MAMMOTH GEOLOGICAL LTD.

2446 Bidston Road Mill Bay, B.C. Canada VOR 2P4 Phone : (250) 743-8228 Fax : (250) 743-4430 email : mammothgeo@shaw.ca

43-101 TECHNICAL REPORT

PIMA ZINC PROPERTY

SECTIONS 3, 4, 10, 11, 14, 15, 16, 21, 22, 23, 34 TOWNSHIP 17S RANGE 12E SECTIONS 2, 14 TOWNSHIP 18S RANGE 12E GILA AND SALT MERIDIAN Pima County, Arizona

UTM (NAD 83) ZONE 12 491000E 3535000N

FOR

Pima Zinc Corp. 520 – 65 Queen Street West Toronto, Ontario M5H 2M5

By: R.Tim Henneberry, P.Geo. July 26, 2018

-2-SUMMARY

Pima Zinc Corp. is purchasing 1139432 Nevada Ltd. to acquire the Pima Zinc property, consisting of 133 BLM lode claims and 7 permit applications for the mineral rights. The lode claims total approximately 2,506 acres and the permit applications could add a further 1440 acres if approved. 1139432 Nevada is retaining a 2% Net Smelter Return (NSR) royalty on the claims and leases. Pima Zinc can by 1% of the NSR for \$1,000,000 at any time up to five years of production, leaving 1.5%.

The Pima Zinc property has the potential to host zinc-copper skarn and related porphyry copper mineralization. The property is road accessible and lies 29 kilometres southwest of Tucson, Arizona. Pima Zinc is issuing 5,000,000 shares of its capital and paying US\$260,000 to the shareholders of 1139432 Nevada Ltd. for the property.

The southern two thirds of the Pima Zinc property are underlain by Oligocene sediments and volcanics while the northern third is more complicated and is underlain by Cretaceous and Triassic sediments and volcanics intruded at the extreme western edge by the Paleocene Ruby Star granodiorite. The favourable carbonate units are believed to underlie the Pima Zinc property at depth, based on the drilling completed at the old CWT mine site, within the current property boundary.

In addition, five hydrothermal alteration centres where alteration and mineralization were observed on surface have been identified throughout the property. These centres are 50 to 200 metres in rough diameter and consistently show heavy iron oxides and silica cores. Several of the silica core complexes have gossan zones with limonite replacement of galena and pyrite.

The sampling and ground geophysics completed by MAG Exploration Services clearly show mineralization is present on the Pima Zinc property as do the numerous old workings. All of this information attests to the potential of the Pima Zinc property. In addition, the property lies within a 15 kilometre radius of three mines, two of which are still producing. Two of the three mines produced from hidden ore bodies lying at 60 to 120 metres of depth. The drilling and exploration completed at the old CWT mine clearly shows the favourable carbonate stratigraphy underlies parts of the present Pima Zinc property.

Therefore, the author considers the Pima Zinc claim group a property of merit and recommends a program of airborne Time Domain electromagnetic surveying. A total of 220 line kilometres flown at a 045° azimuth at 100 metre line spacings is estimated to cost US\$105,000.

INTRODUCTION	4
RELIANCE ON OTHER EXPERTS	5
PROPERTY DESCRIPTION AND LOCATION	5
ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY	6
HISTORY	9
GEOLOGICAL SETTING	11
Pima Zinc Map Area	12
Pima Zinc Property Geology	14
Mineralization	14
DEPOSIT TYPES	17
EXPLORATION	18
DRILLING	30
SAMPLE PREPARATION, ANALYSES AND SECURITY	32
DATA VERIFICATION	34
MINERAL PROCESSING AND METALLURGICAL TESTING	35
MINERAL RESOURCESAND MINERAL RESERVE ESTIMATES	35
ADJACENT PROPERTIES	35
OTHER RELEVANT DATA ND INFORMATION	37
INTERPRETATION AND CONCLUSIONS	37
RECOMMENDATIONS	38
REFERENCES	39
CERTIFICATE R. TIMOTHY HENNEBERRY	40
APPENDIX 1 – COMPLETE LIST OF TENURES	41

LIST OF TABLES

Table 1. Seven Exploration Permits in Process	5
Table 2a. MAG Exploration Services Inc. 2012 Sampling	
Table 2b. MAG Exploration Services Inc. 2013 Sampling	
Table 3. Henneberry Sampling	23
Table 4. Historic Drill Intervals from Manning (1964)	
Table 5. CDN Standard Performance at Skyline Assayers	

LIST OF FIGURES

Figure 1. Location Map	5
Figure 2a. Claim Location	7
Figure 2b. State Exploration Permit Locations	8
Figure 3. Regional Geology	11
Figure 4a. Property Geology of CWT Property	12
Figure 4a. Property Geology of CWT Claim Block	13
Figure 5. Mineralization	15
Figure 6. MAG Exploration Sample Locations	18
Figure 7. Henneberry Sample Locations	20
Figure 8. CSAMT/MT Line Location	24
Figure 9. CSAMT/MT Station Locations	25
Figure 10a. CSAMT-MT Line 1 Depth Section	27
Figure 10b. CSAMT/MT Line 2 Depth Section	
Figure 10c. CSAMT/MT Line 3 Depth Section	29
Figure 10d. CSAMT/MT Line 4 Depth Section	30
Figure 11. Historic Drill Collar Locations	32

LIST OF PLATES

Plate 1. Old Workings on CWT Claim Block	9
Plate 2. CWT Historic Mine Site	34

-4-INTRODUCTION

The purpose of this Technical Report is to compile the available data on the Pima Zinc property to support the acquisition of 1139432 Nevada Ltd., holders of the Pima Zinc property, by Pima Zinc Corp.

This report was commissioned by Mr. Chris Irwin, a director and President of Pima Zinc Corp.

In preparing this report, the author referred to geological reports listed in the References Section and on his years of extensive mineral exploration experience in the western Cordillera. The section describing the history of the property area has been taken from various historic reports made available to the author. There are no assay certificates and the data from historic drill holes is incomplete and generally consists of summary thicknesses of mineralized zones with grades and thickness. The drill holes are assumed to be vertical, though there is no concrete data available to back up this assumption.

The author most recently visited the Pima Zinc property on November 10, 2017 in addition to prior visits on April 11, 2012 and June 9, 2013 for one day.

Projection is UTM NAD83 Zone 12

Figure 1. Pima Zinc Location Map

-5-RELIANCE ON OTHER EXPERTS

The author is not relying on a report or opinion of any experts. The ownership of the property claims has been taken from the United States Bureau of Land Management online database. The data on this site is assumed to be correct and was last checked 09-June-2018.

PROPERTY DESCRIPTION AND LOCATION

The Pima Zinc Property consists of 133 lode claims totaling 2,506 acres. The complete list of claims can be found in the Appendix at the rear of this Technical Report. The claims are situated on Sections 10, 11, 13, 14, 15, 22 and 23 in Township 17S Range 12E in the Gila and Salt Meridian of Arizona. The geographic center of the property is approximately 491000E 3535000N in UTM ZONE 12 in the map datum NAD 83.

The unpatented lode claims were acquired by physical staking by Childs Geoscience Inc. in 2017 under the United States Bureau of Land Management (BLM) system. Childs is holding them in trust for 1139432 Nevada Ltd. Each lode claim is 1500 feet long and 600 feet wide. Full claim details for each of the 193 individual claims can be found in the Appendix. The annual fees for 2018 have been paid and all claims are now in good standing until September 1, 2018 when the next annual payment of \$170 per claim will be due. The BLM claims do not include surface rights or rights of legal access as the claims underlie an area of split estate land, where the mineral rights are held by the BLM and the surface rights are held by the state. BLM and public roads provide access through the property.

The State of Arizona also has an interest in the minerals under Section 22 in Township 17S Range 12E in the Gila and Salt Meridian of Arizona. As such, a Special Use Permit is in process to protect the mineral interests associated with SHR claims. The permit has been issued, but final approval remains pending the posting of a \$15,000 performance bond. The bond has not been posted as of the date of the Technical Report, but the expectation is the posting will happen forthwith. The permit was issued in the name of Childs Geoscience Inc. Ownership is in process of being transferred to 1139432 Nevada Ltd. and the numbered company has a trust letter from Childs to that effect.

rubie in seven Exploration i climito in i loceso										
Mineral Exploration Permit Number	TS RG SEC	Portion	Issued	Acres						
23-119777-08 pending bond	T17S R12E Section 22	all	2018-02-08	640						
				640						
Application 00003177	T17S R12E Section 4	SE 1/4 of SE 1/4	2012-06-29	40						
Application 00003176	T17S R12E Section 3	SW 1/4 of SW 1/4	2012-06-29	40						
Application 00003180	T17S R12E Section 34	W 1/2	2012-06-29	320						
Application 00003178	T17S R12E Section 16	W 1/2	2012-06-26	320						
Application 00003179	T17S R12E Section 21	W 1/2	2012-06-29	320						
Application 00003181	T18S R12E Section 14	N 1/2, N 1/2 of SE 1/4 $$	2012-06-29	400						
6 permits				1440						

Table 1. Seven Exploration Permits in Process

Pima Zinc Project

-6-

		1242	IP	490 II	Ene Constant	145	TONY	2	491 0	Ome		1		492		E .	-	
	THE .	SHR	SHR 1	SHR 1	SHR	-	TR.	111	2	ł		N				- A-	10	kilometres
N H H H H H	EX 1	等 署 SHR 173	91 SH	92 SH	94 SH	SH	CY	SH	CV	HS	2	SH	tobine fille	HSTOR	CV CV			1175 R12E S12
S.E.	320		IR 174	IR 175	R 175	IR 178	VT 326	IR 1803	VT 324	IR 182	VT 322	IR-184	VT 320	IR 186	VT 318	11 and		pink - MAG claims green - Childs claims
	1175	R12E S1	CWT 38	CWT 36	SHR 159	SHR 160	CWT 380	SHR 162	CWT-378	SHA 160	SHR 165	- CHIN	HIR 16	-5117 168	CWT 372	CWIT 37	SHR 172	grey - patented claims
MURCHER	175 R12E S0	R	SHR 135	SHR 40	CWT 436	FHR 143	HIR 144	SHR 145	SHR 147	SHR 14	SHE	SHIR 150	CWT 428	SHR 152	2 CWT 426	SHR 154	CWT 424	AD7
	13B	SHR 121	EHR 122	SHR 136	SHIR 126 CWT 491	SHR 127	CWT 488	SHR 129	SHR 130	CWT 485	CWT 484	SHR 133	SHR 134	CWT 481	SHR 136-	SHR 137	CWT 478	1175 R12E \$13
Min Dia State	175,R12E S1	SHR 000 SHR 000	SHR 100	CWT 546	SHIR 103	CWT 543	SHR 105	CWT-541-	SHR 107	SHR 108	CWT 538	SHR 110	CWT 536	SHR 112	CWT 534	SHR 114	SHR 115	3 3 5 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7
	117S	R12E 51	SHR 078	SHR 079	SHR 081	CWT 597	SHR 083	SHR 084	SHR 085	CWT-593	SHR 087	CWT 591	SHR 089	SHR 000	CWT 588	SHR 092	SHR 093	CWT 582 SHR 006 SHR 005
Nm000465	XX	SHR 057	SHR 058	SHR 059	SHR 061 CWT 653	SHR 062	CWT 650	CWT 649	SHR 065	SHR 066	CWT 003	SHR 068	SHR 069	CWT 006	SHR 071	SHR:072	SHR 073	CWT 636 CWT 636 CWT 639
m		SHR 038	SHR 039	SHR 040	SHR 042	SHR 043	SHR 044	CWT 703	SHR 046	SHR 047	CWT 016	SHR 049	CWT 014	CWT 013	SHR 052	SHR 053	CWT 010	SHR 055 SHR 056
	525	SHR 020	SHR 021	SHR 022	SHR 024	SHR 025	SHR 026	SHR 027	SHR 028	SHR 029	CWT 021	CWT-022	CWT 023	CWT 024	CWT 025	SHR 035	CWT 027	11173K12E-324
ESE	Contraction of the second	SHR 002 SHR 001	SHR 003	SHR 004	SHR DOK	SHR 007S	CWT 812	SHR 009	CWT 036	SHR 011	CWT 034	SHR 013	CWT 032	SHR 015	CWT 030	SHR 017	CWT 028	2322
	RAK	Diale	d's	17	3h	X	K	No.	100	1E	2	K	-	5	Lose /	1	1	

UTM NAD 83 Zone 12

Figure 2a. Claim Location (T17S R12E S10,11,15,16,22,23)

Pima Zinc is acquiring a 100% interest in 1139432 Nevada Ltd. and hence the claims and permit applications by issuing 5,000,000 shares of common stock in Pima Zinc Corp and paying \$162,000. The numbered company is retaining a 2.5% Net Smelter Return Royalty. Pima Zinc can buy 1%, leaving 1.5% at any time up to 5 years past the start of commercial production for \$1,000,000.

There are no environmental liabilities associated with the Pima Zinc property to the best of the author's knowledge. There are three active mines within a 15 kilometre radius of the property as shown on Figure 1: East Pima – Mission Mine, Sierrita Mine and Twin Butte Mine.

The next phase of exploration on the Pima Zinc property will be airborne geophysics, followed by success contingent diamond drilling. Two permits are required due to the split estate nature of the land underlying the claims. The first is a State Land Use Permit (SLUP) required for section 22. All sections including 22 also need Mineral Exploration Permits, as a Mineral Exploration Permit is now required to conduct any exploration of any type on Arizona state land. The Mineral Exploration Permit requires a \$500 filing fee and annual rental fees of \$2.00 per acre for years 1 and 2 and then \$1.00 per acre for each of years 3 through 5. In addition, a bond in the amount of \$3,000 must be posted for each section the applicant plans to undertake exploration on. In order to maintain the permit in good standing, exploration expenditures in the order of \$10.00 per acre for year 1 and year 2 and \$20.00 per acre for years 3 through 5 must be completed. Cash payments in the same amounts can be made if no exploration was completed during the year.

In addition, to obtain a drilling permit on BLM land, a notice and reclamation bond will need to be filed with the BLM – Tucson Field office (assuming that total surface disturbance will be less than 5 acres). The BLM is required to review notices within 15 days of receipt. A site visit or modifications of the notice may be required, and the reclamation bond set, after which time drilling can begin. In addition to the BLM notice, a notice of intent to drill must be filed with the Arizona Department of Water Resources (ADWR) for each well. The driller must be a licensed drilling contractor with a drill card. After submitting the notice of intent (NOI) to drill, ADWR is required to process it within 15 days of receipt, at which time it will either accept the NOI or request additional information.

There are no other significant factors and risks that may affect access, title or the right or ability to perform work on the Pima Zinc property to the best of the author's knowledge.

ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Pima Zinc property is located 29 kilometres southwest of Tucson, Arizona. Road access to the property is 28 kilometres south from Tucson along Interstate Highway 99 to Helmet Peak Road. Then travel 8 kilometres west along Helmet Peak Road to the "T" intersection at Mission Road. The property boundary is 1 kilometre north along Mission Road. Several gravel roads cut through the Pima Zinc property at various intervals along Mission Road. The Pima Zinc property is in an active mining region in southwestern Arizona with three mines within a 15 kilometre radius of the property.

Topographic relief on the Pima Zinc property is moderately gentle with elevations ranging from 3,600 feet (1,097 metres) above sea level (ASL) on the eastern side of the claim block to 3,840 feet (1,170 metres) in the southwestern claim block. The vegetation is typical of the southern Arizona, open underbrush with cacti and low juniper bushes.

The climate in southern Arizona is hot during the summer with temperatures of 35 digress Celsius or more common. Temperatures moderate through the late fall, winter and early summer. The field season is essentially year round. The area is susceptible to flash flooding. The current stage of the Pima Zinc property is preliminary exploration, geophysics to be followed by success contingent diamond drilling. The primary concerns for this stage of the exploration program are property access, surface rights, supplies, equipment and personnel. The numerous roads through the property provide access throughout the property. Rights to surface access needs to be obtained by permit from the Arizona State Land Department (in process) and/or the United States Bureau of Land Management (BLM). Heavy equipment, supplies, fuel, accommodation and personnel are readily available in Tucson, 20 minutes to the north of the property. Water for drilling will need to be trucked. At this stage of the project, potential tailings storage areas, waste disposal areas, heap leach pads and processing plant sites have not yet been considered.

HISTORY

There is very little early information on the ground underlying the Pima Zinc claims. The initial day spent on site during the property examination (April 11, 2012) located numerous shafts, pits and other workings throughout the lode claim block suggesting the property has undergone significant exploration since the turn of the century. Exploration exploded in the early 1960's with the discovery and opening of the East Pima-Mission mine in 1953, and the Sierrita and Twin Butte mines in the 1960 and 1961 (Figure 1).

Plate 1. Old Workings on Pima Zinc Claim Block

Old tailings on CWT claims

The State of Arizona Department of Mineral Resources Field Engineers Report dated July 7, 1964 suggests the earliest documented exploration on the property was by Bear Creek Mining Company in 1961 and 1962. The Pima Mining Company explored the ground in 1963. Continental Exploration Company acquired the property in latter 1963 and conducted most of the documented exploration on the property.

Continental Exploration concentrated on a skarnified and mineralized subsurface limestone 17 to 20 feet (5.2 to 6.1 metres) thick at a depth from surface of 500 to 750 feet (152.4 to 228.6 metres) within Section 23. The zone was highlighted by 38 diamond drill holes, 25 of which were drilled by Continental. The mine was developed by a 1,000 foot shaft and lateral development at the 800 and 900 levels and placed into production in late 1966, early 1967 but was shut down due to lack of reserves in 1968. (Summarized from various State of Arizona Department of Mineral Resources Field Engineers Reports from 1964 to 1968).

An historical estimate for the CWT Mine was determined by Manning W. Cox in 1964. He identified an upper "ore" zone and a lower "ore" zone defined by widely to closely spaced drill holes within an area 1,000 feet by 1,500 feet (304.8 by 457.2 metres). Thicknesses ranged from a minimum mining thickness of 10 feet to a maximum of 48 feet (3 to 14.6 metres) and calculated a "drilled reserve" of 1,208,000 million tons grading 7.2% Zn, 1.08 % Cu, 0.30% Pb and 1.54 ounces per ton Ag.

There is no technical report associated with the Cox (1964) estimate. Since the detailed data is not available to the author, he cannot comment on the reliability of the estimate other than to state that a decision was made to place the mine into production in 1966 based on the estimate. The estimate is relevant to the Pima Zinc property as it indicates the presence of zinc, copper and lead mineralization on the present Pima Zinc property. The estimate was based on drill cores, drill logs and analyses and the corresponding sections and plans for 38 drill holes. The estimate was determined by area distribution, geologic shape and thickness and grade to arrive at a weighted average. The tonnage factor was 11 cubic feet per ton. Dilution ranging from 0% to 100%, averaging 25%, was factored in the estimate. Cut-off grade was set at \$6.00 net smelter based on the following net smelter values per ton of ore and per unit of metal: Zn - \$1.10, Pb -\$1.40, Cu \$3.80 and Ag - \$1.00. The categories used for the historical estimate were "drill proven" and "drill probable" which do not comply with current NI43-101 CIMM standards, as these standards were not in existence at the time the historical estimate was calculated. The author is not aware of any subsequent historical estimates. Since none of the data has survived to this day, the only way to upgrade verify this historical estimate to a current mineral resource would be to duplicate the entire 38 holes.

A qualified person has not done sufficient work to classify the historical estimate as a current mineral resource and Pima Zinc Corp. is not treating the historical estimate as a current mineral resource.

Upon closure of the mine, Continental expanded the property base and identified a larger low grade zone of mineralization on the north half of Section 30, outside of the present property boundaries.

The author has not been made aware of any other documented historical exploration activities on the present Pima Zinc claim holdings.

-11-GEOLOGICAL SETTING

The Pima Zinc property lies in southeastern Arizona. The following summary for the geology of Arizona is taken from Reynolds (2011).

UTM NAD 83 Zone 12

Figure 3. Regional Geology

Arizona has a complex geologic history that spans 1.8 billion years (b.y.) and resulted in the formation of three geologic provinces: the Colorado Plateau, Transition Zone, and Basin and Range Province. The Colorado Plateau in northern Arizona is a region of broad plateaus and mesas composed of picturesque sedimentary rocks deposited during the Paleozoic and Mesozoic Eras (570 to 245 m.y. ago). The southern boundary of the Colorado Plateau is the Mogollon Rim. The Plateau is incised by deep canyons, such as the Grand Canyon and Canyon de Chelly. Large extinct volcanoes, such as San Francisco Mountain and the White Mountains are present along the edge of the plateau.

The Basin and Range Province of southern and western Arizona is characterized by alternating mountain ranges and broad valleys, most of which were formed by block faulting during the last part of the Cenozoic Era (15 to 5 m.y. ago). The mountain ranges contain rocks of various types and ages that have been extensively folded and faulted during the Mesozoic and Cenozoic Eras (100 to 15 m.y. ago). The intervening valleys are generally underlain by thick sequences of consolidated sediments (mostly gravel, sand, and silt) that are the main aquifers for the region.

Pima Zinc Project

The third province, the Transition Zone, is between the Basin and Range Province and the Colorado Plateau and has geologic characteristics intermediate between the two. It contains narrow, sediment-filled valleys and broad, high mountain ranges mostly composed of rocks of Proterozoic (late Precambrian) age (1.0 to 1.8 b.y. old). The Transition Zone trends northwest across the center of the State.

UTM NAD 83 Zone 12

Figure 4a. Property Geology of Pima Zinc Property

Pima Zinc Map Area (Summarized from Cooper, 1973)

The Pima Zinc map area was re- mapped at 1:48,000 by Cooper in 1973. His mapping provides a little more detail on the map units, though the lithological contacts remain similar to the Reynolds (2011) map.

The youngest units in the area are the Holocene to Pleistocene gravels, sands and silts found on flood plains and low terraces and gravels on pediments and in the main basins. Fanglomerates, monolithic breccias formed from probable landslides and minor porphyritic andesitic flows form the Tertiary stratigraphy in the Pima Zinc area.

The Tertiary Ruby Star granodiorite includes granodiorite porphyry, quartz monzonite and local unmapped bodies of aplite.

The Cretaceous units consist of the Red Boy rhyolite: rhyolitic flows and tuffs with local basal conglomerate, the Demetrie volcanics: and esitic an dacitic breccias with a few flows and the Angelica arkose.

UTM NAD 83 Zone 12 Figure 4b. Property Geology of Pima Zinc Claim Block

The Paleozoic unit is comprised of sedimentary and volcanic rocks ranging in age from Triassic through to Devonian. The Triassic rocks are the red beds and andesitic volcanic rocks with local basal conglomerate of the Rodolfo Formation. Permian rocks include: the Rainvalley Formation limestones and dolomites with scarce mudstone; the Concha Formation medium grey, thick bedded, cherty limestone; the Scherrer Formation light pinkish grey, fine grained quartzite, mudstone, dolomite and siltstone; the Epitaph Dolomite, dolomite, limestone, siltstone, marl and gypsum; and the Colina Limestone, dark grey, fine grained, cherty limestone. Pennsylvanian rocks are the Horquilla Limestone, a pinkish grey, fine grained, medium bedded, cherty limestone. Mississippian rocks are the Escabrosa Limestone, a very light grey, coarse grained, thick bedded cherty limestone. Devonian rocks consist of Martin Formation brown dolomite, limestone and some sandstone.

Pima Zinc Project

Pima Zinc Property Geology (Summarized from Cooper, 1973)

The Pima Zinc Property has not been mapped in detail. Cooper (1973) mapped the Twin Butte Quadrangle which includes the ground underlying the Pima Zinc property at 1:48,000. A summary of his mapping is shown in Figures 4a and 4b. The peripheral state leases are largely underlain by the Paleocene Ruby Star granodiorite (Figure 4a). Most of the exploration effort will be focused on the main Pima Zinc claim block and this geology will be described in more detail.

The southern two thirds of the Pima Zinc claim block is underlain by Oligocene sediments and volcanics while the northern third is more complicated and is underlain by Cretaceous and Triassic sediments and volcanics intruded at the extreme western edge by the Paleocene Ruby Star granodiorite.

The oldest rocks on the claim block are the Precambrian granodiorites at the southern end of the property. Triassic and Cretaceous units outcrop through the northern third of the property. These units include: the Triassic Rodolfo red beds and andesitic volcanics; and the Cretaceous Whitcome quartzite with minor rhyolite tuff, Angelica arkose with quartzite and conglomerate, Demetrie andesite and dacite breccias and the Red Boy rhyolites with local basal conglomerates. The Triassic and Cretaceous units are overlain by local Paleocene andesites and intruded by the Paleocene Ruby Star granodiorite, consisting of granodiorite porphyry and quartz monzonite with many local associated aplite bodies.

The youngest units comprise the Oligocene fanglomerate and include: basal andesite flows, monolithic breccias of probable landslide origin and upper fanglomerates.

Mineralization

The Pima Zinc property is primarily a zinc-copper skarn and related porphyry copper target. The property was originally a cohesive block in 2012 when prospecting was completed by then owner Mag Exploration Services Inc. Their geologists identified five areas where mineralization and alteration was observed in surface exposure, identified as hydrothermal alteration centres (HC1 to HC5). These centres are 50 to 200 metres in rough diameter and consistently show heavy iron oxides and silica cores. Several of the silica core complexes have gossan zones with limonite replacement of galena and pyrite. These areas are largely exclusive of the Dogtown area Pb-Ag near surface veins, as the largest concentration of these veins are on patented claims that are not part of the Pima Zinc property and form the indentation on the west central side of the property as shown on Figure 5. The five HC's are shown Figure 5 and are summarized as follows:

Mapping within area HC 1 located four hydrothermal alteration centres and 18 alteration breccia zones. The surface host rock in HC1 is generally altered and appears to be a combination of ash flows and lahars. The breccia zones vary from 0.5 to 5 metres in width and are traceable from 100 to 200 metres. Alteration varies from mild to heavy iron oxides, black sulfate and oxide stains and pyrite staining in a quartz or calcite/siderite matrix.

HC 1 also hosts the CWT Mine where an historical estimate was determined by Manning W. Cox in 1964. He identified an upper "ore" zone and a lower "ore" zone defined by widely to closely spaced drill holes within an area 1,000 feet by 1,500 feet (304.8 by 457.2 metres). Thicknesses ranged from a minimum mining thickness of 10 feet to a maximum of 48 feet (3 to 14.6 metres) and calculated a "drilled reserve" of 1,208,000 million tons grading 7.2% Zn, 1.08 % Cu, 0.30% Pb and 1.54 ounces per ton Ag.

There is no technical report associated with the Cox (1964) estimate. Since the detailed data is not available to the author, he cannot comment on the reliability of the estimate other than to state that a decision was made to place the mine into production in 1966 based on the estimate. The estimate is relevant to the Pima Zinc property as it indicates the presence of zinc, copper and lead mineralization on the present Pima Zinc property. The estimate was based on drill cores, drill logs and analyses and the corresponding sections and plans for 38 drill holes. The estimate was determined by area distribution, geologic shape and thickness and grade to arrive at a weighted average. The tonnage factor was 11 cubic feet per ton. Dilution ranging from 0% to 100%, averaging 25%, was factored in the estimate. Cut-off grade was set at \$6.00 net smelter based on the following net smelter values per ton of ore and per unit of metal: Zn - \$1.10, Pb -\$1.40, Cu \$3.80 and Ag - \$1.00. The categories used for the historical estimate were "drill proven" and "drill probable" which do not comply with current NI43-101 CIMM standards, as these standards were not in existence at the time the historical estimate was calculated. The author is not aware of any subsequent historical estimates. Since none of the data has survived to this day, the only way to upgrade verify this historical estimate to a current mineral resource would be to duplicate the entire 38 holes.

A qualified person has not done sufficient work to classify the historical estimate as a current mineral resource and Pima Zinc Corp. is not treating the historical estimate as a current mineral resource.

Within HC 2, 4 hydrothermal alteration centres ranging in rough diameter from 100 to 200 metres were identified by heavy iron oxide and silica cores. The host rock is generally altered and appears to be a combination of ash flows and lahars. Copper oxides were observed at two historic locations in prospect pits and dozer cuts.

Within HC 3, 8 hydrothermal alteration centres with associated breccia zones with alteration were identified. The host rock is generally altered and appears to be a combination of ash flows and lahars. A number of the core complexes contain black alterations of zinc, lead and manganese. In areas where the host rock has been completely replaced by silica, pyrite and galena have been observed. The breccia zones vary from 0.5 to 5 metres in width and are traceable from 100 to 300 metres. Alteration varies from mild to heavy iron oxides, black sulfate and oxide stains and pyrite staining in a quartz or calcite/siderite matrix.

HC 3 also includes a number of prospect pits and shallow shafts in an area historically known as the Alpha Veins. Beck sent five samples from this area for analysis: CWT-14, CWT-15, CWT-36, CWT-37 and CW-38. The select grab sample locations and assay results are shown in Figure 6 and Table 2. Silver grades ranged from a low of 12 ppm to a high of 3806 ppm and lead grades ranged from 0.17% to 39.09%.

Within HC 4, twelve hydrothermal alteration centres and 5 associated breccia zones with alteration were identified. The host rock is generally altered and appears to be a combination of ash flows and lahars. The breccia zones vary from 2 to 7 metres in width and are traceable from 100 to 300 metres. Strong silica replacement of host rock was noted.

Within HC 5, one hydrothermal alteration centre and 5 associated breccia zones with alteration were identified. The host rock is not recognizable. The breccia zones vary from 0.5 to 4 metres in width and are traceable from 50 to 200 metres. Alteration varies from mild to heavy iron oxides, black sulfate and oxide stains and pyrite staining in a quartz or calcite/siderite matrix. Beck sample CWT-40 from this area returned values of 75 ppm Ag, 6.04% Pb, 0.27% Zn and 1.46% Cu from a limestone skarn. Wilkins took 7 samples from this area: Dog 2, Dog 3, Dog 4, Dog 6, Dog 21, Dog 22 and Dog 28. Silver grades ranged from a low of 17 ppm to a high of 744 ppm and lead grades ranged from a low of 0.10 % to a high of 15.82%.

A line of CSAMT/MT ground geophysics was completed in the area of the CWT mine. The results appear to confirm the location and presence of the CWT mineralization.

The grab and select grab sampling completed by Mag Exploration Services Inc. and the author as detailed in Tables 2a, 2b and 3 indicates the presence of near surface mineralization throughout the claim group with gold values ranging from a low of 13 ppb to a high of 2044 ppb; silver values ranging background to a high of 3806 grams per tonne; copper values ranging from background to a high of 7.13 percent; lead values ranging from background to a high of 39.09 percent; and zinc values ranging from background to a high of 12.35 percent.

Pima Zinc Project

-17-DEPOSIT TYPES

The Pima Zinc property is presently being explored for zinc-copper skarn and related copper porphyry mineralization. The following description is summarized from the United States Geological Survey Mineral Deposit Profiles (Cox and Singer, 1992).

Related porphyry copper and copper skarn deposits consist of chalcopyrite in stockwork veinlets in hydrothermally altered intrusives and in skarn with extensive retrograde alteration or chalcopyrite in calc-silicate contact metasomatic rocks.

These deposits are hosted in tonalite to monzogranite intruding carbonate rocks or calcareous clastic rocks. They occur in miogeosynclinal sequences intruded by epizonal intrusion of granitic stocks and felsic plutons into carbonate rocks. Intense fracturing is common. These deposits occur at continental margins during late orogenic magmatism, where Andean-type volcanism and related intrusion activity is superimposed on older continental shelf carbonate terrane. They are mainly Mesozoic and Tertiary, but may be any age.

Intense stockwork veining in igneous and skarn rocks contains most of the copper minerals in the porphyry portions with copper commonly accompanying retrograde alteration. Irregular or tabular ore bodies form in carbonate rocks and calcareous rocks near igneous contacts or in xenoliths in igneous stocks. If present, breccia pipes cutting the skarn, can host the mineralization. Associated igneous rocks are commonly barren in the skarn portions of these deposits.

Mineralogy of the porphyry deposit is: chalcopyrite + pyrite + magnetite in inner garnet pyroxene zone; bornite + chalcopyrite + sphalerite + tennantite in outer wollastonite zone. Scheelite and traces of molybdenite and galena may be present. Hematite or pyrrhotite may be predominant. Mineralogy of the skarn deposit is: chalcopyrite + pyrite ± hematite ± magnetite ± bornite ± pyrrhotite. Also molybdenite, bismuthinite, sphalerite, galena, cosalite, arsenopyrite, enargite, tennantite, loellingite, cobaltite, and tetrahedrite may be present. Gold and silver may be important products.

Potassic alteration in the pluton is associated with andradite and diopside in calcareous rocks in the porphyry deposits. Farther from the contact are zones of wollastonite or tremolite with minor garnet, idocrase, and clinopyroxene. These grade outward to marble. Phyllic alteration in the pluton is associated with retrograde actinolite, chlorite, and clay in skarn. Diopside + andradite are found in the center of the skarn deposits, grading outward from wollastonite + tremolite to marble in the peripheral zone. Igneous rocks may be altered to epidote + pyroxene + garnet (endoskarn). Retrograde alteration to actinolite, chlorite, and clays may be present.

Iron rich gossans are a common weathering feature. Copper carbonates and silicates are also common weathering signs. Calc-silicate minerals in stream pebbles are a good guide to covered skarn deposits.

Porphyry geochemical signatures include: Cu, Mo, Pb, Zn, Au, Ag, W, Bi, Sn, As, Sb. Skarn geochemical signatures may show: Cu-Au-Ag-rich inner zones grading outward to Au-Ag zones with high Au:Ag ratio and outer Pb-Zn-Ag zone. Co-As-Sb-Bi may form anomalies in some skarn deposits. Skarns are also strong magnetic anomalies.

-18-EXPLORATION

Pima Zinc Corp. has yet to conduct any exploration on the Pima Zinc property. The author is therefore documenting the exploration programs completed on the Pima Zinc property by prior owner MAG Exploration Services Inc.

UTM NAD 83 Zone 12

Figure 6. MAG Exploration Sample Locations

MAG completed programs of prospecting, mapping, sampling and ground geophysics between 2012 and 2014. The prospecting, mapping and sampling was completed by two experienced American Geologists: Brian Beck in 2012 and Joe Wilkins in 2013. Neither are Qualified Persons as defined under National Instrument 43-101, but both have been working in the southwest US for most of their professional lives and this author has no concerns with respect to their ability or the data they have provided for this project.

There are two main targets on the Pima Zinc property: Pb-Ag veins that outcrop at surface and base metal replacement deposits that occur within the carbonate units at depths of 100 metres or more. Most of the exploration completed by Mag focused on the Pb-Ag veins with the exception of the surface geophysical program, which focused on the base metal deposits at depth. The prospecting and sampling programs focused on the areas of known and visible mineralization. The sampling consisted of grab samples, largely from dump material sourced from the numerous workings on the property. One to two kilograms of material were taken from a 50 to 100 centimetre area of the dump and placed in a plastic or Hubco canvas sample bag and sealed. The coordinates were recorded on a GPS unit set either in the lat long datum or NAD 27 datum. In general, the sample sites were not marked as they were almost exclusively mine dumps or mine ore piles.

Sample	27 Z12 E	27 Z12 N	Description	Width	ppm Au	ppm Ag	% Cu	% Mo	% Pb	%Zn
					11	11		/*****	,	,
CWT-2	492221	3532078	Andesite shear with galena	grab	N.A.	<2	0.001	<0.001	0.01	0.03
CWT-10	493072	3533721	Hydrothermal breccia 100m by 3-8m.	grab	N.A.	117	0.079	0.020	0.10	0.05
CWT-14	491090	3533996	Hydrothermal breccia, FeOx, galena	grab	N.A.	12	0.024	0.003	0.17	0.05
CWT-15	490950	3533675	Hydrothermal breccia, FeOx, galena	grab	1.791	3806	0.372	0.001	39.09	0.02
CWT-29	490252	3534435	Mine dump, galena, chalcopyrite, pyrite	select	N.A.	199	0.061	0.001	16.82	0.25
CWT-36	490823	3533687	Alpha Vein galena, gray copper	select	N.A.	234	0.123	0.014	5.10	0.06
CWT-37	490797	3533650	Alpha Vein galena, pyrite, chalcopyrite, native Cu	select	N.A.	61	0.439	<0.001	2.00	1.21
CWT-38	490797	3533650	Alpha Vein galena, pyrite	select	N.A.	159	0.148	0.011	16.88	0.04
CWT-40	490062	3536372	Mine dump, skarn Fe, Cu, Zn, Pb	select	N.A.	75	1.461	<0.001	6.04	0.27
CWT-44	490322	3535940	Mine dump, skarn Fe, Cu, Zn, Pb	select	1.201	565	0.473	<0.001	8.24	5.57
CWT-45	490339	3535909	Mine dump, skarn Fe, Cu, Zn, Pb	select	0.634	1234	0.732	0.002	26.61	2.49
CWT-46	489989	3535824	Mine dump, skarn Fe, Cu, Zn, Pb	select	0.533	614	0.317	0.002	11.72	0.75

 Table 2a. MAG Exploration Services Inc. 2012 Sampling

A total of 12 samples were taken by Mr. Beck in 2012 and a further 29 samples were taken by Mr. Wilkins in 2013. In addition, the author took 8 samples during his 2012 property visit and an additional four samples during his November 2017 property visit. Since most of the samples were taken from existing dumps and ore pile, there is certainly a fair chance of bias in the sample as one would naturally be drawn to mineralization on each of the dumps. However, at the present stage of exploration the author does not feel this is problem, as the purpose of the initial surveys is to establish the presence of mineralization with future surveys directed at determining quantity and quality of mineralization.

Summary tables of the sample results are shown in Tables 2a, 2b and 3 and the location of the samples are shown in Figures 6 and 7. While the sampling was spread throughout the property, Figure 6 clearly shows the bulk of the sampling was concentrated in the area of the Pb-Ag veins.

Mapping and sampling by Brian Beck identified five areas where varying mineralization was observed in surface exposure. These are identified as HC 1 to HC 5 on Figures 5 through 8. The following descriptions are summarized from his internal memorandum dated April 2, 2012 (Beck, 2012).

Within HC 1 an additional 4 hydrothermal alteration centres and 18 breccia zones with alteration were identified. These hydrothermal alteration centres are 50 to 150 metres in rough diameter and are identified in the field by heavy iron oxide and silica cores. Several of the silica core complexes have gossan zones with limonite replacement of galena and pyrite. The host rock is generally altered and appears to be a combination of ash flows and lahars. The breccia zones vary from 0.5 to 5 metres in width and are traceable from 100 to 200 metres. Alteration varies from mild to heavy iron oxides, black sulfate and oxide stains and pyrite staining in a quartz or calcite/siderite matrix.

Sample	27_Z12_E	27_Z12_N	Description	Width	ppb Au	ppm Ag	% Cu	% Mo	% Pb	%Zn
Dog-1	490627	3534150	Mine dump, Pb	grab	66	224	0.38	<0.001	0.48	0.38
Dog-2	489990	3536375	Mine dump, Mn-Cu ox	grab	248	187	0.92	<0.001	9.14	0.08
Dog-3	491125	3536315	Mine dump, Mn-Cu ox	grab	272	17	0.02	<0.001	0.25	0.05
Dog-4	490935	3536105	Mine dump, Fe, Pb	grab	857	199	0.07	< 0.001	1.85	2.5
Dog-5	491087	3535998	Mine dump, Mn-Fe ox	grab	459	194	0.06	<0.001	1.14	0.25
Dog-6	490095	3536050	Mine dump, Mn-Fe ox	grab	184	82	0.01	<0.001	0.2	0.06
Dog-7	490782	3535715	Mine dump, Mn-Fe ox	grab	121	100	0.02	<0.001	0.57	0.2
Dog-8	490531	3535576	Mine dump, Fe, Cu, Pb, Zn, Mn ox	grab	85	85	1.7	<0.001	0.63	2.88
Dog-9	490383	3535494	Mine dump, Mn ox, Zn	grab	23	75	0.8	< 0.001	0.75	8.5
Dog-10	489881	3535484	Mine dump, Fe, Pb	grab	276	166	0.22	< 0.001	13.13	1.96
Dog-11	490032	3535567	Mine dump, fault	grab	1180	456	0.03	< 0.001	0.24	0.32
Dog-12	491365	3536146	Mine dump, jasper	grab	14	3	0.02	< 0.001	0.05	0.17
Dog-13	489932	3535663	Mine dump, Fe, Pb, Zn, Cu, Cu ox	grab	1772	447	0.85	<0.001	4.49	4.13
Dog-14	490023	3535691	Mine dump, Fe, Pb, Zn, Cu, Cu ox	grab	783	851	0.78	<0.001	8.72	2.42
Dog-15	490061	3535694	Mine dump, Fe	grab	426	515	0.47	<0.001	5.86	2.29
Dog-16	490021	3535685	Mine dump, Fe, Pb, Zn, Cu	grab	820	339	0.48	<0.001	9.05	0.64
Dog-17	490019	3535837	Mine dump, Fe, Pb, Zn, Cu	grab	958	768	0.06	<0.001	1.27	0.04
Dog-18	490271	3535956	Ore pile, Fe, Pb, Mn ox	select	273	288	0.18	0.002	5.43	0.52
Dog-19	489855	3534876	Mine dump, Pb, Fe, Cu, Cu ox	grab	1307	231	0.06	<0.001	0.91	1.26
Dog-20	489816	3534605	Mine dump, Cu ox	grab	137	58	2.95	<0.001	0.05	0.06
Dog-21	490254	3536079	Mine dump, Fe-Mn ox, Fe, Pb, Cu ox	grab	145	348	0.13	0.001	3.5	0.12
Dog-22	490380	3536183	Mine dump, Fe, Pb, AgCl, Mn ox	grab	259	744	0.24	0.002	15.82	0.08
Dog-23	490081	3535178	Mine dump, Fe, Pb, Zn	grab	2044	715	0.19	<0.001	6.32	0.26
Dog-24	490173	3534458	Mine dump, Mn-Fe ox, Fe, Pb	grab	304	62	0.05	<0.001	4.05	0.06
Dog-25	490371	3534420	Mine dump, Mn-Fe ox, Fe	grab	194	17	0.01	<0.001	0.4	0.09
Dog-26	489553	3534951	Ore pile, Fe, Cu, Pb, Zn	select	452	722	0.56	<0.001	16.79	4.61
Dog-27	489563	3534746	Ore pile, Fe, Cu, Pb	select	674	2140	1.17	<0.001	12.48	1.86
Dog-28	489990	3536375	Mine dump, Fe-Cu ox, Ag	grab	13	73	4.18	< 0.001	0.1	0.08
Dog-29	491702	3532805	Mine dump, Pb, Ag, py Cu	select	192	302	7.13	0.001	12.51	3

Table 2b. MAG Exploration Services Inc. 2013 Sampling

HC 1 also hosts the CWT Mine where an historical estimate was determined by Manning W. Cox in 1964. He identified an upper "ore" zone and a lower "ore" zone defined by widely to closely spaced drill holes within an area 1,000 feet by 1,500 feet (304.8 by 457.2 metres). Thicknesses ranged from a minimum mining thickness of 10 feet to a maximum of 48 feet (3 to 14.6 metres) and calculated a "drilled reserve" of 1,208,000 million tons grading 7.2% Zn, 1.08 % Cu, 0.30% Pb and 1.54 ounces per ton Ag.

Pima Zinc Project

There is no technical report associated with the Cox (1964) estimate. Since the detailed data is not available to the author, he cannot comment on the reliability of the estimate other than to state that a decision was made to place the mine into production in 1966 based on the estimate. The estimate is relevant to the Pima Zinc property as it indicates the presence of zinc, copper and lead mineralization on the present Pima Zinc property. The estimate was based on drill cores, drill logs and analyses and the corresponding sections and plans for 38 drill holes. The estimate was determined by area distribution, geologic shape and thickness and grade to arrive at a weighted average. The tonnage factor was 11 cubic feet per ton. Dilution ranging from 0% to 100%, averaging 25%, was factored in the estimate. Cut-off grade was set at \$6.00 net smelter based on the following net smelter values per ton of ore and per unit of metal: Zn - \$1.10, Pb -\$1.40, Cu \$3.80 and Ag - \$1.00. The categories used for the historical estimate were "drill proven" and "drill probable" which do not comply with current NI43-101 CIMM standards, as these standards were not in existence at the time the historical estimate was calculated. The author is not aware of any subsequent historical estimates. Since none of the data has survived to this day, the only way to upgrade verify this historical estimate to a current mineral resource would be to duplicate the entire 38 holes.

A qualified person has not done sufficient work to classify the historical estimate as a current mineral resource and Pima Zinc Corp. is not treating the historical estimate as a current mineral resource.

Within HC 2, four hydrothermal alteration centres ranging in rough diameter from 100 to 200 metres were identified by heavy iron oxide and silica cores. Several of the silica core complexes have gossan zones with limonite replacement of galena and pyrite. The host rock is generally altered and appears to be a combination of ash flows and lahars. Copper oxides were observed at two historic locations in prospect pits and dozer cuts.

Within HC 3, eight hydrothermal alteration centres with associated breccia zones with alteration were identified. These hydrothermal alteration centres are 80 to 200 metres in rough diameter and are identified in the field by heavy iron oxide and silica cores. Several of the silica core complexes have gossan zones with limonite replacement of galena and pyrite. The host rock is generally altered and appears to be a combination of ash flows and lahars. A number of the core complexes contain black alterations of zinc, lead and manganese. In areas where the host rock has been completely replaced by silica, pyrite and galena have been observed. The breccia zones vary from 0.5 to 5 metres in width and are traceable from 100 to 300 metres. Alteration varies from mild to heavy iron oxides, black sulfate and oxide stains and pyrite staining in a quartz or calcite/siderite matrix. HC 3 also includes a number of prospect pits and shallow shafts in an area historically known as the Alpha Veins. Beck sent five samples from this area for analysis: CWT-14, CWT-15, CWT-36, CWT-37 and CWt-38. The select grab sample locations and assay results are shown in Figure 6 and Table 2. Silver grades ranged from a low of 12 ppm to a high of 3806 ppm and lead grades ranged from 0.17% to 39.09%.

Within HC 4, four hydrothermal alteration centres and 5 associated breccia zones with alteration were identified. These hydrothermal alteration centres are 50 to 200 metres in rough diameter and are identified in the field by heavy iron oxide and silica cores. Several of the silica core complexes have gossan zones with limonite replacement of galena. The host rock is generally altered and appears to be a combination of ash flows and lahars. The breccia zones vary from 2 to 7 metres in width and are traceable from 100 to 300 metres. Strong silica replacement of host rock was noted.

Pima Zinc Project

Within HC 5, one hydrothermal alteration centre and 5 associated breccia zones with alteration were identified. The hydrothermal alteration centres is 50 metres in rough diameter identified in the field by heavy iron oxide and silica cores. The silica core has a gossan zones with limonite replacement of galena and pyrite. The host rock is not recognizable. The breccia zones vary from 0.5 to 4 metres in width and are traceable from 50 to 200 metres. Alteration varies from mild to heavy iron oxides, black sulfate and oxide stains and pyrite staining in a quartz or calcite/siderite matrix. Beck sample CWT-40 from this area returned values of 75 ppm Ag, 6.04% Pb, 0.27% Zn and 1.46% Cu from a limestone skarn. Wilkins took 7 samples from this area: Dog 2, Dog 3, Dog 4, Dog 6, Dog 21, Dog 22 and Dog 28. Silver grades ranged from a low of 17 ppm to a high of 744 ppm and lead grades ranged from a low of 0.10 % to a high of 15.82%.

Wilkins concentrated more in the area of the Pb-Ag veins, known locally as Dogtown, producing an internal memo for Mag Exploration Services Inc. (Wilkins, 2013). He found the Dogtown area to consist of Brecciated fissure veins cutting Paleozoic to Cretaceous rocks in an upper plate setting above the Tertiary aged San Xavier Detachment Fault. The veins were developed to a maximum depth of 650 feet. The largest of the old mines, Alpha had over 6700 feet of horizontal workings. Much of the Wilkins sampling concentrated on the dumps from these old Pb-Ag veins. The assay results are presented in Table 2b.

Number	Description	Width	ppb Au	ppm Ag	ppm Cu	ppm Mo	ppm Pb	ppm Zn
CWT110412 01	Main dump - sphalerite, manganese	select grab	5.2	14.9	35.8	14	343.5	>10000
CWT110412 02	Main dump - sphalerite, manganese, iron oxides, malachite	select grab	36.7	>100.0	>10000.0	>2000.0	>10000.0	>10000
CWT110412 03	Main dump - pyrite, chalcopyrite, malachite, manganese, iron oxides	select grab	90.8	>100.0	>10000.0	3.8	3354.3	8559
CWT110412 04	Area 2 dump - sphalerite, galena (?) manganese, iron oxides	grab	55.1	30.4	575.6	167.2	1305.2	1210
CWT110412 05	Area 2 dump - pyrite, sphalerite(?) manganese, iron oxides, vuggy	grab	166.2	>100.0	7302.1	21.4	>10000.0	8393
CWT110412 06	Pyrite tailings - local malachite, bleached	grab	26.6	>100.0	2029.5	9.1	3265.7	464
CWT110412 07	Pyrite tailings - heavy manganese, sphalerite (?)	grab	164.6	18.8	451.9	1.5	9124.9	7234
CWT110412 08	South Dog Town dump - iron oxides, limonite, pyrite, manganese	select grab	536.1	6.7	157.1	6.8	884.1	563
E5147460	Main dump - rusty massive sulfide	select grab	<1	2.3	1290	13.4	142	72
E5147461	Main dump - limestone with malachite	select grab	2	34.7	>10000 (2.17%)	2.84	457	4360
E5147462	Main dump - gossanous metasediment with sphalerite	select grab	27	70.7	230	3.93	3040	>10000 (12.35%)
E5147463	Main dump - moderately gossanous metasediment	select grab	4	16.25	154	28.3	2370	4550

Table 3. Henneberry Sampling

The author took 8 samples from the Pima Zinc property during his first due diligence review in 2012 and a further 4 samples during the 2017 property visit. These samples consisted largely of samples from mine dumps and dumps from small workings. The 12 samples are shown in Table 3 and Figure 7. The samples clearly show that mineralization exists on the Pima Zinc property.

As would be expected with exploration for base metal replacement ore bodies, geophysics has played a role in exploration in the CWT area. Unfortunately the documentation is extremely poor. A November 3, 1967 letter addressed to Continental Exploration from The Anaconda Company summarizes the results of an IP survey completed over Sections 23 and 26. Two photocopied maps for 1200 foot and 2000 foot search depths show a strong anomaly on the south central portion of Section 23, extending into the northern portion of Section 25 at the 2000 foot depth. The author of the letter speculates the results may have been influenced by fences, pipelines and buildings in the immediate area. (Ryan, 1967). A later letter dated December 30, 1973 from a Mr. Sidney Williams to Mr. Oliver Kilroy mentions two Anaconda drill holes: 12Q8 and 1Q78, suggesting this anomaly was followed up.

Mag Exploration Services Inc. contracted Hasbrouck Geophysics, Inc. to undertake a CSAMT/MT (Controlled Source Audio MagnetoTellurics / MagnetoTellurics) Geophysical Survey for copper mineralization on the CWT claims. The purpose of the survey is to map structure and possible mineral occurrences as well as determine suitability of the geophysical method for a detailed survey of the CWT claim block. The following summary of the program is taken from Hasbrouck's final report. (Hasbrouck, 2014).

UTM NAD 83 Zone 12 Figure 9. CSAMT-MT Station and Line Locations

The data was acquired with ARC Geophysics' *StrataGem EH4* CSAMT/MT system manufactured by Geometrics Inc. of San Jose, California. Electric dipoles and magnetometers are laid out in perpendicular directions (i.e., Ex, Ey, Hx and Hy) and both natural and transmitted frequencies are recorded from distant and non-polarized sources. The Geometrics *StrataGem EH-4* instrument was calibrated at the factory and required no field calibration. With the *StrataGem EH-4*, time-series of the four components of data (Ex, Ey, Hx, and Hy) were recorded for three overlapping frequency bands: 10 to 1000 Hz, 500 to 3000 Hz, and 750 to 92000 Hz. For each CSAMT/MT station, or sounding, the magnetic sensors and 20 meters long electric dipoles were oriented with a compass and prism, or by other means, so that all components in each direction were parallel (i.e., Ex and Hx were parallel as were Ey and Hy). Mineralization trends at nearby mines generally strike at about N60°E, therefore the Ex and Hx components were oriented at S60°W to N60°E which was parallel to assumed regional geologic and geoelectric strike, and also at approximately 35° to 45° to the predominant EM noise sources so as to minimize coupling.

A total of 105 separate CSAMT/MT soundings, at nominal spacings of 25 to 30 metres, were acquired along four lines as shown in Figures 8 and 9. The line locations were chosen to try to minimize EM noise from several large nearby power lines, metal buildings, and reinforced concrete structures, and to cross over or near the suspected previously mined or ore occurrence areas. Overall the CSAMT/MT data were considered good to very good quality with low natural signal amplitudes adversely affecting portions of all the frequency bands and some adverse influence from nearby EM noise sources particularly near the eastern end of the line. The further north or south one goes from the equator then the amplitude in the middle band, and also to a certain extent within the other bands, decreases. Although low natural signal amplitudes and EM noise were present within the survey area, it was possible to process the data in the tensor mode.

Depth sections from the Hasbrouck Report are shown as Figures 10a through 10d and the following descriptions of each depth section line are summarized from his report. From historical documents on the CWT Mine, mineralization occurs from depths of approximately 150 to 300 metres with thicknesses ranging from about 3 to 15 metres. Mineralization is generally along the contact between overlying Cretaceous arkose and underlying Paleozoic limestone, with the mineralization in the upper plate of the San Xavier thrust fault which is itself broken by intensive faulting. In the survey area it is expected that Tertiary granodiorite is beneath the San Xavier thrust.

Figure 10a. CSAMT-MT Line 1 Depth Section

Along line 1 (Figure 10a) the depth section indicates generally low resistivities from the surface to a depth of around 60 meters, except from about stations 6E to 1E where slightly higher resistivities are present but are still considered relatively low at less than about 100 ohmmeters. A deeper zone with slightly higher resistivities, but again relatively low at less than about 100 ohm-meters, approaches in places about 200 meters depth and is present from about stations 19 to 10. Within this deeper and lower resistivity zone from between about stations 19 and 18 to just beyond station 16 at depths ranging from about 150 to 200 meters there is a zone of even lower resistivities that may indicate the presence of mineralization or perhaps groundwater with increased mineral content. A similar lower resistivity zone is also present from between about stations 15 and 14 to between stations 11 and 10 at depths ranging from about 90 to 170 meters. Again, this anomalous zone may be due to either mineralization or higher mineral content groundwater. Between these two deeper anomalous zones (perhaps around station 15) there may be faulting, different mineralization or different groundwater mineral content as interpreted from the slight increases in resistivity values. Historical documents indicate that the mineralization is not continuous and that may be shown by these two separated anomalous zones. Steeply dipping possible faults extending from about 50 to 200+ meters depth appear present to the west between about stations 1E and 20 with a possible easterly dip and to the east between about stations 10 and 9 with a possible westerly dip. The granodiorite beneath the San Xavier thrust may be indicated on the depth section along line 1 as relatively higher resistivities (perhaps higher than approximately 500 ohm-meters) at depths greater than about 300 meters. Resistivities for Tertiary granodiorite generally range from about 500 to perhaps 2000 ohm-meters, but weathering may lower those resistivity values.

Figure 10b. CSAMT-MT Line 2 Depth Section

The modeled depth section along line 2 (Figure 10b) appears to be similar to line 1 with lower, near surface resistivities and also a deeper zone of lower resistivities. The near surface lower resistivities along line 2 are slightly higher, more discontinuous and extend deeper (100 to 150 meters) than along line 1. From about stations 14N to 8N, there is a zone of relatively lower resistivities that may indicate the presence of mineralization or perhaps groundwater with increased mineral content at depths ranging from approximately 150 to 220 meters. This deeper, lower resistivity zone may actually be two zones with the lowest resistivities extending from about stations 14N to 13N and 11N to 9N. It is difficult to identify faulting, although a steeply dipping fault with easterly dip may be present between about stations 21N and 20N. The granodiorite beneath the San Xavier thrust may be indicated on the depth section as relatively higher resistivities (perhaps higher than approximately 500 ohm-meters) at depths greater than about 300 meters.

Figure 10c. CSAMT-MT Line 3 Depth Section

The shallower portion of the modeled depth section along about the western three-quarters of line 3 (Figure 10c) appears to be similar to lines 1 and 2 with relatively continuous lower resistivity values for about the upper 50 or 60 meters and then becoming somewhat discontinuous with slightly higher resistivities to a depth of about 130 meters. However, the deeper low resistivity zones seen along lines 1 and 2 are not apparent along line 3. From about station 2N6 to the eastern end of the line (station 2N1), the lower resistivity near surface material is not present. A steeply dipping fault with a westerly dip is present between about stations 2N7 and 2N6, and extends from near the surface to a depth of approximately 150 meters. This interpreted fault may be somewhat similar to that seen near the eastern end of line 1. As along lines 1 and 2, the granodiorite beneath the San Xavier thrust may be indicated on the depth section as relatively higher resistivities (perhaps higher than approximately 500 ohmmeters) at depths greater than about 300 meters except near the eastern end of the line where the higher resistivity material appear to become shallower.

Figure 10d. CSAMT-MT Line 4 Depth Section

Line 4 (Figure 10d) is about 850 meters north of line 3 and has a relatively continuous zone of lower resistivities present from the surface to approximately 100 meters depth for about the western half of the line. Near the middle of the line (from between about stations 3N13 and 3N12 and between 3N11 and 3N10) the lower resistivities become slightly less deep and further to the east the near surface resistivity values become slightly higher. A possible indication of a steeply dipping fault is present near the east end of the line between stations 3N2 and 3N1. This possible fault may be similar to that seen along lines 1 and 3. As along the other lines, higher resistivities are present at depths greater than about 300 meters and may be an indication of granodiorite.

DRILLING

The Company has not completed any drilling on the Pima Zinc Property. The historical drill record is rather poor. Manning (1964) mentions 38 drill holes, 28 of which he states drilled by Continental Exploration. He gives intervals for some of the drill holes, which he used to calculate the 1964 resources that lead to the production decision. These intervals are shown in Table 4. There is a large scale plan map showing some of drill holes in the materials provided. The estimated locations of these drill collars are shown in Figure 11.

The author cannot comment on any drilling, sampling or recovery factors that could materially impact the accuracy or reliability of the results as the drilling was completed in the early 1960's and none of the core, logs or assays are available for the author to review. The author cannot comment on the relationship between sample length and true thickness of the mineralization as the drilling was completed in the early 1960's and the core and logs are not available to the author. The orientation of the mineralization is unknown.

Lens	Hole	Dilution	Ft. Thickness	⁰⁄₀ Zn	% Cu	% Pb	oz. Ag
C-7 Lens	C-23	4 ft dilution	20.0	4.45	0.73	0.45	1.88
C-7 Lens	C-22	3 ft dilution	10.0	6.60	0.78	nil	0.48
C-7 Lens	C-21	no dilution	23.5	3.10	0.67	nil	0.98
C-7 Lens	C-20	no dilution	10.5	9.40	0.21	nil	1.80
C-7 Lens	C-19	no dilution	20.5	5.44	1.60	0.10	0.57
C-7 Lens	C-15	no dilution	37.5	7.77	1.43	0.32	3.61
C-7 Lens	C-14	no dilution	14.5	3.76	1.82	0.10	4.83
C-7 Lens	C-7	no dilution	48.5	8.75	1.13	nil	0.71
C-7 Lens	PX-1	7 ft dilution	14.0	11.50	2.10	0.45	2.16
C-7 Lens	T-3	2 ft dilution	10.0	0.20	1.92	0.20	0.66
C-7 Lens	C-3	5 ft dilution	10.0	4.10	0.80	nil	0.86
C-7 Lens	C-2	10 ft dilution	18.0	12.50	2.02	0.67	2.83
C-7 Lens	C-4	3 ft dilution	13.0	14.30	0.77	1.30	3.55
T-12 Lens	C-7	5 ft dilution	10.0	7.60	0.84	nil	0.65
T-12 Lens	C-19	5 ft dilution	10.0	5.60	2.85	nil	1.20
T-12 Lens	C-22	no dilution	10.0	4.40	2.03	nil	2.18
T-18 Area	T-18	no dilution	32.0	7.40	0.40	nil	1.00
T-18 Area	C-14	no dilution	18.5	10.00	0.20	nil	1.40
T-3 Lens	T-3	2.5 ft dilution	16.0	5.10	0.19	2.70	2.90
T-3 Lens	C-8	no dilution	15.0	7.80	1.03	nil	0.62
T-3 Lens	C-9	4 ft dilution	10.0	nil	1.55	nil	1.06
T-12 Area C	T-12	5 ft dilution	9.0	10.70	0.55	3.20	3.80
T-12 Area C	T-12	no dilution	15.0	17.60	1.29	nil	1.07
T-12 Area C	C-10	2 ft dilution	12.0	3.50	0.03	1.10	0.54
T-12 Area C	C-11	no dilution	14.5	1.34	2.15	nil	2.00
T-12 Area C	C-3	5.5 ft dilution	9.0	4.60	66.00	nil	0.42
T-12 Area C	C-13	no dilution	12.5	5.80	0.52	0.33	0.54
T-12 Area C	C-9	no dilution	13.5	2.22	1.76	nil	0.72
C-2 Lens	C-2	5.5 ft dilution	9.9	3.10	0.76	nil	0.82
P-3 Lens	P-3	no dilution	22.0	13.70	0.37	nil	1.09

Table 4. Historic Drill Intervals From Manning (1964)

-32-SAMPLE PREPARATION, ANALYSIS AND SECURITY

Pima Zinc Corp. has yet to conduct any exploration on the Pima Zinc property. The author is therefore documenting the sample preparation, analysis and security for the exploration programs completed on the Pima Zinc property by prior owner MAG Exploration Services Inc..

The Mag Exploration Services Inc. samples were collected by experienced Arizona geologists Brian Beck and Joe Wilkins, as well as check samples taken by the author. Mr. Beck and the author's 2012 samples were taken from the field back to the Mag Exploration Services Inc. office in Apache Junction, Arizona where they were stored in 5 gallon plastic buckets and subsequently shipped to Acme Analytical Laboratories in Vancouver, B.C. Mr. Wilkins samples were stored at his home in Tucson, Arizona on a daily basis until the end of his field work and subsequently personally delivered to Skyline Assayers and Laboratories in Tucson. The author kept possession of is 2017 samples and personally delivered them to ALS Minerals in North Vancouver, B.C. upon his return from the property visit. ACME Analytical Laboratories Ltd. in Vancouver is certified compliant with the International Standards Organization (ISO) 9001:2000 Model for Quality Assurance. Skyline Assayers and Laboratories in Tucson is certified compliant with the International Standards Organization (ISO) 17025:2005 Model for Quality Assurance. Acme is independent of Scorpion Resources Inc.

At Acme, rock samples are crushed to 70% passing through a 10 mesh screen. A 250 gram split is pulverized to 95% passing through a 150 mesh screen. A 30gm sub-sample of the pulverized pulp is leached with 90ml or 180ml of 2-2-2 HCl-HNO₃-H₂O solution at 95°C for one hour, followed by dilution to 300ml or 600ml and analysis utilizing 24 element ICP-ES.

At Skyline, rock samples are crushed to 70% passing through a 10 mesh screen. A 250 gram split is pulverized to 95% passing through a 150 mesh screen. Gold is obtained by Fire Assay with Atomic Absorption Spectroscopy finish utilizing a 30 gram charge. Silver is first obtained by aqua regia with Atomic Absorption finish. All assays over 150 ppm Ag are then obtained by Fire Assay with gravimetric finish utilizing a 30 gram charge. Copper, molybdenum, lead and zinc are determined by ICP analysis as part of a multi element package.

ALS Minerals in North Vancouver is certified compliant and accredited with the Standards Council of Canada ISO/IEC 17025:2005 International Standards Organization Model for Quality Assurance. At the ALS Minerals North Vancouver Lab each sample is logged in the tracking system, weighed and dried. Soil samples are first dried at 60°C and then dry-sieved using a 180 micron (Tyler 80 mesh) screen. Rock samples are finely crushed to better than 70 % passing a 2 mm (Tyler 9 mesh, US Std. No.10) screen after which a split of up to 250 g is taken and pulverized to better than 85 % passing a 75 micron (Tyler 200 mesh, US Std. No. 200) screen.

The 2017 samples were analyzed via the AuME procedure, where a finely pulverised sample (25 – 50 g) is digested in a mixture of 3 parts hydrochloric acid and 1 part nitric acid (aqua regia). This acid mixture generates nascent chlorine and nitrosyl chloride, which will dissolve free gold and gold compounds such as calaverite, AuTe₂. The dissolved gold is complexed and extracted with Kerosene/DBS and determined by graphite furnace AAS. Alternatively gold is determined by ICPMS directly from the digestion liquor. This method allows for the simple and economical addition of extra elements by running the digestion liquor through the ICPAES or ICPMS.

	CDN-CM-22	CDN-ME-14	CDN-CGS-26
	ppb Au	ppm Ag	ppb Au
Range	646-790	38.1-46.5	1530-1750
Analysis 1	649	40	1650
Analysis 2	718	42.3	1640

Table 5. CDN Standard Performance at Skyline Assayers

-34-

Quality control procedures included the utilization of certified Standards check samples prepared by CDN Resources Laboratories of Langley, B.C., but only for the samples submitted to Skyline Assayers. The analyses completed on all three CDN standards reported within range. Since the author took check samples he determined a standard was not required and Mag Exploration Services Inc. did not submit a standard with Mr. Beck's samples, which appears to be an oversight.

Plate 2. CWT Historic Mine Site

CWT Historic Drill Collar

CWT Mine Tailings

The author feels that sample preparation, security and analytical procedures for the preliminary surveys on the Pima Zinc property were adequate for the exploration program documented in this technical report.

DATA VERIFICATION

The author has not been able to verify the historic data. The bulk of the drilling data is from programs completed in the 1960's, almost 50 years ago. Chips and core are not available, drill sites are long since abandoned and reclaimed by nature. Drill logs are lost as are assay certificates.

However, the author has no doubt the mining was completed and the sampling and drilling was completed. The exploration work would have been completed largely by professional geoscientists to the standards of the day. The author has walked the property and seen firsthand the mine dumps and signs of sulfide mineralization.

The check sampling completed by the author in 2012 and 2017 gives him confidence in the sampling completed by Mr. Beck and Mr. Wilkins and allows him to rely on the assay data from their respective sampling programs.

The author feels the historical data, combined with the author's examination of the property is adequate for this technical report and the proposed exploration program.

MINERAL PROCESSING AND METALLURGICAL TESTING

There has been historic mineral processing or metallurgical testing undertaken on the Pima Zinc property in the 1960's in advance of construction of a 500 ton per day mill. All that was available to the author is a second hand report indicating laboratory scale ore dressing tests on composite drill core samples were completed by the Western Knapp Engineering Division of Arthur G. McKee & Company.

There were two composite lots: a 185 pound sample from the upper ore zone and a 285 pound sample from the lower ore zone. The tests indicated that portions of the 1960's ore body was somewhat refractory to simple floatation ore dressing techniques. The tests indicated satisfactory results could be obtained in the production of zinc and copper concentrates by utilizing a flexible flow sheet in the design of the floatation circuit. A 500 ton per day mill was designed based on these tests.

The author is not aware of any mineral processing or metallurgical testing since that time.

MINERAL RESOURCES AND MINERAL RESERVE ESTIMATES

There are presently no mineral reserves or mineral resources on the Pima Zinc property.

ADJACENT PROPERTIES

Though this report is not relying on information from adjacent properties, there are three mines within a 15 kilometre radius of the Pima Zinc Property. A brief summary of each of the mines follows. The qualified person has been unable to verify the information from the three mines and the information is not necessarily indicative of the mineralization on the Pima Zinc property.

East Pima – Mission Complex (http://www.mindat.org/loc-32002.html)

The mine complex is operated by American Smelting and Refining Corp. (ASARCO). The mines have been in production since 1961 after discovery in 1953.

The deposit lies in a sequence of altered, complexly folded, and faulted Paleozoic limestone and Triassic sedimentary and volcanic formations intruded by Laramide and Tertiary intrusives. The host rock unit is the Scherrer Formation. There is a thin secondary enrichment zone. Mineralization is a skarn-related copper porphyry deposit with seams and disseminations of copper carbonates and sulfides with minor zinc, lead and molybdenum minerals in a pyrometasomatic deposit. The ore zone is 1,609.3 meters long, 804.65 meters wide, depth to top of 60.96 meters, depth to bottom of 213.36 meters, at 152.4 meters thick, and is flat-lying. There was a 40 foot thick zone of supergene enrichment clays, malachite, native copper; oxidation that occurred to about 200 feet along some faults; there was also a calcite zone 20 feet thick; and late fluorite in calcite-scheelite-galena-pyrite. PGM recovered as a by-product at the smelter. The bulk of the replacement ore occurred in garnet and pyroxene tactites. There was a 2 mile wide alteration halo.

Workings are a large open pit operation overall 2,225 meters long, 2,194 meters wide and 302 meters deep. The above figures represent the merged product of the Mission, Pima, and Eisenhower Mines into a single, large open pit. The operation produced over 77,600,000 tons of ore from 1961 through 1972. This ore averaged 0.7% copper, 0.13 ounces per ton (4 grams per tonne) silver and considerable by-product zinc, molybdenum and lead. There was very little gold.

Sierrita Mine Complex (http://www.mindat.org/loc-22945.html)

The mine complex is operated by Freeport McMoRan Copper and Gold Inc. The mines have been in production since 1970 after discovery in 1960.

The deposit lies in Triassic to late Laramide andesite porphyry, quartz monzonite, quartz latite, quartz diorite, and quartz monzonite porphyry, as well as a breccia pipe. Associated rock units are the Ruby Star Quartz Monzonite Porphyry; and the Harris Ranch Quartz Monzonite.

Mineralization is a V-shaped ore body that is part of the Esperanza-Sierrita deposit. Ore is superficially oxidized and consists of disseminated chalcopyrite and pyrite with copper and molybdenum sulfides in seams and fractures in a large V-shaped ore body. Ore control is the fractures and seams plus the breccia pipe. Alteration is potassic, phyllic, argillic with supergene effects, propylitic.

Workings are an open pit operation 1,524 meters long and 914.4 meters wide. Pre-mine stripping began in 1968 with initial production in 1970. Starting in 1970, production through 1972 has been some 68,000,000 tons of Cu-Mo ore. In 1980 produced 90,000 tons of ore and 135,000 tons of waste daily. Average ore grade was about 0.24% copper, 0.03 ounces per ton (1 gram per tonne) silver, 0.016% MoS₂, and trace amounts of gold, lead and zinc.

Twin Butte Complex (http://www.mindat.org/loc-3376.html)

The Twin Butte mine complex is owned by Freeport McMoRan Copper and Gold Inc. The mine is now idle although it is being explored by Freeport for new reserves.

The deposit lies in a folded and faulted complex of Paleozoic limestone, silicated limestone, and impure argillaceous limestone; Cretaceous siltstone, arkose, tuffs, and quartzites, and Laramide intrusive quartz monzonite. Host rock units include the Angelica Arkose and the Concha Limestone.

Mineralization is disseminated, fracture filling and bunchy replacements of copper and molybdenum minerals, with minor lead and zinc. There was erratic enrichment in the upper oxidized zone. Ore control was along contacts of dike-like quartz monzonite porphyry with sedimentary rocks. Ore concentration was the secondary enrichment of sulfides. Alteration includes a 200 foot thick oxide zone and skarn recrystallization, biotitization, and sericitization. The ore zone depth to top was 121.92 meters and depth to bottom was 243.84 meters.

Workings were an open pit operation at 1,524 meters long, 1,219 meters wide and 244 meters deep. Production from 1965 through 1972 amounted to some 29 million tons of ore averaging about 0.8% copper, 0.1 ounces per ton (3 grams per tonne) silver and minor gold, molybdenum and lead.

OTHER RELEVANT DATA AND INFORMATION

There is no additional relevant data or information known that is not disclosed on the Pima Zinc property.

INTERPRETATION AND CONCLUSIONS

The Pima Zinc property is situated within an area of high geological potential, the Basin and Range province of the southwestern United States. The property lies within a 15 kilometre radius of three mines, two of which are still producing. Two of the three mines produced from hidden ore bodies lies at 60 to 120 metres of depth. The drilling and exploration completed at the old CWT mine clearly showed the favourable carbonate stratigraphy underlies parts of the present Pima Zinc property.

The sampling completed by MAG Exploration Services and the author clearly show mineralization is present on the Pima Zinc property as do the numerous old workings. All of this information attests to the potential of the Pima Zinc property.

The ground geophysics survey completed by Hasbrouck Geophysics, Inc. has identified anomalous zones on each of the four lines completed that may represent buried mineralization. These anomalies will need to be followed up.

The author is not aware of any significant risks or uncertainties that could reasonably be expected to affect the reliability or confidence in the exploration information. The author is not aware of any reasonably foreseeable impacts of these risks and uncertainties on the project's potential economic viability or continued viability.

The best exploration method for buried sulfide ore bodies is airborne geophysics, like a Time Domain EM system. There are a number of power lines, buried utility pipes and buildings on the Pima Zinc property so the geophysical contractor will need to be cognizant of that fact when he lays out the flying grid and processes the data. Once sulfide targets have been identified, a program of diamond drilling should be initiated to test the targets.

RECOMMENDATIONS

An airborne geophysical survey is recommended for the Pima Zinc Property covering the main claim block. A total of 220 line kilometres at 100 metre line spacings is proposed at an azimuth of 045°. A national geophysical contract has provided a an approximate quote of US\$105,000.

-39-REFERENCES

Beck, B. (2012). Overview of Mineralized Structures, CWT Project. Internal Memorandum for Mag Exploration Services Inc.

Cooper, J.R. (1973). Geologic Map of the Twin Buttes Quadrangle, Southwest of Tucson, Pima County, Arizona. United States Geological Survey Miscellaneous Geologic Investigations Map I-745.

Cox, D.P. and Singer, D.A. (1992). Mineral Deposit Models. United States Geological Survey Bulletin 1693.

Cox, M.W. (1964). Letter Report on Geology and Ore Reserves. CWT Project – Pima District, Pima County Arizona. Private Report for Continental Exploration, Inc.

Hasbrouck Geophysics, Inc. (2014). Final Report CWT Claims, Arizona. 2013 and 2014 CSAMT/MT Geophysical Survey. Private Report for Mag Exploration Services Inc.

Reynolds, S.J. (2011). Geological Setting of Arizona. http://reynolds.asu.edu/azgeomap/azgeomap_home.htm

Ryan, G.S. (1967). Letter from The Anaconda Company to Continental Exploration on the IP Results from Sections 23 and 25.

State of Arizona Department of Mineral Resources Field Engineers Reports on CWT Mine: Johnson 07/07/1964; Johnson 09/09/1964; Johnson 13/01/1965; Johnson 10/02/1965; Johnson 10/03.1965; Johnson 12/05/1965; Irwin 26/11/1965; Irwin 02/06/1966; Irwin 30/09/1966; Irwin 18/11/1966; Irwin 14/06/1967.

Wilkins, J. (2013). Dogtown Mines, Pima County Arizona. Notes. Internal Memorandum for Mag Exploration Services Inc.

-40-CERTIFICATE FOR R. TIMOTHY HENNEBERRY

I, R.Tim Henneberry, P.Geo., a consulting geologist residing at 2446 Bidston Road, Mill Bay, B.C. VOR 2P4 do hereby certify that: I am the Qualified Person for:

Pima Zinc Corp.

520 – 65 Queen Street West Toronto, Ontario M5H 2M5

I earned a Bachelor of Science Degree majoring in geology from Dalhousie University, graduating in May 1980.

I am registered with the Association of Professional Engineers and Geoscientists in the Province of British Columbia as a Professional Geoscientist.

I have practiced my profession continuously for 38 years since graduation.

I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101. My relevant experience for the purpose of this Technical Report is:

• 37 years of exploration experience for base and precious metals in the Western Cordillera

I am responsible for all items within the technical report titled "43-101 Technical Report Pima Zinc Property" and dated July 26, 2018 relating to the Pima Zinc property. I visited the Pima Zinc property on November 10, 2017 for one day. I have previously visited the Pima Zinc property on April 11, 2012 and again on June 9, 2013 each for one day.

I have had prior involvement with the property that is the subject of the Technical Report as I wrote a 2014 Technical Report for Scorpion Resources Inc.

As of July 26, 2018, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

I am independent of the issuer and the two property vendor's after applying all of the tests in section 1.5 of NI 43-101.

I have read NI 43-101 and Form 43-101F, and the Technical Report has been prepared in compliance with that instrument and form.

I make this Technical Report effective July 26, 2018.

"signed and sealed"

R.Tim Henneberry, P.Geo

-41-APPENDIX 1 – COMPLETE LIST OF TENURES

Serial Number	Mer Twn Rng Sec	Claim Name	Owner	Location Date	Latest Assessment
AMC446336	14 0170S 0120E 022	SHR 001	Childs Geoscience Inc.	09-03-2017	2018
AMC446337	14 0170S 0120E 022	SHR 002	Childs Geoscience Inc.	09-03-2017	2018
AMC446338	14 0170S 0120E 022	SHR 003	Childs Geoscience Inc.	09-03-2017	2018
AMC446339	14 0170S 0120E 022	SHR 004	Childs Geoscience Inc.	09-03-2017	2018
AMC446340	14 0170S 0120E 022	SHR 005	Childs Geoscience Inc.	09-03-2017	2018
AMC446341	14 0170S 0120E 022	SHR 006	Childs Geoscience Inc.	09-03-2017	2018
AMC446342	14 0170S 0120E 022	SHR 007	Childs Geoscience Inc.	09-03-2017	2018
AMC446343	14 0170S 0120E 022	SHR 009	Childs Geoscience Inc.	09-03-2017	2018
AMC446344	14 0170S 0120E 023	SHR 011	Childs Geoscience Inc.	09-03-2017	2018
AMC446345	14 0170S 0120E 023	SHR 013	Childs Geoscience Inc.	09-03-2017	2018
AMC446346	14 0170S 0120E 023	SHR 015	Childs Geoscience Inc.	09-03-2017	2018
AMC446347	14 0170S 0120E 023	SHR 017	Childs Geoscience Inc.	09-03-2017	2018
AMC446348	14 0170S 0120E 022	SHR 019	Childs Geoscience Inc.	09-03-2017	2018
AMC446349	14 0170S 0120E 022	SHR 020	Childs Geoscience Inc.	09-03-2017	2018
AMC446350	14 0170S 0120E 022	SHR 021	Childs Geoscience Inc.	09-03-2017	2018
AMC446351	14 0170S 0120E 022	SHR 022	Childs Geoscience Inc.	09-03-2017	2018
AMC446352	14 0170S 0120E 022	SHR 023	Childs Geoscience Inc.	09-03-2017	2018
AMC446353	14 0170S 0120E 022	SHR 024	Childs Geoscience Inc.	09-03-2017	2018
AMC446354	14 0170S 0120E 022	SHR 025	Childs Geoscience Inc.	09-03-2017	2018
AMC446355	14 0170S 0120E 022	SHR 026	Childs Geoscience Inc.	09-03-2017	2018
AMC446356	14 0170S 0120E 022, 023	SHR 027	Childs Geoscience Inc.	09-03-2017	2018
AMC446357	14 0170S 0120E 023	SHR 028	Childs Geoscience Inc.	09-03-2017	2018
AMC446358	14 0170S 0120E 023	SHR 029	Childs Geoscience Inc.	09-03-2017	2018
AMC446359	14 0170S 0120E 023	SHR 035	Childs Geoscience Inc.	09-03-2017	2018
AMC446360	14 0170S 0120E 022	SHR 037	Childs Geoscience Inc.	09-04-2017	2018
AMC446361	14 0170S 0120E 022	SHR 038	Childs Geoscience Inc.	09-04-2017	2018
AMC446362	14 0170S 0120E 022	SHR 039	Childs Geoscience Inc.	09-04-2017	2018
AMC446363	14 0170S 0120E 022	SHR 040	Childs Geoscience Inc.	09-04-2017	2018
AMC446364	14 0170S 0120E 022	SHR 041	Childs Geoscience Inc.	09-03-2017	2018
AMC446365	14 0170S 0120E 022	SHR 042	Childs Geoscience Inc.	09-03-2017	2018
AMC446366	14 0170S 0120E 022	SHR 043	Childs Geoscience Inc.	09-03-2017	2018
AMC446367	14 0170S 0120E 022	SHR 044	Childs Geoscience Inc.	09-03-2017	2018
AMC446368	14 0170S 0120E 023	SHR 046	Childs Geoscience Inc.	09-03-2017	2018
AMC446369	14 0170S 0120E 023	SHR 047	Childs Geoscience Inc.	09-04-2017	2018
AMC446370	14 0170S 0120E 023	SHR 049	Childs Geoscience Inc.	09-04-2017	2018
AMC446371	14 0170S 0120E 023	SHR 052	Childs Geoscience Inc.	09-04-2017	2018
AMC446372	14 0170S 0120E 023	SHR 053	Childs Geoscience Inc.	09-03-2017	2018
AMC446373	14 0170S 0120E 024	SHR 055	Childs Geoscience Inc.	09-03-2017	2018
AMC446374	14 0170S 0120E 024	SHR 056	Childs Geoscience Inc.	09-03-2017	2018

Serial Number	Mer Twn Rng Sec	Claim Name	Owner	Location Date	Latest Assessment
AMC446375	14 0170S 0120E 022	SHR 057	Childs Geoscience Inc.	09-04-2017	2018
AMC446376	14 0170S 0120E 015, 022	SHR 058	Childs Geoscience Inc.	09-04-2017	2018
AMC446377	14 0170S 0120E 015, 022	SHR 059	Childs Geoscience Inc.	09-04-2017	2018
AMC446378	14 0170S 0120E 015, 022	SHR 061	Childs Geoscience Inc.	09-03-2017	2018
AMC446379	14 0170S 0120E 015, 022	SHR 062	Childs Geoscience Inc.	09-03-2017	2018
AMC446380	14 0170S 0120E 014, 023	SHR 065	Childs Geoscience Inc.	09-03-2017	2018
AMC446381	14 0170S 0120E 014, 023	SHR 066	Childs Geoscience Inc.	09-04-2017	2018
AMC446382	14 0170S 0120E 014, 023	SHR 068	Childs Geoscience Inc.	09-04-2017	2018
AMC446383	14 0170S 0120E 014, 023	SHR 069	Childs Geoscience Inc.	09-04-2017	2018
AMC446384	14 0170S 0120E 014, 023	SHR 071	Childs Geoscience Inc.	09-04-2017	2018
AMC446385	14 0170S 0120E 014, 023	SHR 072	Childs Geoscience Inc.	09-03-2017	2018
AMC446386	14 0170S 0120E 013, 014, 023, 024	SHR 073	Childs Geoscience Inc.	09-03-2017	2018
AMC446387	14 0170S 0120E 013, 024	SHR 075	Childs Geoscience Inc.	09-03-2017	2018
AMC446388	14 0170S 0120E 013, 024	SHR 076	Childs Geoscience Inc.	09-03-2017	2018
AMC446389	14 0170S 0120E 015	SHR 078	Childs Geoscience Inc.	09-04-2017	2018
AMC446390	14 0170S 0120E 015	SHR 079	Childs Geoscience Inc.	09-04-2017	2018
AMC446391	14 0170S 0120E 015	SHR 080	Childs Geoscience Inc.	09-04-2017	2018
AMC446392	14 0170S 0120E 015	SHR 081	Childs Geoscience Inc.	09-04-2017	2018
AMC446393	14 0170S 0120E 015	SHR 083	Childs Geoscience Inc.	09-04-2017	2018
AMC446394	14 0170S 0120E 014, 015	SHR 084	Childs Geoscience Inc.	09-05-2017	2018
AMC446395	14 0170S 0120E 014	SHR 085	Childs Geoscience Inc.	09-05-2017	2018
AMC446396	14 0170S 0120E 014	SHR 087	Childs Geoscience Inc.	09-05-2017	2018
AMC446397	14 0170S 0120E 014	SHR 089	Childs Geoscience Inc.	09-04-2017	2018
AMC446398	14 0170S 0120E 014	SHR 090	Childs Geoscience Inc.	09-04-2017	2018
AMC446399	14 0170S 0120E 014	SHR 092	Childs Geoscience Inc.	09-04-2017	2018
AMC446400	14 0170S 0120E 013, 014	SHR 093	Childs Geoscience Inc.	09-04-2017	2018
AMC446401	14 0170S 0120E 013	SHR 095	Childs Geoscience Inc.	09-04-2017	2018
AMC446402	14 0170S 0120E 013	SHR 096	Childs Geoscience Inc.	09-04-2017	2018
AMC446403	14 0170S 0120E 015	SHR 098	Childs Geoscience Inc.	09-04-2017	2018
AMC446404	14 0170S 0120E 015	SHR 099	Childs Geoscience Inc.	09-04-2017	2018
AMC446405	14 0170S 0120E 015	SHR 100	Childs Geoscience Inc.	09-04-2017	2018
AMC446406	14 0170S 0120E 015	SHR 102	Childs Geoscience Inc.	09-04-2017	2018
AMC446407	14 0170S 0120E 015	SHR 103	Childs Geoscience Inc.	09-04-2017	2018
AMC446408	14 0170S 0120E 015	SHR 105	Childs Geoscience Inc.	09-04-2017	2018
AMC446409	14 0170S 0120E 014	SHR 107	Childs Geoscience Inc.	09-05-2017	2018
AMC446410	14 0170S 0120E 014	SHR 108	Childs Geoscience Inc.	09-05-2017	2018
AMC446411	14 0170S 0120E 014	SHR 110	Childs Geoscience Inc.	09-04-2017	2018
AMC446412	14 0170S 0120E 014	SHR 112	Childs Geoscience Inc.	09-04-2017	2018
AMC446413	14 0170S 0120E 014	SHR 114	Childs Geoscience Inc.	09-04-2017	2018
AMC446414	14 0170S 0120E 013, 014	SHR 115	Childs Geoscience Inc.	09-04-2017	2018
AMC446415	14 0170S 0120E 013	SHR 117	Childs Geoscience Inc.	09-04-2017	2018
AMC446416	14 0170S 0120E 013	SHR 118	Childs Geoscience Inc.	09-04-2017	2018

Pima Zinc Project

-43-	
------	--

Serial Number	Mer Twn Rng Sec	Claim Name	Owner	Location Date	Latest Assessment
AMC446417	14 0170S 0120E 015	SHR 120	Childs Geoscience Inc.	09-04-2017	2018
AMC446418	14 0170S 0120E 015	SHR 121	Childs Geoscience Inc.	09-04-2017	2018
AMC446419	14 0170S 0120E 015	SHR 122	Childs Geoscience Inc.	09-06-2017	2018
AMC446420	14 0170S 0120E 015	SHR 123	Childs Geoscience Inc.	09-11-2017	2018
AMC446421	14 0170S 0120E 015	SHR 124	Childs Geoscience Inc.	09-04-2017	2018
AMC446422	14 0170S 0120E 015	SHR 126	Childs Geoscience Inc.	09-04-2017	2018
AMC446423	14 0170S 0120E 015	SHR 127	Childs Geoscience Inc.	09-04-2017	2018
AMC446424	14 0170S 0120E 014, 015	SHR 129	Childs Geoscience Inc.	09-04-2017	2018
AMC446425	14 0170S 0120E 014	SHR 130	Childs Geoscience Inc.	09-04-2017	2018
AMC446426	14 0170S 0120E 014	SHR 133	Childs Geoscience Inc.	09-04-2017	2018
AMC446427	14 0170S 0120E 014	SHR 134	Childs Geoscience Inc.	09-04-2017	2018
AMC446428	14 0170S 0120E 014	SHR 136	Childs Geoscience Inc.	09-05-2017	2018
AMC446429	14 0170S 0120E 014	SHR 137	Childs Geoscience Inc.	09-05-2017	2018
AMC446430	14 0170S 0120E 010, 015	SHR 139	Childs Geoscience Inc.	09-06-2017	2018
AMC446431	14 0170S 0120E 010, 015	SHR 140	Childs Geoscience Inc.	09-06-2017	2018
AMC446432	14 0170S 0120E 010, 015	SHR 143	Childs Geoscience Inc.	09-06-2017	2018
AMC446433	14 0170S 0120E 010	SHR 144	Childs Geoscience Inc.	09-06-2017	2018
AMC446434	14 0170S 0120E 010, 011	SHR 145	Childs Geoscience Inc.	09-09-2017	2018
AMC446435	14 0170S 0120E 010, 011, 014, 015	SHR 146	Childs Geoscience Inc.	09-04-2017	2018
AMC446436	14 0170S 0120E 011, 014	SHR 147	Childs Geoscience Inc.	09-04-2017	2018
AMC446437	14 0170S 0120E 011, 014	SHR 148	Childs Geoscience Inc.	09-04-2017	2018
AMC446438	14 0170S 0120E 011, 014	SHR 149	Childs Geoscience Inc.	09-04-2017	2018
AMC446439	14 0170S 0120E 011, 014	SHR 150	Childs Geoscience Inc.	09-04-2017	2018
AMC446440	14 0170S 0120E 011, 014	SHR 152	Childs Geoscience Inc.	09-05-2017	2018
AMC446441	14 0170S 0120E 011, 014	SHR 154	Childs Geoscience Inc.	09-05-2017	2018
AMC446442	14 0170S 0120E 010	SHR 158	Childs Geoscience Inc.	09-06-2017	2018
AMC446443	14 0170S 0120E 010	SHR 159	Childs Geoscience Inc.	09-06-2017	2018
AMC446444	14 0170S 0120E 010	SHR 160	Childs Geoscience Inc.	09-07-2017	2018
AMC446445	14 0170S 0120E 010, 011	SHR 162	Childs Geoscience Inc.	09-07-2017	2018
AMC446446	14 0170S 0120E 011	SHR 164	Childs Geoscience Inc.	09-07-2017	2018
AMC446447	14 0170S 0120E 011	SHR 165	Childs Geoscience Inc.	09-07-2017	2018
AMC446448	14 0170S 0120E 011	SHR 166	Childs Geoscience Inc.	09-11-2017	2018
AMC446449	14 0170S 0120E 011	SHR 167	Childs Geoscience Inc.	09-07-2017	2018
AMC446450	14 0170S 0120E 011	SHR 168	Childs Geoscience Inc.	09-05-2017	2018
AMC446451	14 0170S 0120E 011	SHR 169	Childs Geoscience Inc.	09-05-2017	2018
AMC446452	14 0170S 0120E 011, 012	SHR 172	Childs Geoscience Inc.	09-11-2017	2018
AMC446453	14 0170S 0120E 010	SHR 173	Childs Geoscience Inc.	09-09-2017	2018
AMC446454	14 0170S 0120E 010	SHR 174	Childs Geoscience Inc.	09-07-2017	2018
AMC446455	14 0170S 0120E 010	SHR 175	Childs Geoscience Inc.	09-07-2017	2018

-44-

Serial Number	Mer Twn Rng Sec	Claim Name	Owner	Location Date	Latest Assessment
AMC446456	14 0170S 0120E 010	SHR 176	Childs Geoscience Inc.	09-07-2017	2018
AMC446457	14 0170S 0120E 010	SHR 177	Childs Geoscience Inc.	09-07-2017	2018
AMC446458	14 0170S 0120E 010	SHR 178	Childs Geoscience Inc.	09-05-2017	2018
AMC446459	14 0170S 0120E 010, 011	SHR 180	Childs Geoscience Inc.	09-05-2017	2018
AMC446460	14 0170S 0120E 011	SHR 182	Childs Geoscience Inc.	09-07-2017	2018
AMC446461	14 0170S 0120E 011	SHR 184	Childs Geoscience Inc.	09-07-2017	2018
AMC446462	14 0170S 0120E 011	SHR 186	Childs Geoscience Inc.	09-07-2017	2018
AMC446463	14 0170S 0120E 003, 010	SHR 188	Childs Geoscience Inc.	09-09-2017	2018
AMC446464	14 0170S 0120E 003, 010	SHR 189	Childs Geoscience Inc.	09-09-2017	2018
AMC446465	14 0170S 0120E 003, 010	SHR 190	Childs Geoscience Inc.	09-09-2017	2018
AMC446466	14 0170S 0120E 003, 010	SHR 191	Childs Geoscience Inc.	09-09-2017	2018
AMC446467	14 0170S 0120E 003, 010	SHR 192	Childs Geoscience Inc.	09-09-2017	2018
AMC446468	14 0170S 0120E 010	SHR 194	Childs Geoscience Inc.	09-09-2017	2018