.2.2 178.5 -0.002 570 2.2.2 178.5 -0.002 570 2.2.2 178.5 -0.002 270 12.2 61.6 -0.002 270 12.2 61.6 -0.002 270 2.2.2 61.6 -0.002				2.0	1710	1 00	000	0.0	0.140	0.28
720 16.9 14.50 0.002 17560 16.1 166.5 -0.002 970 23.1 166.5 -0.002 970 23.1 166.5 -0.002 970 23.1 154.6 -0.002 970 23.1 180.5 -0.002 970 23.3 180.5 -0.002 970 23.3 180.5 -0.002 970 23.3 180.5 -0.002 970 23.3 180.5 -0.002 970 23.2 176.0 0.004 970 23.2 176.0 0.002 970 23.2 176.0 0.002 970 23.1 186.5 0.002 970 24.1 6.002 0.002 970 24.1 166.6 -0.002 970 24.1 6.002 0.002 970 24.1 6.002 0.002 970 24.1 6.002 0		46 15.4		23	141.5	00.1	0.07	13.0	0.378	0.64
1250 14.3 141.6 -0.002 970 16.1 145.5 -0.002 970 20.0 146.5 -0.002 940 21.1 132.5 -0.002 940 21.1 132.5 -0.002 940 23.1 132.5 -0.002 940 23.1 132.5 -0.002 570 25.0 135.6 -0.002 570 25.0 135.6 -0.002 570 25.0 136.5 -0.002 570 22.2 175.5 0.004 570 22.2 175.5 0.002 570 22.1 186.5 -0.002 570 22.1 186.5 -0.002 570 22.1 186.5 -0.002 570 22.1 186.5 -0.002 500 51 41.4 -0.002 700 51 24.7 -0.002 700 51 24.7 -0.00				2.0	92.4	0.87	0.06	11.5	0.324	0.64
960 16.1 166.5 -0.002 970 16.1 166.5 -0.002 970 20.3 134.0 -0.002 970 21.3 134.5 -0.002 970 21.3 134.5 -0.002 970 23.3 134.6 -0.002 970 23.3 134.6 -0.002 970 22.3 178.5 -0.002 970 22.5 198.5 -0.002 970 22.1 186.5 -0.002 970 22.1 186.5 -0.002 970 22.1 166.5 -0.002 970 22.1 166.5 -0.002 970 9.4 17.8 -0.002 290 11.3 49.6 -0.002 170 5.4 17.4 -0.002 200 5.6 3.0 3.9 -0.002 201 17.2 64.7 -0.002 202 17.4 0.002<				1.9	265.0	0.81	0.07	11.2	0.305	0.55
570 520 71465 5002 860 21.2 1136.5 5002 860 21.2 1130.5 5002 460 22.4 180.5 5002 460 22.4 180.5 5002 460 22.4 180.5 5002 460 22.4 180.5 5002 475 22.1 188.5 0.004 570 25.1 188.5 0.002 570 22.1 188.5 0.002 270 22.1 188.5 0.002 270 22.1 186.5 0.002 270 22.1 186.5 0.002 270 22.1 186.5 0.002 270 12.2 64.7 0.002 770 5.1 44.4 0.002 770 5.1 44.4 0.002 770 5.1 45.5 0.002 770 5.1 5.3.5 0.002 <t< td=""><td></td><td></td><td></td><td>2.1</td><td>190.0</td><td>0.94</td><td>0.08</td><td>13.1</td><td>0.358</td><td>0.68</td></t<>				2.1	190.0	0.94	0.08	13.1	0.358	0.68
800 71,2 734,5 400.2 460 24,1 182,5 400.2 510 23,4 182,5 400.2 510 23,4 182,5 400.2 510 23,3 183,0 400.2 570 23,3 183,0 400.2 570 23,4 185,5 0.002 570 22,2 178,5 0.004 570 22,2 178,5 0.002 570 22,4 186,5 40.02 570 22,1 186,5 40.02 230 11,3 49,6 40.02 200 11,3 49,6 40.02 201 12,2 64,7 40.02 201 12,2 64,7 40.02 201 12,2 64,7 40.02 201 5,5 14,4 40.02 201 5,5 14,4 40.02 201 5,6 3,9 40.02				2.1	138.5	0.94	0.08	12.8	0.355	0.56
460 24,1 182,5 <0.002	0.65	1.99	10	1.7	186.5	0.71	0.10	9.8	0.353	1.12
440 22.4 180.5 400.2 510 22.3 180.5 400.2 450 22.2 175.0 0.04 570 22.2 175.0 0.04 570 22.2 176.5 0.04 570 22.2 176.5 0.002 570 22.1 166.5 -0.002 220 9.8 61.6 -0.002 220 9.8 61.6 -0.002 220 12.2 64.7 -0.002 220 12.2 64.7 -0.002 220 12.2 64.7 -0.002 270 12.2 64.7 -0.002 270 17.3 64.7 -0.002 770 5.1 65.3 -0.002 380 6.6 2.5 63.8 -0.002 380 5.6 2.5 63.8 -0.002 390 5.1 8.8.8 -0.002 370 5.1 7.		ľ		11	116.0	P6 0	<0.05	184	L DG U	105
510 22.3 183.0 -0.002 570 22.2 175.0 0.004 570 23.1 186.5 0.002 570 23.1 186.5 0.002 570 23.1 186.5 0.002 160 23.1 186.5 0.002 160 22.1 186.5 0.002 270 23.1 186.5 0.002 270 2.4 61.6 -0.002 270 12.2 64.7 -0.002 270 12.2 64.7 -0.002 270 12.2 64.7 -0.002 770 3.9 14.4 -0.002 770 7.8 63.3 -0.002 780 5.6 5.3 -0.002 780 5.6 5.6 60.02 780 5.6 5.6 60.02 780 5.6 5.6 60.02 780 5.6 5.6 60.02			4	0.9	123.5	0.93	<0.05	18.2	0.237	0.94
460 22.2 17.6.0 0.004 570 22.2 17.8.5 0.004 577 22.1 17.8.5 0.004 570 22.1 186.5 -0.002 570 22.1 186.5 -0.002 570 22.1 186.5 -0.002 260 11.3 49.6 -0.002 280 11.3 49.6 -0.002 270 51 26.4.7 -0.002 270 5.5 64.7 -0.002 700 5.6 12.2 64.7 -0.002 700 5.6 13.4 -0.002 200 700 5.6 14.4 -0.002 200 700 5.6 5.3 -0.002 200 700 7.6 7.8 -0.002 200 700 7.6 5.6 5.3 -0.002 700 5.6 5.6 5.6 -0.002 700 5.6 5.6	1.57 11	11.20 6.1		FF	128.0	0.94	<0.05	18.0	0.247	0.92
570 25.0 178.5 0.004 577 25.0 198.5 0.002 570 25.0 198.5 0.002 150 5.4 178.8 -0.002 280 11.3 47.6 -0.002 280 11.3 47.6 -0.002 280 11.3 67.7 -0.002 280 11.3 67.7 -0.002 280 11.3 64.4 -0.002 200 17.2 64.4 -0.002 201 7.5 64.4 -0.002 770 7.6 5.6 63.3 -0.002 816 5.6 63.3 -0.002 320 5.6 6.3.3 -0.002 320 5.6 6.3.3 -0.002 320 5.6 6.3.3 -0.002 320 5.6 6.3.3 -0.002 320 5.6 6.3.3 -0.002 320 5.1 7.3.8			9	0.9	110.0	0.84	<0.05	17.1	0.228	0.89
570 25.0 138.5 0.002 770 22.1 138.5 0.002 160 22.1 138.5 0.002 220 9.8 61.6 -0.002 220 9.8 61.6 -0.002 220 9.8 61.6 -0.002 220 12.3 63.7 -0.002 270 12.2 64.7 -0.002 270 12.2 64.7 -0.002 270 12.2 64.7 -0.002 700 5.1 63.9 -0.002 700 5.1 63.9 -0.002 700 7.8 63.3 -0.002 700 7.8 63.3 -0.002 700 7.6 63.3 -0.002 700 7.6 63.3 -0.002 700 7.6 63.3 -0.002 700 7.6 63.8 -0.002 700 7.6 63.8 -0.002				13	110.5	0.85	<0.05	15.6	0.245	66.0
570 22.1 186.5 <0.002		62 6.4	17	12	125.0	0.94	<0.05	18.1	0.253	1 19
160 5,4 17,8 -0.02 290 11,3 61,8 -0.02 290 11,3 49,6 -0.02 260 11,3 64,7 -0.02 270 12,2 64,7 -0.02 270 5,1 2,4 -0.02 700 3,9 14,4 -0.02 700 3,9 9,9 -0.02 700 5,5 4,9 -0.02 700 7,6 5,5 4,3 -0.02 700 7,6 5,5 4,3 -0.02 700 7,6 5,5 6,3 -0.02 300 6,6 26,9 -0.02 -0.02 300 2,1 5,8 -0.02 -0.02 300 2,1 5,8 -0.02 -0.02 300 5,1 5,8 -0.02 -0.02 300 5,1 8,8 -0.02 -0.02 300 5,1 8,8 <td></td> <td></td> <td></td> <td>1.2</td> <td>124.0</td> <td>0.88</td> <td><0.05</td> <td>16.0</td> <td>0.257</td> <td>101</td>				1.2	124.0	0.88	<0.05	16.0	0.257	101
220 9.8 61.6 -6.002 280 11.3 67.7 -0.002 270 12.2 67.7 -0.002 270 12.2 64.7 -0.002 270 12.2 64.7 -0.002 170 3.9 14.4 -0.002 160 3.0 9.1 44.4 -0.002 170 5.1 64.2 -0.002 180 5.6 49.2 -0.002 280 5.5 63.3 -0.002 280 5.5 63.3 -0.002 280 5.1 58.8 -0.002 390 5.1 58.8 -0.002 370 5.1 73.8 -0.002 370 5.1 73.8 -0.002	0.20 2.	2.34 2.9	e	0.3	28,1	0.18	<0.05	2.5	0.067	0.09
280 11.3 49.6 -0.02 270 10.2 61.7 -0.02 270 12.2 64.7 -0.02 700 5.1 24.4 -0.02 700 5.9 14.4 -0.02 700 5.9 14.4 -0.02 700 5.5 44.7 -0.02 860 5.6 5.8 -0.02 700 7.8 63.3 -0.02 860 5.6 25.8 -0.002 320 9.6 26.6 20.6 320 5.5 63.3 -0.002 320 5.15 83.8 -0.002 330 5.15 83.8 -0.002 370 5.15 83.8 -0.002 370 5.15 83.8 -0.002				1.0	44.9	0.46	0.09	6.2	0.161	0.25
260 10.2 61.7 -0.002 270 12.2 64.7 -0.002 200 6.1 2.64 -0.002 150 3.9 14.4 -0.002 150 3.0 3.9 -0.002 150 5.5 4.9.2 -0.002 770 7.8 6.6 2.6.9 -0.002 200 6.6 2.6.9 -0.002 -0.002 200 6.6 2.6.9 -0.002 -0.002 300 2.1.5 63.3 -0.002 -0.002 300 2.1.5 63.8 -0.002 -0.002 300 5.1 5.8.8 -0.002 -0.002	0.65 6.	6.99 9.2		0.8	45.8	0.39	0.07	5.3	0.131	0.21
200 6.1.2 26.4 -0.002 170 3.9 14.4 -0.002 170 3.9 14.4 -0.002 160 5.5 49.2 -0.002 770 7.8 6.3.3 -0.002 866 5.6 49.2 -0.002 300 6.6 2.9.8 -0.002 300 9.4 29.8 -0.002 300 5.1 29.8 -0.002 300 5.1 73.8 -0.002 300 5.1 73.8 -0.002 300 5.1 73.8 -0.002 300 5.1 73.8 -0.002 300 5.1 73.8 -0.002 300 5.1 73.8 -0.002 300 5.1 73.7 -0.002				01	40.4	0.48	0.10	6.0	0.156	0.27
170 3.9 14.4 -6,002 150 3.0 9.4 -6,002 150 5.0 9.9 -0.002 160 5.6 5.3 -6,002 260 5.6 6.3.3 -0.002 380 9.4 2.9.5 -0.002 380 5.4 2.9.5 -0.002 390 5.1 38.8 -0.002 370 5.1 5.8.8 -0.002 370 5.1 5.8.8 -0.002				0.6	0.14	0.48	0.13	1.0	001.0	0.30
150 3.0 9.9 -6.002 860 5.5 49.3 -6.002 770 7.8 63.3 -60.002 280 6.6 2.5 40.002 380 9.4 2.6 60.02 380 5.6 2.5 40.002 380 5.5 6.3.3 -0.002 380 5.5 6.3.3 -0.002 390 5.15 8.3.8 -0.002 370 5.15 8.3.8 -0.002		75 2.6	1 (1	0.4	28.3	0.17	<0.05	2.4	0.091	0.13
860 5.5 49.2 40.02 770 7.8 6.33 40.002 280 6.4 28.3 40.002 380 9.4 29.8 40.002 260 5.5 63.8 40.002 370 2.15 88.8 40.002 370 5.15 8.88 40.002				0.3	26.3	0.13	<0.05	1.8	0.069	0.10
770 7.8 6.33 40.002 380 6.6 259.8 4.002 380 9.4 29.8 4.002 280 5.5 6.39 4.002 370 2.15 88.8 4.002 370 5.17 8.002				0.7	54.1	0.28	0.27	3.3	0.124	97.0
200 6.6 2.69 4.002 320 9.4 2.9.5 4.002 260 5.5 63.9 4.002 330 2.15 88.8 4.002 370 5.1 72.7 4.002				1.0	85.9	0.50	0.14	9.4	0.173	0,43
260 5,5 639 40.02 260 5,5 639 40.002 300 21,5 83,8 40.002 370 5,1 72,7 40.002	0.78 7.1	7.83 5.1	4	9.0	76.3	0.29	0.08	6.0	0.101	0.38
200 3.5 83.8 40.002 930 21.5 88.8 40.002 370 5.1 72.7 40.002				0.0	00.0	77.0	0.14	3.1	0.080	0.03
370 5.1 72.7 <0.002				6.0	42.5	0.33	0.09	4.4	0.172	0.30
	0.84	1.16 7.0		21	50.0	0.36	010	204	0.16/	0.33
640 14.2 107.5 0.017				3.2	141.0	0.71	0.09	8.0	0.281	0.68
740 8.0 80.1 <0.002			4	1.2	187.0	0.40	0.10	4.6	0.215	0.49
2.4 10.0 -0.000					0.07	0.00				
1060 12.4 119.5 <0.002	-E E50	317 105	5 (C	. a	1810	920	110		2000	200
710 3.8 35.6 <0.002				0.7	97.5	0.17	\$0.05	00	0.075	010

	-	EXCELLEN ALS Canada Ltd. 212 Brooksban North Vancouw Phone: 604 98	EXCELLENCE IN A ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J Phone: 604 984 0221 FJ	EXCELLENCE IN ANALVTICAL CHEMISTRY Als Canada Lut Scotisbatha Avenue North Vancouver BC V7J 2C1 North Vancouver BC V7J 2C1 Phone: B04 802 17 Fax: 604 884 0218 www.alschemex.com	EXCELLENCE IN ANALYTICAL CHEMISTF As Ganata Ltd. State Standar Awnue Vorth Vancouver EG V7J 261 Phone: 604 984 0221 Fax: 604 984 0218 WWw.glsch	STRY ischemex.o	щ	418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8 Project Ivanhoe Creek	Total # Pages: 2 (A - D) Finalized Date: 31-AUG-2007 Account: RELGEO
								CERTIFICATE OF ANALYSIS M	WN07082588
Sample Description	Method Analyte Unite LOR	ME-MS81 U ppm 0.1	ME-MS81 V Ppm 1	ME-MS61 W Ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Ag-0002 Ag pm 1	
79025		1.0	38	1.0	9.8	95	50.6		
79026		32	160	3.6	13.9 35.3	87	61.5		
79028		3.2	158	1.5	23.1	118	100.0		
70030		2.8	130	1.0 +	44.4	102	76.0		
79031	0	2.8	168	3.4	13.7	52	89.5		
79032		2.8	154	1.6	13.6	51	88.4		
79033	-	3.4	156 128	1.6	13.5	92 95	86.2		
79035		5.0	37	9.1	16.6	60	68.8		
79036	ALC: NO	5.1	4	4.5	17.6	09	61.9		
79038		5.2	14	0.4 8	18.7	43	6.89		
79039	10.	2.0	4	4.7	17.2	99	6.08		
79040 79041		5.1	35	12.9	213	60	85.5		
79042	•	3.8	29	2.5	24.0	82	61.6		
79043		0.8	36	0.5	8.5	1	37.8		
79044	-	2.0	123	1.3	17.2	17	62.5		
79045		2.1	123	1.1	19.3	21	53.2		
79047		2.6	188	1.3	4.11	30	56.3		
79048		1.5	36	6.2	11.9	27	42.2		
79049		1.6	25	82.0	6.6	17	33.1		
79050	111	0.8	29	8.5	7.5	19	27.7		
79052		2.4	245	1.0	20.8	17	4.44 8.6.5		
79053		22	158	2.0	16.8	12	39.7		
79054		5.1	437	1.7	20.3	16	43.5		
79055		1.2	62	1.4	7.4	42	36.3		
19056	-	2.2	101	1.1	14.9	8	52.2		
70058		1.1	99	2.0	9.2	28	41.7		
79059		3.0	105	11.8	15.1	202	49.0	201	
79060		10	15	36	7.0	40	0.07		
79062		6.5	183	64.9	18.4	63	69.7		
20002		2.4	57	7.0		22			

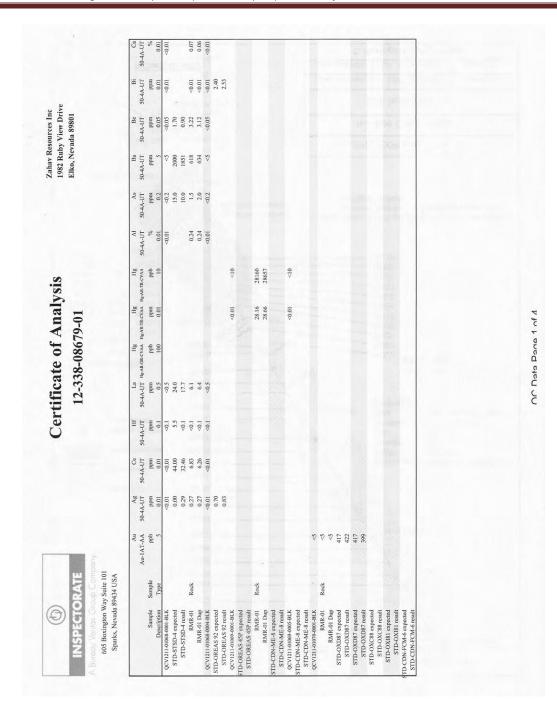

WN07091102

Munta Certificate of automatical automatiteditedity automatical automatical automatical automatica		~	ALS Canada Lid. ALS Canada Lid. 212 Brooksbar North Vancouv	ALS CHEREX ALS CHEREX AS CONTRACT AND	NALYTIC NALYTIC NECT	ALS CHEMEX ALS CHEMEX A Connected in AMALYTICAL CHEMISTI AS CONNECTED IN AMALYTICAL CHEMISTI AS CONNECTED IN AMALYTICAL CHEMISTI AS CONNECTED IN A CONNECTED IN A CONNECTED IN A CONNECTED IN A CONNECTED INTO INCONNECTED IN A CONNECT	STRY STRY	E	To: REL 418 NOR Proje	RELIANCE GEOLOGICAL SERVICI 418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8 Project: Ivanhoe Creek	To: RELANCE GEOLOGICAL SERVICES 418 EAST 411H ST 408 EAST 411H VANCOUVER BC V7L 2N8 Project Ivanhoe Creek	C V7L 2N8	8		Tota Finalizeo	Page: 2 - A Total # Pages: 2 (A - D) Finalized Date: 14-SEP-2007 Account: RELGEO	Page: 2 - A s: 2 (A - D) 4-SEP-2007 It: RELGEO It: RELGEO
Method method (web/m) Web/mit method (web/m) Web/mit method (web/m) </th <th></th> <th>CERTIFI</th> <th>CATE C</th> <th>JF ANA</th> <th>LYSIS</th> <th>WN070</th> <th>91102</th> <th></th>											CERTIFI	CATE C	JF ANA	LYSIS	WN070	91102	
C/46 0 000 0 001 0 01 0 01 0 01 0 01 0 01 0 01 0 11 <		Method Analyte Units	WEI-21 Recvd Wt kg	Au-ICP22 Au ppm	ME-MS61 Ag	ME-MS61 AI	ME-MS61 As ppm	ME-MS61 Ba ppm	ME-MS61 Be ppm	ME-MSB1 Br ppm	ME-MS61 Ca	ME-MS61 Cd ppm	ME-MS61 Ce ppm	ME-MS61 Co	ME-MS61 Cr ppm	ME-MS61 Cs ppm	ME-MS61 Cu
1.27 -0.001 0.00 2.16 0.01 <	sample Description	LOR	0.02	1 00 0	100	0.01	0.2	10	0.05	100	100	0,02	0.01	0.1	+	0.05	0.2
102	79064		0.76	<0.001	60.0	2.16	2.2	380	0.36	0.21	0.54	0.12	49.00	0.3	4	3.47	20.7
070 0701 0711 0701 0711 0701 0711 0701 0711 0701 0711	70087		1.22	100.02	0.01	5.72	10.2	560	1.15	0.34	0.58	0.05	66.80	0.7	0 1	3,06	8.8
070 0001 -0.01 0.47 130 057 0.64 0.07 15400 0.22 9 1.18 -0.001 0.11 7.23 403 413 410 71	79067		0.76	0.001	0.02	8.78	26.4	06	0.40	0.40	0.52	0.11	00.79	1.2	- 61	2.16	25.7
102 0001 017 293 643 803 041 106 143 640 210 71 0.08 -0001 0.18 513 420 334 014 109 1520 640 210 7 0.08 -0001 0.18 513 420 334 114 109 1520 50 7 7 0.08 -0001 0.11 666 52 330 321 114 <td>2008</td> <td></td> <td>0.70</td> <td>0.001</td> <td><0.01</td> <td>9,47</td> <td>13.0</td> <td>630</td> <td>0.57</td> <td>0.64</td> <td>0.48</td> <td>0.07</td> <td>154.00</td> <td>0.2</td> <td>6</td> <td>1.70</td> <td>20.9</td>	2008		0.70	0.001	<0.01	9,47	13.0	630	0.57	0.64	0.48	0.07	154.00	0.2	6	1.70	20.9
0.16 -0.001 0.13 7.27 163 440 3.46 1.47 1.18 0.97 6.80 1.7 0.25 -0.001 0.11 7.46 3.36 0.47 1.48 0.97 6.8 7 0.25 -0.001 0.11 7.46 3.28 0.26 1.27 1.69 1.25 5.0 7 0.26 -0.001 0.13 7.47 5.28 2.20 4.31 6.20 7 </td <td>19069</td> <td>-</td> <td>1.02</td> <td>0.001</td> <td>0.17</td> <td>9.39</td> <td>64.3</td> <td>80</td> <td>0.68</td> <td>0.11</td> <td>0.60</td> <td>1,48</td> <td>64.60</td> <td>21.0</td> <td>t.</td> <td>0.34</td> <td>6.2</td>	19069	-	1.02	0.001	0.17	9.39	64.3	80	0.68	0.11	0.60	1,48	64.60	21.0	t.	0.34	6.2
058 -47001 0.11 7.6 2.25 2.40 4.38 0.01 1.17 1.08 1.60 4.0 4.0 058 -4001 0.10 6.65 2.26 3.21 1.48 1.51 1.09 1.60 4.0 4 4 066 0.00 0.14 5.64 3.4 750 3.23 0.01 1.06 1.60 4.0 4 0164 0000 0.24 5.60 3.23 0.23 0.01 1.66 1.60 1.64 4.6 4 0164 0001 0.34 6.6 2.33 0.31 0.03 6.33 7.30 1.64 4.4 0164 0001 1.37 3.00 1.19 50.0 2.31 0.03 7.40 1.25 4.4 026 0001 1.37 3.00 1.19 0.03 6.10 2.1 4.4 037 0014 0.37 0.30 0.31 0.31 0.3	79070		0.78	<0.001	0.13	7.27	19.3	480	3.46	1.47	1.18	16.0	86.20	4 5	4	35.60	9.2
082 6001 0.10 686 6.2 290 321 1,4 1,7 8270 5.3 7 0.846 0001 0.23 546 5.4 560 5.5 0.30 1.33 603 2.7 6 4 2 6 4 4 5 0<3	79072	Í	0.54	<0.001	0.41	7.45	22.8	240	4.38	18.0	1.22	1.06	116.00	0.4	D 4	24.30	16.7
066 0001 023 606 566 0.57 0.05 0.50 0.52 0.50 0.52 0.50 0.52 0.50 0.52 0.50 0.52 0.50 0.52 0.50 0.52 0.50 0.52 0.50 0.52 0.50 0.52 0.50 0.52 0.50 0.51 0.52 0.50 0.52 0.50 0.51 0.52 0.50 0.51 0.5	79073	ľ	0.62	<0.001	0.10	6.86	6.2	290	3.21	1.48	1.04	1.87	92.70	5.3	7	3.85	11.0
1119 0.003 0.14 5.84 5.4 5.50 3.51 0.57 0.03 0.040 0.22 5.94 0.052 0.014 0.03 0.014 0.03 0.041 0.03 0.040 0.22 5.70 1.2 57 0.054 0.004 0.03 0.014 0.55 0.03 0.01 1.3 500 1.2 57 0 0.064 0.007 13.75 3.00 11.9 550 2.33 0.14 0.20 -002 7.00 1.3 44 0.066 0.071 1.37 14.0 550 0.35 0.36 0.37 0.01 1.3 44 0.056 0.007 0.21 1.37 14.0 560 0.35 0.37 0.37 0.31 44 0.056 0.017 1.37 14.0 560 0.32 0.34 0.37 0.31 44 0.010 1.218 2.36 0.36 0.37 0.36 0.37 0.31 54 0.011 2.14 2.30 0.36 0.36 0.37 0.31 54 55 0.026 0.027 0.37 0.36 0.37 0.37 0.31	79074		0.66	0.001	0.23	9.05	20.4	069	5.26	0.36	1.33	0.83	207.00	4.2	4	4.09	10.0
0.12 0.003 0.03 0.04 0.13 0.04 0.13 0.04 0.14 0.01 0.02 0.01 0.15 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 <t< td=""><td>3/06/</td><td></td><td>0.94</td><td>2000</td><td>0.14</td><td>5.84</td><td>3.4</td><td>750</td><td>3.31</td><td>0.27</td><td>0.15</td><td><0.02</td><td>69.00</td><td>2.2</td><td>19</td><td>13.85</td><td>37.1</td></t<>	3/06/		0.94	2000	0.14	5.84	3.4	750	3.31	0.27	0.15	<0.02	69.00	2.2	19	13.85	37.1
064 0014 023 311 47 80 035 011 027 400 12 40 064 0004 135 3.00 119 650 2.33 0.14 0.20 0.01 4.8 44 0064 0004 031 135 3.00 119 650 2.33 0.14 0.20 0.01 4.8 44 035 0104 011 135 300 119 650 2.33 0.14 0.20 0.01 4.8 44 035 0104 011 135 307 600 306 213 214 49 036 0101 12.8 124 700 3.03 0.16 0.03 211 61 44 039 0017 12.8 124 700 3.16 0.16 0.26 0.21 0.1 11 49 039 0021 124 750 016 016 0	22062		0.52	c00.0	97.0	6.44	6.6	062	2,56	67.0	0.75	<0.02	72.00	0.4	62	10.90	33.1
0.04 0.07 13.25 3.00 11.9 550 2.33 0.14 0.20 0.08 37.10 4.8 4.4 0.08 0.007 0.71 1.37 140 550 0.39 0.06 10.70 1.1 49 0.08 0.007 0.71 1.37 140 550 0.39 0.06 10.70 1.1 49 0.09 0.012 1.201 4.55 307 600 308 0.37 0.37 37 54 0.010 0.012 1.201 4.55 307 600 308 0.37 0.37 0.37 51 54 0.010 0.012 1.201 3.74 730 0.48 0.35 0.37 0.37 54 54 0.030 0.027 1.41 1.20 1.43 730 0.48 0.35 0.36 0.31 54 54 0.031 1.41 1.20 2.74 770 2.48 <	9078	1	0.64	0.014	0.20	3.81	4.7	840	0.95	0.13	0.07	<0.02	47.40	1.2	44	4.32	24,9
0.00 0.074 0.137 140 650 0.52 0.06 0.70 11 49 0.58 0.074 0.51 1.37 140 650 0.52 0.06 10.70 11 49 0.58 0.014 1.50 4.55 302 610 0.35 0.14 270 371 54 0.80 0.014 1.50 4.55 307 610 0.35 0.14 37 54 0.70 0.33 0.017 1.40 350 1.40 360 31 51 54 0.70 0.33 0.31 1.40 1.41 1.40 1.41	6206		0.64	0.007	13.25	3.00	11.9	850	2.33	0.14	0.20	0.08	37.10	4.8	44	3.61	87.3
0.55 0.001 0.57 1.37 1.40 0.32 0.03 0.10 1.10 1.11 90 0.680 0.012 1.280 455 30.7 600 3.05 0.37 0.09 1.10 1.11 90 0.70 0.011 1.280 455 30.7 600 3.06 0.37 0.37 0.37 3.7 54 0.80 0.011 1.280 455 30.7 600 3.06 3.1 54 0.88 0.011 1.28 1.24 7.80 3.49 0.81 0.37 3.49 3.1 54 0.38 0.001 1.28 1.24 7.70 0.48 0.05 0.3 3.1 54 0.54 0.23 1.40 2.20 147 3.70 0.83 0.09 2.61 1.1 57 0.54 0.23 1.40 2.20 147 3.70 0.83 0.09 2.61 1.1 52 0.54 0.23 1.40 2.70 1.47 3.70 0.83 0.09 2.61 1.1 52 0.54 0.23 1.40 2.20 1.47 3.70 0.83 0.93 2.61	79080		0.06	0.074		1		1				-			;	-	
000 0017 1201 4.53 303 010 013<	19092		0.50	0.007	1.0	1.3/	0.41	820	0.52	90.0	65.0	0.06	0/.01	22	64	2.04	45.0
0.70 0.26 60.20 3.8 4.2.0 360 1.30 0.16 0.68 0.26 4060 3.1 51 0.80 0.0071 1.216 2.70 2.41 700 1.46 0.16 0.35 0.13 3.49 2.5 6.8 0.80 0.0071 1.31 1.28 7.7 700 0.48 0.05 0.44 0.05 1.47 370 0.84 0.06 6.3 2.5 6.8 6.8 0.80 0.0071 1.41 2.70 2.48 0.33 1.06 0.53 2.60 1.1 35 0.54 0.023 1.40 2.20 14.7 370 0.09 2.67 0.29 2610 1.1 35 0.54 0.023 1.40 2.20 14.7 370 0.09 2.67 0.29 2610 1.1 35 0.54 0.023 1.47 370 0.09 2.67 0.29 2610 1.1 32 0.54 0.023 1.69 2.20 1.47 370 0.09 2.67 0.29 2610 1.1 32	79083	1	0.80	0.012	12.80	4.55	30.7	600	3.06	0.26	0.97	0.20	21.40	3.7	54	5.76	81.8
090 0011 2.60 2.70 241 810 146 0.16 0.33 0.43 3430 2.5 46 0.88 0.027 1.03 1.24 703 0.43 0.03	79084		0.70	0.026	60.20	3.28	42.0	360	1.30	0.16	0.68	0.26	40.60	3.1	51	3.22	129.5
088 0.027 1.34 1.24 700 0.48 0.05 1.545 0.8 66 0.54 0.023 1.40 2.7 16.9 1.73 1.24 700 0.83 0.05 1.545 0.8 66 0.54 0.023 1.40 2.73 16.9 0.77 1.8 1.7 370 283 1.08 1.7 32 0.54 0.023 1.40 2.20 1.47 370 0.83 1.03 2.67 0.1 35 0.54 0.023 1.40 2.20 1.47 370 0.83 2.67 0.1 1.1 55	79085		06.0	0.011	21.60	2.70	24.1	810	1.46	0.16	0.53	0.18	34.90	2.5	45	3.56	65.2
058 0020 >100 4.73 16.9 700 2.49 0.33 1.08 0.57 82.60 6.3 55 0.54 0023 1.140 2.20 14.7 370 0.69 2.67 0.28 2.610 1.1 52 6.10 1.1 52	79086		0.88	0.027	1.34	1.28	12.4	760	0.48	0.05	0.48	0.05	15.45	0.8	68	2.08	39.7
25 I'I 0127 870 127 800 820 014 127 014 1	79087		0.58	0.020	>100	4.73	16.9	200	2.49	0.33	1.08	0.57	82.60	6.3	55	2.07	354.0
											5		2		\$	ţ	

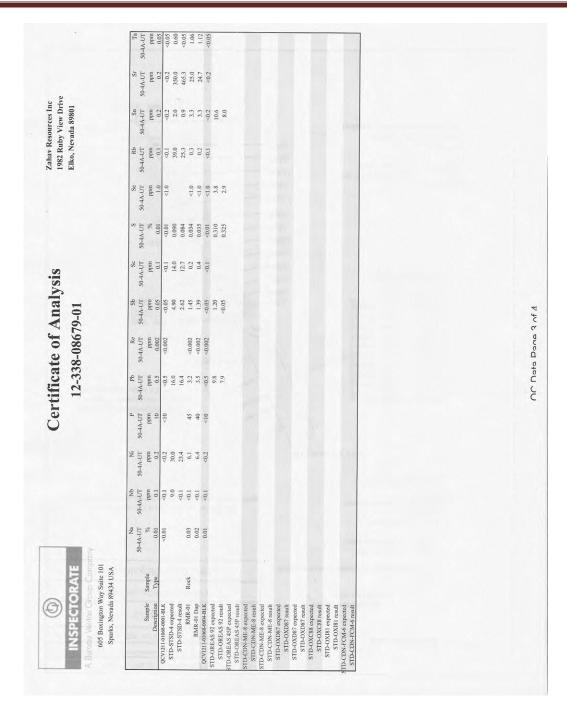
Method Method Analysi Vinte ME-MSSI Fe ME-MSSI Ca ME-MSSI Ca	ME-MS61 ME-MS6	Project: Ivanhoe Creek	NORTH VANCOUVER BC V7L 2N8 Project: Ivanhoe Creek				Account: RELGEO	Page: 2 - B Total # Pages: 2 (A - D) Finalized Date: 14-SEP-2007 Account: RELGEO
Method Method Method ME-MSS1 ME-MSS1 ME-MSS1 Hg-MSS1 ME-MSS1 ME-MSS1 <th></th> <th>CERTI</th> <th>CERTIFICATE OF ANALYSIS</th> <th>JF ANA</th> <th>LYSIS</th> <th>WN07091102</th> <th>91102</th> <th></th>		CERTI	CERTIFICATE OF ANALYSIS	JF ANA	LYSIS	WN07091102	91102	
065 9.07 0.10 212 1.22 0.74 19.25 0.15 8.8 1.33 0.71 24.30 0.16 9.3 2.16 1.14 35.00 0.74 11.1 22.44 1.41 2.100 0.24 11.1 47.7	K La % ppm	S61 ME-MS61 a Li m ppm	ME-MS61 Mg	ME-MSG1 Mn ppm	Me-MS61 Mo ppm	ME-MS61 Na %	ME-MS61 Nb ppm	ME.MS61 Ni ppm
0.74 19.25 0.15 88 1.33 0.71 2.430 0.17 9.3 2.16 1.14 35.00 0.17 10.8 2.2.4 1.41 2.1.00 0.24 11.1 47.7		11	0.27	169	4.24	0.06	41.0	0.7
1.14 35.00 0.17 10.8 22.4 1.41 21.00 0.24 11.1 47.7	1.12 38.8 1.58 55.0		0.32	45 29	2.46	0.22	21.0	2.5
		5 20.0	0.31	223 5	4.81 3.60	0.68	22.8 23.9	22
12.50 21,80 0.28 13.3 2.02			0.39	212	21.60	0,31	29.2	27.3
4.03 22,80 0.25 15,2 15,2 4.35 33,60 0.31 20,1 0,50			0.87	101	7,43	0.18 0.18	30.3	7.0
79072 5.37 27.10 0.28 16.3 10.8 0.202 79073 297 22.40 0.18 125 7.47 0.243	0.46 62.5	5 30.5 4 74.5	0.93	125	5.13	0.22	34.3	4.0
5.07 37.00 0.40 20.6 26.0 0.258			1.37	107	25.60	0.38	43.0	3.6
1.65 16.50 0.16 2.8 4.36 0.048			0.57	25	1,30	0.05	10.8	13.0
		6 14.0	0.60	31	1.72	0.08	14.3	0.6
1.46 10.30 0.11 2.6 0.99 0.022	1.35 21.9		0.26	17	1.73	0.04	7.6	5.7
79079 2.32 9.97 0.10 2.8 3.28 0.040 79080	0.95 16.9	9 23.0	0.23	117	38.30	0.30	6'6	18.0
1.02 3.89 0.07 0.7 0.70 0.013	0.47 4.8		0.12	35	4.96	0.05	2.1	6.5
3.92 7.53 0.12 1.3 3.81 0.027 2.99 15.85 0.14 5.0 5.63 0.074	1.50 30.1	5 11.6 1 21.6	0.29 0.39	42	8,64 32.40	0.05	4.0	10.1
2.27 9.33 0.11 3.4 4.40 0.060					ALC: NO.			
1.72 9.26 0.09 2.9 3.56 0.089			0.28	90	18,80	0.16	8.6	22.0
and the test the test			0.28	96 282	18,80 9.90	0.16 0.23	8,6 9,9	22.0
79086 1.03 4.27 0.07 0.6 1.05 0.012 20087 2008 1676 0.25 7.0 0.01	0.80 16.4 0.46 8.7	4 13.2 9.8	0.28 0.23 0.11	90 38 38	18,80 9,90 7.62	0.16 0.23 0.04	8.6 9.9 4.2	22.0 13.3 7.0

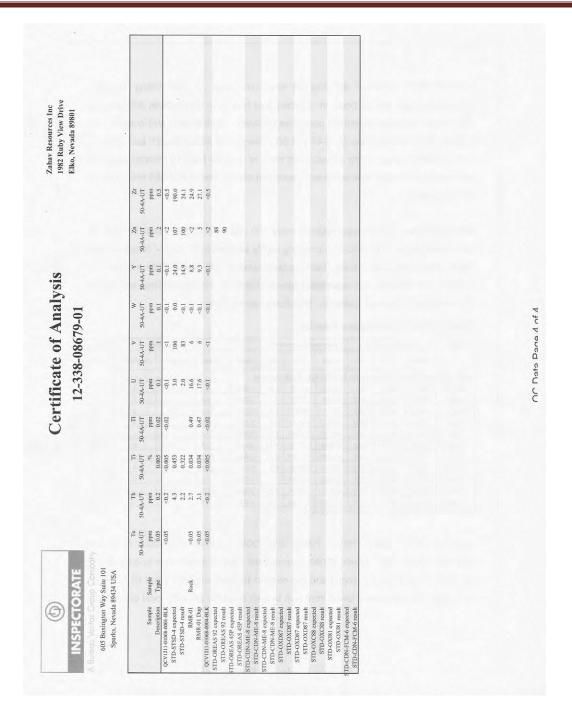
Meread weeted P We will be weeted P Meread P Mer	: ANALYSIS			
Membed MEMS91 MEMS91 MEMS91 <thmems91< th=""> <thme< th=""><th></th><th>WN07091102</th><th>1102</th><th></th></thme<></thmems91<>		WN07091102	1102	
untary µµmi µµmi µµmi µµmi wa mana mana mana mana mana mana mana m	N N	ME-MS61 Th	61	ME-MS61 Ti
	0.05 0.05	ррт 0.2	0.005	ppm 0.02
90 447 143 <0.002 0.02 0.75 5.5 2 7.2 114.0		10.7	0.287 0	0.13
41.1 19.3 <0.002 2.48 1.70 13.0 2 3.0 737.0 19.5 29.2 <0.002 4.15 2.48 10.2 2 3.0 687.0		11.1		0.05
1440 252 37.0 <0.002 4,93 265 12.1 2 3.7 827.0 1800 21.3 21.6 <0.002 259 245 13.1 2 3.7 887.0	1.52 <0.05	18.0	0.207 0	0.17
210 30,3 5,1 0,008 ×10,0 0,59 7,1 3 4,2 123,0		19.5		2.47
26.6 122.0 <0.002 2.22 0.75 9.6 2 4.5 134.0 32.6 11.5 <0.002 2.84 0.64 1.0.6 2 6.0 0.72		16.0		1.36
100 0.01 729 40,002 3.83 1.48 10.7 3 5.1 147.5 100 0.01 12 2000 3.83 1.48 10.7 3 5.1 147.5	2.34 0.06	19.9	0.296	1.10
		14.9	ľ	0.60
400 325 285 <0.002 3.46 1.32 7.4 4 7.0 130.0 400 1726 172.0 <0.002 3.46 1.32 7.4 4 7.0 130.0		22.4	0.324 1	1.14
· 600 15.4 168.5 <0.002 0.23 0.96 12.9 2 2.6 1500		15.3		0.59
70.7 <0.002 0.95 1.03 6.9 2 11 80.9	0.93 0.09	12.7		0.56
1.13 2.16 4.7 2 2.2 66.2		7.5		0.64
1770 7.2 27.7 <0.002 0.55 4.16 2.6 4 0.6 87.9		00		50.03
1160 7.2 61.8 <0.002 3.51 8.17 5.8 7 0.9 76.3	0.30 0.09	4.0	0.140 1	1.00
arto 10.4 110.5 0.000 11.85 0.47 7.2 0 4.1 116.0		12.1		1.07
6 2.0 167,5 4 2.3 109,5	0.63 0.05 0.05	5,6 6,6		0.56
2210 4.5 28.2 <0.002 0.59 7.43 2.7 6 0.5 130.5		2.2		0.25
2550 183 743 0.008 1.52 2.83 7.8 4 6.5 116.0 >10000 7.7 49.0 <0.002 1.80 12.60 5.5 15 0.8 195.5		12.3	0.184 0	0.38

		ALS EXCELLEN ALS Canada Ltd ALS Canada Ltd ALS Canada Ltd ALS Canada Ltd North Vancouv North Vancouv	ALS CALS C EXCELLENCE IN A ALS CARADALIA ALS Brooksbark Avenue North Vancouver BC V7J Phone: 604 994 0221 F	ALS ChemeX EXCELLENCE IN AMALYTICAL CHEMISTRY ALS Consident ALS Consident ACT VATION CONTRACT ACT VATION CONTRACT Phone 604 984 0221 Fax 604 984 0218 WWW.alscherr	AL CHEMI	ALS CHEMEX ALS CHEMERX ALS COMMENTICAL CHEMISTRY ALS COMMENTICAL CHEMISTRY ALS COMMENTICAL ALS	E	To: RELIANCE GEOLOGICAL SERVICES 418 EAST 14TH ST NORTH VANCOUVER BC V7L 2N8 Project: Ivanhoe Creek	Page: 2 - D Total # Pages: 2 (A - D) Finalized Date: 14.SEP-2007 Account: RELGEO
								CERTIFICATE OF ANALYSIS	WN07091102
Sample Description	Method Analyte Units LOR	ME-MS61 U Dpm 01	ME-MS61 V Ppm	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	A9-0052 - Ag - Ag - 1	
79064 79065 79066 79067 79068		4.8 9.9 8.3 8.3	28 59 80 80	2.6 1.1 2.1 2.6	19.8 23.4 19.3 19.3	58 33 38 58 58 33 38 58	>500 288.0 306.0 345.0 355.0		
79069 79070 79072 79072 79073		7.2 6.9 5.7 4.2	43 276 32 35	1.2 1.4 1.5 1.5	77.2 60.5 89.1 72.8 54.0	344 143 218 125 223	425.0 >500 >500 399.0		P
79074 79075 79076 79077 79078		6.6 2.9 2.5 2.5	128 138 147 152 110	1.6 1.7 3.2 1.9	102.5 16.3 16.8 12.0	239 30 40 24 20 20	>500 90.5 108.0 96.6 83.5		
79079 79080 79081 79082 79083		2.5 3.4 5.5	97 40 92 178	116.5 1.2 1.9 138.0	24.7 5.3 10.9 38.1	56 32 86	77.7 22.6 42.5 138.5		
79084 79085 79086 79087 79088		2.6 2.6 3.9 7.4 14.9	88 77 222 140 77	354.0 123.5 2.0 1130.0 1.5	23.1 22.5 13.7 45.8 19.0	76 58 13 118 23	107.5 87.8 23.7 23.0 35.5	262	ł
5									


12-338-08679-01

Manual Variano Globo Componingen Variano Componente Variano Componingen Variano Componingen Variano Com	Multi transition Multi transitite Multi transition Multi transition <th>605 Boxington Way</th> <th>NSPECTORATE</th> <th></th> <th></th> <th></th> <th>Cer</th> <th>Certificate of Analysis 12-338-08679-01</th> <th>ificate of Ana 12-338-08679-01</th> <th>79-01</th> <th>VSIS</th> <th></th> <th></th> <th>1982 Rul Elko, Ne</th> <th>1982 Ruby View Drive Elko, Nevada 89801</th> <th>Ae</th> <th></th>	605 Boxington Way	NSPECTORATE				Cer	Certificate of Analysis 12-338-08679-01	ificate of Ana 12-338-08679-01	79-01	VSIS			1982 Rul Elko, Ne	1982 Ruby View Drive Elko, Nevada 89801	Ae	
	Multi model	Sparks, Nevada 894.	Suite 101 34 USA	~													
Sumple Part	min min <th></th> <th></th> <th>Cd S0.4A.1IT</th> <th>Co 50.4A.ITT</th> <th>Cr S0.4A.1IT</th> <th>Cs \$0.4A.1TT</th> <th>Cu 50.4A.HT</th> <th>Fe so 4A LET</th> <th>Ga so 4A tirr</th> <th>Ge so ta tit</th> <th>In so at a tite</th> <th>K SO 4A DT</th> <th>Li so at the</th> <th>Mg</th> <th>Mn</th> <th>N AA V</th>			Cd S0.4A.1IT	Co 50.4A.ITT	Cr S0.4A.1IT	Cs \$0.4A.1TT	Cu 50.4A.HT	Fe so 4A LET	Ga so 4A tirr	Ge so ta tit	In so at a tite	K SO 4A DT	Li so at the	Mg	Mn	N AA V
Type 0.02 0.1 1.0 0.05 0.01	00 <			udd	mdd	udd	undd	udd	%	uidd	uidd	udd	%	udd	%	udd	udd
Red 019 10 1	000 00 <t< td=""><td></td><td>Rock</td><td>0.05</td><td>0.0</td><td>308</td><td>0.05</td><td>2.0</td><td>0.01</td><td>0.05</td><td><0.05</td><td>0.01</td><td>0.01</td><td>3.6</td><td>0.04</td><td>5 69</td><td>0.05</td></t<>		Rock	0.05	0.0	308	0.05	2.0	0.01	0.05	<0.05	0.01	0.01	3.6	0.04	5 69	0.05
Red 0.17 10 139 5.3 1.28 1.35 0.04 3.16 2.64 0.04 Resk 0.10 10 231 0.24 2.3 1.13 3.29 0.25 0.04 3.16 2.64 0.04 Resk 0.10 1.0 531 0.24 2.2 1.13 0.01 0.05 1.1 0.03 Resk 0.17 2.3 533 6.37 5.03 0.00 0.07 0.43 2.3 0.11 Resk 0.17 2.3 5.13 1.43 5.35 0.03 0.07 0.04 2.3 0.13 Resk 0.17 2.3 5.13 1.43 5.35 6.31 0.16 1.3 0.35 5.4 0.16 0.36 0.36 0.31 1.3 0.35 3.4 1.46 0.36 0.31 1.3 0.35 Rock 0.14 1.6 0.35 5.34 1.66 0.36 0.31 <t< th=""><td>01 0<!--</td--><td></td><td>Rock</td><td>0.19</td><td>1.0</td><td>150</td><td>5.17</td><td>7.6</td><td>2.30</td><td>15.56</td><td>0.09</td><td>0.07</td><td>2.68</td><td>61.1</td><td>0.12</td><td>4 308</td><td>-</td></td></t<>	01 0 </td <td></td> <td>Rock</td> <td>0.19</td> <td>1.0</td> <td>150</td> <td>5.17</td> <td>7.6</td> <td>2.30</td> <td>15.56</td> <td>0.09</td> <td>0.07</td> <td>2.68</td> <td>61.1</td> <td>0.12</td> <td>4 308</td> <td>-</td>		Rock	0.19	1.0	150	5.17	7.6	2.30	15.56	0.09	0.07	2.68	61.1	0.12	4 308	-
	000000000000000000000000000000000000		Rock	0.17	0.0	159	4.08	5.3	1.28	15.92	0.26	0.04	3.16	26.4	0.04	163	ci c
Rock 0.07 2.6 0.07 2.5 1.55 0.43 0.03 0.01 0.05 0.01 0.01 0.05 0.01 0.05 0.01 0.01 0.05 0.01 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0	01 01 <td< td=""><td></td><td>Rock</td><td>0.10</td><td>1.0</td><td>531</td><td>0.24</td><td>22</td><td>1.03</td><td>1.30</td><td>0.17</td><td><0.01</td><td>0.05</td><td>1.1</td><td>0.02</td><td>102</td><td>4 0</td></td<>		Rock	0.10	1.0	531	0.24	22	1.03	1.30	0.17	<0.01	0.05	1.1	0.02	102	4 0
Note 0.17 2.19 1.20 1.21 2.25 0.13 2.25 0.13 2.25 0.13 2.25 0.13 2.25 0.13 2.25 0.13 2.25 0.13 2.25 0.13 2.25 0.13 2.25 0.13 2.25 0.13 2.25 0.13 2.25 0.13 2.25 0.03 2.25 <th< th=""><td>000000000000000000000000000000000000</td><td></td><td>Rock</td><td>0.07</td><td>2.6</td><td>626</td><td>0.07</td><td>2.5</td><td>1.26</td><td>0.43</td><td>0.50</td><td><0.01</td><td>0.03</td><td>9.0</td><td><0.01</td><td>62</td><td>.0</td></th<>	000000000000000000000000000000000000		Rock	0.07	2.6	626	0.07	2.5	1.26	0.43	0.50	<0.01	0.03	9.0	<0.01	62	.0
Red 017 31 26 513 144 303 18.22 0.31 0.07 1.17 2.15 0.98 Red 0.44 0.6 314 0.85 1 6.43 1311 0.07 1.17 2.15 0.98 Red 0.14 0.6 311 0.35 14 1311 0.46 0.06 1.11 1.11 0.35 0.09 1.13 1.13 0.49 0.03 1.31 0.49 0.03 1.31 0.49 0.06 1.11 1.11 0.35 0.09 1.13 0.13 0.13 0.31 0.49 0.03 0.39 0.30 0.31 0.31 0.35 0.03 0.33 0.	01 1 0 01 10 01 10 01 11 0		Rock	0.17	2.3	520	0.24	3.8	12.0	1.39	0.30	40.01	0.06	22	0.03	205	n o
Rock 0.42 0.5 314 0.86 51 6.38 5.34 1.66 0.06 0.11 1.3 0.03 Rock 0.12 1.3 723 0.23 1.31 0.35 0.09 1.16 1.31 0.49 1.31 0.49 1.31 0.49 1.31 0.49 1.31 0.49 1.31 0.49 1.31 0.49 1.31 0.49 1.31 0.49 1.31 0.49 1.31 0.49 1.31 0.49 1.31 0.49 1.31 0.49 1.31 0.49 1.31 0.49 1.31 0.49 1.31 0.49 1.40 0.40 0.41 0.43 0.43 0.43 0.43 0.41 0.43 0.43 0.41 0.44 0.45 0.43 0.45 0.43 0.43 0.45 0.43 0.45 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.44 0.44 0.44 0.43	0000 000 </td <td></td> <td>Rock</td> <td>0.17</td> <td>3.1</td> <td>26</td> <td>5.13</td> <td>14.4</td> <td>3.03</td> <td>18.22</td> <td>0.31</td> <td>0.07</td> <td>1.37</td> <td>21.5</td> <td>0.98</td> <td>315</td> <td>0</td>		Rock	0.17	3.1	26	5.13	14.4	3.03	18.22	0.31	0.07	1.37	21.5	0.98	315	0
Kook U14 U2 29 4.71 U3 2.44 1.11 0.35 0.09 1.15 1.31 0.49 Rock 0.06 0.3 77 0.75 0.35 1.87 0.49 1.15 0.49 Rock 0.06 0.3 77 0.75 0.76 0.61 1.11 0.35 0.09 0.15 1.31 0.49 Rock 0.06 0.3 7.11 1.71 1.83 0.40 0.11 0.75 0.03 Rock 0.12 1.2 2.3 2.90 4.35 1.53 0.13 0.42 1.8 0.01 Rock 0.12 1.2 2.3 2.49 1.73 0.33 0.07 4.49 5.13 0.07 Rock 0.13 0.7 1.8 5.70 3.8 1.49 5.13 0.73 1.93 0.73 0.07 Rock 0.13 0.7 1.8 5.70 3.9 1.93 1	11 <		Rock	0.42	0.5	314	0.86	5.1	6.38	5.34	1.66	0.06	0.11	1.3	0.03	64	4.
Rock 0.06 0.3 77 0.76 0.6 0.11 1.6 0.08 -0.01 0.11 0.3 0.03 Rock 0.07 1.2 73 7.1 1.71 1.73 1.23 0.22 0.09 0.42 1.03 0.03 Rock 0.07 1.2 2.3 2.9 4.3 4.71 1.71 1.5.3 0.22 0.09 0.42 1.0 0.01 Rock 0.20 0.6 1.23 2.27 3.8 1.49 2.183 0.07 4.09 5.15 0.07 Rock 0.12 0.4 1.8 5.76 3.9 1.20 7.78 0.07 4.00 0.17 3.48 4.00 0.12 Rock 0.13 0.17 1.98 2.70 3.9 0.17 3.48 0.07 Rock 0.13 0.17 1.98 2.70 3.9 0.17 3.49 3.60 0.12 Rock 0.13	0000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 <td< td=""><td></td><td>Rock</td><td>0.12</td><td>0.0</td><td>777</td><td>0.29</td><td>3.1</td><td>2442</td><td>13.11</td><td>0.35</td><td>0.0</td><td>0.06</td><td>13.1</td><td>0.07</td><td>701</td><td>m' c</td></td<>		Rock	0.12	0.0	777	0.29	3.1	2442	13.11	0.35	0.0	0.06	13.1	0.07	701	m' c
Rock 007 0.2 70 1.13 7.1 1.71 1.53 0.22 0.09 0.42 108 0.01 Rock 0.07 0.2 2.9 4.3 4.95 1953 0.13 0.13 0.8 0.01 Rock 0.20 0.6 1.23 9.23 1.49 21.83 0.13 0.13 9.3 0.07 4.09 51.3 0.07 Rock 0.12 0.4 1.48 5.76 3.9 1.20 17.08 0.35 0.17 4.09 51.3 0.07 Rock 0.13 0.7 1.79 5.10 4.6 1.09 16.94 0.26 0.18 3.30 3.69 0.17	000 13 13 14 14 14 16 00 04 00 04 00 04		Rock .	0.06	0.5	11	0.76	9.0	0.51	1.16	0.08	<0.01	11.0	0.5	0.03	09	0.
Noak -0.02 1.2 2.2 4.03 4.3 4.3 1.953 0.11 0.13 0.72 8.11 0.89 Rock 0.12 0.4 1.48 5.76 3.9 1.20 1.7.08 0.33 0.17 3.48 4.60 0.12 Rock 0.13 0.4 1.48 5.76 3.9 1.20 1.7.08 0.35 0.17 3.48 4.60 0.12 Rock 0.13 0.7 1.79 5.10 4.6 1.09 16.94 0.26 0.18 3.30 3.69 0.17	Mathematical M		Rock	0.07	0.2	70	1.13	1.7	171	15.32	0.32	0.09	0.42	10.8	0.01	23	4
Note: 0.12 0.0 12 9.21 3.3 1.39 1.39 0.39 0.17 4.09 51.0 0.01 Rock 0.13 0.7 1.79 5.10 4.6 1.09 1.694 0.26 0.18 3.30 3.69 0.17 Rock 0.13 0.7 1.79 5.10 4.6 1.09 1.694 0.26 0.18 3.30 3.69 0.17	Image: Distance of the state Image: Distan		Rock	<0.02	1.2	25	2.50	40.3	4.95	19.53	0.16	0.13	0.42	8.1	0.89	129	.0
Rock 013 0.7 179 5.10 4.6 1.09 16.94 0.26 0.18 3.30 3.69 0.17	03 07 08 00 00 01<		Rock	0.12	0.6	148	5.76	3.9	1.49	21.83	0.35	0.07	3.48	51.5 46.0	0.07	127	- 1
	Data Data 2 of 4 12-338-08679-01		Rock	0.13	0.7	179	5.10	4.6	1.09	16.94	0.26	0.18	3.30	36.9	0.17	60	3
	Certificate of Analysis 12-338-08679-01																
	Certificate of Analysis 12-338-08679-01				1			Data	C anad	of 4							
Nata Para 2 of 4	12-338-08679-01	0						15.00	40.04	-lon V				Zahav Re	sources Inc		
Data Dana 2 nf 4	eau Veritus Group Company 665 Bexington Way Suite 101 Sparks, Nevada 89434 USA	INSPECTOR	ATE				3	12-33	8-0867	10-6/	CIC			1982 Rub Elko, Nev	y View Driv ada 89801	je.	
Data Dana 2 of 4 Certificate of Analysis 12-338-08679-01		605 Boxington Way St Sparks, Nevada 89434	Company uite 101 4 USA														


Page 233


Bureau Ventos Croup Compar 605 Boxington Way Suite 101 Seculo Mondo 8033 (15 A	Lion 101			Cer	tifica 12-33	Certificate of Analysis 12-338-08679-01	Analy -01	Sis			E E	Zahav Resources Inc 1982 Ruby View Drive Elko, Nevada 89801
			Ni 50.4A.UT	P So.4A-IIT	Pb \$0.44.11T	Re	Sb.4A.1IT	Sc 4A LIT	S 4A ITT	Se so as int	50.4	
Sample Sample	%	mqq	udd	udd	udd	udd	uidd	undd	%	udd	udd	udd ud
			6.1	45	3.2	<0.002	1.45	0.2	0.034	<1.0		
t-02 Rock			4.4	409	43.8	0.024	1.71	1.3	0.011	2.5	190	
RMR-04 Rock			4.1	315	29.2	0.026	<0.05	1.1	0.021	2.5	175.7	
			8.6	69	3.6	<0.002	2.76	1.5	0.025	<1.0	0.6	
			0.0	22	<0.5	0.004	3.98	1.4	0.012	3.2	<0.1	
			4.0	391	13.3	0.010	3.78	5.2	0.300	<1.0	11.4	
RMR-08 Rock			8.0	64	3.7	0.005	1.90	3.1	0.036	1.6	1.3	
			4.9	544	21.1	0.019	<0.05	10.7	0.366	1.8	6.7.9	
RMR-11 Rock			4.0	4/1	7.95	0.010	3.00	1.4	0.111	C.0	4.5	
t-12 Rock			101	108	1.74	0000	2002	90	2000	0.17	7.04	
			61	33	13.8	0.006	\$0.05	35	0.010	012	1.0	
			1.4	1013	23.9	0100	<0.05	6.9	0.837	2.1	5.3	
			2.1	281	21.8	0.016	<0.05	63	0.341	<1.0	26.4	
			3.3	281	54.8	0,025	<0.05	1.0	0.017	2.9	309.1	
			4.1	185	49.9	0.017	<0.05	0.5	0.017	81	245.4	
RMR-17 Rock			4.3	182	52.7	0.012	1.84	0.7	0.036	<1.0	219.2	. 1

12-338-08679-01 X X X X X 4Avtr 504Avtr 504Avtr 504Avtr 504Avtr 504Avtr 002 01 1 01 01 01 01 013 146 15 01 01 01 01 014 124 14 01 01 01 01 013 255 10 01 139 22 016 014 124 4 01 139 22 016 013 255 10 01 139 20 20 014 124 4 01 139 20 20 015 255 10 01 139 20 20 014 124 4 01 139 20 20 015 255 10 01 20 21 20 016 21 20 20 21 20 20 018 23 40 26 21 20 20 018 23 24 20 26 100 018 23 26 21 26 21 <

13-3-38-09-00-00Instantion<	Stant Comparing Augn Comparing May Suite 101 May Suite 101 s04AUT s04AUT Stante 204AUT s04AUT Smple ppm ppm Type 0.02 0.1 1 Rock 0.03 0.2 6 3 Rock 0.03 0.1 1 1 1001 13.0 23 4 101 0.1 1 1 1		8-08679 50-4A-UT 51 50-4A-UT 51 50-4A-UT 51 50-01 51 50-01 51 50-01 51 50-01 51 50-01 51 50-05 50 50-05 50-05 50 50-05 50-05 50 50 50 50 50 50 50 50 50 50 50 50 5		and the second	In 50-4A-UT 9pm 0.01	K 504AA-UT %	Elko, Nev	ada 89801		
Much control Much control Much control Much control Colspan="6">Much control Colspan="6">Much control Colspan="6">Much control Much contro Much control Much	Augr Longortwa May Suite 101 8943 USA Seld-AUT 30-4A-UT 30-4A-UT 30-4A-UT Sample ppm ppm ppm ppm 772 56 Rock 0.03 0.1 11 8.05 0.03 0.3 274 -0.01 -1 -1 1.0.1 -1 -1 1.0.1 -1 -1 1.0.1 -1	Cu 50-4A-UT ppm ppm 55.0 67.1 1.9 2.0 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0		the second second	and the second second	In 50-4A-UT ppm 0.01 <0.01	K 50-4A-UT %				3
Gd Go Go<	Cd Co Co<	Cu 50-4A-UT Apm 0.2 65.0 67.1 2.0 1.9 1.9 2.02 2.94.0 2.2344.0 2.2344.0 2.2344.0 2.2324.000.000.0000.0000.000000000000000			12.13.14.	In 50-4A-UT ppm 0.01 <0.01	K 50-4A-UT %				:
Smyla Imm Imm </th <th>Sample ppm pm pm pm Type 0.02 0.1 1 Annotation 13.0 9 1 Rock 0.03 7.2 56 Rock 0.07 0.7 274 <0.07 0.01 1 <1 10.1 6.1 1 <1 0.07 0.7 274 <0.07 0.01 <0.1 <1 10.1 16.1 10.1 <1</th> <th>0.2 0.2 0.2 0.5 0.7 1.9 -0.2</th> <th></th> <th>the states</th> <th>Sec.</th> <th>10:0></th> <th>0/0</th> <th>50.4A.1TT</th> <th>Mg so 4A LIT</th> <th>Mn so.4A.LTT</th> <th>S0.4A.LTT</th>	Sample ppm pm pm pm Type 0.02 0.1 1 Annotation 13.0 9 1 Rock 0.03 7.2 56 Rock 0.07 0.7 274 <0.07 0.01 1 <1 10.1 6.1 1 <1 0.07 0.7 274 <0.07 0.01 <0.1 <1 10.1 16.1 10.1 <1	0.2 0.2 0.2 0.5 0.7 1.9 -0.2		the states	Sec.	10:0>	0/0	50.4A.1TT	Mg so 4A LIT	Mn so.4A.LTT	S0.4A.LTT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Autor (1) (1) (1) (1) (1) (1) (1) (1)	8.6	4.10 3.89 0.82 0.82	<0.05	<0.05	<0.01	100	udd	%	udd	uidd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ruck 0.05 7.2 7.2 0.05 0.6 0.07 0.7 <0.02 0.6 10.1 10.1	0.6	4.10 3.89 0.82				<0.01	<0.2 <0.2	<0.01	o V	<0.0>
Role 0.0 0.1 0.0 0.1 1 1 1 2 2 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Ruck 0.05 0.5 0.07 0.7 <0.02 -0.1 (6.3 10.1	21 2	0.82					14.0		1520	0 0
001 0.1 2.14 0.39 1.9 0.84 1.51 400 0.04 3.2 -002 -0.1 -0.1 -0.2 -0.01 -0.05 -0.01 0.03 -0.2 10.1 1.3 -0.2 -0.01 -0.05 -0.01 0.03 -0.2 10.1 2.24.0 -0.05 -0.05 -0.01 0.03 -0.2 10.1 2.24.0 -0.05 -0.01 -0.05 -0.01 0.03 -0.2 10.1 2.24.0 -0.05 -0.05 -0.01 -0.05 -0.2 -0.01 0.03 -0.2 2.42.0 2.24.0 -0.05 -0.01 -0.05 -0.01 0.03 -0.2 2.42.0 2.24.0 -0.05 -0.01 -0.05 -0.01 -0.05 -0.01 -0.05 -0.01 -0.05 -0.01 -0.05 -0.01 -0.05 -0.01 -0.05 -0.01 -0.05 -0.01 -0.05 -0.01 -0.05 -0.01	 0.07 0.07 0.07 0.07 0.07 0.01 <li< td=""><td>0 0</td><td>- 9.4</td><td>1.68</td><td><0.05</td><td><0.01</td><td>0.04</td><td>3.6</td><td>0.04</td><td>69</td><td>5 - C</td></li<>	0 0	- 9.4	1.68	<0.05	<0.01	0.04	3.6	0.04	69	5 - C
402 401 403 <td>40.02 40.1 6.01 1.01</td> <td>0.0</td> <td>0.84</td> <td>1.51</td> <td><0.05</td> <td><0.01</td> <td>0.04</td> <td>3.2</td> <td>0.04</td> <td>67</td> <td>1.46</td>	40.02 40.1 6.01 1.01	0.0	0.84	1.51	<0.05	<0.01	0.04	3.2	0.04	67	1.46
		0.4922	<0.01	<0.05	<0.05	<0.01	0.03	<0.2	<0.01	\$.0.
STD-OREA 54 th reall TD-DNAE streads TD-DNAE streads TD-DNAE streads TD-DNAE streads TD-DNAE streads STD-DNAE streads STD-DN	8.5.4.5P result 11.4.8 expected 11.4.8 expected 11.6.8 expected 11.6.8 expected 10.8 expected	C-1998 L-7									
Th COM-Mills experted STC COM-Mills experted Th COM-Mills result STD-COM-Mills result STD-COM-Mills result STD-COMS result	IE-8 expected A-ME-8 result - A-ME-8 result - A-ME-8 result - D87 expected										
STD-CONARES reault COLONARES reauct STD-CONARES reauct STD-CONARES reauct STD-CONS reauct STD-CONS reauct STD-CONS reauct STD-CONS reauct STD-CONS reaut STD-CONS reaut STD-CONS reaut STD-CONS reaut STD-CONS reaut	AME-8 result E-8 expected MR-8 result D87 expected										
Th:CDVME3 expected STD:CDVME3 repeated STD:OXDS repeated STD:OXDS result STD:OXDS result STD:OXDS result STD:OXUS result STD:OXUS result STD:OXUS result STD:OXUS result	IE-8 expected · · · · · · · · · · · · · · · · · · ·										
a 11-O. Marken statut STD-OXPA speed STD-OXDA speed STD-OXDA speed STD-OXDA speed STD-OXDA speed STD-OXDA speed STD-OXDA speed STD-OXDA seat	ewtra-resum D87 expected										
a TD-OXDS reacted a TD-OXDS reacted STD-OXDS reacted STD-OXDS reacted STD-OXDS reacted STD-OXDS reacted STD-OXIS react STD-OXIS reacted STD-OXIS reacted STD-OXIS reacted	Do / expected										
STD-OXD87 speed STD-OXD87 realt STD-OXD87 realt STD-OXD88 realt STD-OXD88 realt STD-OXD88 realt STD-OXD88 realt	1X11X7 result										
STD-OXD87 realt STD-OXD88 expressed STD-OXD88 expressed STD-OXD81 expressed STD-OXD81 realt	D87 expected										
STD-OXC88 expected STD-OXC88 result STD-OX181 result STD-OX181 result	OXD87 result										
STD-OXISI result STD-OXISI result STD-OXISI result	C88 expected										
STD-OXI8I repeted STD-OXI8I result	DXC88 result										
S1D-QXBI result	(181 expected										
	-OXISI result										
In-curve sequences	A havaatad										

