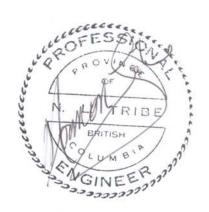
LONNIE RARE EARTH ELEMENTS PROPERTY


MANSON CREEK - GERMANSON LANDING AREA NORTHERN B.C.

Latitude 55°41'N (UTM 6,171,300mN) Longitude 124°23'W (UTM 413,300mE) MAP 93N/9W

FOR

RARA TERRA CAPITAL CORP

Suite 1160 - 1100 Melville St.,
Vancouver, BC Canada
V6E 4A6
604 681 7822

Norm Tribe, P.Eng., N.Tribe & Associates Ltd. 2611 Springfield Rd. Kelowna B.C., V1X 1B9 (250) 860 7661 March 10, 2011 Effective date, March 10, 2011

LONNIE RARE EARTH ELEMENTS PROPERTY

MANSON CREEK - GERMANSON LANDING AREA NORTHERN B.C.

Table of Contents

EXECUTIVE SUMMARY 1
INTRODUCTION AND TERMS OF REFERENCE
RELIANCE ON OTHER EXPERTS4
PROPERTY DESCRIPTION AND LOCATION 8
Location of Mineralization and Workings
Terms of Agreements 9
ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE
AND PHYSIOGRAPHY10
HISTORY11
GEOLOGICAL SETTING
Regional Geological Setting
Property and Local Geology with Lithology
DEPOSIT TYPES
MINERALIZATION
EXPLORATION
Soils Geochemistry. 20
Airborne Geophysics
DRILLING
SAMPLING METHOD AND APPROACH24
Background Information and Methodology
SAMPLE PREPARATION, ANALYSES AND SECURITY 25

ASSAY CERTIFICATES	. 25
DATA VERIFICATION	. 32
MINERAL PROCESSING AND METALLURGICAL TESTING	33
MINERAL RESOURCE ESTIMATE	46
Data Analysis	46
Mineralization Controls	46
Resource Calculation Parameters	47
Statistical Analyses	47
Results	47
ADJACENT PROPERTIES	52
OTHER RELEVANT INFORMATION	52
INTERPRETATION AND CONCLUSIONS	53
Risk Analysis	53
Site Inspection	54
RECOMMENDATIONS	56
Budget	58
REFERENCES	60
DATE AND SIGNATURE PAGE	60
CERTIFICATE	61
Appendix I	63
Appendix II	64
Appendix III	65

LONNIE RARE EARTH ELEMENTS PROPERTY

MANSON CREEK - GERMANSON LANDING AREA NORTHERN B.C.

List of Illustrations

Figure #1 Location Map, Manson Creek, North Central B.C., Canada	5
Figure #2 Location Map Lonnie Deposit Manson Creek B.C., Canada	6
Figure #3 Claim Map Lonnie Property	7
Figure #4 Regional Geology Map.	14
Figure #5 Local Geology Map. LONNIE 1 (Map Packet for larger scale drawing.)	15
Figure # 5a Local LONNIE 2 Local Geology	16
Figure #6 Soils Geochemistry Survey for Niobium with topography. (See Map Packet)	20
Figure #7 Title Page Lonnie #1 Cross Sections	34
Figure #7a Cross Sections 590SW of the drilling completed in the 1979 diamond drilling program	35
Figure #7b Cross Section 560SW	36
Figure #7c Cross Section 530SW	37
Figure #7d Cross Section 500SW	38
Figure #7e Cross Section400SW	39
Figure #8 Title Page Lonnie #2 Cross Sections of the drilling completed in the 2009 diamond drilling	g
program	40
Figure #8a Cross Sections400SE.	41
Figure #8b Cross Section 500SE	42
Figure #8c Cross Section 530SE	43
Figure #8d Cross Section 560SE	44
Figure #8e Cross Section590SE	45
Figure #9 Lonnie Prospect Total Field Magnetics with Regional Geology.	22

MANSON CREEK - GERMANSON LANDING AREA NORTHERN B.C.

List of Appendices

APPENDIX I PROPERTY DOCUMENTS

APPENDIX II ASSAYS

APPENDIX III DRILL CORE LOGS

APPENDIX IV PRELIMINARY FIELD RECONNAISSANCE AND POST IMPACT ASSESSMENT REPORT

APPENDIX V AIRBORNE GEOPHYSICAL SURVEY REPORT – LONNIE PROPERTY

LONNIE RARE EARTH ELEMENTS PROPERTY

MANSON CREEK - GERMANSON LANDING AREA

NORTHERN B.C.

EXECUTIVE SUMMARY

This report is written at the request of John Veltheer, Director, representing Alexander Helmel, Chief Executive Officer, of Rara Terra Capital Corp., 1160 - 1100 Melville St., Vancouver, B.C., Canada, V6E 4A6, for the purpose of providing a resource evaluation of the cabonatite deposits located on Granite Creek, south east of Manson Creek, in North Central, British Columbia. The Lonnie Property is located 8 kilometers (5 miles) east of the village of Manson Creek, some 3 hours drive north of Fort St. James. The property consists of 8 claims, covers 1604.62 ha., and is situated at latitude 55°41'N, longitude 124°23'E, (UTM 413,300E, 6,171,300N), on NTS Map Sheet 93N/9W. Altitude on the property varies between 3200 feet and 4000 feet. The property is under an option by Rara Terra Capital Corporation, to purchase 60% interest in the property from American Manganese Inc. Rara Terra Capital Corporation has entered into a letter of intent, dated November 29, 2010, with American Manganese Inc., pursuant to which Rara Terra can acquire up to 60% interest of the 100% interest of American Manganese Inc in an to the Lonnie Property. For additional information on the letter of intent, please see the section entitled "Property Description and Location"

Results published in the government MinFiles indicate that the carbonatites of the Lonnie #1 carbonatite lens contains 0.25% niobium and up to 15% titanium. (These results are not compliant with NI 43-101 standards.) A five hole drilling program is recommended to verify the results published in the MinFiles on the Lonnie #1 showings.

An exploration program in 2009, conducted by American Manganese Inc., located a lens of carbonatite rocks approximately 450 meters north of the Lonnie #1 and drilled five diamond drill holes on this showing. This showing was named the Lonnie #2. Five holes were drilled for a total of 474 meters of drilling.

Assay results for niobium were less than expected and did not compare favorably with the Lonnie #1 showings.

No further work is recommended on the Lonnie #2 showings.

An exploration program consisting of several soils geochemistry survey lines was completed in July of 2010. This survey covered the regional fault structure believed to be the controlling factor in the placements of the carbonatites, including the Virgil showings near the northern boundary of the property.

The soils down slope from the Virgil carbonatite showed distinctly anomalous values for niobium. The soils geochemistry down slope from the other showings were weakly anomalous.

An airborne magnetic survey was carried out in February of 2011 consisting of 173.8 km of flight lines spaced at 100 meters. The magnetics clearly outline the regional shear structure and indicate that the carbonatites are located near the eastern edge of this fault. Two small anomalies, "the Blue Spot Anomalies", indicating negative influence on the total magnetic field make targets compatible with the magnetite associated with base metal deposits such as the SEM showing. Follow up trenching is recommended on these magnetic lows.

A drilling program consisting of three holes is recommended for the Virgil showings.

This is to be followed with a soils geochemistry survey and then with a trenching program on the anomalies.

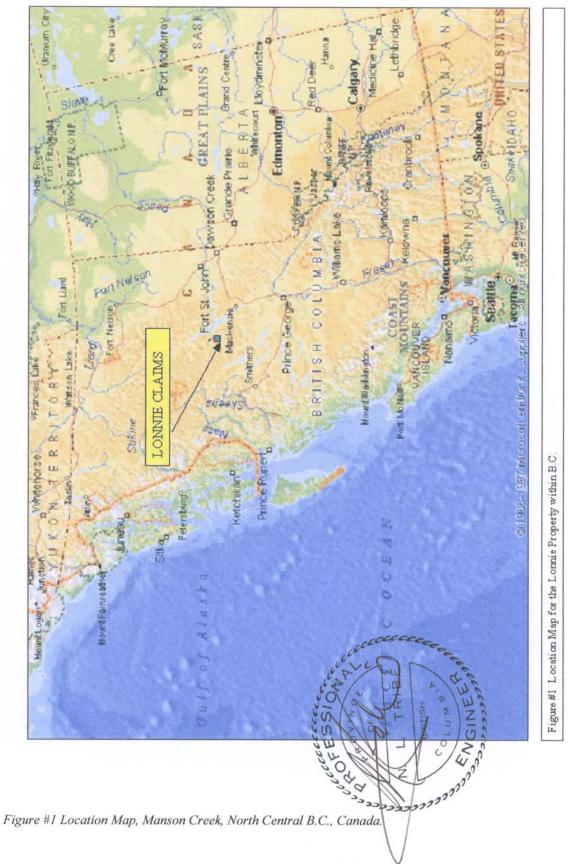
The trenches are to be mapped and sampled in preparation for drilling of any targets so established. A drilling program can then be carried forward onto the targets established by the trenching.

A suggested budget is \$220,850 for Phase I and \$192,350 for Phase II, plus a 15% contingency, for a total of \$475,180. Phase II will be contingent on positive results from Phase I.

INTRODUCTION AND TERMS OF REFERENCE

This report is written at the request of John Veltheer, Director, representing Alexander Helmel, Chief Executive Officer, of Rara Terra Capital Corp., 1160 - 1100 Melville St., Vancouver, B.C., Canada, V6E 4A6, for the purpose of providing a resource evaluation of the cabonatite deposits and the associated rare earth elements located on Granite Creek, 8.0 kilometers south east of Manson Creek in North Central British Columbia. This technical report has been prepared in compliance with National Instrument 43-101 for Rara Terra in connection with its qualifying transaction per the regulatory requirements of the TSX Venture Exchange. Pursuant to a letter of intent dated November 29, 2010, between Rara Terra and American Manganese Inc. American Manganese Inc has agreed to grant Rara Terra an option to acquire up to 60% interest in and to the Lonnie Property. For additional information on the letter of intent, please see the section titled "Property Description and Location.

The report will also provide recommendations for further work, if warranted, to continue to develop the properties in the most efficient manner and to provide the engineering data to allow a determination of the economics of mining the niobium and other rare earth elements present in the known deposits on the property.


This report is an analysis of the data presented in the government's MinFile data together with the data collected during the 2009 drilling program in which 5 drill holes were drilled on the adjacent Lonnie #2 showings. The report also covers a small soils geochemistry survey carried out in July of 2010 consisting of 166 soil samples and eight rock chip samples. These soils and rock chips were assayed for the full suite of rare earth elements. The results of this survey and the rock samples taken are included in the text of this report. The results for the niobium included in this suite are plotted in Figure #6 included in the map packet.

The writer visited the property October 16th, 17th and 18th, 2009, collected samples from Lonnie #2 and made a visual inspection of Lonnie #1. The Virgil showings were not accessible at that time.

RELIANCE ON OTHER EXPERTS

The writer is required by NI 43-101 to include description of the property title and terms of legal agreements. The Mineral Titles Branch of the Ministry of Energy Mines and Petroleum Resources shows that the titles are 100% owned by American Manganese Inc. (name changed from Rocher Deboule Minerals Corp.), APPENDIX I. There are eight claims (See table below) covering 1604.62 Ha. The title documents are legal matters beyond the scope of this report and can be reviewed at Rara Terra Capital Corp.'s offices. The claim map has been provided by the Minerals Titles Branch by way of Mineral Titles On Line.

Earlier writers have provided geology logs of holes drilled on the Lonnie #1 showings in 1979 and short reports are provided on the property. No assay details are given for these holes and only a general statement as to grade is reported in these old reports.

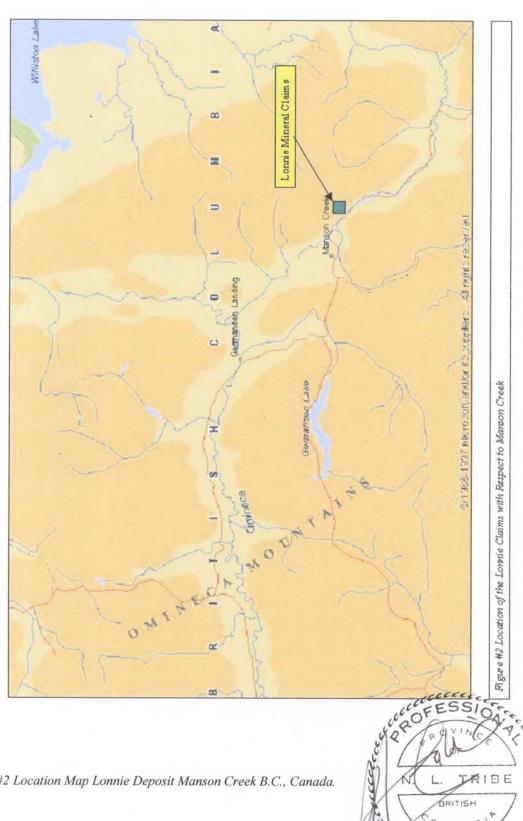


Figure #2 Location Map Lonnie Deposit Manson Creek B.C., Canada.

---- N.Tribe & Associates Ltd. ---

.5.

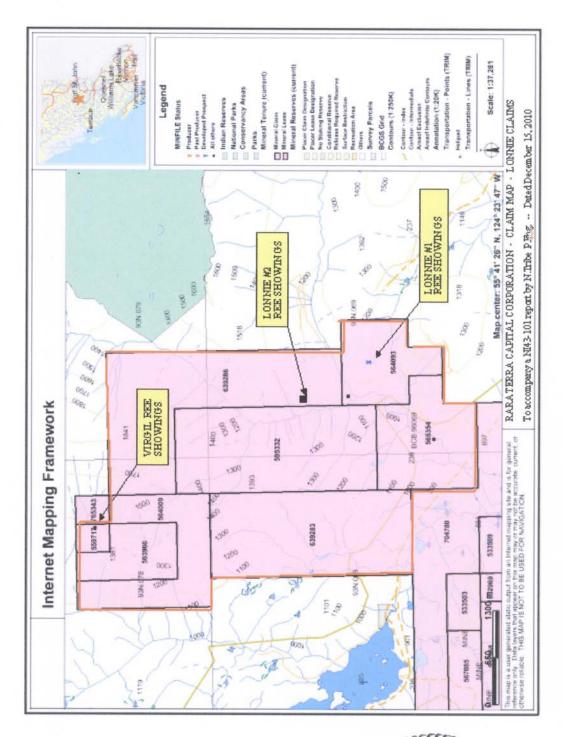


Figure #3 Claim Map Lonnie Property

PROPERTY DESCRIPTION AND LOCATION

The Lonnie property is located some 800 kilometers north of Vancouver in the Omenica Mining District near the settlement of Manson Creek.

The Lonnie property is situated at 55°41'N. latitude and 124°23' west longitude (UTM 413,300E, 6,171,300N) on NTS Map Sheet 93N/9W, on Granite Creek, 8.0 kilometers (5.0 miles) east of Manson Creek and covers 1604.62 ha. Altitude on the property varies between 3200 feet and 4000 feet. The property is 100% owned by American Manganese Inc..

CLAIM (TENURE) NUMBER	AREA Ha
559717 expiry Jul 31,2015	18.22
563966 expiry Jul 31,2015	91.13
564009 expiry Jul 31,2015	164.05
639286 expiry Jul 31,2015	364.61
595332 expiry Jul 31,2015	328.23
639283 expiry Jul 31,2015	328.26
564093 expiry Jul 31,2015	127.69
565354 expiry Jul 31,2015	182.43
Total Hectares	1604.62

Location of Mineralization and Workings

The property contains several conformable formations of carbonitite reported to contain niobium, zirconium, titanium and rare earth elements. The mineralized outcrops in the Lonnie #2 showing have been partially covered by recent road building work done by the logging company on whose timber license the showings are located and who completed clear cut logging on this slope within the last two years.

The mineralization on the Lonnie #1, some 450 meters south of the Lonnie #2, was explored in 1979 by 3 diamond (Winkie Xray) drill holes under the

direction of Mr. P. Vaillancourt and these are reported in Assessment Report 7515.

Terms of Agreements

The property consists of 8 claims, covering 1604.62 ha. These claims are 100% owned by American Manganese Inc. (Rocher Deboule Minerals Corp.). The tenancy numbers are listed in the above table and documents are included in Appendix I.

The agreement between Rara Terra Capital Corp. (RT) and American Manganese Inc. (AMY) is summarized as follows;

Option of Property:

AMY will grant RT an option (the "Option") to acquire up to 60% of its right, title and interest in and to the Property free and clear of all liens, charges and encumbrances by:

RT paying to AMY \$60,000 as follows:

\$10,000 as a refundable deposit on the execution of this Letter of Intent (the "First Deposit");

\$10,000 as a refundable deposit on the execution of the Definitive Agreement (the "Second Deposit");

\$20,000 on or before the first anniversary date of the Definitive Agreement; and

\$20,000 on or before the second anniversary date of the Definitive Agreement (each, a "Cash Payment");

RT incurring exploration expenditures of \$500,000 on the Property as follows:

\$100,000 on or before the first anniversary date of the Definitive Agreement;

\$100,000 on or before the second anniversary date of the Definitive Agreement; and

\$300,000 on or before the third anniversary date of the Definitive Agreement; and

(c) RT allotting and issuing to the Optionor, as fully paid and nonassessable:

100,000 Shares on or before the first anniversary of the Definitive Agreement;

100,000 Shares on or before the second anniversary of the Definitive Agreement; and

100,000 Shares on or before the third anniversary of the Definitive Agreement (each, a "Share Issuance").

If RT incurs exploration expenditures which exceed the amount required to be incurred within any period, then such additional costs shall be carried forward to the succeeding period and qualify as exploration expenses for such succeeding period. If the exploration expenditures incurred are less than the amount required to be incurred within any period, RT must pay the deficiency, in cash, to AMY within sixty (60) days after the end of such period in order to maintain the Option.

ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Lonnie property is accessed by traveling first to Prince George then west to Vanderhoof then north to Fort St. James, thence north on a good gravel Forest Service Road 175 kilometers to the turn off onto a small gravel cut block access road which leads to the property. The Lonnie #1 showings are located 3.0 kilometers up this road and the Lonnie #2 showings are 4.5 kilometers up this road. It should be noted that this road was decommissioned by the Ministry of Forests. This required recommissioning of the road for the drill program including the creek crossing on Upper Granite Creek. The roads were decommissioned again after the drill program was completed. The elevation at the showings varies from 975 meters (3200 feet) to 1158 meters (3800 feet). On the Lonnie #2 there are two road cuts which expose the showings, one at 1128 meters (3700 feet) and the second at 1109 meters (3640 feet). The upper road was used for drill access for this drill program. The area around the showings

has been clear cut for the timber but exposures of bedrock are sparse, the ground being covered with glacial till.

The climate is typical of north central B.C. with temperatures reaching the low 30 degrees Celsius in summer and -40 degrees Celsius in winter. Average precipitation listed for Manson creek is 38.1 cm. (15 inches).

There are no local resources aside from the road access. Manson Creek has very limited accommodation as does Germansen Landing. The store at Manson Creek has a limited supply of food stuffs and a small restaurant at Germansen Landing services the tourist trade in the summer. Other supplies have to come from Fort St. James or Mackenzie. Both are a three to four hour drive away. Telephone service is available at the Manson Creek Store. Internet connection is also available at the Manson Creek Store.

Manson Creek is a mining town with the basic income derived from alluvial mining and a small tourist component in the summer months. Forest companies are active in the area with the logs being hauled to Mackenzie for processing.

The power grid does not reach Manson Creek and diesel power is generated locally for the settlement.

The physiography at the property is mountainous with deeply incised creeks and steep terrain. Wild life in this area consists of grizzly bears, black bears, wolves, caribou, moose, numerous small predators, lynx, bobcat, foxes, martin, fisher, weasel and mink. These live on the numerous squirrels, rabbits, mice and birds, including Franklin grouse and ptarmigan. Muskrat and beaver habituate the creeks and lakes.

HISTORY

The Lonnie showings were discovered in 1953 by Messrs. Floyd, Powney, Almond and Kay while prospecting for uranium in the area. The first claims were staked by C.S. Powney in 1954 and sold to Northwestern Explorations later that year.

The following year Northwestern (or perhaps Kennco Explorations) dug 28 trenches along a strike length of 488 meters (1600 feet). Assay results returned

values of 0.21% Nb₂O₅ columbite (niobium or columbium) over 14.3 meters (47 feet), with a central zone returning values of 0.30% Nb₂O₅, columbite, over 7.6 meters (25 feet). These results are non-compliant with respect to NI 43-101 standards.

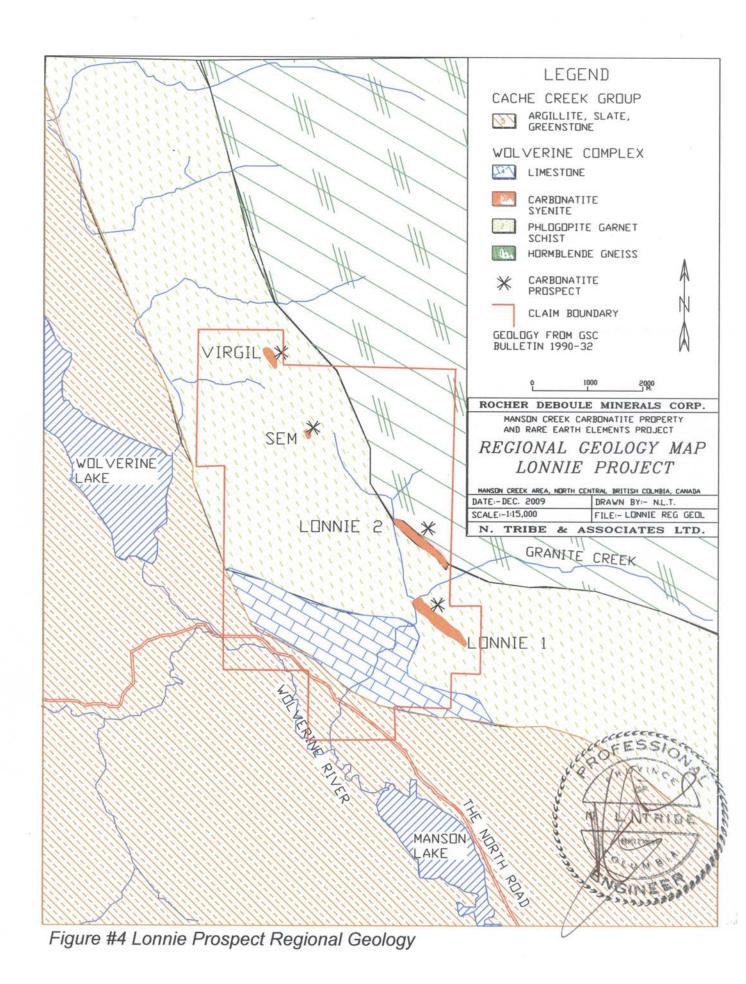
Westrim Mining Corp. acquired the property in 1969 and resampled the trenches. The resampling returned values of, 0.1-0.15% Nb; 0.2-0.3% Zr; 0.001-0.018% Y; 0.2-0.7% Ti; 0.2-0.3% Mn; and 0.005% Cu. The following year Westrim returned and dug a further 5 trenches at the southwest end (lower end) of the showings. These trenches were sampled and returned values of 0.1% Nb and 0.1% Zr. These results are also non-compliant with NI 43-101 standards.

The claims were restaked in 1976 by Mr. Powney. The claims were later optioned to Moly Mite Mines Inc. and in 1979 three Winkie "Xray" diamond drill holes were drilled under the direction of Pierre Vaillancourt and Robert Stokes of Stokes Exploration Management Co. Ltd.

The Virgil showings, 3 kilometers northwest of the Lonnie showings, were trenched by Texaco in 1975. Texaco completed 565 meters of trenching and reported values of 0.19% Nb₂O₅ in one of the trenches.

In 1982 the property was covered by claims owned by Mr. H.M. Jones. These claims were called the Wolverine Group and were optioned to Golden Slipper Resources Inc. In the summer of 1982 considerable work was done including geology, silt and soil sampling, and magnetic surveys all under the direction of B. Taylor, P. Eng., of G.A. Noel & Associates Inc. Very little new understanding was added as a result of this work.

The "Floyd Claims" were staked by G. Belik on behalf of Mr. Ernie Floyd covering the Lonnie and Virgil showings in 2001. Work in 2001 consisted of soils geochemistry and rock sample surveys. (See Assessment Report 26854 dated May 13, 2002.) Again, very little advancement was made with respect to the development of the property.


The present claims were staked in August of 2007 by Rocher Deboule Minerals Corp. (now renamed to American Manganese Inc.) and cover the entire zone in which the carbonatites have been recognized from Lonnie on the south to Virgil (Brent) on the northwest.

The present work consisting of 5 BQTW diamond drill holes for a total of 474 meters was drilled on the central portion of the Lonnie #2 showings.

GEOLOGICAL SETTING

Regional Geological Setting

The regional geology is dominated by the Wolverine Complex (Ingenika Group) in which the carbonatites of the Lonnie showings are located. The Wolverine Complex is of Late Proterozoic age and consists of amphibolite facies metamorphic rocks. The assemblage consists of hornblende gneisses, biotite garnet schists, marbles, carbonatites and quartzites. These rocks trend Az., 150° and dip 70° to the southwest. A strong northwest trending fault, the Manson Creek Fault, separates the Wolverine Complex from the Cache Creek Group to the west. (MEMPRBC-MRD-GSB Open File 1990-32)

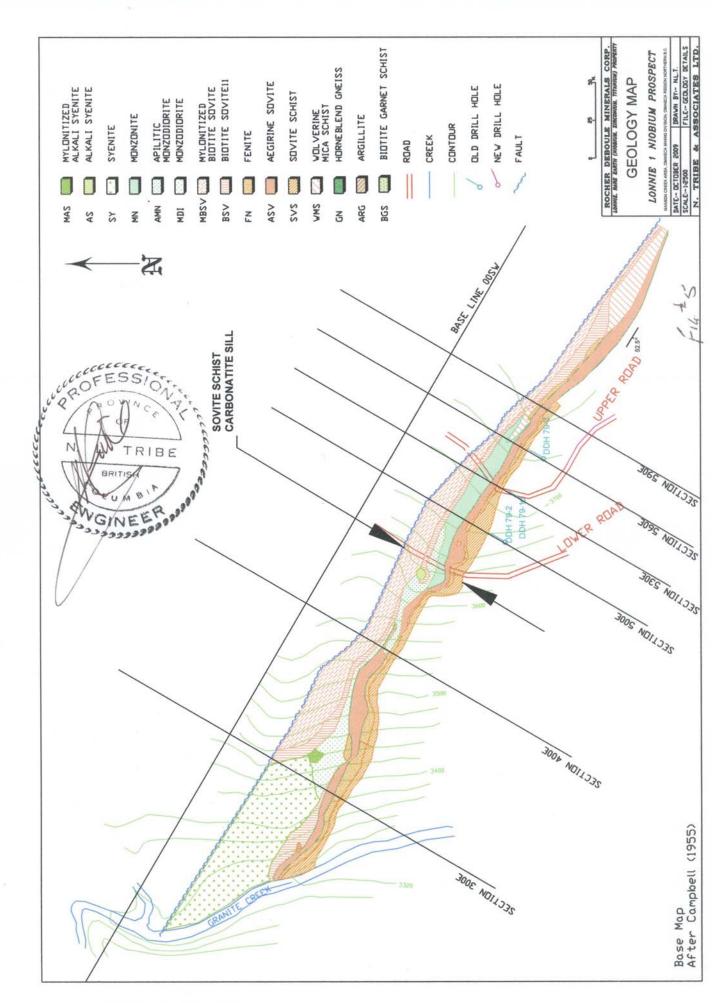
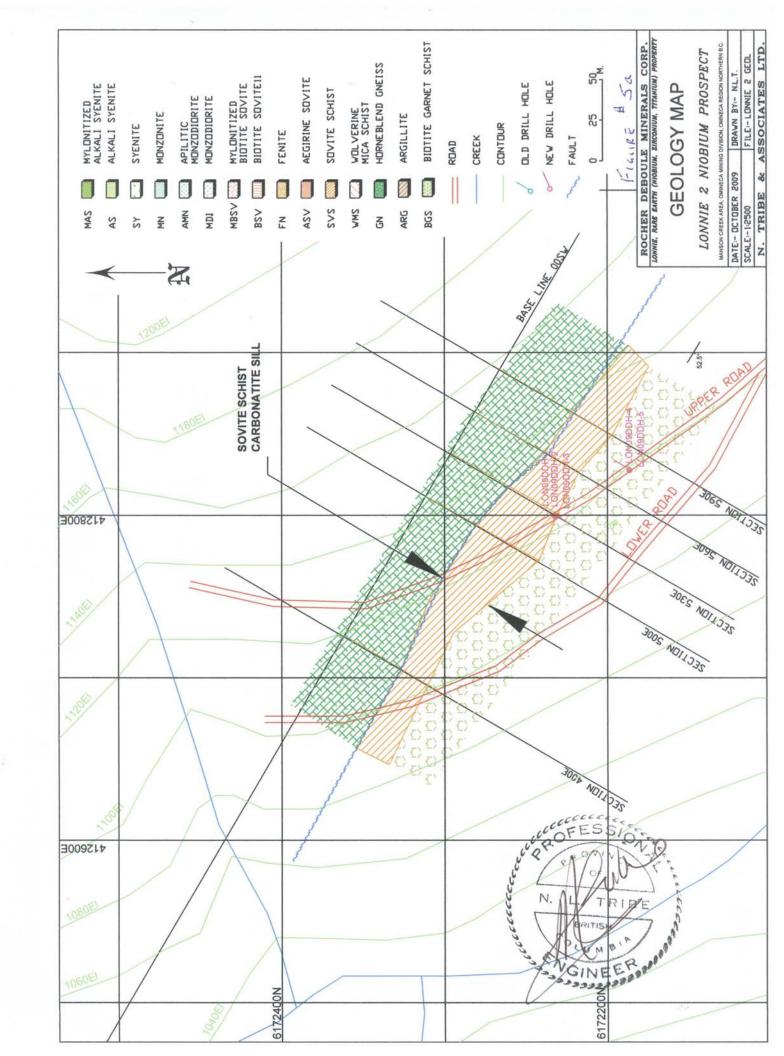



Figure #5 Local Geology Map LONNIE 1

Property and Local Geology with Lithology

The following description of the Lonnie showings is published in the B.C. Ministry of Mines Geological Survey Branch; "A conformable medium grained carbonatite complex intrudes the metasediments of the Upper Proterozoic Wolverine Complex (Ingenika Group). The metasediments include quartz hornblende gneiss, quartz gneiss, quartzite and garnet biotite muscovite schist. Both the carbonatite complex and the country rocks have been metamorphosed to amphibolite grade. The northern contact of the complex is mylonitized.

The Lonnie carbonatite complex consists of discontinuous lenses of syenite, monzonite and sovite. The syenite is composed of oligoclase, microcline and up to 25% calcite, and contains accessory minerals muscovite, zircon, ilmenorutile and columbite ((Fe,Mn)(Nb,Ta)₂O₆). Two varieties of carbonatite are present. The aegirine sovite contains calcite, microcline perthite and aegirine and the accessory minerals apatite and pyrochlore,

((Ca,Na,Y,Ce, Th,U,Ti)(Nb,Ta)₂O₆(O,F,OH)). The biotite sovite contains calcite, biotite and accessory minerals, microcline, apatite, zircon, columbite, ilmenorutile and ilmenite. Pods of fenitized country rock occur within the complex and the country is typically fenitized for tens of meters away from the contacts.

The carbonatite zone measures 500 by 50 meters along a 120° strike and 70° southwest dip. " (MEMPRBC-MRD-GSB Open File 1990-32). Values reported in the MinFiles indicate a zone of mineralization 480 meters by 15 meters grading $0.21\%~\text{Nb}^2\text{O}^5$ with a central portion grading $0.30\%~\text{Nb}^2\text{O}^5$ over a length of 240 meters and a width of 7.6 meters. (Not compliant with NI43-101 standards)

The Lonnie #2 showing is very similar to Lonnie #1 and the purpose of the 2009 exploration was to explore this newly exposed carbonatite. Although the rocks are aegirine sovite and biotite sovite and the alteration is fenitization and mylonitization, and are very similar to Lonnie #1. Core drilling across the Lonnie

#2 structure revealed the rare earth elements were at background levels (22 ppm Nb²O⁵). These results are compliant with NI 43-101 standards)

The Virgil showings located near the northern edge of the property are thought to be related to the Lonnie showings and are a similar carbonatite, syenite complex sill like structure. Fenitization and mylonitic alteration indicate the association with the Lonnie Complex and a major fault system which is believed to be the controlling structure. Minerals of interest in the Virgil deposit are apatite, zircon, columbite and pyrochlore. The Virgil carbonatite is 200 meters long and 75 meters wide, striking 135 degrees Az., and dipping 50 degrees to the southwest. Values reported in the MinFiles are 0.19% Nb²O⁵, 0.15% TiO², 0.05% La²O⁵, and 0.03 %Nd²O⁵. Results Non compliant with NI 43-101 standards)

DEPOSIT TYPES

The carbonatites are considered to be intrusive sills injected along strong regional faults. The carbonatites are interfingered with syenite sovite and monzonite within the sill. The columbite occurs as disseminations at or near the contact between the syenite sovite and the biotite sovite within the sill. The entire sill is considered prospective.

MINERALIZATION

The columbite occurs as disseminations within the carbonatite at or near the contact between the syenite sovite and the biotite sovite. The columbite, $((Fe,Mn)(Nb,Ta)_2O_6)$, is a fine black grainy accessory mineral with associated apatite, ilmenorutile, ilmenite and pyrochlore,

((Ca,Na,Y,Ce, Th,U,Ti)(Nb,Ta)₂O₆(O,F,OH)). Pure columbium columbite, Nb₂O₅, is 70% niobium but there is often considerable tantalum substituted into the columbium lattice. The element niobium was once called columbium and the mineral form of niobium pentoxide is still called columbite.

The Lonnie #1 carbonatite sill is 575 meters long and varying between 50 and 15 meters wide with disseminated mineralization throughout. The hangingwall is biotite garnet schist adjacent to the sovite (carbonatite) then argillite. The footwall rocks are argillite adjacent to the sovite and then gneiss.

The Lonnie #2 carbonatite sill is 600 meters long and 20 to 40 meters wide with disseminated mineralization throughout. The drilling has indicated that the width of the sill is continuous at a consistent width to a depth of at least 60 meters. The hangingwall rocks are a biotite garnet schist and the footwall rocks are gneiss. Fenitization is noted in the wall rocks

The Virgil carbonatite sill is 250 meters long and 75 meters wide with disseminated mineralization throughout. The hangingwall rocks are metasediments (biotite garnet schist), and the footwall is gneiss. Fenitization is reported in the wall rocks.

All three of the showings have discontinuous outcrops protruding through the glacial till which blankets the area.

EXPLORATION

Fenitization is noted in the wall rocks

The present phase of exploration has concentrated on drilling the newly exposed showings at Lonnie #2. The area around the Lonnie #2 carbonatite showings has been clear cut by the forest company.

Five holes were drilled on two sections (530SW and 590SW cutting the known carbonatite showings. One of these holes was drilled to the south missing the carbonatite sill, remaining in the hangingwall garnet schists.

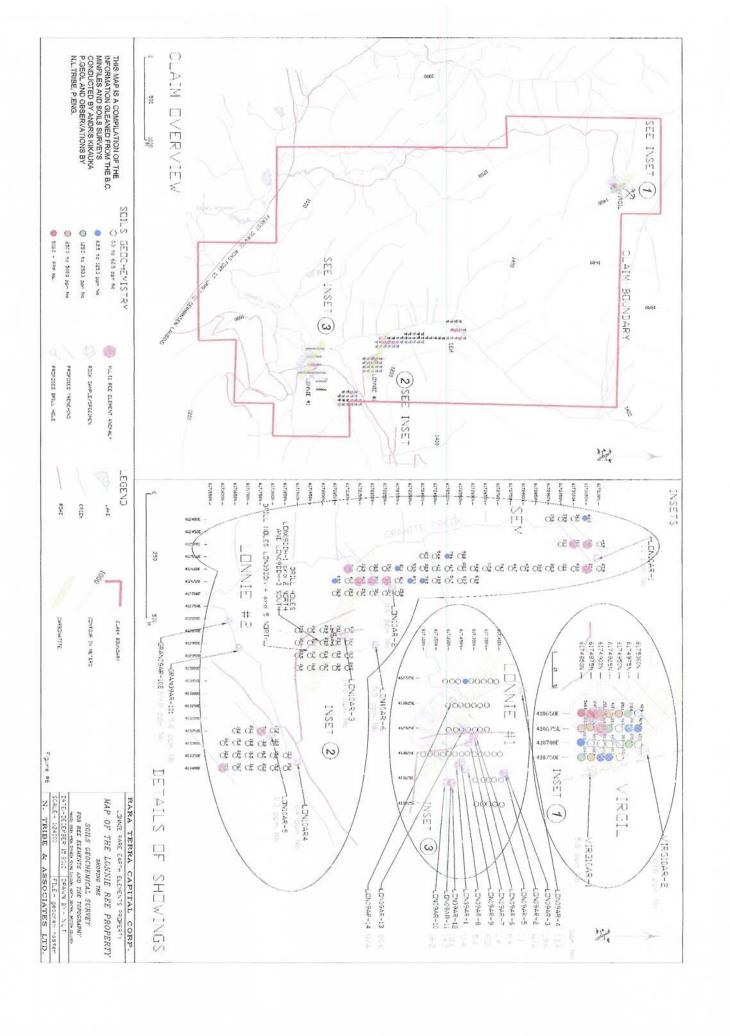
The carbonatite was confirmed to be 15 metres (50 feet) in width dipping 60° to the southwest.

The core was split on site and samples every 1.52m, (5 feet) were bagged and sent to Pioneer Laboratories in Richmond for analysis. The remainder was returned to the boxes covered with tarps and stored at the site.

The Lonnie #1 showings are defined by the old trenching and some outcrops along the roads constructed by the loggers.

Very limited exploration work has been done on the Virgil showings.

The work completed in October 2009 was carried out by American Manganese Inc. by their exploration crews.


Figure #6 Soils Geochemistry Survey for Niobium with topography. (See Map Packet).

The drill results for the five drill holes drilled on Lonnie #2 are shown in the assay certificates in Appendix II. The assays were for niobium (Nb) only and do not include the other REE elements. These results were considerably lower than expected. Earlier work on the Lonnie #1 (1955) returned values of 0.21% Nb₂O₅. (Not compliant with the NI 43-101 standards). The results from the 2009 summer drilling program and the reconnaissance rock chip sampling on the Lonnie #2 averaged of 22.5 ppm Nb or 0.0032% Nb₂O₅, these results are compliant with NI 43-101 standards.

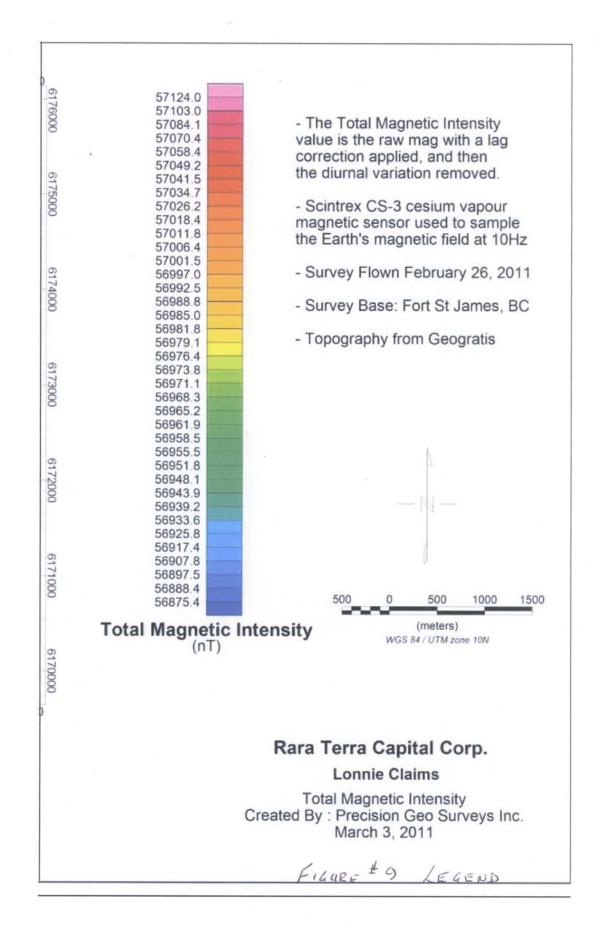
Soils Geochemistry.

A limited soils geochemistry survey was completed with 191 samples collected. The results of this survey are shown in Figure #6 entitled "Map of the Lonnie Property showing the Soils Geochemistry for Nb and Topography". Three areas were covered: these were the Virgil and the Lonnie #1 and the Lonnie #2 with two lines extending over the area of the SEM gold silver showing. The samples were collected from the "B" soil horizon, at a depth of 20 – 30 cm., and sent to Pioneer Assay laboratory for analysis using their HNO₃-HClO₄- HF-HCl digestion with ICP/MS finish. An area of 487,500 square meters were covered by the geochemistry surveys.

A limited number of rock grab samples were also taken. These are shown in Figure #6, (with results for niobium).

Airborne Geophysics

On February 26th, 2011 an airborne Total Field Magnetics geophysical survey was conducted by Precision GeoSurveys Inc. of Vancouver B.C. The magnetometer used was a Scintrex CS3 housed in a 40 foot "stinger" beneath the Bell 206 BIII Jet Ranger helicopter provided by Interior Helicopters Ltd. of Fort St. James. The survey used an AGIS (Airborne Geophysical Information System) unit, coupled to a Pico Envirotec computer, which was mounted in the cockpit. The equipment had a visual readout which enabled the pilot to keep to the survey lines as well as a laser altimeter to provide accurate ground to magnetometer clearance to be later used in the adjustment of the data. The Pico Enviortec computer collected the raw data which was then converted into Geosoft computer files. A base station was set up near the airport to record diurnal variation for final adjustment of the data. The data was then adjusted for noise, diurnal variation, elevation variance, data striping etc and plotted on paper for presentation. This software is also provided by Pico Software.


The magnetic results are shown in Figure #9 in color gradation format.

The Total Field Magnetic Intensity is shown in Figure #9 as a multi-colored display with intensities shown on that attached legend. The magnetics can best be interpreted against the regional geology. Figure #9 shows the magnetics overlain on the regional geology map.

The regional geology is trending northwesterly and this can clearly be seen on the magnetic map with the magnetics closely aligned with the geology. The rocks of the north eastern third of the claims are Hornblende Gneiss. The magnetic signature of the gneiss is higher than average magnetic intensities and is presented as reds and oranges on the magnetic map.

The southwestern third of the claims is underlain by limestones and shales. And these rocks, as expected, show a very low magnetic intensity and are displayed as blues and greens on the magnetic map.

The area of interest, geologically, is the biotite (phlogopite) garnet schist and is that strip of geology extending southeast from the northwest corner of the property to the southeast corner of the property and being 1.5 kilometers wide.

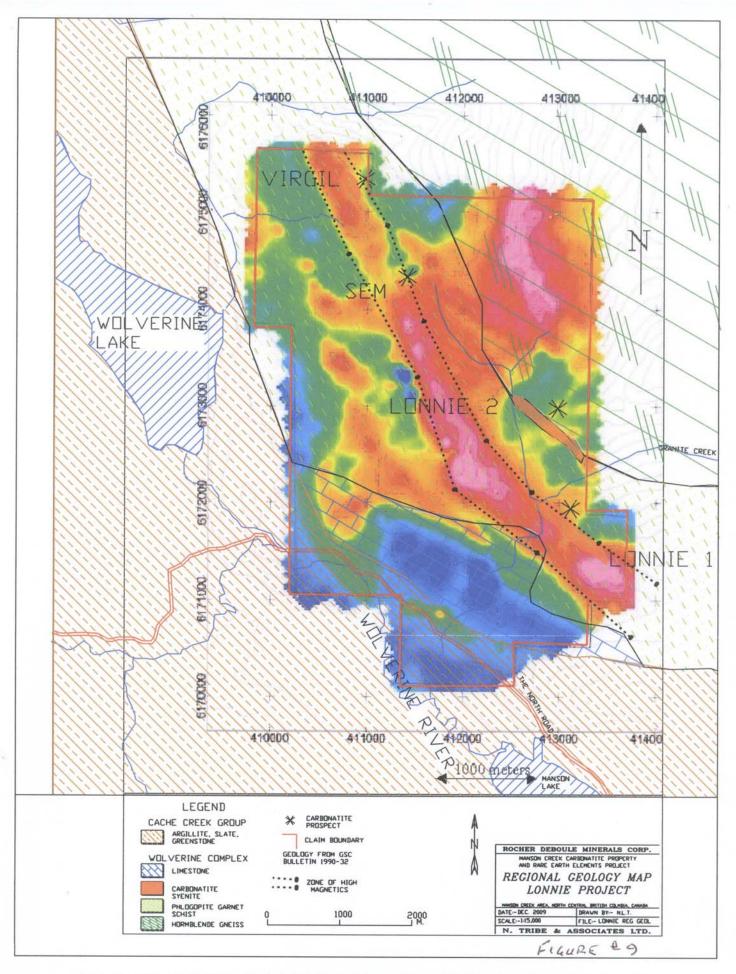


Figure #9 Lonnie Prospect Total Field Magnetics with Regional Geology Overlay.

Concordant with the geology and lying one third south east of the northeast boundary of the schist is a zone of high magnetic intensity. This zone is a strong shear structure and is thought to be the controlling factor for the emplacement of the carbonatites. The Lonnie #1, the SEM and the Virgil showings all lie at the eastern edge of this shear. .The Lonnie #2 is displaced some 400 meters to the northeast.

A less dominant feature of the magnetics is the two small anomalous lows located at 6173300N, 411400E and 617310N, 411470E. These two small anomalies are important because of their isolated nature within the survey. These are not regional features but rather a local response to an intense magnetic variation in the geology at these locations. These lows are adjacent to and on the western edge of the regional shear structure and are considered to represent a concentration of magnetite at this location.

DRILLING

Previous drilling on the Lonnie #1 showing consisted of 3 Xray diamond drill holes drilled in 1955 by Northwestern Explorations (or perhaps Kennco Explorations). In 2009, 5 BQTW diamond drill holes were drilled on the Lonnie #2 showing by Rocher Deboule Minerals Corp. (American Manganese Inc.)

The three, 1979, Xray holes were logged and the logs can be found in Vaillancourt's Assessment Report No. 7515. These logs clearly define the carbonatite zone but no assays are provided.

The five BQTW holes drilled on Lonnie #2, by Rocher Deboule Minerals Corp. (American Manganese Inc.) and the logs with the assays are included as Appendix III. The zone is clearly defined and the assays average 0.0016% Nb. In all 143, core samples were taken with an average of 16 ppm Nb or 23 ppm Nb_2O_5 .

HOLE NUMBER	EASTINGS	NORTHINGS	ELEVATION	AZ.	DIP	LENGTH
LON09DDH-1	413007	6171230	1130.5 m (3709')	30	-50	76.2
LON09DDH-2	413007	6171230	1130.5 m (3709')	0	-90	106.7
LON09DDH-3	413007	6171230	1130.5 m (3709')	210	-50	121.9
LON09DDH-4	413033	6171183	1130,2 m (3708')	0	-90	68.6
LON09DDH-5	413033	6171183	1130,2 m (3708')	30	-50	100.6
			TOTAL METERA	GE		474

SAMPLING METHOD AND APPROACH

The diamond drilling was done using BQTW equipment and the core recoveries were good, nearly 100%. The core was split on site and half the core was bagged, tagged, recorded and carried to Pioneer Laboratories in Richmond for analysis. The remainder of the core was returned to the box and stored on site.

The sample width was established at 1.52 meters to give a number of samples for each cut across the sill (8 to 10 samples). The true widths vary from hole to hole as shown on the cross sections.

The core boxes were cross stacked and covered with tarps to protect the core from the weather.

At the Pioneer Laboratories the core was crushed and ground in ring pulverizers in the standard sample preparation process. The samples were then assayed by ICP methods suitable for the detection of rare earth elements.

Fifteen check assay samples were selected at random from the samples prepped by Pioneer and sent to ALS Chemex in North Vancouver, B.C., for analysis by ICP ME-MS81 method with detection limits down to 0.20 ppm Nb.

Background Information and Methodology

The cores, the soils and the rock samples were all handled in the traditional manner by experienced geologists.

The cores were split with a manual screw type chisel splitter in five foot sections, bagged, tagged and transported to the laboratory by the field geologist.

The soils were taken at a depth of 30 cm or the "B" soil horizon, bagged in soil bags, marked with the line and station, and transported to the laboratory by the field geologist.

The rock samples were primarily grab samples from out crops on or near the known showings. These were bagged, tagged and transported to the laboratory by the field geologist. The rock chip sample locations and the assay results for niobium are shown in Figure #6.

SAMPLE PREPARATION, ANALYSES AND SECURITY

The drill core samples were prepped with the standard methods consisting of crushing to minus 4 mm then pulverizing to 90% minus 100 mesh in a ring pulverizer.

The sample was then rolled and a 250 gram portion of the pulps was cut out and sent for analysis. The samples were handled exclusively by the field geologist and the people at the Pioneer Laboratories, 103-2691 Viscount Way Richmond, B.C., Canada, V6V 2R5 under the direction of Mr. Ray Sam.

It is the opinion of this writer that the sampling, preparation and the analytical procedures are adequate.

There is no governing body controling the certicifation of assay labs in Canada. The verification of assays is left to the client. A full coverage of the verification process carried out by this writer is presented under the "DATA VERIFICATION" heading, p.32 of this report.

ASSAY CERTIFICATES

The methods used by the laboratories are the accepted standards of the industry and have been cross checked by independent laboratories. See the section entitled "Data Verification"

CHER DEBOULE MINERALS INC.

ONEER LABORATORIES !

nett Loonie noie Type, Sonis/Cores/Rooks

GEOCHEMICAL ARALYSIS CERTIFICATE

one (CPIMS finished

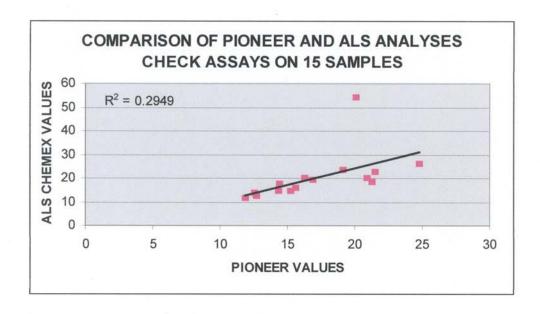
		6.4
	15	78
	35	^-
	251	-1)
	9	
	2.4	55
	12	12
	4	尺
2	E	-
ò	-8	38
	42	Ìij
	Œ	12

T Ldd 259.3 315.3 500.0 299.8 310.1 259.5 350.1 289.1 326.9 299.2 176.1 176.2 176.2 126.2 126.2 176.6 177.6 177.6 177.6 177.6 177.6 177.6 177.6 177.6 177.6 177.6 177.6 177.6 177.6 177.6 16.7 177.6 16.7 177.6 17 1772 1886 2072 2072 2613 199.9 208.5 217.0 210.5 232.6 177.4 246.1 197.2 177.8 234.8 125.1 108.3 199.1 107.0 114.9 135.4 137.7 里長 532.0 573.5 573.5 382.7 406.0 542.5 631.7 490.2 561.6 571.4 540.8 491.9 540.8 6302 647.1 553.7 534.0 582.1 620.1 620.1 505.9 548.6 547.5 558.8 558.8 558.8 559.8 559.8 550.8 550.8 B E амиро причи проста причи причи причи причи чанов пипри пиров верия превод D P 10.1 45 10.5 41 3.4 29 6.2 29 3828 5136 231## 4529 24563 8.2 30 6.4 35 7.0 40 5.5 40 6.5 28 122 12.5 11.5 12.5 12.5 12.5 12.5 13.5 14.6 14.6 8000 m 400 m 900 m 900 m 900 m 700 m брука ставет в присти ветем ветем ставет ставет в присти Sm Ppm Ppm PP Edd 17 19 19 19 3 6 56.0 52.6 52.6 52.6 52.6 53.6 56.3 56.3 56.3 56.5 G 66.5 G 66 3 8 #5550 # ##555 55850 #5555 504445 **#**55555 무료 Spira 400000 000004 40040 00040F FF000 000000 Eur нмагч ддану анайча опцал парана прави догод погод венее магед опере голо E амяйд якмды мядай дандың покки валама кырмо одолго опыст опедат веобу вядог TO DO 20 mg 00E 2125N 00E 2125N 00E 2150N 30E 2175N 30E 2225N 30E 2250N 30E 2275N 30E 2300N 30E 2300N DE 2250N DE 2050N DE 2075N DE 2100N DE 2125N 0E 2125N 0E 2150N 0E 2175N 0E 2200N 0E 2225N E 2150N E 2200N E 2000N E 2025N 2050N 2075N 2100N 2125N 2150N

12	74	N. T.	38		270,	404	365	398	404		484	420	399	593	435	423	409	468	205	0:0	100	0 0	355	707	325		.04E	0.043	918	363		190	264	357	296	997	332	325	243	.100		046	137	188	200
1	-	27	шфф		7 77	365 7	246.5	342.8	411.6	7.77	348 2	306.9	454.7	234.1	2.8/2	308.7	297.1	351.7	296 1	314.4	2000		1124	1 100	137.6		25.5	0.25	117.6	130.2	-	39.4	128.6	188.4	204.0	0.00	144.0	157.0	110.2	53.2		30.0	703.3	131.2	74.2
Ta	TOOK!	Tal	ppm		7	0 19	9	40	10.	6	0	1.7	2.2	w q	0	2.5	1.7	5.5	1.6	1.7	4		0 6	u	4 7	5	10	4.0	2.1	13		6.2	63	*	0.0	0.4	4.4	1.7	2.7	(r)		u u	0 0	2.0	4. 0
Š	mod	ő	pph	4 94	13	234 0	i-	210.3	222.0	2000	232 4	184.2	100	250.6	0.000	202.3	226.0	193.4	210.3	262.2	+ +70	5 4365	1531.7	1047 6	921.3	1	2745	301.2	913.5	85.0		384.5	763.8	102.9	0.40		B34.2	932.8	751.6	23.0	6 14	0000	679	2.10	706.3
Rb	5000	S.E.	made	2 000	2 2	U)	14.5 E	102.6	47)	520 2	000	1001	1561	132.6	2	154 €	106.5	157.6	119.2	138.4	487.8	162.8	132.1	4000	131.9		102.0	197.6	142.5	255.2		237.0	106.4	134.7	193.6		75.4	12.8	36.5	44.5					105.2
200	2007	NG.	mdd		2.1	9 0	u 75	3	40.7	5.8.4	2 6	O (4 (513		42.9	37.4	40.00	30.6	201	58.2	21.4	10	20.7	38.4	11	0 1	10.4	E 4	14.0		19.6	11.7	25 44 0	13.5		16.6	24.4	22.9	5.5	22.6	15.6	20.7	100	20.2
ci)	500	 (D)	mdd.	0 0	0.00	2000	5203	525.2	2 710	80 80 80	9 303	5,020	7000	536.5		557.4	598.5	544.3	482.9	9.55.6	557.7	353.1	324.1	312.0	232.2	EU 3	0.0	1.80	358.7	151.4	0.76	0.70	307.0	1 0 00	372.5		202.2	21.1	96.4	124.8	513	244 8	3128	222.2	275.5
42	ppu	2	ррт	07	u	4 t	N 6	n e	9	40 (1)	6	4 6	4 4	12		10	2.B	q- (*)	00 u	2.7	2.6	23	2.1	2.4	10	-		200	2 60	1 00	4	- 0	0 -		1.7		2.5	2.9	2.1	raj	u	1.1	1.2	(0)	2.5
	ppr	>	port	W	7 90	1 00	2 4 5	3 00	2.27	29.4	226	i u	25.5	216		28.0	31.6	30.0	200	,	27.2	25.5	22.0	26.5	25.3	0.	70	29.9 - 6.0		14.1	7.	0 0	0.00	17.0	16.4		23.2	9 10	18.7	n					25.6
ם	DD:	2	mde	7 6	20 4 2	4 7 92	7.5.00	200	200	6229	4 5 75	7.8 38	5.4.26	3.3.22		5.1.29	4 4 60	4.8 30	5,0.79		5.8 27	2,7.26	2.9.23	3.4.26	5.6 29	10	a	- 62	3.3.24	9	en en	36.30	3 4 21	3.6 17	3.9 16		3 5	8 8	3.0.50	21					2.8.26 2
			EPRIL D	150	4			r w		un.	4	10	ч	4		19 1	O 10	Q W	9 10		4	(0)	12	ų	ч				4 24	7				6.3					9 **			2 19			
			d wdd	25	24.0	124	01 10	20.2		15.4	18.6	42.7	18.2	11.4		2.5	2 2 4		979		20		12.3	[7] [9]	9.0	O)	60	5.0	15.0	2				40				ž	, p.		2.1				
P	0.00	P	Spirit	£,	-01	sži	673	77		1.1	1.0	40	ş- y-	w	:	1			0				10						9					9					- 49		Li S				
Sa	рош	E G	DDC	1.1	9	10	436	iii di		2.00	7.6	14.3	1 9	9	i i	0 0	0 %	1.0	7.5		-1	4.0	N 19	0.0	7.1	1.3	1,3	6.4	60	3.0	(1)	4.00	9 10	4.5	4.1	2.4	7.6	1.10	05		1,2	5.4	oo oo	-	2.5
ă.	Ври	ů.	mod	45	127	13.6	17.1	16.4		14.4			13.6		5 77	0.10	45.7	11.00	12.9		40	10,7	4.0	20.5	10.7	4.4	1.7	5,4	85	4.4	1.7	5.8	8.5	6.5	on un				28		97				
DA.	100	27	bbm	979 140	43.4	46.1	9.09	9 69 €		52.4	2003	65.55	50.6	35.6	62.0	40.0	47.1	43.2	46.9		52.4	00 0	5 y	n 000	90 XII PI	4 GB	5.7	2.7	36.8	15.7	9.9	26.3	29.9	24.4	21.2	34.3	43.3	30.4	10.8		100			ų.	co.
1 1	1000	77	1000	411	٧	4	10	ωę		40	v.	ω,	W,	٧	10	140	, wi	wi	ч		e i	9 (7 17		q.	77	r.	22	4	ιγ	-	c,i	m,	(1)	(e)	4	4	m	+						
y f	1000	4 60	1000	100	60.3	60.2	75.2	100		617	55.0	54.7	57.4	41	68.5	7 09	68.2	52.7	63.6		5/2	4 0 0	40.0		O T	50	(0)	39.6	45.1	20 00 00	6.6	28.4	36.8	27.6	24.7	39.6	48.1	36.3	11.0		4.6	7.7	0 0	9 0	io co
0 10	-	He	1000	e4	0 -	uq.	12	*		97 1	0	47	0,	w		17			1.0		0 0	9 10	0 a		2	(4	ın.	60	aş ı	ıo,	ci	I-u	60	40	۵	o)	-	ω,	4		cv +				
3 6	100	5 6	1000	1.4	9 9	7.2	10	of the		1 0 1	al .	24.4	8.7	10) 43	10	17	7.7	5	t- 00		7) (1	9 0	¥ 46	9 1	5	1.2	P)	9.9	57	(1)	4		2.7		63	6.5	8.0	5.6	2.0		m (0 0	0 0	2 (Ŋ
Daniel Control	1	n in		(2)			Pro-			4 ·	5'1	50	43	14	7.4	7		2.4	4		p c	4 1	- 15		4	4"		2,73	17.5	ın.	cvi	0	1,2	a)				1.0			ry u				
DOM:	i i	n l		us.	14	2.3	64	61		C (9.7	(h (r)	2.7	173	2.5	(*)	3.2	\$17 \$17	eri eri	6	100	0	9 6	1 10	9	φ.		53	2.6	4	7.	20	23	gn e	0	26	60	22	1.0		9 .	- 0	4.1	- 0	2.1
S Co	100	L CO		1.1	4.5	4.2	47	5.7		4 1		1.00	6.2	Uh (7)	100	5.6	5.2	5.4	63	e u	9 4	1 1	4 89	y y	9	1.4	0	77	44	2	4.5			3.2		4.7	5.6	(h)	1.7		t	3 + 6		9 9	6
		DOM:	1	17.7	3 7 5	OI CN	47	141.5	1 200	125.4	25.00	208.8	130.2	10 97	127.6	(c) AQ	125.5	101.9	1001	F (1)	78.0	69.7	P (0)	90	9	10.3	15.1	74.8	76.5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	10.2	53.0	1 69	n o	i c	73.0	91.6	65.0	21.6		22.7	- 65	53.9	2.50	1 10
																												32																	
WARE .	EMENT	WPLE		900E 2175N	SOUR ACOUNT	#005 2225N	2250V	300E 2275N	NODE STROKE	KODE 2200N	200 2000	00E 2225N	DOE ZOON	DOE ZZ DIN	30E 2300N	30E 2200N	30E 2225N	30E 2250N	10E 2275N	OF 2300N	51	522	173	N		95	0 1	100	0 0	ħ	- (2 (9 •	4 0	2	vn.		sp.	th	8					

6.	×	F	at a	35	1 10	70	707	i i	H	446	507	288	273	374	310		A 10 0	24	(8)	210		S 20	250	986	324		210	110	270	312		305	250	304	042	6,10	435	430	155	900	270	024	650	238	679
ři ;	86	13	ppit	1 10	47.00 1	2 1		of Its	142.6	4004	100	121.5	106.3	75.7	9 99	7.96.5	4 100	1026	5 5 5 5	136.2		0.10	132.1	0 10	80.2		10.3	7 22 5	0 0	150.7		27.2	28.3	41.1	40.6	7 5 5	54.6	45.0	95.0	22.1	. 69 .	0	0,70	916	199.1
W I	Edd	riá Jose	mod	7.	4			4	1.4	0.7	0 .	4	4.3	(c):	3.0	4	9 0	0 1	0 4	26			2 4		2.6		2.5		4 .	22	-	0.0							2 2						
ů l	bbm	ŝ	udd	9 557	0.385	0.000	2222	0.777	222.1	2,48.2	040.0	0.812	363.6	1180.2	10.7	u S	0 0	7 00 0	0.87	228.3	27.2				453.3					1022.1		507.7	- 2						30.3						123.8 2.1
2		No.	Gdd	(*)					0	15			103	m	un	-																													
				O.		i	2 2	in .	100	1467	2 0	170	15	121	136	100	160	104	120	22.5	400	134	24.6	125	77.7	1	2 6	0.00	2 00	15.5		73.9	447.7	367.0	304.5	285.5	2190	229.7	308.4	386.1	339.2	369.9	329.0	2343	136.7
2 1	U Od	92	tidd.	3.7%	4.7	1 0	4 / 1		100	9, 36	1 10	0 :	20.1	10.6	16.1	er ek	0.00	45.4	0.00	00 00	42.0	427	W III	18	4°	4	9 4 6	10.7	0 00	20.5	21.5	293	56.4	22.7	8.7	18.8	60	21.5	212	20.0	15.3	16.3	15.2	125.1	20.7
in a	0.000	100	ppm	278.2	320 0	STAC C	272.0		387.8	290.4	3000	250.0	366.0	228 €	275 1	340 9	34:35	2000	2777	235.7	356.7	368.1	73.0	153.7	323.8	9 443	2420	345.8	35.6	38.0	113.8	73.2	82.9	349.0	46.2	310.0	341.2	395.1	155.0	4.2	49.3	51.5	154.7	160.1	185.4
0.1			E	87	2.5	1 1			01	0.00		2 6	2.7	9	(n	2.5	10			10	00	01	147	**	64	,	· u	F-15-	· O	24	0	2.7	4	O	w	0		(D)	(f)	w	9	in	w		in
g 1	2	ş.;	Wdd.	(1)	O)		1.14			160		4 6	N	w-m	174																					m	2	***	(I)		75	4,		1.0	3.6
> 100	udd	4	шоо				200 8							16.1		24.5	20.6	48.	0.10	14.2				12.7		101	75	17.8	22.3	25.1	22.8	26.4	4.3	18.8	7.1	30.8	21.6	20.5	10.3	iO.	6.9	4.4	10.5	11.3	43.2
D 6	DOG	5	mad	22.0	27.2	262	0 0 0		21.20	3.6.23	0.80	2000	6.2.25	2.2.16	26.19	2.8.25	50	1 00	3.3.23	5.4 14	2.6 19	3.2.20	00.	9.00	26 14	8 1 52	106 9	59 10	2 8 22	3555	4.4 23	4.4.26	2.0 4	50 19	4.7	3731	4.8 22	3.9.21	2.2 10	3.0 6	5.3 7	3.5 7	5.4.11	2811	4.4 43
e F		E	ppur	511	4	.99	111		4	179	N	0.8	V.	9.	es:	¥	(1)	(4)	(*)	ei	473	6.3	5"	e4	t/s	64		(*)	×	45	¥	V,	•	w	-	ιń	w	G.	۳.	-	•	ς.	-	ιų	ō.
	ľ	1.0	Hdd	di	100	13.00	10.5	1 4 9		12.2	12.4	400	3.71	13 to	ora ora	100	10.1	8.2	11.00	uo uu	13.2	12.6	3.0	9.4	01	(U)	4.2	th di	11.0	13.0	12.3	13.7	(D)	11.3	ch v-	6. 10.	12.1	12.8	on o	1.0	57	1.7	3.7	5.5	13.4
TC DOM	2	G)	ррш	1-	cre	cis	-	e y	3	ш	W	п	10 10	0 1	-	93	ř-	40	60	w	100	1-	CV.	V.	in	ч	(9	(G)	03	ررو	iD.	Ø)	¥*;	-	cá	1.0	aș (4	s:	C4 I	7	m, v	q.	4.
E SUL		E	DDT	40 40	p" In	10	163	4.4		5.3	29	as si	9 4	6 1	9	9	2.6	4.7	10	0	6.3	5.4	40	50	e e	69	20	45	10	(P) (D)	65	6.7	00	5.0	0	1,6	0 1	n o	9.7	4.	0.0	20 (2 5	co i	un on
Elog	d	i	mod	7.5				ľ		9.6	60	101	2 4	0.1	D	0	6.3	6,5	100	(D -	9	8.0	O)	7	9.0	(0)	2.6	6.4	60 60	9.7	0.6	(D)	0.1	4	r-	11.4	10.2	10.0	n 1	ď	m 1	7.5	0.5	4	11.8
B G G	200	Ne	DDC.	26.4	63 (56)	38.7	49	457	2	34.1	35.1	36.6	2 0	200	79.0	38.0	30.2	25.0	36.5	22.4	36.0	37.7	3.2	15.4	en di				31.2		34.1	37.4	4	30.6	9	45.4	30.4	n e	D 10	<u>n</u>	0.0	0 0	10,2	0,0	45.7
I Edd		3	DDM.	(9)	٧	4	(*)	7	,	103	(*)	4	ŗ	4 0	9	4	(*)	14	00	.ci	103	(*)		2	17	£4		(*)	47	v.	V,	4		ra i	7	nj e	9 (9.4		9	-	7 .	- c	7	ωį
T dd	1	1	ppt	12	46.7	45 9	38.4	54.5	3	45.2	43.7	46.1	20.00	0 0 0	0 20	44 B	300	28.5	43.6	27.1	44.1	34.2	7.0	17.2	220	21.7	11.2	28.9	35.1	43.8	39.7	43.5	(O)	0 0	o o	45.4	20.04	10.04	2 0	0	in 1	3 6	12.0	0.0	46.5
D LIGO	100	e L	med	-	(0)	di	Per	40	3	40	O)	0	u	o u	9	Oi	(0)	9	(E)	9	2	1	CY	7	10	٧	(*)	ω	w)	d.	60	1.0	- 1		7	1,2	0 0	0 4	s c	7	ed e	d e	9.9	q i	9.2
mdd mdd	100	8	DPI	(W W)	Qi Qi	7.6	41	10		9.9	6.6	9 9	1 4	2.0	2	iri in	5.7	9	6.6	14	6.2	62.09	1.3	63	(2)	3.7	2.5	20	,- (0)	17	e e	7.6	0 1	2 1	ž	6.7	9 4	0 0	n u	D.	t- 1	- 0	t +	0.0	10.9
mdd	ü		DOM	0 1						£74 #**		+		*	9	7.	17.7	1.2	1.7	14.	1.2	4"		w	1,0	ω	4	ch	0.	12.		÷.	-		7	9		F 14	9 4	ij	53	7.5	0.1-	- 0	2.2
in edd	û	ii i	bbw	2.0	2.3	2.7	22.2		,	2.4	2.5	2.8	1 +	- 6	7.7	27	0	9	24	9.	21	2.0	ю	64	1.4	1,2	(f)	1.8	2.4	2 27	2.4	2.8	v.	2	٥	en e	2.0	7.7	2.4	•	nj n	n e	n e		4.1
5 dd	2	5	mdd	9 01	4 CE	K.7	1	7 3		4.4	4.5	41	i ir	9 0	9	6.5	4.0	4.0	(1)	63	0 4	9	1.2	12	24	2.2	1.7	en en	4.0	110	4.2	d) (p)	mi i	- (n)	7.1	99 0	7 1	ř	7 7	2	5.5	. ·	n v	r i	7.7
		-	Lidd.	1.35	70 8	0.5 6	10	15 15		27.4	82.3	79.0	48.4	6 3	5	(a)	70.3	52.6	76.€	54.1	76.1	70.7	on -	32.8	40.6	7.1.7	58.9	00.00	71.1	76.4	71.8	9.77	7.4	0.00	D G	100.2	0 0 0	2000	100	9	4. d	0 6	35.00	1000	100

		17	*	-	2		(165)	1.00	235	9000	010	10.5	0.0	in Or V	673	03 03 03 03 03 03 03 03 03 03 03 03 03 0	92	1000	0	364	032	282	787	254	27.1	321	280	282		308	308	330	305		416	400	100	346	-	199	9	364	592	077	126	298	275	524	349	
	1		dd	22	DDT		X	3111	17.15	43	26.9		50.A	168.51	254.2	1657	114 (2) (2) (2) (2)	200	0 1	110.7	17.2	000	771	94.3	116.€	1724	148.6	122.9		138.0	117.8	136.7	127.0		7.50	100	1000	177.8	6	0 0	97.0	100	170.7	3	84.0	181.3	107.7	176.0	121.3	
		100	mdd.	12	mpd		3 7	ulu i	110	tri e-	77		h i	1.5	C4	NE .	17	2 4	0 0	12 0	2 6	3 0	9	0.0	2.1	20	10	2.1		20	2.1	3.0	2,5	0	0 1		9 64	22 0	,	2.0	4 4	1.4	- 4	2	4.1	eó,	4.6	4.0	4.1	
		io.	ppm.	iö	ppm		25.4	3 300	180.5	Oi mi	21.4	9.00	0 1	5,	70.0	(I) (I)	377.5	5	2 2 2 2	9 6	4 0	7,50	3	1251.2	1618,4	1539.4	1327.3	1266.1	-	1205.3		1090.2	1745.9	4466.6	277.4	281.7	145 E	90.4	277 6	5734.0	2000	1304.2	1274 5		418.9	157.5	89.08	66.2	64.0	
		Q.	mdd	æ	mdd	*****	1997	103	4) 254	3 891	3317	3 40 0	0.000	7.297	1/8/6	n n	138,6	262 4	224	F 10 00 1	270	4524	- 70	76.6	94.4	140.7	150.3	121.0		113.2	4 6	7	140.8	124.7	443.0	122.3	108.2	184.6					118.6		74.9	03.2	02.9	222.6	29.0	
		O.	шфф	45	mdd		20	71.5	4	24	10.0	40.0	0 90	0 0	0 10	27.7	14.7	. 5	30.6	2 2 2	20.7	287		17.8	19.2	21.7	22.6	17.3		0 1	0.00	7.0	162	90	30	12.4	un ch	4.0					10.5					24.5		
		100	рш	Es	DIT	2 40	0 0	343	7 77 7	2 5	27.6	0.80	270.0	0.00	0 0	D I I	480.					268.5		180.6						0 0	n a	0 0	367.9	0			m	_					291.2		8	90 1	0 1	253.3		
			9	щ	Ω		004		617																				,			1	4 69	2	4	m	m	69	4	6	e	ेल	74		-	4 (7 6	4.8	2	
	5	0	ppm	Y.	udd			14 1							9 6			0,7	2.0	7	-00	2.5		2.1	2.1	2.4	22	23	36	2 10	2 6		92	1.7	0.5	2.0	1.0	1.7	2.0	2.4	28	(J)	5		1.0	D 10	0.0	2 0	9	
	3		ppm	7	Dbcu			2 0				9.7	24.7	0.70	7 50	2 0 0	2	10.0	211	44	20.7	25.1		22 B	23.5	27.5	244	24.4	277	200	0 80	200	25.8	19.5	220	20.4	19.8	18.5	27.2	24.3	28.9	19.7	15.2		12.7	5.0	38.0	21.7		
		2	mda	Э	ppm	3.73	3 .	27 5 9	0 0	4	10 14	28.1 5	6.1.74	6 7 24	107 25	4 5 4 4	0	13.9.10	10221	7 7 6	6.121	65.83		6.7.23	3.0.24	2.7.26	6.4.24	3.5.24	27.28	3427	3002	02.20	29.5	1,5 20	3.0 22	3.3.20	2720	58 19	4121	3.0.24	4.1.29	3.4.20	5.2.15	0.0	27 0.21	2 4 4	41 0 27	11.5 22		
			DDF	E	mdd	De		S 10	9.4		-	*	v	N	4	P	t	64	m	*	of.	un		eo.	ų.	4 -	4	4	7	4	4	(1)	4	(9)	65	to.	eo.	(2)	ω	v,	5	(7)	5	e	ν (o ec	. 4	t w	ê	
			4	Til	Dom	6		1 10	. (6)	0 6	1/2	(2)	16.6	17.4	10	10.5		4.2	14.4	-	13.8	(r) (r)		10.5	0.7	0 0	0	12.1	14.4	13.0	977	505	14.5	7.8	11.1	13.0	12.0	12.8	12.5	14.4	15.1	12.0	7.8	2 2	3 6	0 00	123	10.7		
	The	2	mdd	B	MGG.	10		1			N	+	4.7	* *		1		(1)	ch	411	(d)	cry			n c	0,1	0 1	G.	on	di	0,	90	0	φ	O)	40	1	7	w	o,	1.1	1.	9	и	9 G		on	60		
	S.	-	mag.	E	udd	01	lg.	4	10	1 4	ρ.	10	(a)	00	49	101 147		2.1	45	140	9.9	6.9		K) (0 6	0 0	9 1	0	9	6.2	6.7	5.4	6.4	0	6.4	6.2	en en	2	ψ	6.7	63	60	00	, C	9 (1	. 4	(9)	5.4		
	å	-	man a	1	ppm			10							12.4			(5) (*4	11.5	9	10.0	10.5	117000	G 4	1 1 1	. 0	9 6	n	di	9.2	10,4	w	10.1	5.4	00	9	1.6	80 CA	9.0	10.5	11.1	7.0	(D)	er er	6.3	00	89	(S)		
	180	-	- Paper	2	тре	9	2.2	24.0	10		27	4.7	502	52.0	47.5	54.2			42.6	53 EB	1- (1)	38.7		N 0	A 10 10 10 10 10 10 10 10 10 10 10 10 10	9 6		0.4.0			300	29.	33	19.5	37.2	300	30.0	8	37.2	41.5	di Gi	27.4	21.9	11.7	22.0	24.0	358	32.4		
	1	-	1000	3	Don			172	9			40.3			*1			•	eri,	1"	4	uş.		9.6		, u	E N	r.	¥	4	v	6.5		(s)	m	w i	7		4	a i	o.	m (64	D	E.	m	ų	65		
	01	- Mary	100	7	Dog	6.9	44	7.92	4.0	6	*	2.0	54.5	60.2	City City	34.4		11.4	47.7	0.0	43.2	455	100	0 0 0	0 00	40.5	4 44 44	000	43.0	40.7	48.7	36.1	44.7	23.9	42.5	4 1 4	32.0	92. 8	41.0	46.2	4.74	29.8	25.0	16.5	592	7.92	39.2	33.2		
4	To	10,000	The state of	e i	DDIL	14	1.0	15	7	0	4	*	1.0	4.0	1.0	p.		4.	w		di.	1.0		9 0			0		1.0	1.0	1.0	60	1.0	7.	Ob (0 0	0 1	,	01	0.0	-	ю (9	NO.	7	φ	1.0	90		
	50	Chrom	100	3	Dept.	180	90	10				9	60	4 5	90	US US		(1)	80	ND.	(h)	7.7	- 6	0 4	1 10	9		9	6.7	6.2	7.0	(c)	7.0	4.4	6.3	9 0	7 1	0	6.1	D 1	9	2 5	0	28	N.	40	6.5	6.0		
	Eu	DOM	100	12 1	Domin		**	ill)	Ŷ	9	ĺ		**:	*	(D)	+-			***		1,2	***		1.0	1.0	10		5	(1)	1.2	52 12		ç4 *-	60	4	-	n i	29	ş- (7.7	2	0 1	11	4	U)	(3)	63	4.1		
	ā	mod	i i	i de	1000		(1)					63	27	2.6	CA	di y		10	2.4	4	5.5	0.00	0	2.0	00	2 6	1 6	1	2.7	2.7	2.7	04	2.6	6	Z.3	7 0	7.7	2.0	2.2	7	9	2	0	1.2	GD	1.7	2.7	2.2		
	à	maa	le	5 10	Dog:	-	5.4	1.0	in the	0		10	5,4	5.4	9	63		2.0	4.7	1	4.6	5.2		0 0	9	4	1 1	i.	4.8	4.6	4 9	(7)	4.8	(9)	4	9 1	9 0	o n	4.2	d, 1	0 0	D 0	2.8	2.4	4.0	3.2	4,00	4.0		
			41	o com	- Control	16.6	92.5	909	0.8	16.5		6.0	106.2	111.9	100.6	68.7		422	(D)	10 1	82.9	86.0	. 03	77.0	1166	0)	13.1		78.8	73.6	92.5	68.6	76.4	51.4	5.7.7	0 0 0	0.20	100	72.5	60.1	0 0	100	10 10 10	32.3	55.2	53.8	66.1	66.0		
																																:7																		
																																1																		
	EMENT	MPLE	EMENT	MPLE		0201	6020	220	023	224		326	326	727	326	129		00 1	181	N.	n (n P	22	38	di K	0			12	63	ч	9	9	7	0 0	n c	· ·		~ ~	0.4		0 11				-	7			


			36	- 3		010	200	073	1861	260		245	125	278	296	200		275	258	250	186	365		ou vo	336	284	080	192		255	295	346	.255	038	000	307	500	202	017		194	.271	900	051	2	750.	110	145	37.00	261	346	.327
	1		bbu	t dd		316	(1) (1) (1)	00 to	× 08	4.4		106.1	74.5	106.3	5.53	128.7		134 7	143.5	140.9	77.4	179.5		1917	219.0	195.6	25.3	103.4		127.1	161.1	170.4	1763	32.7	5 625	180.0	24.2	107.6	4.00		65.9	129.7	10 cm	es es		7.1	51.2	150.0	113.7	110.6	93.4	130,3
		2	tidd.	DOM		14	7 7	9 1	-	9		23	(0)	1.7	(1)	40		2.4	4.7	4.7	4.6	-		27	r.	2.7	4.4	6.3		7 1	64	1.7	27	0	25	on	19	1.7	8.8		0 :	2 0		<0.1		**	4	7	2.0	3.6	2.4	5
	ò	1	Dig.	udd		36.0	W 1	1000	10 10 10 10	11377		1328.3	4002	1324.5	1170.4	2711		1209.2	1012.9	1073.1	555.3	124.8		00 1	122.1	134.2	336.5	557.9	436.0	27.7.0	222.9	71.5	71.6	770	121.1	93.5	37.1	151.3	38.9					728.3		280.6	270.5	948.0	583.5	94.9	314.9	50.0
	100	1	144	тире		2 11 1		01.47	200	121.0	-	130,6	196.6	130.2	1736	210.1		2123	173.9	137.3	128.6	162.3		3.00	2 2 2 2	823	2 100	03.0	404	0 40	D v	37.1	1342		47.3	0.22	38.5	127.9	39.2	- 0.7	-12			3.0					25.3			
	L'N	- Andrews	NE	ppm		9 0	0.0	N 4 N	1 4	a q		A V	n n	0.0	2.5	5.4		a	4	182	co.						50																									
																											0 .0						- 00		14.2	65	19.7	10.7	23.55	2.1.2	19.65	13.4		O	,	9 1	0 1	10	16.2	40.0	20.07	20.00
	ď.	CORP	B	mdd	- 6	V i	ő ő	2000	100	0	236	202	T I	27.7	258	380	0.00	386	301	0.000	178.	8	2000	204	787	201.00	42.4	2 74	113.5	6.00	405.4	T. C.	9.48		769.5	436.9	36.5	1130.1	200	243.7	2962	35.2	17.3	15.7	5	177	0.00	2004	420.4	144.2	3949	Pill Jan
	No.	mou	Y.O.	udd			r u	F 4F)		9	00	4 5	4 .	2.7		e v	6	9 1	7.7	B to	0 (2.7	0	- 10	1.4	7	2 Pr		2.6	100	2.0	0.0	0		1.5	,- (0)	4	9 .	a.	1.7	2.6	5.0	2	2	ч	D si	0 0	9 0	2 10) (I)	2.5	ĺ
	34	thoo	>	ppm	6	F. E.	1.4	402	2: 6		222 3	45.0	1		2110	202	200	2 2 2	212	0.0	0 0	27.7	90	F= 101	16.3	140	187		26.2	19.6	255	0.00	8.8		16.9	17.8	5.7	12.7	9	17.6	25.6	10.4	4.1	3.6	5.7	- 4	, r	20 A CS	21.5	20.5	27.9	
	2	mdd	n	mad	26.6	9	9 4 9	60	5.5.24		43.22	4.0 4.5	26.00	9 9	9 9	07 8.4	7 9 20	100	70.00	0 14	0	3	4.7.19	3.7.16	6.0.16	13.0 6	6.3 19		8.126	5.5 20	3.6.26	5.7.20	26 % 9	P. C. C. C.	0.017	3.0.18	0 10	40013	1	2.2.18	3,426	3,7 10	1.0 4	4	1.1	22 8	47.12	2433	2822	1.8 21	3.128	
	Tim	ppm	Tm	ppm	31	œ	47	T.Y	7		4	0	1 10) įs	2 11	ų	7	,	, 17			5	12	49	(*)		(1)		7	6.0	4	173	**		m i			4 +		m	4	2	-				r.	-	(13)	m		
			100		ui *	47	42 (1)	43	12.7		12.7	1 4	(1)	u a	2.75		144	125	10.4	40	17.7		8.9	12.5	2.5	10.	9 6		12.9	2.7	5.5	0.4	2.1					. 4			13.0											
	0	mdd	10	Spire	314	CE	119	W3	Lite		162	wy	143	8%	66					ω.				7					0			ŀ								.7 11									7. 9.8			
	ES	ppm	ES	ppen	90	HE.	7	09	9		(I)	69	60	4.7	les (g)		5.4	(4)	5.0	(7)	7.2		5.7	4.7	4 E	90	4.5		0 9	en en	5.6	0.0	(J)	*		·	1 1	10		4.5				o,	69	-	in	6	5.0		63	
	ď	mdd	à	ppr	Pic	lú)	23	9 2	4 13		uh	40	0)	7.0	10.4		10.0	60	1.5	6.2	17.55		0 6	7.0	7.0	on	9.9		er i	0	00	23	1.0					7		5 9									7.4 5			
	D.N.	Hidd	Ne	ppm	(*)	7.4	un Po	2,00	35.5		198	170	34.8	243	37.6		37 B	34.4	29.3	25.0	44.5		32.9	25.1	243	173	24.2		33.8	45.4	30.5	31.6	(r)	28.1	27.1	15	18.7	53		24.5			0 0		m	m	0	10	25.9		2	
	Ε	DDM	3	bbcm	(4)	4-	*	ių.	¥		v,	LV.	(*)	(*)	03		7	4.	m	cv	ч		(*)	(F)	63	***	(1)		u i	9.	4	0.1		m	i es	*	7	•		m, ·	e c	4 . 6		i					es e			
	97	uadd.	7	Bear	01	(1)	1	N 1	36.1	4	30.0	18.5	37.2	28.2	40.7		9.05	35.8	29.6	25.5	4E.5		30.00	27.5	0 17	9	ZB.3		40.2	0 6	35.2	47.4	ry in	32.7	33.1	2.7	22.5	4		33.0	n to				7.7	13.2	80.8	43.0	33.0	31.1	49.2	
	OF.	DDL	9	9000	C+	14.	er i		0		ž,	40	0	-	10		UD.	a,	100	10	co.		60 1	- 1		4	4		0.5		0 0	1	h	7	1	2	10	Ŋ	- 1		2 6				ry .							
	3	meet	3	1000	14	N.	da e	0 0	9.0	4	0	4	6.0	4.7	6.4		7.0	6.0	5.4	ų	6.2		eo 1	1.4	7 1		4		D u		0 1	n i		4.7	5.0	9	3.4	9		9,6	2 10		u		1.4	0)	T (2)	1.7	e e	0 0	7.7	
1	2	Parm	DE C	1000	- 00 d	9	14 1	,				0		0	63		1.5	1.1	0.0	7	50		2	29 (h ·	5.3	ю				2.0	1.0		o	0.1	40.1	100	٠.		(3) T	c0.1	P	0	į.	io i							
i		1000	i 6		4	9 1		4.0	27	3	e d	1	07 C4	0)	22		22	24	25	100	2.5	1 19	CV C	70 0	10 -		th :	0	2 0	0 0	2 .	2.1	97	1.7	2.0	4	1.4	4		D 00	9 07	(0)	67		Ø,	D)	5.0	N (0)	22		n V	
i c	5	100	()	1	01		7 (1 4 7	17.4	2.4	9 0	0	V	(1)	4.2		4,7	(r)	17	(7)	4.7		os e	0 0	7 0	h v	T.	3.7	n u		T 10		4	63	3.4	1.0	2.4	Ø.		2 2 2	9.6	1	LO.		t- 1	0 -	4 1	0.0	1 0	- 4	ä	
			124		27 5	0 0	o ii	1 100	2	7.8	2 0	2 1	12	110	7		** 4	D.			0.00		9 1				r		u ce		60						Time !															
1			Tida	1	~1 0		4	, d		4	10	9 1	0	0	ñ		106.3	6	90	6	120	6	62.7	5.6	, w	9	20	000	713	76	9 4 8	1000	707	65.5	72.5	4.0	44.5	2.8	* 24	81.6	5.1	6.1	22		15.7	24.5	9 60	170	2.40	02.4	100	

AR-3 AR-5 AR-5 AR-5 AR-6 4R-9 4R-9 4R-10 4R-11 4R-12 4R-12

DATA VERIFICATION

Table III: Lonnie Deposits Check Assays

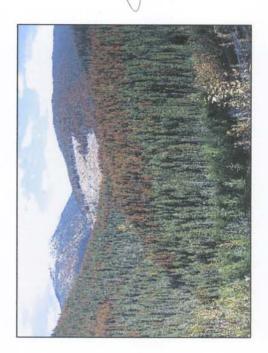
					7
STATISTICAL	ANALYS	SES OF CHE	ECK AS	SSAY	-
RESULTS O	F THE LO	NNIE #2 SA	AMPLIN	IG	
REGRESSIO	NS ANA	LYSIS			
		PIONEER		ALS	
257953		20.9		19.9	
257963		11.9		11.6	
257971		15.6		15.8	
257980		14.4		17.6	
257993		12.7		12.2	
258000		12.5		13.8	
258006		20.1		53.9	
258016		16.3		20.0	
258022		14.3		14.5	
258030		19.1		23.2	
258043		21.3		18.2	
258054		24.8		26.1	
258068		16.9		19.2	
258080		15.2		14.6	
258093		21.5		22.4	
	SUM	257.5	SUM	303.0	
	AVE.	17.17		20.20	
	AVE.	17.17	AVE	20.20	
DIFFERENCE			+	15.0%	
R SQ.		0.2949	R	54%	
SLOPE OF LINE IS 0.833					
INDICATING A BIAS OF 16.6%					

The samples were analyzed by ICP analysis. These methods are considered adequate for preliminary exploration sampling.

These results indicate a bias on the high side for the ALS analyses (or a bias on the low side for the Pioneer Laboratory) of 15% based on an arithmetical

average and of 16.6 % based on a regression analysis using the distance squared method.

The results above show that the check assays returned grades approximately 15% higher than the routine assaying. Considering the limited number of check assays and the low values encountered this is not considered significant.


MINERAL PROCESSING AND METALLURGICAL TESTING

No mineral processing or metallurgical testing was done on the carbonatite.

RARA TERRA CAPITAL CORPORATION LONNIE #1

CROSS SECTIONS

SECTION N30DEG EAST LOOKING NORTHWEST

B.C. CREEK, MANSON CREEK AREA, OMINICA MINING DISTRICT, LONNIE #1 SHOWINGS ARE IN THE BEETLE KILL FOREST ALONG THE RIDGE IN THE CENTER. GRANITE

GRNEBLEND GNEISS MYLDNITIZED ALKALI SYENITE ALKALI SYENITE AEGIRINE SOVITE SOVITE SCHIST ONZODIORITE VOLVERINE MICA SCHIST ARGILLITE NEV DRILL HOLE SOVITE FENITE OLD DRILL HOLE CONTOUR FAULT MD WD SVS ES BGS RES MON BSV FN ASV SV AMN M GN ARG OTZ

RARA TERRA CAPITAL CORPORATION
LONNIE#1 REE (NIOBIUM TANTALUM) PROPERTY

ONNIE #1 REE (WOBIUM TANTALUM) PROPERTY

LONNIE #1

CROSS SECTION COVER

ANTE-DECEMBER 15,2010 BRANN BY:- NL.T.

FILE:-1500

	MAS 600 MYLOMITIZED ASY 600 AKALI SYENITE SY 600 AKALI SYENITE AND 600 MYZODIOPITE MICHAEL MYZODIOPITE MICHAEL MYZODIOPITE MICHAEL MYZODIOPITE MICHAEL MYZODIOPITE MICHAEL MYZODIOPITE MICHAEL MYZODIOPITE SY 600 STOTIC SOLVITE AND 600 STOTIC SOLVITE CONTOUR CONTOUR CONTOUR ARAR TERRA CAPITAL CORPORATION LONNIET REE (NIOBIUM TANTALUM) PROPERTY CROSS SECTION SOUSE COMMITTED STOTIC SOLVITE CROSS SECTION STOTIC SOLVITE MATCHAET STOTIC SOLVITE MATCHAET STOTIC SOLVITE CROSS SECTION STOTIC SOLVITE MATCHAET STOTIC SOLVITE MATCHAET STOTIC SOLVITE CROSS SECTION STOTIC SOLVITE MATCHAET SO	SCALE:-1500 FILE:- 590SE
PLAN	1020E1	TAVE DEPOSIT NOTES
		M SI
		1
	00000000000000000000000000000000000000	0000000

MAS MY CONTIZED MAS MY CONTIZED ALKALI SYENITE SY ES SYENTE ALKALI SYENITE SY ES SYENTE ALKALI SYENITE ALKALI SYENITE	CROSS SECTION 560SE OBANTE CREA MEN DININGLI, MAGIN ORDE, DE COMBANDO DATE - DECEMBER 15, 2010 DRAWN BY- NL.T.
1100E1 W200 M200	1050E1
	F16#71
NS	
ASBW ASB NH	
SAA MA ASW ASW ASW ASW ASW ASW ASW ASW ASW AS	
# 1	
	JAS
000000000000000000000000000000000000000	
700000000000000000000000000000000000000	
TRIBE OF OF OF OF OF OF OF OF OF O	000000
OF TRIBE	
	WZ0

	MAS SEE WILDWITZED ASY SEE ALKALI STENITE SY STENITE MON SEE WILDWITZED ALKALI STENITE ANN SEE WILDWITZED BSV SEE STENITE MD SEE WILDWITZED BSV SEE STENITE FN M FENITE SOVIE SV SEE STENITE SV SE	CONT. CHICK MEN. BENEZA MINISTER STRINGT, MINISTER CHICK AND ADDRESS AND ADDRE
	1100E	F147C
~~	28H	$\langle \langle \rangle$
	BZV HIDM STORY AND STORY A	
10-62 наа	10-52	000
	TAIBE BRITISH JAMEER JAMES	WZ

	MAS MALAL SYENITE ASY ST. ALKALI SYENITE SY T. SYENITE MONOR HONZONITE MONOR HONZONITE MONOR HONZONITE MONOR HONZONITE MONOR HONZONITE AND THE SOUTH SOUTH	CROSS SECTION 500SE DATE-BECENBER 15, 2010 BRAWN BY:- N.L.T.
		1050E1
	WBS LZZ	
DDHZ9-02	20-02 	
	DDH BGSS ROAD	W.S.
	OF TRIBE	MS

MAS WES ALKALI SYENITE SY ST. SYENITE MON WES ALKALI SYENITE AND WES ALKALI SYENITE SY STOVITE SY	ARG STORY OF THE READ OF THE R	400SE COMMIT CATA AND DEPLICA AND CATA, IL CANADA DATE:-DECENBER 15, 2010 IBRAVA BY- NL.T. SCALE:-1500 N. TRIBBE & ASSOCIATES LTD.
BSV PMN	AS00 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
802 000000 0000000 0000000 0000000 000000	000000	ASOU
COR OF ESSION	SHIFTED UP	MSDST
L TRIBE	SECTION COORDINATES 50 METER RELATIVE SECTIONS TO THE NE	S002W

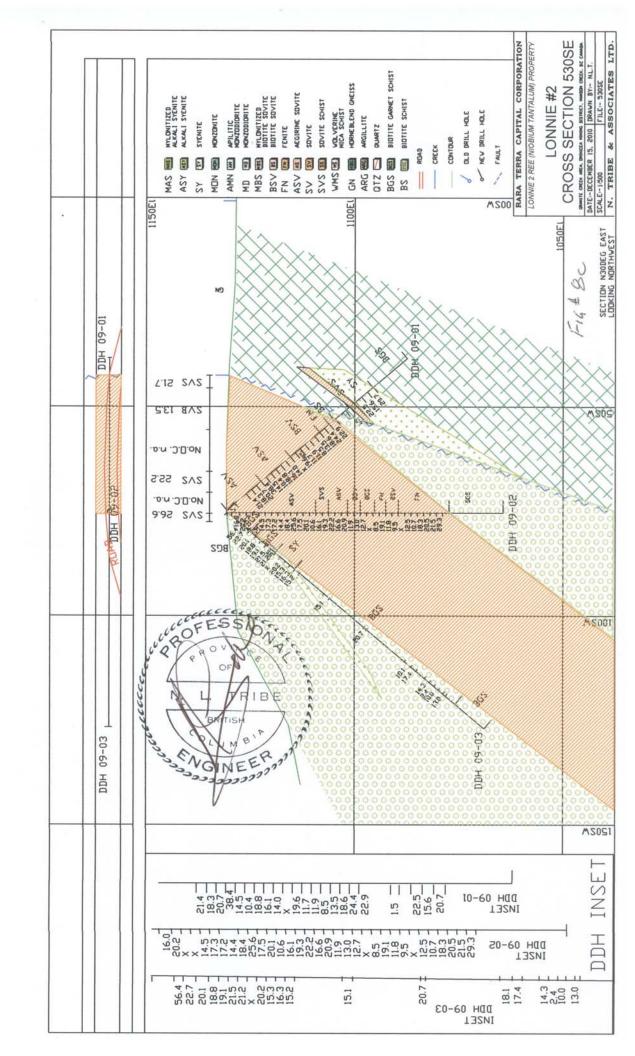
RARA TERRA CAPITAL CORPORATION

CROSS SECTIONS

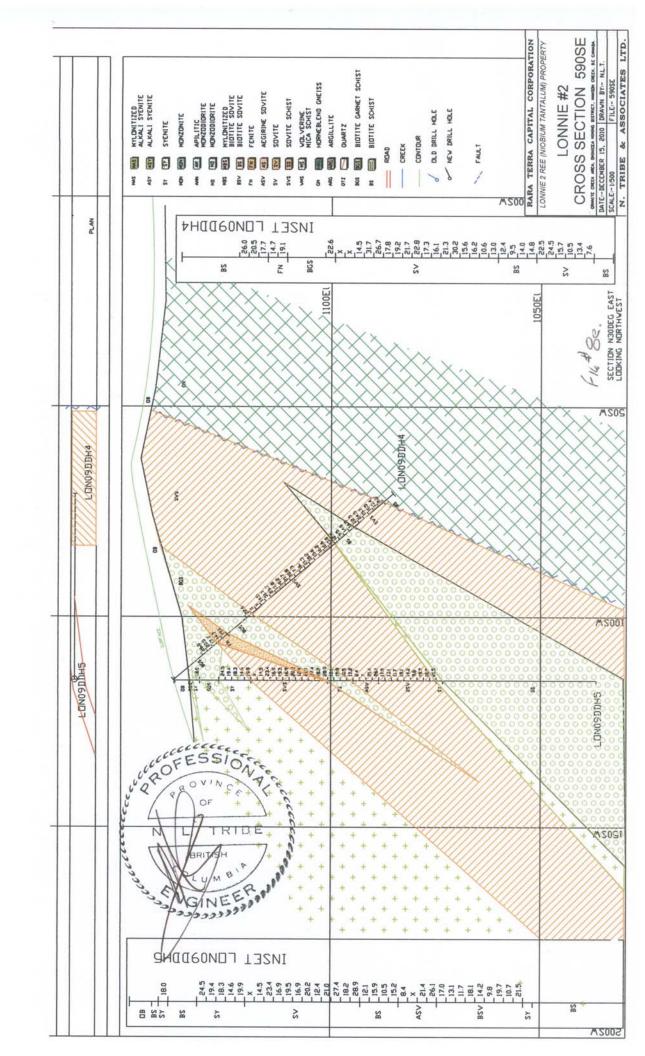
SECTION N30DEG EAST LOOKING NORTHWEST

GRANITE CREEK, MANSON CREEK AREA, OMINICA MINING DISTRICT, B.C. LONNIE #2 SHOWINGS. COLLECTING THE SAMPLES ALONG THE UPPER ROAD.

BIDTITE GARNET SCHIST HORNE BLEND GNEISS AEGIRINE SOVITE SOVITE SCHIST CNZODIORITE VOLVERINE MICA SCHIST ONZONITE ARGILLITE WEN DRILL HOLE OLD DRILL HOLE FENITE SOVITE CONTOUR CREEK MON MD


RARA TERRA CAPITAL CORPORATION
LONNIE #2 REE (NIOBIUM TANTALUM) PROPERTY

CROSS SECTION COVER CONTINUE #2


CROSS SECTION COVER CONTINUE CECENDER 19, 2010 [RAWN BT- NL.I. SCALE-1500 [FILE-LOWINE BZ COVER N. TRIBE & ASSOCIATES LTD.

MAS WES ALALI SYENITE ASY SES ALALI SYENITE ASY SES SYENITE ASY SES SYENITE MON SES PRILITE SOUTH BS SES STOUTH SOUTH FN SE STOUTH SV SES SOUTH SV SES SOUTH SV SES SOUTH AND VERT SOUTH SV SES SOUTH SV SES SOUTH SV SES SOUTH SV SES SOUTH AND VERT SOUTH BS SES SIGNITE SOUTH CONTOUR CONTOUR AND DEALL HOLE CONTOUR AND DEALL HOLE	RARA TERRA CAPITAL CORPORATION LONNIE 2 REE (NIOBIUM TANTALUM) PROPERTY CROSS SECTION 400SE CROSS SECTION 400SE	DATE-DCTOBER 2009 DRAWN BY:- NL.T. SCALE-1:500 FILE- 400SE N. TRIBE & ASSOCIATES LTD.
ND SOFT	FILE BA	DEG EAST
SV2		A305
		AS06 1
100000000000000000000000000000000000000	00000	
BATTER STREET	SECTION COORDINATES SHIFTED UP SO WETER RELATIVE TO THE SECTIONS TO THE NE	2002

	MAS MAY ALKALI STENITE ASY ON ALKALI STENITE SY EX STENITE MON EN MONZONGRITE AMN EN MONZONGRITE MONZONGRITE MONZONGRITE MONZONGRITE MONZONGRITE MONZONGRITE MONZONGRITE MONZONGRITE MONZONGRITE SOVIE SOVIE	CROSS SECTION 500SE PARTIES, MARTINES, MARTINE
		FIGURE ASSECTION NODEG EAST
5/15	SVZ	V/202
	CBS	M-\$00
	W. L. TRIBE	MS0S
	amydan Gwm a tagan	

	MAS SEE MYLDHITED ALKALI STENITE SY ES SYENITE SY ES SYENITE MIN SEE MYLDHITED MIN SEE MYDDIDGHTE MIN SEE MYDRITIES SOVIE SV EN SOVIE CONTONE C
	1150
	4
7//	3
RDAD	000000
	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
	200000000000000000000000000000000000000
	000000000000000000000000000000000000000
	000000000
	20000
	MS00

MINERAL RESOURCE ESTIMATE

Data Analysis

In order to understand the spatial relationships between all the samples it was necessary to develop a series of cross sections covering the full extend of the deposits. Two sets of cross sections spaced at 30 meter intervals were drawn up on the known carbonatites so that the sampling could be plotted, and analyzed. Each drill hole was plotted on the sections at a scale of 1:500 (1 cm to 5 meters) and each of the assay result was plotted at its location in the hole. In addition, the geology logged by the field geologist was plotted next to the hole so that geological interpretation could be made of the deposit to assist in interpretation of the assaying and to avoid projecting values into unfavorable geological environments.

Geological parameters recorded on the sections include a generalization of the rock types as logged by the geologist in 1979 and by the geologist who logged the core in 2009. Rock types interpreted from the old data and reconciled with the new data were the carbonatites, (aegirine sovite, biotite sovite, and fenite), the igneous intrusive rocks (syenites and monzonites) and the wall rocks (biotite garnet schist, argillite and gneiss). Several alteration types were noted by the field geologists such as mylonitized versions of the sovites.

Resource estimates were not calculated as the commercial value of the mineralization measured to date by the drilling is considered uneconomic.

Mineralization Controls

Generally speaking, the mineralization at both Lonnie showings and the Virgil showing are considered to be carbonatite intrusive sills. The sills appear to have been injected along strong regional faults. These faults may be offshoots of the Manson Creek Fault. The mineralization is syngenetic with respect to the carbonatite having been introduced along with the carbonatite or perhaps the syenite. The sill is epigenetic having been introduced during, a phase of regional

metamorphism and structural deformation. The mineralization consists of fine grained columbite as disseminations within the carbonatite at or near the contact between the syenite sovite and the biotite sovite. The columbite ((Fe,Mn)(Nb,Ta)₂O₆) is a fine black grainy accessory mineral with associated apatite, ilmenorutile, ilmenite and pyrochlore,

((Ca,Na,Y,Ce, Th,U,Ti)(Nb,Ta)₂O₆(O,F,OH)). Pure columbium columbite, Nb₂O₅, is 70% niobium but there is often considerable tantalum substituted into the columbite lattice. The element niobium was once called columbium and the mineral form of niobium oxide is still called columbite.

Resource Calculation Parameters

No resource calculations were applied to this property.

Statistical Analyses

Fifteen check analyses were done by the ALS Chemex Laboratory in North Vancouver. Arithmetic averages were calculated and a regression analysis was done. The arithmetic average shows a 15% higher value from the ALS lab. The slope of the regression line which should read 1.0 for an exact correlation showed a slope 0.833 or 16.7% bias on the high side for ALS.

Results

The results of the historical work on the Lonnie #1 showings indicate values on the order of 0.25% niobium (Not compliant with NI 43-101 standards). These values have not been verified by this writer. The values reported in the Minfiles, although sub economic, indicate the presence of rare earth elements in the carbonatites.

Results to date in the drilling on the Lonnie #2 showings returned values averaging 22 ppm Nb. These are not considered to be economic.

The results of the soil survey proved to be much more interesting with five areas showing anomalous results in several multi element rare earth analyses.

The complexities of the 25 element ICP scan are difficult to understand without some further work. In order to understand the significance of these numbers a statistical analysis was performed on the assay analyses of each of the elements. The arithmetic mean and the standard deviation from the mean were defined. Two standard deviation above the mean is considered to be anomalous.

The table below shows the assay certificate with the anomalous values highlighted in yellow. Some samples were anomalous in numerous of the rare earth elements. Some of the anomalous results were clustered into discreet areas which have been designated Anomalies. In all five areas were define as multi-element Anomalies. These are listed below:

- Anomaly #1 is associated with the Virgil carbonatite with nine samples showing high values in niobium and three samples showing anomalous values in other rare earth elements (Ce,Er,Eu,Gd,La,Nd,Pr,Nb,Sr,Ta,Zr.).
- Anomaly #2 is associated with the SEM showings. The SEM prospect
 is listed in the MinFile as a gold silver showing but the REE analyses
 show three samples giving anomalous values in the multi-element
 analyses. (Ce,Dy,Er,Eu,Gd,Ho,La,Nd,Pr,Sm,Tb,Y,Yb.). It should be
 noted than the niobium (Nb) values were very low at this location.
- Anomaly #3 is associated with the Lonnie #2 carbonatite where it extends down into Granite Creek. This site shows four separate adjoining samples with anomalous multi- element assays, (Dy,Er,Eu,Gd,Ho,Lu,Nd,Pr,Sc,Sm,Tb,Y,Yb.). The niobium values are low at this location. The low niobium values co-relate favorably with the drilling further up slope, 200 meters to the east.
- Anomaly #4 is located near the edge of the road 550 meters north east
 of the Lonnie #1 showing (413250E, 6171750N). This is a one sample
 anomaly with multi-element anomalous values in several REE
 elements.(Ce,La,Nd,Pr.). This sample shows a particularly strong
 response to Cerium and Lanthanum.
- Anomaly #5 is located 580 meters northeast of Lonnie #1 at 413400E, 6171600N at the southeastern corner of the sampling pattern. This is a one sample anomaly with several multi-element anomalous values. (Dy,Er,Eu,Gd,Ho,Nd,Sm,Tb,Y,Yb.) The niobium values are low at this location.

#103-2691 VISCOUNT WAY, RICHMOND, BC CANADA V6V 2R5

GEOCHEMICAL ANALYSIS CERTIFICATE

TELEPHONE (604) 231-8165

	⊏%	ppm	299 392 394 394 395 396 396 396 396 396 396 396 396
	Zr	ppm Zr	52.0 52.0 53.0 54.3 54.7 54.7 54.7 54.7 54.7 56.3
22, 201	Ta	ppm Ta	64 m r m 40 m r m - 0 - 1 - 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0
Analyst Report Nr No: 2012680 Date: September 22, 201		ppm Sr Sr	217.0 245.0 245.0 245.0 177.0 177.0 177.0 188.0 189.0
ž	Rb		65.3 88.4 102.0 107.6 88.4 102.0 102.0 102.0 102.0 102.0 103.2 103.2 103.2 103.2 104.0 104.0 105.0 106.2 106.2 107.0
Analys Repor Date:	1.	d mdd	256.2 24.0 24.0 25.0
		ppm p	824.0 10 10 10 10 10 10 10 10 10 10 10 10 10
		yb dy	4.5.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4
	∆ √		160 160 160 160 160 160 160 160 160 160
	n mdd		\$ 5 1 1 0 8 5 2 1 1 4 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
		ppm Tm	uzuunuuzuunuuuuuuuuuuuuuuuuuuuuuuuuuuu
	TT mdd		53.9 22.6 23.0 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.3
CATE AS finish.	Tb mqq		8
CERTIFICATE	Sm	mS Sm	23.4 1.15
ij	Sc	ppm Sc	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ANALYSIS	Pr	ppm Pr	200.9 20
AL AN HNO3-HCI	pN	pN PN	66.3 66.2 67.7 68.2 68.2 68.2 68.2 68.2 68.2 68.2 68.2 68.2 68.2 68.2 68.2 68.2 68.2 68.2 68.2 68.2 68.2 68.2 68.3
	Lu	mbd Lu	0 <mark>4</mark> 00000040 <mark>0</mark> 000000000000000000000000
GEOCHEMIC	La	ppm La	23.45.6 90.0 90.
O	Но		<u> </u>
	Gd		8.88 8.88 8.88 8.89 8.60 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
	Eu (8 - 0 8 9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
			23.3 23.3 24.2 25.2 26.2 27.2
	y Er im ppm		$\begin{array}{c} 6, 80 \\ 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,$
	e Dy		7
INC.	Ce	ppm	
GANESE ii Rocks			- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AMERICAN MANAGANESE INC. Project: Lonnie-Virgil Sample Type: Soils/Rocks	ELEMENT		L410650E-6174850N L410650E-6174875N L410650E-6174920N L410650E-6174975N L410650E-6174975N L410650E-6174975N L410650E-6174875N L410675E-6174850N L410675E-6174850N L410675E-6174850N L410675E-6174850N L410675E-6174850N L410700E-6174975N L410700E-6174975N L410700E-6174975N L410700E-6174975N L410700E-6174975N L410700E-6172950N L410700E-6172950N L410700E-6172950N L410700E-6172950N L410700E-6172950N L410700E-6172950N L410700E-6172950N L410700E-6172950N L410700E-6172950N L410700E-6172950N L410700E-617200N

⊏%	mdd	.299	.291	430	.371	.347	.371	.366	388	.431	417	346	.248	378	414	384	439	395	367	379	342	376	390	354	359	328	.337	282	.263	296	.437	334	346	338	311	.408	.423	.296	.291	343	.279	348	087	087	250	368	289	251	.272	.221	.262	.281	.220	.298	282	378		041.6
Zr	ppm Zr	52.0	15.0	97.6	15.2	28.6	17.5	27.8	23.7	27.1	21.1	13.7	13.9	13.2	24.0	29.5	29.7	31.1	20.3	19.0	14.3	23.1	19.5	34.1	23.2	12.6	7.1	10.7	10.2	11.9	5.2	15.6	14.5	17.5	22.4	19.2	10.7	17.0	11.3	10.5	8.1	20.3	5.7	0.0	0 0	24.4	10.9	12.0	9.5	27.2	8.5	22.6	21.1	22.7	17.3	9.5		2720.2
Ta	ppm Ta	10.5	0.3	0.0	0.2	9.0	9.0	0.4	4.	2.4	-	0.4	0.1	6.0	0.4	0.2	0.4	31.4	0.3	0.2	2.2	0.5	0.1	0.1	0.1	6.0	9.0	1.2	0.8	0.2	0.4	4.0	0.2	0.1	0.2	0.5	0.5	0.1	0.5	0.4	0.4	0.0	0.0	5 0	. c	- c	000	5	0.2	0.1	0.2	<0.1	0.1	0.5	0.7	0.6		206.6
Sr	ppm Sr	217.0	193.0	222.0	162.0	174.0	185.0	192.0	190.0	184.0	174.0	201.0	153.0	185.0	297.0	163.0	158.0	155.0	198.0	172.0	170.0	197.0	178.0	171.0	169.0	213.0	148.0	0.66	108.0	135.0	0.09	158.0	105.0	125.0	132.0	126.0	145.0	138.0	127.0	212.0	115.0	138.0	180.0	100.0	118.0	126.0	130.0	128.0	170.0	120.0	122.0	146.0	158.0	148.0	171.0	164.0		351.1
Rb	Ppm Rb	65.3	76.1	107.7	80.4	75.7	71.6	109.0	108.7	95.2	113.2	80.0	79.2	107.7	150.0	131.8	143.8	115.2	91.0	93.3	100.3	102.7	93.5	79.9	115.2	110.1	135.1	63.8	81.1	61.2	201.2	103.0	72.2	77.9	113.5	133.1	153.5	84.2	78.9	94.9	89.5	86.4	77.7	0 20	72.0	72.5	76.8	100.4	57.4	68.3	6.62	69.2	71.3	70.0	98.3	113.0		11506.7 2
QN Had	hpm Nb	562.2	61.5	45.7	41.4	83.3	79.5	33.9	54.7	63.3	63.9	38.9	29.3	29.7	32.1	40.7	25:8	33.6	20.4	29.9	39.1	41.8	30.4	20.0	23.9	23.0	34.4	28.5	31.3	21.6	15.9	18.9	16.6	16.4	15.7	18.9	24.0	19.2	22.2	51.0	17.2	40.4	0 0	0 0	12.0	32.6	22.8	18.5	16.5	15.6	13.3	12.2	26.7	31.4	20.3	26.1		150.6
Ba	ppm Ba	552.0	374.0	546.0	538.0	558.0	446.0	493.0	487.0	566.0	598.0	403.0	319.0	491.0	597.0	538.0	531.0	615.0	585.0	606.0	520.0	542.0	630.0	510.0	521.0	461.0	490.0	374.0	436.0	355.0	454.0	471.0	384.0	414.0	495.0	444.0	498.0	405.0	371.0	553.0	390.0	400.0	460.0	287.0	381.0	367.0	349.0	424.0	342.0	378.0	376.0	361.0	404.0	404.0	396.0	471.0		1032.8
d.Y mad	ppm AYb	4.1	5.6	3.3	1.0	1.2	1.6	5.	4.	0.	6.0	1.5	1.2		2.7	1.5	1.4	7	1.0	1.0	6.0	1.3	1.2	1.0	1.1	1.3		6.0	1.7	6.0	6.0	1.1	0.8	4.0	6.0	1.7	1.7	g	- 6	2.3		, c	9. +		i 6		1.4	1.2	6.0	1.1	1.1	2.9	2.2	1.2	1.1	6.		003.0
≻ mdd	md ≻	16.0	77.5	33.4	11.6	14.7	18.1	21.2	19.1	11.7	10.2	16.9	13.6	13.3	34.3	21.5	17.6	11.5	6.6	10.8	10.7	15.3	12.6	10.0	11.8	14.6	14.2	11.2	20.0	9.5	11.1	13.0	8.7	20.1	8.6	11.9	16.5	25.3	11.7	27.0	2.4.0	0.4	10.0	18.0	186		16.2	14.2	11.4	13.4	13.2	44.5	34.1	12.9	12.7	16.2	0 4 4 4 0	035.6
n mdd	mdd ⊃	5.3	46.9	0.00			5.5		10.6		4.6	4.5	2.7	3.3	11.5	11.3	8.4	2.1	4.8	1.9	2.3	3.7	1.8	1.9	2.9	3.2	4.8	2.1	5.2	1.7	4.2	3.4	1.3	4.1	1.7	3.4	2.4	6.3	2.1		50.00	4.0	1 0	A 8.0	4 2	20	3.7	3.0	2.8	2.9		14.1	16.1	2.2	3.5	3.4	170	011.9
	m Tm	0 2	9. 0	9	9	3	6	0 1	0 0	2 .	-	- 2	8	9	4.	7	6	2	3	6	8	.2	9	8	4	7 .2	1 .2	.1	6.	1.	-	0	1.	e,		6	w e	S 0	. i.	4. 0	, i	, .		10	2	2	2	.2	-1.	.2		c.	4.0	Ä C	i ci	.2		000.5
	Th Th	.8 37.	7 20.	6 21.	.7 13.		18.			17.	6 12.	1 21.	14.	8 16.	7 16.	4 19.	1 17.	7 12.	6 10.	7 11.	7 14.	9 14.	7 12.9	6 10.	8 14.	9 18.	1 23.1	8 15.6	1 19.	6 11.0	0 27.	17.0	9 10.4	15.8	9.3	7 12.8	13.8	10.7	7 75.0	70.07	10.4	45.6	100	170	1 19.7	3 11.1	9 15.0	3 11.3	3 17.2	3 12.6	13.1	13.6	12.5	11.1	11.9	19.4		041.3
Tb	PP Tb		7 7				-	•				-			-	-	-						- 0				-	*	-	***	-		*	-		*		-			-	•	•		-							2	-		-	-	40	002.1
Sm	Sm	8.2	17.9	12.2	6.5	7.7	9.2	4.0	9.7	0.0	6.2	8.6	9.9	8.0	12.6	11.9	9.4	7.5	5.9	6.3	7.1	8.4	7.1	5.8	7.3	8.9	10.4	7.9	10.2	6.5	11.8	8.1	5.7	7.8	5.4	9.9	7.3	10.1	9 4	0.0	1 0	- 6	9.6	4.0	0 0	6.3	8.6	7.0	8.0	6.7	9.9	20.5	10.2	20,8	Ø 0	9.6	44004	019.7
Sc	ppm	11.	14.3	19	11.	12	13.3	5	5		13			T	_	_	_	***	+	4	4	-	14.6	13.3	17.7	14.4	13.8	11.7	15.3	10.3	17.5	11.4	12.5	17.7	15.6	4.4	14.8	4.01	9.0	10.2	0.7	12.0	13.5	13.5	13.7	12.7	12.4	14.4	7.4	11.9	11.0	16.9	15.0	0.5	11.6	10.7	1500 7	026.7
Pr	ppm Pr		21.1																					9.3	~	13.7		12.4	6		2				8.2				10.0											6		200	5,0		5 6		1079 4	033.2
pN	DN PN	66.3	83.6	67.8	39.2	48.2	52.9	43.9	43.0	300.2	30.00	55.8	34.2	45.6	63.7	65.7	51.4	43.8	34.3	36.5	39.9	45.5	40.2	32.0	41.9	51.1	61.0	44.8	59.7	38.8	68.1	44.8	32.8	41.0	29.4	36.2	38.2	5.40	424.2	7.101	40.0	36.1	35.9	510	49.9	35.5	47.8	38.2	45.5	36.7	35.9	109.8	36.1	38.7	49.5	51.9	6910.7	114.6
Lu	mdd Lu		oj «					si c	, c	4 .	- 0	N.	7	c,	4.	Ċ,	s,	12	2	۳.	Τ.	,2	2	.2	.2	ci.	i,	2	e,	Ψ,	Ċ,	ż	- 1	w.	- 1	Si o	si c	200	A A	ŧ c	i c	40	0	2	2	2	c,	2	τ.	2	ci .	4. 0	30	40	ńω	V.	0.07.3	000.5
La	ppm		71.8					200		200	200.5	7.5	45.6	59.3	69.7	82.6	62.2	9.09	44.0	51.1	51.7	6.99	53.7	43.9	58.9	62.8	83.3	61.6	90.4	53.6	82.2	59.6	45.5	50.4	36.9	45.3	97.8	10.7	210.4	1.00 H	20.0	48.8	45.3	62.8	61.6	42.8	64.3	47.5	56.9	44.9	45.0	110.9	77.5	53.4	61.3	63.1	10157 8	170.7
Ho	ppm Ho	9.	2.6	1.4	5	6	00 o	1 0	- 4	S. A	4 1		0	9	4.	O,	ω,	'n	4.	4.	'n	7.	ď,	4.	ιĊ	φ.	9	ų,	œί	4	ιĊ	ι,	4.	œ.	4.	ΰι	- 0	, u	ú ±	- «	o a	j 4	20	7	7.	4.	7.	9	ιĊ	ι,	v. 6	0 0		j rc	υœί	9,		001.5
BDM	DD B	8.3	20.5	13.3	6.5	8.0	00.0	0 0	0 0	0.0	0 0	. i	0.0	7.6	12.9	12.0	9.4	6.9	5.6	6.1	8.9	8.2	6.8	5.5	7.1	8.5	10.2	6.7	10.0	0.0	10.7	7.7	4.0	6.7	0.4	0.5	0.0	0.0	7.0	2 0	0 0	0.0	6.0	9.0	9.1	5.9	8.3	9.9	7.6	6.5	9.0	20.3	8.0		9.0	9.4	11502	019.5
Eu ppm	ppm Eu	1.8	3.8	2.5	1.3	1.6	9. 4	D 4	0. +	- 0	7 .	0,0	0.0	.3	2.6	2.1	1.7	1.4	1.0	1.2	-	1.5	4.	-	1.4	1.5	9.1	1.7	6.	- !	1.7	5.3		9.0	1.0		5.0	0.4	2.5	9 +	5 6		1.2	1.6	1,5		1.5	1.3	1.2	1.2	1.2	4 0	1.7	4 6	. .	1,5		003.6
Er	ppm Er	1.8	8.9	3.9	1.3	1.7	2.0	Z.0	- + o c		7 .	 Di 1	0	4.	3.6	2.3	5.0	1.4	1.	1.2	1.2	1.7	4.	Ξ	4.	9.	9.	7.7	2.5	- :			0.0	2.2	0.0		0.0	÷ 6	3 0	9 6	, t	1 2	1.3	1.7	2.0	1.2	1.8	1.5	1.3	5.5	4.1	0.4	4.1	1 4	2.2	1.7	233.5	003.9
Dy	ppm Dy	3.6	13.9	8.2	3.1				‡ c	0.0	7.7	Q. f.	0 0	3.7	8.5	6.0	2.0	3.5	2.5	6.5	3.0	4.0	6,3	2.6	3.3	3.9	4 (6)	3.5	6.0	2.5	3,5	3.5	Z. 3	0.0	7.7	5.0	ט ע	0.0	7.0	0.4	2 6	2.7	3.0	4.2	4.6	2.7	4.2	3.4	3.2	60.0	3.3	4. 0	3.0	, w	. 8.		554 B	009.3
Ce	Dbm Ce	202.7	130.7	181.1	108.9	130.0	132.4	106.2	7 700	403.6	20.00	0.000	4.000	112.4	122.1	156.4	136.9	110.7	083.2	093.1	6.960	125.2	102.1	088.0	115.5	119.8	150.5	112.1	151.7	87.8	157.5	114.7	082.5	4.580	4770	088.0	0.000	005.5	450.4	116.3	0000	090.2	079.4	118.9	121.0	8.580	113.3	088.9	108.2	085.8	132.2	132.2	0.0.0	092.9	118.8	120.5		316.2
		- 5	64	92	99	/9	9 0	20	7.7	7.5	7.0	2.5	1 1	0 6	9 1		78	79	80	81	82	83	84	82	86	87	200	9 6	90	91	36	56.0	4 6	000	200	0 0	0 0	100	100	102	103	104	105	106	107	108	109	110	111	112	113	- t	116	117	118	119	*	
ELEMENT SAMPLE		L410650E-6174850N	L412650E-6172200N	L412650E-6172250N	L412650E-6172300N	L412650E-6172350N	L412650E-6172400N	L412650E-617250N	1412650E-6172550N	1412560E-6172600NI	1412700E 61720E0N	1412700E-817200N	1440700F-0172100N	L412/00E-61/2150N	L412/00E-61/2200N	L412/00E-61/2250N	L412700E-6172300N	L412850E-6171900N	L412850E-6171950N	L412850E-6172000N	L412850E-6172050N	L412850E-6172100N	L412900E-6171900N	L412900E-6171950N	L412900E-6172000N	L412900E-6172050N	L412900E-61/2100N	L412950E-6171900N	L412950E-6171950N	L412950E-6172000N	L412950E-61/2050N	L412950E-61/2100N	L413000E-61/1900N	L413000E-61/1850N	L413000E-6172000N	L413000E-6172400N	1413250E-0171650N	1413250E-6171700N	L413250E-6171750N	L413250E-6171800N	L413300E-6171600N	L413300E-6171650N	L413300E-6171700N	L413300E-6171750N	L413300E-6171800N	L413350E-6171600N	L413350E-6171650N	L413350E-6171700N	L413350E-6171750N	L413350E-6171800N	L413400E-61/1850N	1413400E-6171650N	L413400E-6171700N	L413400E-6171750N	L413400E-6171800N	L413400E-6171850N	SUM	AVERAGE

ELEMENT SAMPLE		Ce	Dy	Er	Eu	PS	Ho	La	Lu Dom	pN	174															F %
		ppm	ppm	ppm Er	ppm Eu	bbm	ppm Ho	ppm La	bbm Lu	pN pN	ppm Pr	ppm p	bbm p	pp mdd	ppm mdd	pp mgd	wdd wdd	mdd m	n ppm		ppm pp	ppm p	bbm Sr Sr	ppm p	ppm	mdd
L410650E-6174850N	-	202.7	3.6	8.	1.8	8.3	9.	123.6	2	66.3	19.9	4.	8.2	ωį	37.0	7	5.3	16.0	1.4 55	552.0 56	562.2	65.3	217.0	10.5	52.0	.299
LON10-AR-1		001.1	<0.1	40.1	<0.1	0.1	40.1	7.	<0.1	4	0.1	ωį	Ξ.	0.1	7	* 0.1	0.1	0.2 <0	1.0		2	10.7	0.4	<0.1	Ξ	.024
LON10-AR-2 LON10-AR-3 LON10-AR-4 LON10-AR-5 LON10-AR-6		002.9 032.1 000.5 000.7 068.3	0.1 0.1 0.1 3.4	0 - 0 0 -	0.1 0.1 0.1 0.1	0.2 0.1 0.1 5.7	0.00 4.1.00 8.	1.5 14.5 .6 .5 34.0	0 0 0 2	12.8 12.8 .3 .3 29.0	0.3 3.4 0.1 7.8	1.0 4.1 4.1 7.2	2.2 2.2 1. 1.5 4.5	1.00 4.00 1.00 7.	7 9 6		0.3 0.4 0.4 7.7	0.6 10.7 1.4 0.9 0.9	0.1	31.0 75.0 11.0 8.0 376.0			4.0 605.0 378.0 97.0 33.0	0.00	0.6 6.7 0.7 0.6 7.5	.023 .098 .016 .010
VIRG10-AR-1 VIRG10-AR-2		022.1 376.0	4.1	2.0	2.4	1.8	2 7.	11.1	- 2	9.0	2.4	2.8	1.7	2, 0,	4.7								49.0	1.2	5.7	.150

ADJACENT PROPERTIES

There are a number of active properties in the Manson Creek area. These are alluvial placer operations and the associated bedrock areas around them.

These properties have no significant influence on the Lonnie Claims.

OTHER RELEVANT INFORMATION

The Lonnie property is located in a remote part of north central British Columbia. Road access is available and, although gravel, the road is well maintained and in good condition.

The First Nations People are active in the Fort St. James area and have claims on much of this portion of the province.

Environmental concerns are no more urgent than they are in other parts of the province. There are no current environmental liabilities connected with the property. The area around Manson Creek is an active placer mining area with many operations in and around the village of Manson Creek. The populous of Manson Creek are tolerant of miners and mining operations and are not expected to make problems with respect to any mining developments.

Permitting with respect to the anticipated work on the property will be the standard for the industry with the standard Notice of Work application and notification will be required and the appropriate bonding put in place.

Testing for rare earth elements has come a long way in the past 20 years. ICP and AAS methods are more definitive than colorometric tests generally used in the 1970s.

Recent discoveries of the effectiveness of niobium in stabilizing the lithium hydride batteries used in battery powered automobiles has created a window of opportunity to develop a large market for niobium.

INTERPRETATION AND CONCLUSIONS

The Lonnie #1 deposit is reported to contain niobium in the order of 0.25% Nb (non compliant with NI 43-101 standards). Although this is low grade it does warrant further work to test for higher grade material along this structure. Five drill holes are recommended.

The Lonnie #2 deposit does not appear to contain sufficient niobium to develop an economically interesting deposit. The grades are well below the economic requirements for resource production. The western extension of this zone near Granite Creek has a strong geochemical anomaly which warrants further work. Trenching followed by drilling is recommended.

The Virgil deposit has received the least amount of attention possibly due to its lack of vehicular access. The soils survey indicates that the rare earth minerals are present and well enough defined to locate several drill holes to test the carbonatite. Three drill holes are recommended.

The five anomalous areas defined in the multi-element geochemistry warrant further investigation. A soils geochemistry surveys along strike is recommended followed by trenching and drilling.

The magnetic survey defined the regional shear structure which is thought to control the placement of the carbonatites. The definition of this shear structure has provided a locus for further work, which should be concentrated along this regional shear structure and more exactly along the eastern edge of this structure.

The two magnetic lows located on the western edge of the regional shear are believed to be mineralization of base metal minerals similar to the SEM showings rather than the carbonatite of the Lonnie and Virgil showings. Three trenches are recommended to further explore these magnetic lows.

Risk Analysis

The Lonnie #1 deposit and the Virgil deposit warrant further work to confirm the values reported in Open File 1990-32 and Bulletin 88. The work recommended for the property is early exploration work and should be

considered high risk. A certain level of confidence with respect to the structure and the grades has been achieved based on the earlier results by others.

Site Inspection

The writer completed a site inspection of the property October 16th to October 18th, 2009. The writer reviewed the conditions at the site, together with his field geologist, outlined a soils survey to confirm the presence of the rare earth mineralization. A reconnaissance soils geochemistry survey was completed July 2010 by the field geologist. The details of this survey are included in this report. The property is in an early stage of development and the soils survey did not change the material facts with respect to the property. Beneficial information would not have been gained with another site visit.

Communications with American Manganese Inc. (Rocher Deboule Minerals Corp.) has confirmed that no further work has been done on the property.

The writer again visited the site on February 26th, 2011, in the company of the geophysicists during their airborne magnetic survey. The writer reviewed the conditions at the site, and noted no changes from the earlier visit.

RARE EARTH ELEMENTS

PRICES AS OF SEPTEMBER 2010

Element	Form	Price		Kilogram	Price		Gram
LANTHANUM	La ² 0 ³	\$	37.00	/Kg	\$	0.037	/gm
CERIUM	Ce ² 0 ³	\$	36.00	/Kg	\$	0.036	/gm
PRASEODYNIUM	Pr ² O ³	\$	55.75	/Kg	\$	0.056	/gm
NEODYNIUM	Nd^20^3	\$	59.75	/Kg	\$	0.060	/gm
SAMARIUM	Sm^20^3	\$	33.25	/Kg	\$	0.033	/gm
EUROPIUM	Eu^20^3	\$	595.00	/Kg	\$	0.595	/gm
GADOLINIUM	Gd^20^3	\$	40.00	/Kg	\$	0.040	/gm
TERBIUM	Tb^20^3	\$	595.00	/Kg	\$	0.595	/gm
DYSPROSIUM	Dy ² 0 ³	\$:	288.00	/Kg	\$	0.288	/gm
HOLMIUM	Ho^20^3	N	l/a	/Kg	r	n/a	/gm
ERBIUM	Er ² 0 ³	١	l/a	/Kg	r	n/a	/gm
THULIUM	Tm^2O^3	\$3,	00.00	/Kg	\$	3.000	/gm
YTTERBIUM	Yb^20^3	N	l/a	/Kg	r	n/a	/gm
LUTETIUM	Lu^20^3	\$2,	00.00	/Kg	\$	2.000	/gm
YTTRIUM	Y^20^3	\$	34.50	/Kg	\$	0.035	/gm
NIOBIUM/COLUMBIUM	Nb	\$	115.83	/Kg	\$	0.116	/gm

Prices taken from:

http://www.metalprices.com/FreeSite/metals/cb/cb.asp

RECOMMENDATIONS

Phase I

A program consisting of cleaning out the old trenches and drilling 5 new drill holes on the Lonnie #1 showings is recommended.

A program consisting of cleaning out the old trenches and drilling 3 drill holes on the Virgil showings is recommended.

A soils geochemistry survey is recommended to fill-in that area between the known showings. A pattern of sampling 1400 meters wide on 50 meter spacing and a length of 5600 meters on 100 meter spacing covering a corridor over the full width of the carbonatites for the full length of the property is recommended. This would involve 1568 samples. A sampling crew should be able to collect 100 samples per day making this a 16 day program. The geochemistry is to be plotted up and the anomalies analyzed.

The geochemical anomalies should be followed up with surface trenching using a small backhoe to expose the bedrock. A total of 10 trenches of 200 meters each requiring 10 samples per trench or 100 samples is projected depending on the results of the geochemistry survey. These are marked up on Figure #6 (see Map Packet).

- Trench #1 -- 410737E, 6174832N. 180 meters at Az.42deg.
- Trench #2 410703E, 6174868N. 180 meters at Az.42deg.
- Trench #3 -- 410669E, 6174906N. 180 meters at Az.42deg.
- Trench #4 410638E, 6174943N. 180 meters at Az.42deg.
- Trench #5 -- 410604e, 6174980N. 180 meters at Az.42deg.
- Trench #6 -- 412425E, 6172987N. 180 meters at Az.42deg.
- Trench #7 -- 412565E, 6172078N. 180 meters at Az.42deg.
- Trench #8 -- 412555E, 6172132N. 180 meters at Az.42deg.
- Trench #9 -- 413194E, 6171706N. 180 meters at Az.42deg.
- Trench #10 -- 413297E, 6171501N. 180 meters at Az.42deg.

Five holes are laid out for the Lonnie #1 showing.

These are a follows:

- 412953E, 6171120N. 200 meters at Az. 42 deg., dip –60 deg.
- 412892E, 6171134N. 200 meters at Az. 42 deg., dip –60 deg.
- 412853E, 6171165N. 200 meters at Az. 42 deg., dip –60 deg.
- 412818E, 6171198N. 200 meters at Az. 42 deg., dip –60 deg.
- 412785E, 6171241N. 200 meters at Az. 42 deg., dip –60 deg.

Phase II

Phase II will be contingent on the positive results from Phase I Three holes are laid out for the Virgil showings.

These are as follows

- 410703E, 6174868N. 200 meters at Az. 42 deg., dip –60 deg.
- 410669E, 6174906N. 200 meters at Az. 42 deg., dip –60 deg.
- 410638E, 6174943N. 200 meters at Az. 42 deg., dip -60 deg.

Three trenches are recommended for the "Blue Spot" magnetic anomalies.

- Trench #11 411275E, 6173314N. 200 meters at Az.60deg.
- Trench #12 411340E, 6173230N. 200 meters at Az.60deg.
- Trench #13 411420E, 6173080N. 150 meters at Az.60deg.

Depending on the results of the trench sampling, each significant showing should be drilled. Assuming 5 anomalous areas in the trenching and one, 150 meter hole on each would require 5 drill holes or 750 meters of drilling.

<u>Budget</u>

Phase I

Clean out trenches		
Mobilization of men and equipment	\$	2,500
Trench clean up four days at \$1000/day		
2 men and one supervisor	\$	4,000
Geological work on trenches 2 days	\$ \$	1,600
Assays 100 samples at \$25	\$	2,500
Soils geochemistry survey		
2 men 16 days or 32 man days		
@ \$400 per man per day all in.	\$	12,800
Sample assaying @ \$25 /sample		
for 1600 samples	\$	40,000
Plotting and drafting soils results	\$ \$	5,000
Trenching at 15 days \$1000/day	\$	15,000
Sampling/Geological –		
2 men for 8 days @\$400/manday	\$	6,400
Assaying 150 samples @ \$25	\$ \$ \$	3,750
Drilling mobilization and demobilization	\$	20,000
Lonnie #1 Drilling 5 holes to 200 meters = 1000 meters		
@ \$100 meter	\$	100,000
Assaying 100 at \$25	\$ \$	2,500
Geological supervision - 8 days at \$600	\$	4,800
=====	======	220.950
	\$	220,850

----- N.Tribe & Associates Ltd. -----

Phase II

Virgil Drilling 3 hole	es to 200 meters = 600 meters	;	
At \$1	00 meter	\$	60,000
Assaying 60 at	\$25	\$	1,500
Geological 4 day	s at \$600	\$	2,400
Drilling the Geoche	m/Trenching anomalies		
5 holes at 15	50 meters each		
750 meters	or 6 days @\$100/meter	\$	75,000
Supervision 20 day	rs at \$800/day	\$ \$	16,000
Assaying 300 samp	oles @\$25	\$	7,450
Reporting NI43-101	1	\$	30,000
		========	======
Total Phase	II	\$	192,350
		========	======
Total		\$	413,200
Total		Ψ ========	=======
Contingencie	es at 15%	\$	61,980
		========	======
Grand Total		\$	475,180
		========	======

REFERENCES

Armstrong, J, E. Lang, A.H. and Thurber, J.B. (1946) G.S.C. Map 876, Manson Creek, Scale 1:253,340.

Armstrong J. E. (1946) Fort St. James Area, Cassiar and Coast District, B.C. G.S.C. Memoir 252.

Belik, G. D. (2002) Geochemical and Geological Report on the Floyd Mineral Claims.

Dawson K. R. Niobium (Columbium) and Tantalum in Canada G.S.C. Economic Geology Report No 29.

Sookochoff, L. (1982) Geological Report on the Wolverine Claim Group. Private Report for Golden Slipper Resources, Inc.

Stokes R. B. (1978) Report on the Lonnie/Pitch Claims Manson Creek Area Private report for Molymite Mines Inc.

DATE AND SIGNATURE PAGE

Respectfully submitted this 10th day of March 2011, at Kelowna, B.C..

N.L.Tribe, P.Eng.

CERTIFICATE

I, NORMAN LLOYD TRIBE, P. Eng., of 2611 Springfield Rd. in the City of Kelowna, Province of British Columbia, hereby certify as follows:

I am a Consulting Professional Geological Engineer registered (#11,330) with the Association of Professional Engineers and Geoscientists of British Columbia since 1978.

I am a Consulting Geologist with an office at 2611 Springfield Road, Kelowna, B.C., V1X 1B9.

I am independent of Rara Terra Capital Corp. and American Manganese Inc. as defined in Section 1.4 of NI 43-101. I have no interest, past or present either company or in the Lonnie property nor do I have any intention of having any interest in the future. I have not had prior involvement with the property that is the subject of the Technical Report.

I am a registered Professional Engineer of the Province of British Columbia. I graduated with a degree of Bachelor of Applied Science in geological Engineering, from the University of British Columbia in 1964.

I have worked as a geological engineer for a total of 45 years since my graduation from the University of B.C. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.

Although I have no experience in Rare Earth Element mineralization or carbonatites in particular I have wide ranging experience in the type of sill like structures noted a hosting the carbonatites of the Lonnie property. My experience in property evaluation has covered more than 50 countries and hundreds of properties throughout the world. I have extensive knowledge of sampling and assay techniques more than adequate to evaluate a property at its preliminary stage of development.

I am responsible for the technical report entitled "MINERAL RESOURCE EVALUATION REPORT ON THE LONNIE NIOBIUM PROPERTY" dated March 10, 2011 relating to the Lonnie Property in North Central British Columbia Canada. I visited the Lonnie property on October 16th, 17th and 18th of October, 2009, for three days and on February 25th and 26th, 2011. I am responsible for all the items in the report including supervising the geochem survey and geophysical survey and a review of the information published in the B.C. Minefiles.

I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

I am independent of the issuer applying all of the tests in section 1.4 of National Instrument 43-101.

I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.

I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.

This report dated March 10th, 2011 is based on data collected from published sources, from the files of Rocher Deboule Minerals Corp., and Rara Terra Capital Corporation and by the writer during visits to the property October 16th to October 18th inclusive 2009 and February 25th and 26th 2011.

Dated at Kelowna, Province of British Columbia this 10th day of March, 2011.

Signed and sealed: "Norman Lloyd Tribe"

Norman Lloyd Tribe, P. Eng. Consulting Geologist.

Email: nta@shaw.ca Tel: (250) 860 7661

CONSENT of AUTHOR

TO: B.C. Securities Commission, and the TSX Venture Exchange.

I, Norman Tribe, P. Eng., do hereby consent to the filing of the written disclosure of the technical report titled "MINERAL RESOURCE EVALUATION REPORT ON THE LONNIE NIOBIUM PROPERTY" and dated March 10^{th,} 2011 and any extracts from or a summary of the Technical Report in any Statement of Material Facts and news releases of Rara Terra Capital Corp., and to the filing of the Technical Report with the securities regulatory authorities referred to above.

I also certify that I have read the written disclosure being filed and I do not have any reason to believe that there are any misrepresentations in the information derived from the Technical Report or that the written disclosure in the filings with SEDAR made for the purpose of continuous disclosure of the activities of Rara Terra Capital Corp., contains any misrepresentation of the information contained in the Technical Report.

Dated this 10th day of March, 2011.

TRIBE

Morman

Appendix I

Title Documents

Tenure Detail

Tenure Number ID	559717	1
Termination Type		
Title Type	MCX	į
Tenure Sub Type	C	
Tenure Type	M	
Mining Division		-
Good To Date	2015/jul/31	1
Issue Date	2007/jun/02	27
Termination Comment	S	
Termination Date		1
Tag Number		
Claim Name	VERGIL PROSE	ECT
Old Tenure Code		

18.22

Map Numbers:

Area In Hectares

093N

Owners:

119404 ROCHER DEBOULE MINERALS CORP. 100.0%

Tenure Events:	Submitter	Event	Effective Date
	146571 FUNK, KELLY BRENT (2)	CEXT(4151364)	2007/JUN/01
	146571 FUNK, KELLY BRENT	BSLI(4171414)	
	119404 ROCHER DEBOULE MINERALS CORP.	BSLC(4171419)	2007/SEP/25
	119404 ROCHER DEBOULE MINERALS CORP.	CIL(4218796)	2008/JUN/02
	119404 ROCHER DEBOULE MINERALS CORP.	CIL(4284741)	2009/MAY/27
	119404 ROCHER DEBOULE MINERALS CORP.	SOW(4411111)	2009/NOV/25

Tenure Detail

Tenure Number ID 563966

Termination Type

Title Type MCX
Tenure Sub Type C
Tenure Type M

Mining Division

Good To Date 2015/jul/31 Issue Date 2007/aug/01

Termination Comments Termination Date Tag Number

Claim Name

RARE

Old Tenure Code

Area In Hectares 91.13

Map Numbers:

093N

Owners:

119404 ROCHER DEBOULE MINERALS CORP. 100.0%

Tenure Events:

Submitter

Event

Effective Date

119404 ROCHER DEBOULE MINERALS CORP. CEXT(4162013) 2007/AUG/01 119404 ROCHER DEBOULE MINERALS CORP. CIL(4229460) 2008/JUL/30 119404 ROCHER DEBOULE MINERALS CORP. CIL(4307479) 2009/JUL/31 119404 ROCHER DEBOULE MINERALS CORP. SOW(4411111) 2009/NOV/25

2

Tenure Number ID	564009
Termination Type	
Title Type	MCX
Tenure Sub Type	С
Tenure Type	M
Mining Division	
Good To Date	2015/jul/31
Issue Date	2007/aug/01
Termination Comment	
Termination Date	
Tag Number	
Claim Name	RARE1
Old Tenure Code	
Area In Hectares	164.05

Map Numbers:

093N

Owners:

Tenure

119404 ROCHER DEBOULE MINERALS CORP. 100.0%

Events:	Submitter	Event	Effective Date	
	119404 ROCHER DEBOULE MINERALS CORP.	CEXT(4162096)	2007/AUG/01	
	119404 ROCHER DEBOULE MINERALS CORP.	CIL(4229460)	2008/JUL/30	
	119404 ROCHER DEBOULE MINERALS CORP.		2009/JUL/31	
	119404 ROCHER DEBOULE MINERALS CORP.			

Tenure Number ID 639286

Termination Type

Title Type

MCX C

Tenure Sub Type Tenure Type

M

Mining Division

Good To Date

2015/jul/31

Issue Date

2009/sep/23

Termination Comments

Termination Date

Tag Number

Claim Name

RDLON

Old Tenure Code

Area In Hectares

364.61

Map Numbers:

093N

Owners:

119404 ROCHER DEBOULE MINERALS CORP. 100.0%

Tenure Events:

Submitter

Event

Effective Date

119404 ROCHER DEBOULE MINERALS CORP. CEXT(4352936) 2009/SEP/23 119404 ROCHER DEBOULE MINERALS CORP. SOW(4411111) 2009/NOV/25

Tenure Number ID 595332

Termination Type

Title Type MCX Tenure Sub Type C

Tenure Type Mining Division

Good To Date 2015/jul/31
Issue Date 2008/dec/02

Issue Date 2008/dec/02 Termination Comments

Termination Date

Tag Number

Claim Name

RD_NIOBIUM

Old Tenure Code

Area In Hectares 328.23

Map Numbers:

093N

Owners:

119404 ROCHER DEBOULE MINERALS CORP. 100.0%

Tenure Events:

Submitter

Event

Effective Date

119404 ROCHER DEBOULE MINERALS CORP. CEXT(4249799) 2008/DEC/02 119404 ROCHER DEBOULE MINERALS CORP. SOW(4411111) 2009/NOV/25

Tenure Number ID 639283

Termination Type

Title Type

MCX

Tenure Sub Type

C

Tenure Type

M

Mining Division

Good To Date

2015/jul/31

Issue Date

2009/sep/23

Termination Comments

Termination Date

Tag Number

Claim Name

RDVIR

Old Tenure Code

Area In Hectares

328.26

Map Numbers:

093N

Owners:

119404 ROCHER DEBOULE MINERALS CORP. 100.0%

Tenure Events:

Submitter

Event

Effective Date

119404 ROCHER DEBOULE MINERALS CORP. CEXT(4352928) 2009/SEP/23 119404 ROCHER DEBOULE MINERALS CORP. SOW(4411111) 2009/NOV/25

Tenure Number ID	564093
Termination Type	
Title Type	MCX
Tenure Sub Type	C
Tenure Type	M
Mining Division	
Good To Date	2015/jul/31
Issue Date	2007/aug/03
Termination Comment	is
Termination Date	
Tag Number	
Claim Name	LONNIE
Old Tenure Code	

127.69

Map Numbers:

Area In Hectares

093N

Owners:

119404 ROCHER DEBOULE MINERALS CORP. 100.0%

Tenure Events:	Submitter	Event	Effective Date
	146911 KRESS, DWAYNE EDWARD	AMAL(4162902)	2007/AUG/03
	146911 KRESS, DWAYNE EDWARD		2007/AUG/03
	146911 KRESS, DWAYNE EDWARD	BSLI(4172736)	2007/OCT/02
	119404 ROCHER DEBOULE MINERALS CORP.	BSLC(4172740)	2007/OCT/02
	119404 ROCHER DEBOULE MINERALS CORP.	CIL(4233564)	2008/AUG/28
	119404 ROCHER DEBOULE MINERALS CORP.	CIL(4247742)	2008/NOV/21
	119404 ROCHER DEBOULE MINERALS CORP.	CIL(4284741)	2009/MAY/27
	119404 ROCHER DEBOULE MINERALS CORP.	SOW(4411111)	2009/NOV/25

Tenure Number ID 565354

Termination Type

Title Type MCX
Tenure Sub Type C

Tenure Type M

Mining Division Good To Date

2015/jul/31

Issue Date 2007/aug/29 Termination Comments

Termination Commen Termination Date

Tag Number

Claim Name GAM

Old Tenure Code

Area In Hectares 182.43

Map Numbers:

093N

Owners:

119404 ROCHER DEBOULE MINERALS CORP. 100.0%

Tenure Events:	Submitter #		Event	Effective Date
	146911 KRESS, DWAYNE EDWARD	C	EXT(4167248)	2007/AUG/29
	146911 KRESS, DWAYNE EDWARD	В	SLI(4172736)	2007/OCT/02
	119404 ROCHER DEBOULE MINERA	LS CORP. B	SLC(4172740)	2007/OCT/02
	119404 ROCHER DEBOULE MINERA			2008/AUG/13
	119404 ROCHER DEBOULE MINERA			2008/NOV/21
	119404 ROCHER DEBOULE MINERA	LS CORP. C	IL(4284741)	2009/MAY/27
	119404 ROCHER DEBOULE MINERA	LS CORP. S	OW(4411111)	2009/NOV/25

Appendix II

Assay Certificates

#103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2RS

GEOCHEMICAL ANALYSIS CERTIFICATE

ROCHER DEBOULE MINERALS INC. Yoject Loonie ample Type: Soils/Cores/Rocks

PIONEER LABORATORIES I.

Analysis by LIBO2 fusions, ICP/IMS finished

Analyst Report No. 2082474 Date: December 14, 2009

381 345 345 354 354 430 327 396 319 418 431 422 422 385 395 430 456 419 342 369 375 375 375 388 388 360.6 223.5 571.7 91.2 258.1 247.6 299.3 293.8 233.6 238.0 281.6 174.9 280.5 216.6 266.2 307.4 270.8 339.4 224.5 259.3 315.3 500.0 289.8 259.5 350.1 289.1 299.2 000000 187.9 176.2 176.2 170.5 196.4 175.5 174.5 170.8 . 178.6 161.3 200.9 307.3 196.8 177.2 186.0 186.0 207.2 261.3 199.8 208.9 217.0 210.5 232.6 B PP 96.5 102.1 90.6 77.3 77.3 79.6 90.4 90.8 107.6 111.5 122.3 110.0 96.1 99.0 90.9 125.1 108.3 199.1 107.0 14.9 14.9 36.4 37.1 27.7 DPM P 37.0 24.9 28.1 33.8 37.4 41.5 43.6 29.6 20.8 20.8 33.5 42.9 53.6 53.6 33.6 60.5 32.3 35.2 35.2 45.2 43.1 36.1 37.3 484.1 532.0 573.5 573.5 408.0 515.7 542.5 631.7 567.4 490.2 581.6 471.4 540.8 540.8 510.8 630.2 647.1 650.7 515.4 534.0 582.1 567.0 620.1 506.9 549.6 559.4 547.5 508.8 195.7 531.9 Ba P Fd 22.4 31.0 30.4 £ 34.2 36.5 38.5 28.1 27.6 36.9 150.4 28.8 63.3 44.7 41.1 31.2 28.7 29.4 37.0 3.3.3.1 3.4.29 6.2.29 3.8.28 5.136 23.1 ## 4.5.29 24.5.63 4.2 22 3.1 31 7.1 52 9.0 34 8.2 30 6.4 35 7.0 40 5.5 40 6.5 28 > 00 TI MI 12.7 13.8 13.3 17.1 13.9 20.1 20.1 13.8 E B 13.5 12.5 12.8 28.0 28.0 22.7 15.2 00044 d Edg 8 4 8 8 8 26.9 26.9 7.3 7.3 6.5 Sm 13.8 12.2 28.8 12.4 19.8 8.8 10.6 11.3 14.3 11.6 13.3 19.4 15.4 13.0 Pr 17.1 44.9 53.0 116.4 42.5 82.8 56.8 39.6 43.9 45.0 36.8 39.4 46.4 42.8 Pada すめたすど Lu 99.1 66.0 52.6 74.1 22.6 68.9 61.9 63.6 54.3 56.3 110.0 173.6 61.9 61.9 60.0 60.0 64.8 64.8 82.5 59.3 9 6 99500 8 0 1 5 7 4 - 6 6 6 HOO 104 31.15 8.8 8.8 8.8 8.7 8.6 13.4 9.9 7.9 P do Eu 222554 Er 5.0 24.1 5.1 5.1 400000 5.9 7.0 7.0 5.2 NO D 102.7 107.7 107.2 126.3 189.6 138.8 101.4 356.3 46.1 121.3 138.1 135.4 118.1 112.7 116.9 124.0 101.3 123.1 118.0 204.9 128.3 109.2 Ce 3 2600E 2250N 2600E 2250N 2600E 2275N 2600E 2300N 2700E 2100N 700E 2250N 800E 2050N 800E 2075N 800E 2125N 2600E 2100N 2600E 2125N 2600E 2150N 2600E 2175N 2600E 2200N 700E 2125N 700E 2150N 700E 2175N 700E 2200N 800E 2150N 800E 2175N 800E 2200N 900E 2000N 900E 2050N 900E 2075N 900E 2100N 900E 2125N

F		ppn, %			44.8 .075										279.5 435				351.7 .468	- 3						137.5					132.2 175		39.4 .057							***	53.2100		36.6 .046		
Ta		Ta	шфф		C,									1.8					2.5				1.6								4.7		6.2 3						17 45		. 10		7.4 36		
ò	more	St	mdd		(a) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	234.3	191.7	210.3	222.0		232.4	184.2	186.8	280.6	223.8		2023	226.0	193.4	210.3	262.2	241.1	1057.3	531.7	87.8	921.3					85.0		384.5								23.0		35.8		
Rb	- Contract	- St	mdd		28.E	03.8	40.00 00.00	02.6	50		30.0	06.1	58.1	32.6	83.0				157.6				152.8 1								255.2		237.0								44.5		301.3		
- QN	in the	NP.	mc		10																																								
	2		bd											4 36.3					49.8				1 21.4							18.1			19.6								1.5		22.5		
ä	moo	Ba	mdd	1	100.0	0.00	025	929	780	248	0 0	979	97	486.4	538.	6.6.0	700	286	564.3	785	038	557.7	353.1	324	312.0	232.2	509	200.7	330.8	358.7	151.4	4	01.0	200	438.4	272 8	2	202.2	21.1	96.4	124.8	a c	21.2	244.0	
Ą.	mud	ν,	mdd	,	r u	9 6	200	N C	70	0.00	0 0	2.3	8	2.4	53	0	0 0	87	n (9 6	7.0	2.6	53	2.1	2.4	2.6	4		000	2.4	1.3				- o	0.6	1	2.5	2.9	2.1	6	ч	0 *	1.1	
>	mod	X	mdd	9	0.00	20.00	22.5	9 6	6'87	20.4	200	24.5	38.3	25.5	21.6	0 00	2 4 5	7 0	0.00	2 4 6	¥.0.4	27.2	25.5	23.0	26.0	29.3	8	9	23.3	24.2	14.1	10	18.4	210	17.0	16.4		23.2	27.6	19.7	9.1	7.2	4.04	177	
n	шод	2	шфф	9 75	36 26	47.33	1001	2 0 0	9	6229	4 5 7 5	0 0	7.8 38	5.4.28	3.3 22	5 + 30	4 4 24	- 0	4.0 30	90.00	9	5.8.27	2.7.28	2.9.23	3.4.26	5.6 29	40	0.00	4.2.23	3.3.24	2.3 14	9 4 5	34 18	3421	3617	39 18		3.7.23	3.5 28	3.0 20	1.2 9	16.0 7	10.3 13	2 1	
E	ша	Till	шада		ų	. (4)	, 4	o w	,	NO.	. 4		0 1	4.1	4	ii.	o u	o u	i re	. 4		4	už (m, m	ų.	d.			(r)	4 00				e,	e e	, es		4	4	6	-		0		,
JE.		E		2.6	14.0	124	2 2 2	000	4	19.4	u a	2 0	40.0	7.0.	11.4	17.3	12.0	18.1	14.7	14.6		18.2	125	123	13.3	13.5	on the	23	12.0	15.0	8.2	26	1 0	13.2	100	9.4		3.0	15.6	1.4	4.7	2.1	60		
10	mda	10	mdd	c	, on	a		0	1	*	0	9 0		- 0	p	1.1		0		10		0.1	on o	ю (D (0.5	N	2	œ	80	4		9			9			0 1				4		
Sm	mdd	Sm	mdd	1.7	ds 40	7.6	O.	9 8		8.7	7.6	6 44	0 10	0 4	0	8.0	99	7.4	7.2	7.5		0.7	4 0	9 10	0 1	1.1		65,	6.4	6.5	0.0	617	8.9	5.6	10	4.1	,	6.4	7.6	2.7	00	1.2	24	0	
ď	mdd	Pr	mdd	2.5	12.7	40	171	16.4		14.4	14.1	22.8	9 4	0.00	0.01	4.8	112	13.7	11.8	12.9		0 1	101	7 0	7.0.4	10.7	4	17	4,0	8	4	1.7	6.8	8,5	6.5	5.9		25	11.6	8.4	2.8	1.4	32	**	
P.	mdd	PN	mdd	8.5	43.7	48.1	80.8	59.6		52.4	50.7	14. 14.	200	35.5	000	52.0	40.2	47.1	43.2	46.9		32.7	20.00	20.00	0000	000	8.4	5.7	34.7	36.8	15.7	9.9	26.3	29.9	24.4	21.2		20.0	43.1	30.4	10.8	6.4	12.1	0 44	200
n,	ppm	3	mdd	۲	٧	٧	vo.	u)		vo.	4	IC.	9 4	. 7	ţ	iQ	ń	NO.	40	4	ė	or c	9 6	9 4	. 4	ę	77	•	69	4	C)		60,	w	w	e,		4.	e, e	n .	r.	-	2	0	
La	mdd	La La	mdd	60	60.3	60.2	75.2	73.1		61.7	68.0	7 88	57.4	45.5	2	68.5	50.4	88.2	53.7	63.6	6	5.70	40 B	44.1	44.5	2	5.5	6.8	39.6	42.1	18.6	8.8	28.4	36.8	27.6	24.7	000	0.00	96.7	200	חיינו	5.4	13.7	18.0	
e H	ррт	유	mdd	E4	0.0	90	1.2	1.1		1.1	1.0	4.0	0	00	2	1.1	1.2	-	1.1	1.0		0.0	n ac	o a	9 0	2	7	w	00	o,	ņ	2	7.	00	9	9	o	n .	- a	ю.	e,	ci	4	4	
PS	mdd	8	шаа	1.4	6.8	1.2	9.6	0		8.7	7.8	14.4	6.7	143	9	8.5	7.3	7.7	7.5	8.1		- O	6 6	2 12	7 0		1.2	63	9.9	27	5.0	1.4	4.8	5.7	4.7	4.3	W G	0 0	o u	ם ה מ	2	1.3	2.6	2.8	
Eu	mdd	Eu	mdd	69	1.4	6.3	1.7	1.6		4	1.4	2.0	1.5	1.2		1.4	1.4	4	1.4	1.4	4	0 0			9		۲.	*	60	1.2	o.	53	1.0	1,2	œ.	on.		4 .	# C	0.0	9	2	ιņ	9	
ŭ	mdd	ш	DDIL	19	2.7	23	6	63		(7)	2.6	9	2.7	23		3.2	60	3.2	63	3.1	2.5	2.5	2 6	2 8	3.0	9	9	1	23	5.6	e.	7.	5.0	23	9.	4.00	36	9 6	0.0	7 0	2	9	1.1	1.2	
ργ	mdd	à	Ddd	1.1	4.6	4.2	9.6	5.7		6.0	4.7	7.8	5.2	co co	ì	5.3	9.6	5.2	5.4	5.3	6 4	9 9	5.4	42	200		1.4	4.6	4.4	44	6.3	1.4	4.0	4.2	3.2	ю. Т	4.7	i u	0 0	0 1	1.1	10.	2.2	2.1	
		5	physic.	17.7	114.9	112.9	151.1	141.5		128.4	121.3	208.8	130.2	84.9		127.8	94.3	125.5	101.9	100,7	113.7	76.2	69.7	61.3	79.9		10.3	121	74.8	78.5	000	10.2	53.0	69.1	61.9	47.0	73.0	01.0	650	2.00	×1.4	11.2	24.7	34.3	
	1																																												
ELEMENT SAMPLE	The state of the s	SAMPIF		2900E 2175N	2900E 2200N	L2900E 2225N	2250N	2900E 2275N		2900E 2300N	3000E 2200N	.3000E 2225N	3000E 2250N	.3000E 2275N		3000E 2300N	.3100E 2200N	3100E 2225N	3100E 2250N	3100E 2275N	2300N	57951																							

-
75
~
m
œ
ñ

= ;	RF	8	226	296	280	218	37.6	285	288	272	2/3	9 0	310	389	247	187	310	210	295	322	010	156	224	210	110	270	312	352	305	351	044	394	.042	510	435	430	155	900	047	024	660	226	679
17	2 18	mdd	7.78	108.7	1110	94.1	142.9	1101	121 0	408.9	26.3	100	D. D	121.4	102.6	83.1	106.0	138.3	151.0	132.1	24.0	73.7	80.2	110.3	68.2	116.0	139.0	150.7	121.2	187.4	28.1	141.1	40.6	163.4	154.6	145.0	65.0	22.1	38.8	31.9	67.9	910	199.1
en .	Ta	шфф	1.4	60	69	2.4	1.4	9	4		F 4	0 0	0.00	1.6	4.6	2.5	2.0	2.6	1.1	1.0	2.6	3.8	2.6	3.0	1.0	1.2	1.4	1.4	3.0	2.3	48.0	4.1	6.5				5.1						2.1
či	mdd .S.	mdd	459.8	1366.0	1533,8	1222.5	1223.1	848 3	1218 F	1053 B	1003.0	100.2	413.7	896.5	185.2	1729.6	734.3	229.3	324.7	288.4	317.5	8.686	453.3	106.6	112.3	983.5	944.8	1022.1									30.3						123.8
2	Repu	udd			ë	310	130.0	57.3			0,00	96				<i>a</i> n		224.1			211.0						32.2					7.0	4.5	285.5									136.7
				+	*	-	+-	*					ř	15	14	12	**	11	52	52	27	12	7	21	24		6	22	21	7	44	36	39	28	22	22	30	38	33	36	32	23	13
2	E S	шфф	14.5	17.3	17.2	14.4	18.4	25.6	17.5	200	104	0 4	0	18.3	22.2	16.6	20.9	11.9	13.0	12.7	8.5	18.1	13.00	a) to	12.5	10.7	18.3	20.5	21.5	29.3	56.4	22.7	20.1	18.8	19.1	21.5	212	20.0	15.3	16.3	15.2	40.00	20.7
Ba	Ba	шфф	278.4	320.0	309.9	274.0	387,6	290.4	308 8	386.0	2000.0	2200	2/3.1	340.9	341,6	292.4	377.2	235.7	356.7	368.1	71.0	153.7	323.8	417.8	312.2	345.8	36.4	38.0	113.8	73.2	82.9	349.0	46.2	310.0	341.2	395.1	155.0	4.2	49.3	51.5	154.7	160 1	185.4
Q	mdd Vh	md	20,7	2.5	2.4	2.0	5.0	2.2	0	10	1.5	0 0	n	2.5	2.1	1.7	2.1	٠ <u>٠</u> ق	2.0	00	10	1.1	1.2	1.1	100	1.7	2.2	2.4	2.2	2.7	4	o,	eo,	3.0	2.1	9.1	o)	4	ιń	v)	0	10	3.6
		۵	(9)	Œ,	24.9	40	1.7	60	0	4 0	7.07	- 0	Y	ø,	9	16.6	2	64	~	2	4	7	O)	4	4	60	(7)	4-3	89	4	e	00		89	10	40	69	10	o.	4	10		
>	mdd >	mdd																	18	EV	7.4	12	13					25.1	22.8					30.8	21.	20	10.	N)	9	7,	10,	11	43.2
2	mod ::	шоо	22 18	27.25	2.6 25	3.9.21	3.1.28	3.6 23	28.23	40 04	22.4.6	2.4.10	BL 0.7	2825	3.3 21	3.3.17	3.121	5.4 14	2.6 19	3.2.20	1.8 7	2.8 13	2.6 14	8.1 12	10.6 9	5.9 18	2.8 22	3.2.25	4.4 23	4.4 26	2.0 4	5.0 19	3.4 7	3.7.31	4.8 22	3.9.21	22 10	3.0 6	5.3 7	3.5 7	5.4 11	2811	4.4 43
E	ELE	шфф	m	4.	NT.	(1)	ų	60	ч	. 4	ŗ	ņ e	ņ	4	10)	in,	69	ci	o,	ta)	۳.	ci	ci	5	۳.	10	4	4	ų,	4	τ,	es.		ĸū	(c)	ú		-	•	*	٠.	2	ω
	1 F	mdd	Q)	13.7	(c)	10.5	15.7	12.2	121	40.8	9 4	0 0	9	12.5	10.1	8.2	11.8	80 80	13.2	12.6	3.0	5.4	7.3	90 80	4.2	9.7	11.0	13.0	12.3	13.7	t)	11.3	ch -	13.1	12.1	12.8	4.9	1.0	2.1	1.7	3.7	5.5	13.4
٩	mgd 4	mdd	7	cas	9	1	1.0	60	100	o a	D 14	9 10	,	o,	~	40	00	κij	ю	7	Ŋ	4	iū	4	e.j	9	00	27	œ	o i	۳.	.7	Ŋ	1.0	œ,	00	4	٠.	ci	Ŋ	e	4	1.4
E	Sm	шод	5.0	7.1	7.0	5.5	7.7	6.2	8	000	0 4	r u	e D	9	5.4	4.7	6.7	4.0	60	5.4	60	2.9	3.4		2.0		5.5		60	6.7	89	5.5	0	7.6	9.9	6.9	2.6	ų	1.0	on:	2.2	3.0	9.6
ď.	E da	mdd	7.5	10.5	10.7	8.6	11.5	9.6	60	10.0	, L	1.0	P	10.3	80	6.5	80	6.0	9.6	8.0	O)	4	0.0	9.	2.6	6.4	(r)	6.7	9.0	O)	1.0	4.	e-	11.4	10.2	10.7	3.8	4	1.3	1.2	3.0	4.4	11.8
2	Hdd N	mdd	28.4	39.3	38.7	31.5	43.8	34.1	35.1	38.6	24.0	2 90	0.07	38.0	30.2	25.0	36.5	22.4	36.0	31.1	3.2	15.4	19.3	18.8	10.2	24.5	31.2	38.5	34.1	37.4	4.3	30.9	4	42.4	36.4	38.9	13.8	3.5	5.0	4.0	10.2	16.8	45.7
3	mdd I	mdd	69	¥	4	69	4	(1)	e	4		4 0	į	4	es	5	65	64	e,	w		2	Ŋ	Ć,	**	6	ď	4	4	4	۲,	es.	-	ĸį	m,	w	۲.	-	٠.	+	۳.	Ŋ	ωį
E.	mgd .	шаа	33.1	48.7	49.9	39.4	55.9	45.2	43.7	48.1	25.0	0.00	9	44.8	36.9	28.5	43.5	27.1	44.1	34.2	7.0	17.2	22.0	21.7	11.2	26.9	35.1	41.8	39.7	43.5	8.4	34.5	99	45.4	43.3	49.5	16.3	1,8	5.1	5.4	12.0	18.6	46.5
운	E DDM	mdd	7.	(3)	(3)	7	0 +	120	a		2 4	D 4	0	O)	ω	9	æ	ĸį	1	7.	5	4	ĸi.	ч	(13)	9	80	o,	80	1.0	۳.	1.	ч	1.2	80	80	4	Ci.	04	C.	60	4	1.5
B	mdd FG	mdd	6.2	6.9	7.0	(I)	3.5	4	100	9 60	0 (y u	D n	7.3	5.7	9,4	8.6	4.2	6.2	9.00	1.1	3.5	3.8	3.7	2.5	5.0	6.1	14	6.8	7.6	1.0	6.2	12	8.7	7.3	2.5	2.9	ω	1.1	1.1	2.4	3.1	10.9
Ē	mdd E'·	ррт	1.0	60	£.	1.0	4.	1.2			9 0	D C	7	1.4	**	1.2	1.7	1.7	1.2	*-	۲.	ω	1.0	φ	4	O)	1.0	17	1.1	1.3	Ψ,	1.1	٠-	1.6	1.4	1.4	'n	0,1	۲,	۳.	w	7	22
ŭ	mdd	mdd	2.0	27	2.7	22	(O)	2.4	25	9 6	0 0	0 0	77	27	23	1.8	2.4	1,6	2.1	2.0	9	1.2	4.4	1.2	O)	1.8	2.4		2.4	2.8	٧,	2,1	ωį	69	23	2.2	1.0	4	κċ	ĸ,	on,	1.1	4.1
à	mdd 20	mdd	4	87	4.7	00	5.4	4.4	4	i v		2.0	7)	4.9	4.0	9.6	4	2.8	4.0	3.5	1.2	2.2	2.4	2.2	1.7	3,1		46	4.2	9 4	80	3.7	1.2	9.6	4.2	4.1	2.0	1.0	1.2	1.2	1.9	2.1	7.7
	1	ррт	58.7	79.8	83.5	87.5		77.1	R2 S	70.0	0.0	- 6	2	83.8	70.3	52.6	78.8	54.1	76.1	70.7	Q) (1)	32.8	40.8	41.4	26.9	49.9	71.1	76.4	71.8	6.77	4.7	77.5	8.6	100.2	82.4	89.8	32.7	£.	11.3	6.8	25.3	35.5	90.1
	1	a																										-															
EMENT	EMENT	WPLE	7977	7978	9797	7980	7981	7982	7083	7084	1000	1000	098/	7987	7988	7989	7990	1991	1992	1993	7995	966	1997	866.	000	1001	1002	1003	900	500	900	700	900	600	010	011	012	910	015	016	210	018	910

Yb Ва Nb Rb Sr Ts m <u>Ерет Бет Брт Брт Брт</u>	Yb Ba Nb Rb Sr Ta Zr	mad mad mad mad mad mad	181 2861 254 6.9 30.7	213.8 105.6 1.5 177.6	14.3 154.5 160.5 3.2 91.2 ,238	168.5 89.1 1.2 15.1	21.4 44 25.9	19.8 5.9 20.4	91.7 7.1 168.2	76.6 2.1 234.2	83.6 1.4 165.7 .538 377.5 1.2 133.2 339	7.00	6.5 56.6	4.5 110.7	11.2	6.0 116.3 .282 3.3 112.2 282					122.9 292				127.0 294				190.7 .335					106.0 228		84.0 .126		
Yb Ba Nb Rb Sr Ts ppm ppm ppm ppm ppm	Yb Ba Nb Rb Sr Ta	mgq mgq mgq mgq mgq	181 2861 254 69	17.4 2138 105.6 15	154.5 160.5 3.2	168.5 89.1 1.2	21.4 4.4	19.8	91.7 7.1	76.6 2.1	1.4	:	82.00	40				g .	170.6	400	122.9	138.0	117.8	136.7	127.0	0	2 68 7	163.9	190.7	0.77	143.6	142.6	164.7	106.0		84.0	107.7	176.0
Yb Ba Nb Rb Sr Spm Spm Spm Spm Spm	Yb Ba Nb Rb Sr	id udd udd udd udd	181 2861 254	17.4 213.8 105.E	154.5 160.5	168.5 89.1	21.4	19.8	91.7	76.6					60	9 60																						
Yb Ba Nb Rb	Yb Ba Nb Rb	mqq mqq mqq	181 286.1	17.4 213.8	154.5	168.5					377.5		32.8	63			10	O 0	1.00	100	2.1	20	2.1	3.0	5 ti	o	0 6	0	80 0	7.7	1.7	2.2	4.2	1.7		4 a	o a	2 4
Yb Ba Nb	Yb Ba Nb	mdd mdd	181	17.4			331.7	133.5	13.2	ys.				æ	414.2	413.4		2,102,1	1539.4	327.3	266.1	205.3	250.6	090.2	1197.4	9 22 0	400.0	291.7	146.5		377.6	535.2	309.0	1274.5			2 60	
Yb Ba	Yb Ba	mdd			14.3	2.4			25	178.	139.6		252.1	331.4	831.8	272.4			140.7						142.6	747			108.2					116.6		74.9		
Yb Ba ppm ppm	Yb Ba	mdd			7		0.0	0			14.7					26.7													370.3									
ay mod	Υb		46	343															21.7						16.2	ç	, t.		14.0		14	77	45	10.5	ç	7.6	18.0	24.6
		6		~1	212	57.4	27.6	28.0	370.0	359.6	486.7		9,19	370.9	46.8	268.5	9	288.5	311.1	244.6	259.9	264.8	266.9	331.8	367.9	254.2	405.0	354.5	343.1		480.6	240.0	320.5	291.2	0 10	408.8	249.5	253.3
> Wd		B	Φ	2.7	7.6	i,	4	t,	2.4	es e	1,7		0 1	2.0	4 6	2 6		0	2.4	2.2	23	2.5	2.5	5.6	25	1.7	o.	2.0	1.9		20	2.8	9 5	1.5	0.	9.	1.6	2.4
	>	mdd	0.0	28.0	187	4.0	5.4	4.6	24.2	24.0	17.3		10.0	27.1	4.46	25.1	32	23.5	27.5	24.4	24.4	27.7	26.5	26.9	25.8	19.5	22.0	20.4	19.8		212	28.9	19.7	15.2	117	16.3	14.8	26.6
⊃ dd	ם	mdd	50 6	4.1 26	83 19	4.8	4.	28.1 5	6.124	6.3.24	4.8 17		13.9 10	10.2.21	4 0 4 4	6.9 25	67.23	3.0.24	2.7.28	6.424	3.6.24	27.28	3.4.27	3.2.27	2926	1.5 20	3.0 22	3.3 20	5.8 19		30.74	4 1 29	3.4.20	5.2 15	12 0 12	4.9 16	5.0 15	11.9 27
Tm	E.	mdd.	٠	4	09		ę.	v.	4 4	4 4	£ωį	,	ci c	ų e	- 4	r vo	e	4	Ą	4	4	4	4	4 6	2.10	r?	e	w	wi wi	e	ú A	r so	i wi	ci	04	i w	w	4
al f	1	шфф	2.1	13.4	7.7	0	17	5.0	16.6	4 7 4	10.5	,	4.2	4 1-	60	, to 0 00	10.5	12.5	43.0	11.5	12.1	14.4	13.0	20.0	14.5	7.8	11.1	13.0	12.0	9 0 0	14.0	15.1	8.7	7.8	10	10.3	on on	12.3
Tb mgq	10	mdd	ci	0		-	Ą	-			.7		9	n r	ď	o o	7	O)	1.0	00	00	o,	0 (0 0	مام	9	ai.	60	7.	۰	o a	-	7.	ø,	9	ω	1.	o,
mdd mdd	Sm	mdd	1.2	7.5	D 10	0.9	D.	10	00 (0 00) (1	n w	o on	,	2 2	o u	9 9	6.9	5.2	6.0	7.0	5.8	6.7	6.5	2 1	0 10	6.4	0.4	6.4	6.2	5.2	ď	6.7	6.7	60	ග ෆ	2.5	5	A. 10.	6,3
Pp 4	Pr	mdd	1.5		n u	0 1	,	5	13.1	2.0	80	0	2 4 4 4 4	9 40	10.0	10.5	8.0	0.74	11.1	co co	0	o o	0) (0)	. es	10.1	5.4	60	o i	8.2	9	10.5	11.1	7.0	5.8	63	6.2	5 6	89
P Mdd	D E	mdd	6.2	27.00	24.0	0 0	2.7	1.7	2007	47.5	31.2	,	9.04	25	36.1	39.7	28.4	34.2	43.9	36.1	34.1	37.8	34.7		39.3	19.5	37.2	39.3	34.8	27.0	41.5	43.9	27.4	21.9	11.7	22.0	240	35.8
Lu ppm	T Con	mdd	***	4 (4 .	9		6.	ď, d	1. 4	iò	,	- 6		V	w	w	v.	4	4	ď	4	d d	r e	i d	ú	ω	e, e	ui ui	q	ų,	10	w	ú	ci	w	m, v	ď
ppm La	La Por	bbu	62	1.44	9 +		7	2.0	60.5	51.9	34.4	*	47.7	3.0	43.2	45.3	35.6	42.8	50.9	40.2	000	43.6	40.7	36.1	44.7	23.9	42.5	41.4	36.8	410	46.2	47.4	29.8	25.0	16.5	26.9	26.7	38.Z
와 H	유	mdd	2	0 1			4	- :	0.0	0.0	4.		e ac		da	4.0	89	on	0.0	as e	n .	0.5	0.0	9 00	1.0	.7	o,	60 6	m 1-	a	1.0	*.	ď	9	40	7.	φ, ς	0.1
B dd	8 8	de	4.	10 W	0 4	0 0	b	6	n e	9 80	5.8	000	2 0 8	9	6.9	7.7	5.2	on on	7.3	6.1	0	6.7	200	9.9	7.0	4	6.3	6.0	2.7	6.1	8.8	7.8	5.2	0.	2.8	70.	9 4	n o
Eu Eu	Eu	ppen	D)					* Q	0 40		£.		. 4	•	1.2	1.4	1.0		1.4	0.5	17	60.	4 0	10	1,	ø,	4.	-	n on	1.1	1.2	60	1.0	1	ų	o, o	OD C	5.1
Er Er	i ii	Detail	ro c	0.0	0 0		r.	6 1	28	27.0	o.		2.4	7	2.5	3.0	2.3	2.4	2.8	9 7	5.0	2.7	2 0	22	2.6	4.9	2.3	2.2	20	2.2	2.7	6.	2.1	9.	1.2	£, 4	7.7	1.7
Dy Dy	Dy			0 0	6		2	80.4	0 W	, es	69	0.0	4.7	7	4,6	5.2	(A)	4. w	9	m c	n T	47 4 60 0	4 4	on m	4.8	89	4.4	0.40	3.6	4.2	4.00	4.0	9	2.8	2.4	e (N O	D.
3	3 6	i	16.8	8 2 8	0 0	16.5		106.2	111.9	100.6	68.7	42.2	97.6	5.6	85.9	86.0	58.1	77.0	115.6	1 60	9	78,8	200	68.6	78.4	51.4	77.4	85.6	105.1	72.5	81.1	88.9	64.7	48.8	32.3	55.2	53.8	00.1
		1																						21	,													
SAMPLE ELEMENT																																						

F	*	= 3		210	900	073	186	280		249	.125	278	298	304		279	258	250	20 +	365		318	336	284	030	.192		.255	.295	346	255	880	282	300	.012	202	.017	*0*	- 6	177	900	100	040	057	110	145	34.50	284	107	348
	- udd	DDm		31.6	32.5	48.9	90.4	118.3		106.1	74.5	108.3	89.2	128.7		134.1	143.1	140 9	77.4	179.5		191.7	219.8	195.6	25.3	103.4		127.1	161.1	170.4	176.3	176	142.2	180.0	24.2	107.6	14.8	0 98	120.7	45.0	0 0	4 6	6.7	7.1	51.2	150.0	113.7	110.6	10.0	93.1
_ e_	mdd	a Dom		es e	4.4	0.7	1.7	40	4	23	5.3	1.7	6.0	69,		2.4	4.7	4.7	8 4	1.1		2.7	1.2	2.7	4.4	6.3		25	es es	1.7	222	0	2.5	o,	6.3	1.7	00	0		. 6		20.0	1.0	*	4	7	20	3.5	3 -	1.4
ŝ	mdd	mdd	270	B (132.6	48.7	555.9	1137 7		1328.3	400.2	1324.3	1170.4	271.1		1209.2	1012.9	1073.1	555.3	124.8		119.3	122.1	134.2	339.5	557.9		777.3	222.9	71.5	32.2	770	121.1	93.5	37.1	151.3	900					7283		280.6	270.5	948.0	583.5	194.9	0440	D.4.U
Rb	mdd	mdd	047.7	317.7	238,0	291.0	20.00	37.00	400	130.0	198.6	130.2	173.6	210.1		212.3	173.9	137.3	128.9	162.3		155.8	152.2	192.3	107.2	103.0		97.6	20 1	37.7	140.1		147.3	22.0	08.5	27.9	7.66	904	90.4	93.9	2.7	30					25.3			
£	Edd	шф	e a	9 4	0 0	30 00	0	4	0	0 0	0.0	6.9	20.2	5.4		1.0	7.4	8.2	9.6	12.1		G)	9	2	8.4	ч														155										
						1 22 000																									18.1		14.2									- CD					16.2			
Ba	Ba	mdd	6	u u	Ď č	n č	5 (9	360	3 6	ń	27	258,3	380	-	3862	304	333.0	178	999		442	501	487	113.7	42		2 6	400	200	94.6		769.5	436.	38	130	3	243.7	296.2	36.2	17.3	15.7	TARREST .	22.7	109.6	20.4	169.7	429.1	1442	
9	E Q	шаа	9		, 0	0 0	- 6	5.5	22	4 0	7 .	2.7	7.7	20	0	27	22	co.	4.5	2.2	1000	21	00	1.7	4 1	1.7	6	9 0	0	10	0 0		0 0	0 •	4	. 4		1.7	2.6	5.5	2	ci		io.	80	1.3	2.9	9	60	
-	w >	mdd	9	10	0 1	13.4	400	23.0	22.3	0 0	200	41.4	4.00	20.0	33.3	2 4 5	212	18.0	15.1	21.6		9.0	15.7	5.0	0 0	18.7	26.2	40,	25.50	0 0	8.8		16.9	0.7	2.0	23		17.6	25.6	10.4	1.4	3.6	,	0	7.8	11.5	32.6	21.5	20,5	24.0
2 4	2	ша		63		35.43	6 6 34	20.0	4.3.22	52 13	25.00	200	2000	4.8 20	4333	200	77 1.75	4.0.18	6.1.15	3.9 22		D . C	3.7 16	0.00	33.0	h	8.1.26	5 9 20	3626	5.3 20	25 % 9		97 0 6	0.00		16.6 5		22 18	3.4.26	3.7 10	1.0 4	4			27.0	4.7 12	2433	2.8 22	1.8 21	2 4 20
			-			2	7		4	6		2 6	2 6	9				73 (*					- 0						-																			
	TT TT		1.8	1.5	u) (r)	60	12.7	4	12.7	7.4	2.0	2 40	2.4.4.2	2				7 0							9 00						2.1		131					11.1									13.3			
	2		14	ci	m	40	a	<u>.</u>	80	ĸ	O.	1	00		Ø,	α		- 4	0 1	1,0					1				8		1							.7									7.0			
mod	SH	шфф	9	ю	3.4	(9)	99		5.8	3.1		47	9	5	6.4	80		9 0	9 6	1.2	5.7	7	W Y	00	4		0.9	50	5.6	6.0	o,	*		V.	3.7	9		0.	0		1.1	'n	er.	2.4		0 0	200	0.0	0.1	7.3
mad	Pr	шф	7.	9	23	6.5	9.6		5	4	6	7.0	10.4		10.0	9.1	7.8	0 0	* *	0	0	10	7.0	O	8.6		00	7.8	60	0.6	10	7.2	7.5	ĸ	5.1	7.		00 0	n o	0 0	7.	φį	12	9.0	1 1	- u	4,0	1.1	4	110
шда	DN.	шфф	63	4.4	7.8	21.9	35.5		35.3	17.0	34.8	24.3	37.5		37.8	34.4	20.3	210		4.	32.9	25.1	24.3	2.8	24.2	E 200 E	32.9	28.4	30.6	31.6	3.7	28.1	27.1	1.5	18.7	2.3		2 6 0	0.70	0 0	0 0	23	0	10.8	18.0	34.5	2 2 2	27.7	21.1	42.3
mad	r.	mdd	77	**	50	cy	ч		V.	ιή	en,	m	eņ		4.	ų	en	0		Ŧ.	en	(1)	en		60		ч	m	4	en,	·	en	(C)	۳,	Ċ,	-		2 4	į c	4 0	9	į	٠		2	4 4	ŗ es	j er	ý .	4
mod	E T	mdd	3.2	6	7.7	25.5	36.1		36.6	19.5	37.2	28.2	40.7		40.6	36.8	29.6	25.5	48.5	10.0	35.5	27.6	27.5	3.5	28.3		40.2	33.5	35.2	41.4	5.2	32.7	33.1	2.7	22.5	4.1	5	28.0	3 6	9	0 0	0.4	7.7	13.2	20.8	43.0	33.0	31.1		48.2
mdd	P.	mdd	2	N	(1)	9	1.0		o,	10	Ø,	7.	80		cn _i	O)	60	9	σ		00	7	7.	N	7.		1.0	1	1.0	ar,	'n	7.	۲.	2	'n	4	P				10.	3.	N	m	чo		7			0,0
mdd	99	шаа	12	00	d)	4.0	6.8			9.4	6.0	4.7	6.4		7.0	6.0	5.4	4	8 2	4	80	4.7	5.2	7	4.4		6.0	5.1	S)	9.0	1.1	4.7	5.0	9	3.4	9	9	2,0		*		D	1.4	6.	3.4	7.1	5.2	· 60	2 0	7.7
ppm	Eu	mdd	<0.1	×0.1	CA	7	1.1		-	10	1.1	1.0	63		1.2	* 1	1.0	1	4.5		1.1	o,	o	۳	00		1.1	0	1.0	0		co.	1.0	0.1	60	Ψ.	0		c0.1		9 6	ų	ec;	o,	2	7	O	0		7.7
mod	ŭ	mdd	4	4	7.	1.4	2.6		24	4	23	4.9	2.2		25	2.4	2.2	40	2.5		23	00	0)	4	0.0		2.7	00	28	2.1	7	1.7	2.0	ष	1.4	4		2.8	a	e		?	ø	O)	1.4	3.2	2.2	2.1	000	2.4
шdd	à	mod	1.0	un :	1.4	2.6	4.5	*	4 (2.5	4.1	3.5	4.2		4.7	4.0	0.4	5	4.7		9	69	4.0	Oh.	3.4		4.5	n.	4	3.7	4	3.3	3.4	1.0	2.4	œ.	0 6	4.7	1.6	7	·	ì	1.1	1.5	24	5.7	33.00	3.7	· ·	ó
		=	542	20.00	000	500	96.8	11 0	0.00	38.0	83.7	51.7	84.4		08.1	64.6	68.1	51.1	50.7		62.4	54.7	64.7	6.2	63.4		82.2	17.3	10.1	67.5	0.2	5.5	72.5	6.4	4.5	2.8	65 1	81,6	5.1	6.1	00	4	15.7	63	0.3	7.	64.2	5		
1		udd																	Ť		-	4	10		*		-0.1	201		4		9	7	19	4		90	60	1		**	7	+	N	36	.8	20	99	56	5
SAMPLE	SAMPLE	1	58062	20000	50000	9000	/9090	SRORR	9900	20000	0/08	58071	58072		88073	90/4	8075	8076	8077		8078	8079	8080	8081	283		8084	0000	9 6	2000	988	89	0608	91	92	83	09 AR-1	4 09 AR-3	09 AR-4	09 AR-5	39 AR-6		1 09 AR-7	09 AR-8	09 AR-9	39 AR-10	39 AR-11	39 AR-12	19 AR-13	
rà la	11 7	il.	73 13	2 4	Q i	a i	Ŕ	14	2 11	5 6	ñ	in i	in		2 :	2	200	99	100		io.	0	0	60	8	-	m :	ń :	ň í	£ 5	ň	20	2	9	Q i	9	7	7	7	7	7		-	*	-	7	-	=	11	

													į																							
% NP	0.0021	0.0018	0.0021	0.0038	0.0015	0.0010	0.0019	0.0016	0.0014		0.0020	0.0012	0.3012	0.0009	0.0014	0.0019	0.0024	0.0023	0.0002	0.0023	0.0016	0.0021	0.0016	0.0020			0.0015	0.0017	0.0017	0.0014	0.0018	0.0026	0.0018	0.0020	0.0011	0.0016
Cb Nb	0.05	0.04	0.05	0.08	0.03	0.02	0.04	0.04	0.03		0.04	0.03	0.03	0.02	0.03	0.04	0.05	0.05	0.00	0.05	0.03	0.05	0.04	0.04			0.03	0.04	0.04	0.03	0.04	90.0	0.04	0.04	0.02	0.04
D N Maa		18.3	20.7	38.4	14.5	10.4	18.8	16.1	14.0	na	19.6	11.7	11.9	8.5	13.5	18.6	24.4	22.9	1.50	22.5	15.6	20.7	16.0	20.2	na	na	14.5	17.3	17.2	14.4	18.4	25.6	17.5	20.1	10.6	16.1
Interval (m	2.13	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	2.29	1.37	1.83	1.83	1.83	2.44	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52
To (m) In	10	7.62	9.14	10.67	12.19	13.72	15.24	16.76	18.29	19.81	21.34	22.86	24.38	25.91	27.43	28.96	30.48	32.77	38.40	42.06	43.89	45.72	4.57	6.10	7.62	9.14	10.67	12.19	13.72	15.24	16.76	18.29	19.81	21.34		24.38
From (m) T	3.96	6.10	7.62	9.14	10.67	12.19	13.72	15.24	16.76	18.29	19.81	21.34	22.86 ─	24.38	25.91	27.43	28.96	30.48	37.03	40.23	42.06	43.89	2.13	4.57	6.10	7.62	9.14	10.67	12.19	13.72	15.24	16.76	18.29	19.81	21.34	22.86
Interval (ft) Fi		2	5	9	2	2	2	2	5	2	2	2	5	2	2	2	2	7.5	4.5	9	9	9	00	2	2	2	2	2	2	2	2	5	2	2	2	2
To (ft) In	20	25	30	35	40	45	20	55	09	92	70	75	- 80	85	06	92	100	107.5	126	138	144	150	15	20	25	30	35	40	45	20	22	09	65	70	75	80
From (ft) To	3	20	25	30	35	40	45	20	. 22	9	65	70	75	80	82	06	92	100	121.5	132	138	144	7	15	20	25	30	35	40	45	20	55	09	65	70	75
Sample # DDH No F	1 LON09DDH-1	257952 LON09DDH-1	257953 LON09DDH-1	257954 LON09DDH-1	257955 LON09DDH-1	257956 LON09DDH-1	257957 LON09DDH-1	257958 LON09DDH-1	257959 LON09DDH-1	257960 LON09DDH-1	257961 LON09DDH-1	257962 LON09DDH-1	257963 LON09DDH-1	257964 LON09DDH-1	257965 LON09DDH-1		257967 LON09DDH-1			257970 LON09DDH-1	257971 LON09DDH-1		-				257977 LON09DDH-2	257978 LON09DDH-2		257980 LON09DDH-2	257981 LON09DDH-2	257982 LON09DDH-2	257983 LON09DDH-2			257986 LON09DDH-2

													ŧ																							
% Nh	0.0019	0.0022	0.0017	0.0021	0.0012	0.0013	0.0013	•	0.0009	0.0019	0.0012	0.0010	-	0.0013	0.0011	0.0018	0.0021	0.0022	0.0029	0.0056	0.0023	0.0020	0.0019	0.0019	0.0022	0.0021		0.0020	0.0015	0.0016	0.0015	0.0015	0.0021	0.0018	0.0017	0.0014
	0.04	0.05	0.04	0.05	0.03	0.03	0.03		0.02	0.04	0.03			0.03	0.02	0.04	0.05	0.05	90.0	0.12	0.05	0.04	0.04	0.04	0.05	0.05		0.04	0.03	0.04	0.03	0.03	0.05	0.04	0.04	0.03
dN d l dN maa	19.3	22.2	16.6	20.9	11.9	13.0	12.7	na	8.5	19.1	11.8	9.5	na 🥸	12.5	10.7	18.3	20.5	21.5	29.3	56.4	22.7	20.1	18.8	19.1	21.5	21.2	na	20.0	15.3	16.3	15.2	15.1	20.7	18.1	17.4	14.3
Interval (m	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.46	2.04	2.13	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.65	0.76	1.04	1.52	1.52
To (m) Ir	6.0	27.43	28.96	30.48	32.00	33.53	35.05	36.58	38.10	39.62	41.15	42.67	44.20	45.72	47.24	48.77	50.29	51.82	53.34	4.97	7.01	9.14	10.67	12.19	13.72	15.24	16.76	18.29	19.81	21.34	22.86	32.13	43.74	57.61	59.13	63.40
From (m) T	24.38	25.91	27.43	28.96	30.48	32.00	33.53	35.05	36.58	38.10	39.62	41.15	42.67	44.20	45.72	47.24	48.77	50.29	51.82	3.51	4.97	7.01	9.14	10.67	12.19	13.72	15.24	16.76	18.29	19.81	21.34	30.48	42.98	56.57	57.61	61.87
Interval (ft) F	2	2	Ŋ	Ω	2	2	5	5	2	2	2	ιΩ	Ω.	2	2	2	2	2	2	8.4	6.7	7	2	2	2	2	2	2	2	2	2	5.4	2.5	3.4	2	2
To (ft) Ir	85	06	92	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175	16.3	23	30	35	40	45	20	55	09	65	70	75	105.4	143.5	189	194	208
From (ft) T	80	85	06	95	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	11.5	16.3	23	30	35	40	45	20	55	09	65	70	100	141	185.6	189	203
Sample # DDH No	257987 LON09DDH-2			_			257993 LON09DDH-2		257995 LON09DDH-2			257998 LON09DDH-2		-																						258022 LON09DDH-3

NP %	0 0000	0.0010	0.0013	0.0026	0.0021	0.0018	0.0015	0.0019	0.0023			0.0015	0.0032	0.0027	0.0018	0.0019	0.0022	0.0023	0.0017	0.0016	0.0021	0.0030	0.0016	0.0016	0.0011	0.0013	0.0012	0.0010	0.0014	0.0015	0.0023	0.0025	0.0016	0.0011	0.0013	0.0008
	0.01		0.03	0.06	0.05	0.04	0.03	0.04	0.05			0.03	0.07	90.0	0.04	0.04	0.05	0.05	0.04	0.04	0.05	0.07	0.03	0.0	0.02	0.03	0.03	0.02	0.03	0.03	0.05	0.05	0.03	0.02	0.03	0.02
ppm Nb Lb Nb	2.4	10.0	13.0	26.0	20.5	17.7	14.7	19.1	22.6	na	na	14.5	31.7	26.7	17.8	19.2	21.7	22.8	17.3	16.1	21.3	30.2	15.6	16.2	10.6	13.0	12.4	9.5	14.0	14.8	22.5	24.8	15.7	10.5	13.4	9.7
Interval (m	1.52	1.22	0.76	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52.	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52
To (m) Ir	64.92	66.14	68.43	10.67	12.19	13.72	15.24	16.76	24.38	25.91	27.43	28.96	30.48	32.00	33.53	35.05	36.58	38.10	39.62	41.15	42.67	44.20	45.72	47.24	48.77	50.29	51.82	53.34	54.86	56.39	57.91	59.44	96.09	62.48	64.01	65.53
From (m) T	63.40	64.92	67.67	9.14	10.67	12.19	13.72	15.24	22.86	24.38	25.91	27.43	28.96	30.48	32.00	33.53	35.05	36.58	38.10	39.62	41.15	42.67	44.20	45.72	47.24	48.77	50.29	51.82	53.34	54.86	56.39	57.91	59.44	96.09	62.48	64.01
Interval (ft) F	2	4	2.5	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1 22	2	2	2	2	2	2	2	2	Ŋ
	213	217	224.5	35	40	45	20	55	80	82	90	6,95	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	1/5	180	185	190	195	200	205	210	215
	208	213	222	30	35	40	45	20	75	80	85	06	92	100	105	110	115	120	125	130	135	140	145	150	155	160	165	0/1	175	180	185	190	195	200	205	210
DDH No								0																					100	」 .	ч.	┙.	┙,		7 / 4084	258058 LON09DDH-4

i

												đ																							
% Nb	0.0010	0.0019	0.0018	0.0015	0.0020		0.0015	0.0023	0.0017	0.0020	0.0017	0.0020	0.0012	0.0021	0.0027	0.0018	0.0029	0.0012	0.0016	0.0011	0.0015	0.0008		0.0021	0.0026	0.0017	0.0013	0.0012	0.0018	0.0014	0.0010	0.0020	0.0011	0.0022	0.2348
Lb Nb		0.04	0.04	0.03	0.04		0.03	0.05	0.04	0.04	0.04	0.04	0.03	0.05	90.0	0.04	90.0	0.03	0.03	0.02	0.03	0.02		0.05	90.0	0.04	0.03	0.03	0.04	0.03	0.02	0.04	0.02	0.05	0.0016
ppm Nb L	24.5	19.4	18.3	14.6	19.9	na	14.5	23.4	16.9	19.5	16.9	20.2	12.4	21.0	27.4	18.2	28.9	12.1	15.9	10.5	15.2	8.4	na	21.4	26.1	17.0	13.1	11.7	18.1	14.2	8.6	19.7	10.7	21.5	
Interval (m	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.22	1.83	Average
To (m) In	12.19	13.72	15.24	16.76	18.29	19.81	21.34	22.86	24.38	25.91	27.43	28.98	30.48	32.00	33.53	35.05	36.58	38.10	39.62	41.15	42.67	44.20	45.72	47.24	48.77	50.29	51.82	53.34	54.86	56.39	57.91	64.01	74.37	77.42	Av
From (m) T	10.67	12.19	13.72	15.24	16.76	18.29	19.81	21.34	22.86	24.38	25.91	27.43	28.96	30.48	32.00	33.53	35.05	36.58	38.10	39.62	41.15	42.67	44.20	45.72	47.24	48.77	50.29	51.82	53.34	54.86	56.39	62.48	73.15	75.59	
Interval (ft) F	Ω (S	2	2	2	2	5	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	Ω	2	S	2	4	ဖ	
To (ft) Ir	40	45	20	22	09	65	70	75	80	82	06	95	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175	180	185	190	210	244	254	
	35	40	45	20	52	09	65	70	75	80	85	06	92	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175	180	185	205	240	248	
Sample # DDH No 258059 LON09DDH-5			258062 LON09DDH-5		258064 LON09DDH-5	258065 LON09DDH-5		258067 LON09DDH-5			120																		_	_	_		58092	258093 LON09DDH-5	

	4		
% Nb 0.0011 0.0020 0.0013 0.0001	0.0000 0.0001 0.0005 0.0008 0.0016	0.0000.0	0.0000
0.03	0.00	000000000000000000000000000000000000000	0.00
ppm Nb Lb Nb 11.4 19.6 13.4 1.1	4.68 6 4.62 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		18.0
Interval (m.			
(m)	i		
Interval (ft) From (m) To (m)	v		
Interval (ft)			
To (ft)			
From (ft)			
DDH No LON 09 AR-1 LON 09 AR-3 LON 09 AR-4 LON 09 AR-5 LON 09 AR-6	LON 09 AR-7 LON 09 AR-8 LON 09 AR-9 LON 09 AR-10 LON 03 AR-11		LON 09 AR-12 LON 09 AR-13
Sample #			77

Appendix III

Drill logs by Andris Kikauka P. Geol.

Appendix III

Drill logs by Andris Kikauka P. Geol.

(; † () () () () () () () () () (C tiolog	calcile,	calcile,	calcite	Calcile	calcite,	aegillie, calcite, apatite	calcite	calcite,	calcite,	aegiline, calcite, apatite	aegiline, calcite, apatite	application calculation		calcile,				aegiline, calcite, apatite	aeginine, calcite, apatite	miscovito miscovito	miscovite, microcilne	Illuscovite, microcime	milocopite microsite	miscovite microdine	miscovite, microcillie	mascovile, microcime	miscovite miscosim	ייימסססיים, יווכן סכווות		10000	ilidacovite, microcime			
WIDTH # Rock Type	2 sovite/carbonatite	5 sovite/carbonatite	5 sovite/carbonatite	5 sovite/carbonatite	5 sovite/carbonatite	1.5	5 carbonatite/sovite_svenite/negmatite	5 svenite/fenite sovite/carbonatite		100		svenite/ferste_bioti	5 biotite sovite	5 biotite sovite	5 biotite sovite	5 biotite sovite	5 biotite sovite carbonatite/sovite		-	5 sovite/carbonatite, biotite schist	5 biotite schist	5 biotite schist	5 biotite schist, quartz vein	5 biotite sovite, quartz vein	5 granitic pegmatite, svenite	5 svenite	5 syenite, biotite schist	5 syenite, biotite schist		5 biotite schist	5 biotite schist granite		5 biotite schist	biotite	5 biotite schist
TO ft	15	20	25	30	35	40	45	20	55	9	65	70	75	80	85	06	95	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175	180	185
FROM ft	13	15	20	25	30	35	40	45	20	55	9	65	70	75	80	85	06	95	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175	180
WIDTH m	9609.0	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524
FROM m Tom	3.9624 4.572	Θ	6.096 7.62	7.62 9.144	9.144 10.67	10.668 12.19	022	13.716 15.24	15.24 16.76	16.764 18.29	18.288 19.81	19.812 21.34				25.908 27.43	27.432 28.96	28.956 30.48	30.48 32			.,				41.148 42.67				47.244 48.77	48.768 50.29	50.292 51.82	51.816 53.34	53.34 54.86	54.864 56.39
# HQQ	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1	LON09DDH1

Mineralization	Comments		> 10 cm	
limonite, pyrite, zircon	13'-35.3' sovite (calcite, aegirine, apatite, zircon)	45 60-88	20	
limonite, pyrite, zircon	15'-17', 19.6'-19.7' broken ground	40 60-80	22	
pyrite, zircon, ilmenite		40 60-85	24	
pyrite, zircon, ilmenite		35 60-86	28	
pyrite, zircon, ilmenite	30'-30.2', 35.9'-37' broken ground	40 60-87	30	
pyrite, zircon, ilmenite	35.3'-44.8' syenite/pegmatite sill 12 cm qtz vein @ 35.3'-35.6'	25 55-80	18	
pyrite, zircon, ilmenite	44.8'-47.5' sovite (calcite, aegirine, apatite, zircon)	10 55-80	39	
pyrite, zircon, ilmenite	47.5'-49' syenite/fenite (apatite, zircon)	10 55-85	74	
pyrite, zircon, ilmenite	51.5'-52.6', 55.2'-56.2', 57.2-57.3', 58.6'-58.8' broken ground	30 55-86	33	
pyrite, zircon, ilmenite	49'-61.3' sovite (calcite, aegirine, apatite, zircon)		38	
pyrite, zircon, ilmenite		40 60-75	35	
pyrite, zircon, ilmeNite	61.3'-62' granite/pegmatite sill	5 60-75	22	1
pyrite, zircon, ilmenite	62'-69' fenite/syenite, Mn oxide coatings, broken ground	35 60-75	38	
pyrite, zircon, ilmenite	69'-92' Biotite sovite,	5 60-75	18	
pyrite, zircon, ilmenite		25 60-75	25	
pyrite, zircon, ilmenite		25 60-75	22	
pyrite, zircon, ilmenite	92'-94' carbonatite/sovite	35 60-75	23	
pyrite, zircon, ilmenite	94'-107.5' fenite/syenite, Mn oxide coatings	40 60-75	52	
pyrite, zircon, ilmenite		35 60-75	65	
pyrite, zircon, ilmenite	107.5'-121.5' biotite schist, 0.2% red garnet, 0.3% epidote	25 70-85	06	
zircon, pyrite		0 70-80	80	
zircon, pyrite		0 70-80	85	
	121.5'-126' quartz vein parallel to foliation	0 55-65	75	
zircon, pyrite	126'-131.2' Biotite sovite,	12 65-75	70	
zircon, pyrite	131.2'-132' Granitic pegmatite, sharp contacts @ 65 degrees	5 65	77	
zircon, pyrite	132'-142.8' Syenite, 2% zircon, sharp contacts @ 85 degrees	0 85	70	
	142.8'-148.3' Biotite schist,	0 75-85	15	
zircon, pyrite	148.3'-150' Syenite, 1% zircon	0 75-80	20	
	150'-162.7' Biotite schist	0 60-75	42	
		0 60-70	20	
zircon, pyrite	162.7'-163.4' granite sill, 15% grey-milky quartz,	0 65-70	20	
	163.4'-185' Biotite schist,	0 70-75	72	
			85	
		0 70-75	80	
		0 65-70	84	

Alteration	aegirine, calcite, apatite	aegirine, calcite, apatite	calcite,	aegirine, calcite, apatite	calcite,	calcite,	calcite,	calcite,	calcite,	calcite,	calcite,	calcite,	aegirine, calcite, apatite	calcite,	calcite,	calcite,	calcite,	calcite,	calcite,	calcite,	aegirine, calcite, apatite	muscovite, microcline	muscovite, microcline	aegirine, calcite, apatite	garnet, muscovite										
90	sovite/carbonatite	sovite/carbonatite	rbonatite	rbonatite	rbonatite	rbonatite	rbonatite	rbonatite	carbonatite/sovite, granite/pegmatite		rbonatite		sovite/carbonatite, fenite/syenite	nite	sovite/carbonatite, fenite/syenite	bonatite	bonatite, fenite/syenite	bonatite	sovite/carbonatite, biotite schist	sovite/carbonatite, biotite schist	nist	nist	nite	nite	sovite/carbonatite, fenite/syenite	sovite/carbonatite, biotite schist	nite, biotite schist	nite	nite, biotite schist	nite, biotite schist	nite	nite	nite	nite	list
Rock Type	sovite/ca	sovite/ca	sovite/carbonatite	sovite/carbonatite	sovite/carbonatite	sovite/carbonatite	sovite/carbonatite	sovite/carbonatite	carbonati	sovite/carbonatite	sovite/carbonatite	sovite/carbonatite	sovite/car	fenite/syenite	sovite/car	sovite/carbonatite	sovite/carbonatite,	sovite/carbonatite	sovite/car	sovite/car	biotite schist	biotite schist	fenite/syenite	fenite/syenite	sovite/car	sovite/car	fenite/syenite,	fenite/syenite	fenite/syenite,	fenite/syenite,	fenite/syenite	fenite/syenite	fenite/syenite	fenite/syenite	biotite schist
WIDTH	0.91	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52
Q E	3.05	4.57	6.10	7.62	9.14	10.67	12.19	13.72	15.24	16.76	1839	19.81	21.34	22.86	24.38	25.91	27.43	28.96	30.48	32.00	33.53	35.05	36.58	38.10	39.62	41.15	42.67	44.20	45.72	47.24	48.77	50.29	51.82	53.34	54.86
FROM	2.13	3.05	4.57	6.10	7.62	9.14	10.67	12.19	13.72	15.24	16.76	18.29	19.81	21.34	22.86	24.38	25.91	27.43	28.96	30.48	32.00	33.53	35.05	36.58	38.10	39.62	41.15	42.67	44.20	45.72	47.24	48.77	50.29	51.82	53.34
WIDTH	ო	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	S	S	2	2	2	2	2	2	2	2	2
7	10	15	20	25	30	35	40	45	20	22	09	65	70	75	80	85	06	92	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175	180
FROM	7	10	15	20	25	30	35	40	45	20	55	90	65	20	75	80	85	06	92	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175
# HQQ	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LONS9DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2	LON09DDH2

-	22 23 38	888 888 882 882	4 O 10 m	0.0000	0.10.00.00.00.00	
RQD % > 10 cm	a a a a		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	99 77 80 80 92 92 100	25 25 25 88 82 82 83 83 83 83 83 83 83 83 83 83 83 83 83	00 00 10 00 00 00 00 00 00 00 00 00 00 0
Foliation (degrees to core axis)			Table 1			
%Carbonate Foliation		35 45-65 40 45-65 25 45-65 30 45-60 15 45-65 30 45-55 39 40-55		30 35-55 25 35-55 15 35-55 25 40-70 5 40-70 0 30-60	0 30-60 0 30-60 0 35-55 0 35-55 0 35-60 15 35-60 10 35-60	
Comments	7'-67.3' sovite (calcite, aegirine, apatite, zircon) 10'-13' fault zone, minor clay 80% recovery 7'-86' 0.1% limonite fracture filling	31.5'-32.8' fault zone, minor clay, 90% recovery 47.4'-47.6' granite sill,15% quartz,sharp contacts	67.3'-76' fenite/syenite, 68.6'-68.9' quartz vn @ 65-70 degrees to core axis	76'-86.8' sovite (calcite, aegirine, apatite, zircon) 86.8'-88.4' syenite sill, 1% diss zircon, sharp cont 88.4'-98.3' sovite (calcite, aegirine, apatite, zircon) 98.3'-101.2' biotite schist, garnet, minor zircon 101.2-103' fenite/syenite sill	103'-115' biotite schist, sharp contacts @ 30-60 108'-108.7' fault zone 115'-129' fenite/syenite sill, disseminated zircon 119'-125' fault zone, 90% recovery 129'-133' sovite (calcite, aegirine, apatite, zircon) 133'-137.6' biotite schist 137.6'-148.3' fenite/syenite	148.3'-149' fault zone, clay, 90% recovery 152'-175' fenite/syenite 152.6'-153' fault zone, 90% recovery 165'-165.2' monzonite sill, 13 cm wide 175'-218' biotite schist, 0.1-3% garnet
Mineralization	limonite, pyrite, zircon limonite, pyrite, zir	limonite, pyrite, zircon	limonite, pyrite, zircon limonite, pyrite, zircon limonite, pyrite, zircon	ilmonite, pyrite, zircon ilmonite, pyrite, zircon pyrite, zircon, ilmenite pyrite, zircon, ilmenite pyrite, zircon, ilmenite pyrite, zircon, ilmenite	zircon, pyrite zircon, pyrite zircon, pyrite pyrite, zircon, ilmenite	pyrite, zircon, ilmenite pyrite, zircon, ilmenite pyrite, zircon, ilmenite pyrite, zircon, ilmenite pyrite, zircon, ilmenite pyrite

LON09DDH2 185 5 54.86 56.39 1.52 biotite schist LON09DDH2 185 190 5 56.39 57.91 1.52 biotite schist LON09DDH2 195 200 5 59.44 60.96 1.52 biotite schist LON09DDH2 200 205 5 60.96 62.48 1.52 biotite schist LON09DDH2 205 210 5 62.48 1.52 biotite schist LON09DDH2 210 215 5 64.01 1.52 biotite schist LON09DDH2 210 215 5 64.01 1.52 biotite schist LON09DDH2 215 218 3 65.53 66.45 0.91 biotite schist
180 185 5 54.86 56.39 185 190 5 56.39 57.91 190 195 5 57.91 59.44 195 200 5 59.44 60.96 200 205 5 60.96 62.48 205 210 5 62.48 64.01 210 215 5 64.01 65.53 215 218 3 65.53 66.45
180 185 5 54.86 185 190 5 56.39 190 195 5 57.91 195 200 5 59.44 200 205 5 60.96 205 210 5 62.48 210 215 5 64.01 215 218 3 65.53
180 185 5 190 195 5 190 195 5 200 205 5 205 210 5 210 215 5 215 218 3
180 185 190 195 200 205 210 215
180 185 190 195 200 205 210 215
LON09DDH2 LON09DDH2 LON09DDH2 LON09DDH2 LON09DDH2 LON09DDH2 LON09DDH2

garnet, muscovite garnet, muscovite garnet, muscovite garnet, muscovite garnet, muscovite garnet, muscovite garnet, muscovite

0 15-50 0 15-50 0 15-50 0 25-55 0 30-55 0 35-55 0 35-55

pyrite pyrite

# HQQ	ROM	0	WIDTH FROM	FROM	0	WIDTH	Rock Type	Alteration	
-	Ħ	Ħ	Ħ	E	E	E			
LON09DDH3	11.5	15	3.5	3.51	4.57	1.07	syenite/pegmatite	muscovite,	vermiculite
LON09DDH3	15	20	2	4.57	6.10	1.52	biotite-muscovite schist, syenite/pegmatite	muscovite,	vermiculite
LON09DDH3	20	25	2	6.10	7.62	1.52	biotite-muscovite schist, syenite/pegmatite	muscovite,	vermiculite
LON09DDH3	25	30	5	7.62	9.14	1.52	syenite/pegmatite	muscovite,	vermiculite
LON09DDH3	30	35	2	9.14	10.67	1.52	biotite-muscovite-phlogopite schist	muscovite,	vermiculite
LON09DDH3	35	40	2	10.67	12.19	1.52	biotite-muscovite-phlogopite schist		vermiculite
LON09DDH3	40	45	2	12.19	13.72	1.52	biotite-muscovite-phlogopite schist		vermiculite
LON09DDH3	45	20	2	13.72	15.24	1.52	biotite-muscovite schist, syenite/pegmatite	muscovite,	vermiculite
LON09DDH3	20	55	2	15.24	16.76	1.52	syenite/pegmatite	muscovite, vermiculite	vermiculite
LON09DDH3	22	9	2	16.76	18.29	1.52	syenite/pegmatite	muscovite, vermiculite	vermiculite
LON09DDH3	09	-65	- 5	\$8.29	19.81	1.52	syenite/pegmatite - &	muscovite, vermiculite	vermiculite
LON09DDH3	65	70	2	19.81	21.34	1.52	syenite/pegmatite	muscovite, vermiculite	vermiculite
LON09DDH3	70	75	2	21.34	22.86	1.52	garnet-biot-musc schist, syenite/pegmatite	muscovite, vermiculite	vermiculite
LON09DDH3	75	80	2	22.86	24.38	1.52	garnet-biotite-muscovite-phlogopite schist	muscovite, vermiculite	vermiculite
LON09DDH3	80	82	2	24.38	25.91	1.52	garnet-biotite-muscovite-phlogopite schist	muscovite, vermiculite	vermiculite
LON09DDH3	85	06	2	25.91	27.43	1.52	garnet-biotite-muscovite-phlogopite schist	muscovite, vermiculite	vermiculite
LON09DDH3	06	92	2	27.43	28.96	1.52	garnet-biotite-muscovite-phlogopite schist	muscovite, vermiculite	vermiculite
LON09DDH3	92	100	2	28.96	30.48	1.52	garnet-biot-musc schist, syenite/pegmatite	muscovite, vermiculite	vermiculite
LON09DDH3	100	105	2	30.48	32.00	1.52	garnet-biot-musc schist, syenite/pegmatite	muscovite, vermiculite	vermiculite.
LON09DDH3	105	110	2	32.00	33.53	1.52	garnet-biot-musc schist, syenite/pegmatite	muscovite, vermiculite	vermiculite
LON09DDH3	110	115	2	33.53	35.05	1.52	garnet-biot-musc schist, syenite/pegmatite	muscovite, vermiculite	/ermiculite
LON09DDH3	115	120	2	35.05	36.58	1.52	garnet-biotite-muscovite-phlogopite schist	muscovite	
LON09DDH3	120	125	2	36.58	38.10	1.52	garnet-biotite-muscovite-phlogopite schist	muscovite	
LON09DDH3	125	130	2	38.10	39.62	1.52	garnet-biotite-muscovite-phlogopite schist	muscovite	
LON09DDH3	130	135	2	39.62	41.15	1.52	garnet-biotite-muscovite-phlogopite schist	muscovite	
LON09DDH3	135	140	2	41.15	42.67	1.52	garnet-biotite-muscovite-phlogopite schist	muscovite	
LON09DDH3	140	145	2	42.67	44.20	1.52	garnet-biot-musc schist, syenite/pegmatite	muscovite	
LON09DDH3	145	150		44.20	45.72	1.52	garnet-biotite-muscovite-phlogopite schist	muscovite	
CON09DDH3	150	155		45.72	47.24	1.52	garnet-biotite-muscovite-phlogopite schist	muscovite	
CON09DDH3	155	160		47.24	48.77	1.52	garnet-biotite-muscovite-phlogopite schist	muscovite	
LON09DDH3	160	165	177 1912/11	48.77	50.29	1.52	garnet-biotite-muscovite-phlogopite schist	muscovite	
LON09DDH3	165	170		50.29	51.82	1.52	garnet-biotite-muscovite-phlogopite schist	muscovite	
LON09DDH3	170	175	2	51.82	53.34	1.52	garnet-biotite-muscovite-phlogopite schist	muscovite	
LON09DDH3	175	180	2	53.34	54.86	1.52	garnet-biotite-muscovite-phlogopite schist	muscovite	
ON09DDH3	180	185	2	54.86	56.39	1.52	garnet-biotite-muscovite-phlogopite schist	muscovite	

		Cal Dollate		KUD %	
		%		>10cm	
limonite, pyrite, zircon	11.5'-16.3' syenite/pegmatite, 3% qtz coarse gr patches		0 20-30	90	
limonite, pyrite, zircon	16.3'-23' biotite muscovite phlogopite schist		0 20-30	100	
limonite, pyrite, zircon	23'-30' syenite/pegmatite sill, muscovite, zircon		0 20-30	82	
limonite, pyrite, zircon	30'-46.6' biotite muscovite phlogopite schist, 3% garnet		0 20-30	85	
limonite, pyrite	disseminated 1 cm subhedral red garnets		0 15-40	92	
limonite, pyrite	11.5'-104' 0.1% limonite fracture filling		0 15-40	80	
limonite, pyrite			0 15-40	70	
limonite, pyrite, zircon	46.6'-73.8' syenite/pegmatite sill, muscovite, zircon		0 15-40	82	
limonite, pyrite, zircon			0 15-40	95	
limonite, pyrite, zircon			0 15-40	96	
limonite, pyrite, zircon	20		0.20-50	80	2
limonite, pyrite, zircon			0 20-50	06	,
limonite, pyrite	73.8'-100' biotite muscovite phlogopite schist, 6% garnet		0 20-50	85	
limonite, pyrite			0 20-50	85	
limonite, pyrite			0 20-50	80	
limonite, pyrite			0 20-50	100	
limonite, pyrite			0 20-50	92	
limonite, pyrite, zircon	100'-101' syenite sill, sharp contacts @ 28 degrees		0 20-50	88	
limonite, pyrite, zircon	101'-102.5' biotite muscovite phlogopite schist, 8% garnet		0 30-40	80	
limonite, pyrite, zircon	102.5'-105.4' syenite sill, contacts @ 40 degrees to ca		0 30-40	100	
pyrite	105.4'-141' biotite muscovite phlogopite schist, 10% garnet		0 20-40	06	
pyrite			0 20-40	92	
pyrite			0 20-40	80	
pyrite			0 20-40	22	
pyrite			0 20-40	95	
pyrite			0 20-40	06	
pyrite	141'-143.5' 20 cm syenite sill		0 0-40	98	
pyrite	143.5'-185.6' biotite muscovite phlogopite schist, 15% garnet		0 0-40	96	
pyrite			0 0-40	100	
pyrite			0 0-40	95	
pyrite			0 0-40	100	
pyrite			0 0-40	92	
pyrite			0 0-40	100	
pyrite			0 20-35	06	
pyrite			0 20-35	100	

													1		
muscovite	muscovite	muscovite	miscovite	miscovite	miscovite	miscovite	miscovite	miscovite	miscovite	miscovite	miscovite	missovite	miscovite	miscovite	muscovite
garnet-biotite-muscovite-phlogopite schist	garnet-biotite-muscovite-phlogopite schist	garnet-biotite-muscovite-phlogopite schist	garnet-biotite-muscovite-phogopite schist	garnet-biotite-muscovite-phlogopite schist	garnet-biotite-muscovite-phlogopite schist	darnet-biotite-muscovite-phlogopite schist	garnet-biotite-muscovite-phlogopite schist	darnet-biotite-muscovite-phlogopite schist	garnet-biotite-muscovite-phlogopite schist	biotite-muscovite schist					
				_						,		1		_	200
1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52
57.91	59.44	96.09	62.48	64.01	65.53	67.06	68.58	70.10	71.63	73.15	74.68	76.20	77.72	79.25	80.77
56.39	57.91	59.44	96.09	62.48	64.01	65.53	67.06	68.58	70.10	71.63	73.15	74.68	76.20	77.72	79.25
2	5	2	2	2	2	2	2	2	2	2	2	5	2	2	2
190	195	200	205	210	215	220	225	230	235	240	245	250	255	260	265
185	190	195	200	205	3 210	215	220	225	230	235	240	3-245	250	255	260
LON09DDH3	LON09DDH3	LON09DDH3	LON09DDH3	LON09DDH3	LON09DDH3	LON09DDH3	LON09DDH3	LON09DDH3	LON09DDH3	LON09DDH3	LON09DDH3	LON09DDH3	LON09DDH3	LON09DDH3	LON09DDH3

185.6'-189' syenite sill, 1% diss py, contact @ 40 degrees	0 20-35	88	
189'-204' biotite muscovite phlogopite schist, 10% garnet	0 20-35	99	
	0 20-35	82	
204'-217' syenite sill, 0.5% limonite fracture filling	0 20-35	80	
contacts @ 30 degrees to core axis	0 20-35	80	
217'-222' biotite muscovite phlogopite schist, 8% garnet	0 20-35	75	
	0 20-35	85	
222'-224.5' syenite sill	0 20-35	85	
224.5'-265' biotite-muscovite schist	0 20-35	75	
	0 20-35	80	
	0 20-35	75	
	0 20-35	80	
The state of the s	9 20-35	80	*
	0 20-35	85	
	0 20-35	75	
	0 20-35	70	

pyrite

.

Alteration		garnet, muscovite	garnet, muscovite	garnet, muscovite			garnet, muscovite	muscovite, microcline	muscovite, microcline	garnet, muscovite	garnet, muscovite	garnet, muscovite	garnet, muscovite	aegirine, calcite, apatite	aegirine calcite apatite	aeqirine, calcite, apatite	aedirine calcite apatite	aedirine calcite anatite	aedirine calcite apatite		aedirine, calcite, apatite	aedirine, calcite, apatite	aedirine, calcite, apatite	aegirine calcite apatite	aedirine calcite apatite	aegirine calcite apatite	muscovite vermiculite	muscovite vermiculite	muscovite vermiculite	muscovite vermiculite	aegirine, calcite, apatite					
Width Rock Type	E	1.22 biotite-muscovite-phlogopite garnet schist	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	-		1.52 sovite/carbonatite	1.52 sovite/carbonatite	1.52 sovite/carbonatite	1.52 sovite/carbonatite	1.52 sovite/carbonatite	1.52 sovite/carbonatite	1.52 sovite/carbonatite	1.52 sovite/carbonatite	1.52 sovite/carbonatite	1.52 sovite/carbonatite	1.52 sovite/carbonatite	1.52 sovite/carbonatite	1.52 sovite/carbonatite	1.52 sovite/carbonatite	1.52 sovite/carbonatite	1.52 sovite/carbonatite, biotite-muscovite-phlogopite-schist	1.52 biotite-muscovite-phlogopite schist	1.52 biotite-muscovite-phlogopite schist	1.52 biotite-muscovite-phlogopite schist	1.52 biotite-muscovite-phlogopite schist	1.52 sovite/carbonatite
To	E	6.10	7.62	9.14	10.67	12.19	13.72	15.24	16.76	18.29	19.81	21.34	22.86	24.38	25.91	27.43	28.96	30.48	32.00	33.53	35.05	36.58	38.10	39.62	41.15	42.67	44.20	45.72	47.24	48.77	50.29	51.82	53.34	54.86	56.39	57.91
From		4.88	6.10	7.62					15.24																9.62	1.15	2.67	4.20	.72	47.24 4	8.77	0.29	1.82	3.34	4.86	6.39
Width F	E	4	2	2	2	2	2	2	2	2	2	es es	1250				S			Ω (i)					5			4		1	5	5	5	5	5	2
	ft fr	20	25	30	35	40	45	20	22	9	65	-70	75	80	82	06	92	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175	180	85	90
From	ft ft	16	20	25	30	35	40	45	20	22	9	65	20	75	80	82	90				0												_	175 1	180 1	185 1
# HQQ		LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	0	LON09DDH4

limonite, pyrite 16' limonite, pyrite 23. limonite, pyrite 24. limonite, pyrite limonite, pyrite limonite, pyrite limonite, pyrite, zircon 44'- limonite, pyrite, zircon 60' limonite, pyrite 55'- limonite, pyrite 55'-	16'-23.8' biotite-muscovite-phlogopite-garnet schist 16'-106' trace-0.1% limonite as fracture filling 23.8'-24.5' quartz vn, sharp contact @ 68 degrees 24.5'-44' biotite-muscovite-phlogopite-garnet schist 40.4'-41.4' & 44.4'-44.6' fault zone, clay, 90% recov. 44'-48' syenite/fenite sill, contacts @ 60 degrees 48'-50.6' biotite-muscovite-phlogopite-garnet schist 50.6'-55' syenite/fenite sill, contacts @ 55 degrees 55'-77.5' biotite-muscovite-phlogopite-garnet schist 55'-55.3'-fault zone, minor clay, 90% recovery 76.3'-77.5' fault zone, minor clay, 90% recovery 77.5'-162.7' sovite/carbonatite	000000000	deg %>10cm 55-70 75 55-60 80 45-65 80	0cm 75 80	
pyrite pyrite pyrite pyrite pyrite pyrite pyrite pyrite, zircon pyrite, zircon pyrite, zircon	-23.8' biotite-muscovite-phlogopite-garnet schist -106' trace-0.1% limonite as fracture filling 8'-24.5' quartz vn, sharp contact @ 68 degrees 5'-44' biotite-muscovite-phlogopite-garnet schist 4'-41.4' & 44.4'-44.6' fault zone, clay, 90% recov48' syenite/fenite sill, contacts @ 60 degrees -50.6' biotite-muscovite-phlogopite-garnet schist 6'-55' syenite/fenite sill, contacts @ 55 degrees -77.5' biotite-muscovite-phlogopite-garnet schist -55.3'-fault zone, minor clay, 90% recovery 5'-77.5' fault zone, minor clay, 90% recovery 5'-162.7' sovite/carbonatite		.70 -50 -65	75	
pyrite pyrite pyrite pyrite pyrite pyrite, zircon pyrite, zircon pyrite, zircon	-106' trace-0.1% limonite as fracture filling 8'-24.5' quartz vn, sharp contact @ 68 degrees 5'-44' biotite-muscovite-phlogopite-garnet schist 4'-41.4' & 44.4'-44.6' fault zone, clay, 90% recov48' syenite/fenite sill, contacts @ 60 degrees -50.6' biotite-muscovite-phlogopite-garnet schist 6'-55' syenite/fenite sill, contacts @ 55 degrees -77.5' biotite-muscovite-phlogopite-garnet schist -55.3'-fault zone, minor clay, 90% recovery 5'-77.5' fault zone, minor clay, 90% recovery 5'-162.7' sovite/carbonatite		65 65 84	80	
pyrite pyrite pyrite pyrite pyrite, zircon pyrite, zircon pyrite, zircon	8'-24.5' quartz vn, sharp contact @ 68 degrees 5'-44' biotite-muscovite-phlogopite-garnet schist 4'-41.4' & 44.4'-44.6' fault zone, clay, 90% recov48' syenite/fenite sill, contacts @ 60 degrees -50.6' biotite-muscovite-phlogopite-garnet schist 6'-55' syenite/fenite sill, contacts @ 55 degrees -77.5' biotite-muscovite-phlogopite-garnet schist -55.3'-fault zone, minor clay, 90% recovery 5'-77.5' fault zone, minor clay, 90% recovery 5'-162.7' sovite/carbonatite		-65 &£	-	
pyrite pyrite pyrite pyrite, zircon pyrite, zircon pyrite, zircon	5'-44' biotite-muscovite-phlogopite-garnet schist 4'-41.4' & 44.4'-44.6' fault zone, clay, 90% recov48' syenite/fenite sill, contacts @ 60 degrees -50.6' biotite-muscovite-phlogopite-garnet schist 6'-55' syenite/fenite sill, contacts @ 55 degrees -77.5' biotite-muscovite-phlogopite-garnet schist -55.3'-fault zone, minor clay, 90% recovery 3'-77.5' fault zone, minor clay, 90% recovery 5'-162.7' sovite/carbonatite		RE	80	
pyrite pyrite pyrite, zircon pyrite, zircon pyrite, zircon pyrite	4'-41.4' & 44.4'-44.6' fault zone, clay, 90% recov48' syenite/fenite sill, contacts @ 60 degrees -50.6' biotite-muscovite-phlogopite-garnet schist 6'-55' syenite/fenite sill, contacts @ 55 degrees -77.5' biotite-muscovite-phlogopite-garnet schist -55.3-fault zone, minor clay, 90% recovery 3'-77.5' fault zone, minor clay, 90% recovery 5'-162.7' sovite/carbonatite		200	65	
pyrite pyrite, zircon pyrite, zircon pyrite	4'-41.4' & 44.4'-44.6' fault zone, clay, 90% recov48' syenite/fenite sill, contacts @ 60 degrees -50.6' biotite-muscovite-phlogopite-garnet schist 6'-55' syenite/fenite sill, contacts @ 55 degrees -77.5' biotite-muscovite-phlogopite-garnet schist -55.3'-fault zone, minor clay, 90% recovery 3'-77.5' fault zone, minor clay, 90% recovery 5'-162.7' sovite/carbonatite		.65	15	
pyrite, zircon pyrite, zircon pyrite pyrite	-48' syenite/fenite sill, contacts @ 60 degrees -50.6' biotite-muscovite-phlogopite-garnet schist 6'-55' syenite/fenite sill, contacts @ 55 degrees -77.5' biotite-muscovite-phlogopite-garnet schist -55.3'-fault zone, minor clay, 90% recovery 3'-77.5' fault zone, minor clay, 90% recovery 5'-162.7' sovite/carbonatite		65	10	
pyrite, zircon pyrite pyrite	-50.6' biotite-muscovite-phlogopite-garnet schist 6'-55' syenite/fenite sill, contacts @ 55 degrees -77.5' biotite-muscovite-phlogopite-garnet schist -55.3'-fault zone, minor clay, 90% recovery 3'-77.5' fault zone, minor clay, 90% recovery 5'-162.7' sovite/carbonatite		65	40	
pyrite	6'-55' syenite/fenite sill, contacts @ 55 degrees -77.5' biotite-muscovite-phlogopite-garnet schist -55.3-fault zone, minor clay, 90% recovery 3'-77.5' fault zone, minor clay, 90% recovery 5'-162.7' sovite/carbonatite		90	20	
pyrite	-77.5' biotite-muscovite-phlogopite-garnet schist -55.3-fault zone, minor clay, 90% recovery 3'-77.5' fault zone, minor clay, 90% recovery 5'-162.7' sovite/carbonatite		55	85	
	-55.3-fault zone, minor clay, 90% recovery 3'-77.5' fault zone, minor clay, 90% recovery 5'-162.7' sovite/carbonatite		75	09	
27	3'-77.5' fault zone, minor clay, 90% recovery 5'-162.7' sovite/carbonatite		-99	99	27
limonite, pyrite	3'-77.5' fault zone, minor clay, 90% recovery 5'-162.7' sovite/carbonatite	0 45-55	55	65	
, zircon	5'-162.7' sovite/carbonatite	12 45-55	55	10	
124		25 45-55	55	65	
pyrite, zircon, ilmenite		25 45-55	55	10	
pyrite, zircon, ilmenite		25 40-70	70	20	
pyrite, zircon, ilmenite		25 40-70	20	15	
pyrite, zircon, ilmenite		25 30-60	90	35	
pyrite, zircon, ilmenite		25 30-60	90	20	
pyrite, zircon, ilmenite			90	84	
pyrite, zircon, ilmenite		25 35-55		100	
pyrite, zircon, ilmenite			55	06	
				100	
	130'-160' 20% aegirine, 3-5% zircon	25 35-55	55	92	
pyrite, zircon, ilmenite			90	06	
pyrite, zircon, ilmenite			90	92	
pyrite, zircon, ilmenite		25 45-60		100	
		25 45-55		100	
	157'159.4' 40% aegirine, 10% zircon	25 35-55	55	85	
zircon, ilmenite	162.7'-184' biotite-muscovite-phlogopite schist	12 40-60	30	75	
pyrite		0 40-60	90	82	
pyrite		0 40-60	90	89	
			35	92	
	184'-215' sovite/carbonatite	5 55-65	35	85	
pyrite, zircon, ilmenite		25 55-65		100	

1.52 sovite/carbonatite	sovite/carbonatite	1.52 sovite/carbonatite	1.52 sovite/carbonatite	1.52 sovite/carbonatite	1.52 biotite-muscovite schist	1.52 biotite-muscovite schist
1.52	1.52	1.52	1.52	1.52	1.52	1.52
59.44	96.09	62.48	64.01	65.53	90.79	68.58
57.91	59.44	96.09	62.48	64.01	65.53	90'.29
2	2	2	2	2	2	2
195	200	205	210	215	220	225
190	195	200	205	210	215	220
LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4	LON09DDH4

aegirine, calcite, apatite aegirine, calcite, apatite aegirine, calcite, apatite aegirine, calcite, apatite muscovite muscovite

l

1

ŀ

37

1

215'-225' biotite-muscovite schist pyrite, zircon, ilmenite pyrite pyrite

100	100	75	10	06	85	90
5-6	5-6	5-6	2	55-65	0	0
25	25	25	25	25	0	0

												- 1																								
Alteration	muscovite, phlogopite, garnet	muscovite, microcline	muscovite, phlogopite, garnet	muscovite, phlogopite, garnet	muscovite, phlogopite, garnet	muscovite, phlogopite, garnet	muscovite, microcline	muscovite, microcline	muscovite, microcline	aegirine, calcite, apatite	aegirine, calcite, apatite	aegirine, calcità, apatite	aegirine, calcite, apatite	aegirine, calcite, apatite	aegirine, calcite, apatite	aegirine, calcite, apatite	aegirine, calcite, apatite	muscovite, microcline	muscovite, microcline	muscovite, microcline	aegirine, calcite, apatite	aegirine, calcite, apatite	aegirine, calcite, apatite	aegirine, calcite, apatite	aegirine, calcite, apatite	aegirine, calcite, apatite	aegirine, calcite, apatite	aegirine, calcite, apatite	aegirine, calcite, apatite	aegirine, calcite, apatite	aegirine, calcite, apatite					
Rock Type		syenite	biotite-muscovite-phlogopite schist	biotite-muscovite-phlogopite schist				syenite	syenite	biotite-musc-phlog schist, syenite	carbonatite/sovite	carbenatite/sovite	carbonatite/sovite	carbonatite/sovite	carbonatite/sovite	carbonatite/sovite	carbonatite/sovite	syenite, carbonatite/sovite	carbonatite/sovite	syenite, carbonatite/sovite	carbonatite/sovite	syenite, carbonatite/sovite, biot schist	biotite-muscovite-phlogopite schist	biotite-muscovite-phlogopite schist	biotite-muscovite-phlogopite schist	carbonatite/sovite, biotite-musc schist	carbonatite/sovite	carbonatite/sovite	carbonatite/sovite	carbonatite/sovite	biotite sovite	biotite sovite	carbonatite/sovite	carbonatite/sovite, biotite sovite	biotite sovite	biotite sovite
WIDTH ft	4	5	5	5	5	5	5	2	5	5	2	2	5	5	2	2	2	2	S.	5	5	2	2	2	5	2	2	2	2	5	5	2	5	5	5	5
TO ft	15	20	25	30	35	40	45	20	55	9	65	70	75	80	85	8	95	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175	180	185	190
FROM ft	11	15	20	25	30	35	40	45	20	55	9	65	70	75	80	82	90	92	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175	180	185
WIDTH m	1.219	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524
V m OT	4.572	960.9	7.62	9.144	10.668	12.192	13.716	15.24	16.764	18.288	19.812	24:336	22.86	24.384	25.908	27.432	28.956	30.48	32.004	33.528	35.052	36.576	38.1	39.624	41.148	42.672	44.196	45.72	47.244	48.768	50.292	51.816	53.34	54.864	56.388	57.912
FROM m	3.353	4.572	6.096	7.62	9.144	10.668	12.192	13.716	15.24	16.764	18.288	19.812	21.336	22.86	24.384	25.908	27.432	28.956	30.48	32.004	33.528	35.052	36.576	38.1	39.624	41.148	42.672	44.196	45.72	47.244	48.768	50.292	51.816	53.34	54.864	56.388
# HQQ	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5

Foliation (c RQD % > 10 cm	10	75	09	55	82	09	. 65	70	65	70	70	22	30	62	0	78	80	80	. 96	98	100	96	96	06	45	28	75	85	06	85	25	15	25	38	20	10
%Carbonate Foliation	0 70-80	0 75-80	0 65-80	0 65-80	0 65-80	0 65-80	0 65-80	0 65-80	0 65-80	12 65-85	15 60-85	20-90-85	20 60-85	15 60-90	20 60-90	20 70-75	15 70-75	10 60-80	20 70-75	10 60-81	15 60-85	12 60-90	0 70-75	0 60-85	06-09 0	10 55-70	15 65-80	25 65-80	25 65-85	15 60-85	2 60-90	8 60-90	20 70-75			8 70-75
Comments	11'-14.5' biotite-muscovite-phlogopite schist, 3% red garnet 0.5-1 cm	14.5'-20.5' syenite sills (60-80 cm), sharp contacts @75-80 deg	20.5'-40' biotite-muscovite-phlogopite schist, 3% red garnet 0.5-1 cm		3-4 cm wide syenite sills @ 33', 36', and 37'	increased limonite-pyrite-zircon in syenite as fracture filling	40'-58.7' syenite, minor aegirine, zircon			58.7'-59.7' biotite-muscovite-phlogopite schist, 2% red garnet 0.5 cm	59.7'-99.2' sovite/carbonatite, minor aegirine	67'-68' fault zone, minor clay, 90% recevery			80'-84.8' fault zone, minor clay, 90% recovery	86.7'-87' fault zone, minor clay, 90% recovery		99.2'-100' syenite sill, pegmatitic, sharp contact @ 60-80 deg	100'-109.6' sovite/carbonatite, minor aegirine	109.6'-110.3' syenite sill, pegmatitic, sharp contact @ 60-80 deg		118.7'-119' syenite sill, pegmatitic, sharp contact @ 60-80 deg	119'-139.9' biotite-muscovite-phlogopite schist			139.9'-160.1' sovite/carbonatite, minor aegirine, banding @55-70					160.1'-170' biotite sovite, minor carbonatite, aegirine		170'-178.5' sovite/carbonatite, minor aegirine, banding @70-80	178.5'-190' biotite sovite, minor aegirine		
Mineralization	limonite, pyrite	limonite, pyrite, zircon	limonite, pyrite	limonite, pyrite	limonite, pyrite	limonite, pyrite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	limonite, pyrite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	pyrite	pyrite	pyrite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite	pyrite, zircon, ilmenite

muscovite	muscovite	muscovite	muscovite	muscovite	muscovite	muscovite	muscovite	muscovite	muscovite	muscovite, microcline	muscovite, microcline	muscovite, microcline	muscovite														
												1															
5 biotite schist	5 biotite schist	5 biotite schist	5 syenite	5 biotite schist	5 biotite schist, syenite	5 biotite schist, syenite	5 biotite schist, syenite	5 biotite schist																			
195	200	205	210	215	220	225	230	235	240	245	250	255	260	265	270	275	280	285	290	295	300	305	310	315	320	325	330
190	195	200	205	210	215	220	225	230	235	240	245	250-	255	260	265	270	275	280	285	290	295	300	305	310	315	320	325
1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524 💸	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524	1.524
59.436	96.09	62.484	64.008	65.532	67.056	68.58	70.104	71.628	73.152	74.676	76.2	77.724	79.248	80.772	82.296	83.82	85.344	86.868	88.392	89.916	91.44	92.964	94.488	96.012	97.536	90.66	100.58
57.912	59.436	96.09	62.484	64.008	65.532	67.056	68.58	70.104	71.628	73.152	74.676	76.2	77.724	79.248	80.772 8	82.296	83.82	85.344	86.868	88.392	89.916	91.44	92.964	94.488	96.012	97.536	90.66
LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	LON09DDH5	SHOOODDHS	LON09DDH5														

60-90 60-90 70-75 60-80 60-85 60-90 75-80 60-90 60-90 70-75 60-90 70-75 60-90 70-75 60-90 60-90 70-75 60-90 70-75		190'-205' biotite schist	0 65-85		89	
205'-210' syenite sull, minor aegirine, zircon, contacts @68 deg 0 60-90 0 70-75 0 60-80 0 70-75 0 60-80 0 70-75 0 60-80 0 70-75 0 60-80 0 70-75 0 60-85 0 60-85 0 60-85 0 60-90 0 75-80 0 60-90 0 75-80 0 60-90 0 75-80 0 60-90 0 70-75 0 70-75 0 70-75 0 70-75 0 60-85 0 60-85 0 60-90 0 70-75 0 60-85 0 60-90 0 70-75 0 60-85 0 60-90 0 70-75 0 60-90 0 70-75 0 60-90 0 70-75 0 60-90 0 70-75 0 60-90 0 70-75 0 60-90 0 70-75 0 60-90 0 70-75 0 60-90 0 70-75 0 60-90 0 70-75 0 60-90 0 70-75 0 60-90 0 70-75 0 60-90 0 70-75 0 60-90 0 70-75 0 70-			06-09 0		45	
240.1-241' biotite schist 240.1-240.3' quartz vn, 9 cm wide, 1% disseminated pyrite 241-244' syenite sill 244-248 biotite schist 248-254' syenite sill 246-250 254-330' biotite schist 254-330' biotite schist 25-85 254-330' biotite schist 25-85		205'-210' syenite sill, minor aegirine, zircon, contacts @68 deg			9	
240.1"-240.3' quartz vn, 9 cm wide, 1% disseminated pyrite 241"-244 syenite sill 244"-248' biotite schist 244"-248' biotite schist 248"-248' biotite schist 248"-248' biotite schist 254"-330' biotite schist		210'-241' biotite schist			30	
240.1'-240.3' quartz vn, 9 cm wide, 1% disseminated pyrite 0 65-85 0 60-85 0 60-85 0 60-85 0 60-85 0 60-85 0 60-80 0 75-80 0 75-80 0 60-85 0 60-90 0 75-80 0 60-90 0 75-80 0 60-90 0 70-75 0 60-90 0 70-75 0 60-80 0 70-75 0 60-80 0 70-75 0 60-80 0 70-75 0 60-80 0 70-75 0 60-80 0 70-75 0 60-80 0 70-75 0 60-80 0 70-75 0 60-80 0 70-75 0 60-80 0 60-80 0 60-90 0 60-90 0 60-90 0 70-75 0 60-90 0 60-90 0 70-75 0 70-75 0 7					25	
240.1'-240.3' quartz vn, 9 cm wide, 1% disseminated pyrite 0 60-85 0 60-85 241'-244' syenite sill 0 75-80 0 75-80 0 75-80 0 75-80 0 75-80 0 75-80 0 75-80 0 70-75 0 70-85 0 70-90 0 70-90 0 70-75 0 70-75 0 70-75 0 70-75 0 70-75 0 70-75 0 70-75			0 70-75		40	
240.1'-240.3' quartz vn, 9 cm wide, 1% disseminated pyrite 0 60-90 241'-244' syenite sill 0 75-80 244'-248' biotite schist 0 65-85 248'\u2264'-330' biotite schist 254'-330' biotite schist 255'-250' biotite schist 255'-250			0 65-85	٠	55	
240.1'-240.3' quartz vn, 9 cm wide, 1% disseminated pyrite 0 60-90 241'-244' syenite sill 0 75-80 244'-248' biotite schist 0 60-85 244'-248' biotite schist 0 60-90 0 70-75 0 60-90 0 70-75 0 60-90 0 75-80 0 60-90 0 75-80 0 60-90 0 65-85 0 60-90 0 65-85 0 60-90 0 60-90 0 60-90 0 60-90 0 60-90 0 60-90 0 60-90 0 60-90 0 77-80 0 60-90 0 60-90 0 77-80 0 60-90 0 77-80 0 60-90 0 77-80 0 60-90 0 77-80 0			0 60-85		20	
241-244' syenite sill 244-248' biotite schist 244-248' biotite schist 248-254' syenite sill 244-330' biotite schist 254-330' biotite schist 255-330' b		-	06-09 0		9	
244'-248' biotite schist 248'-248' biotite schist 254'-330' biotite schist 254'-350' biotite schist 254'-330' biotite schist 255'-354'-330' biotite schist 255'-354'-330' biotite schist 255'-354'-330' biotite schist 255'-354'-330' biotite schist 255'-354'-355'-354'-355'-355'-355'-355'-3	con, ilmenite	241'-244' syenite sill	0 75-80		75	
244-330' biotite schist 254-330' biotite schist 254-330' biotite schist 254-330' biotite schist 254-30' biotite sc	con, ilmenite	244'-248' biotite schist	0 65-85		70	
254'-330' biotite schist 0 60-90 0 70-75 0 70-75 0 70-75 0 60-80 0 70-75 0 60-80 0 70-75 0 60-90 0 70-85 0 60-90 0 75-80 0 60-90 0 75-80 0 60-90 0 75-80 0 60-90 0 70-75	son, ilmenite	248\254' syenite sill —	0 60-85	SP.	-75	-
60-90 70-75 70-75 60-80 70-75 60-85 60-90 75-80 60-90 60-90		254'-330' biotite schist	06-09 0		70	
70-75 70-75 60-80 70-75 60-85 60-90 75-80 60-90 60-90					75	
70-75 60-80 70-75 65-85 60-90 75-80 65-85 60-90 60-90			0 70-75		75	
60-80 70-75 65-85 60-85 60-90 65-85 60-90 60-90					65	
70-75 65-85 60-85 60-90 75-80 65-85 60-85 60-90			0 80-80		80	
65-85 60-85 60-90 75-80 65-85 60-90 60-90			0 70-75		75	
60-85 60-90 75-80 65-85 60-85 60-90 70-75					75	
60-90 75-80 65-85 60-85 60-90 70-75					70	
75-80 65-85 60-85 60-90 70-75					70	
65-85 60-85 60-90 60-90 70-75					80	
60-85 60-90 60-90 70-75					70	
60-90 60-90 70-75					65	
60-90 70-75			06-09 0		75	
					80	
			0 70-75		75	

Appendix IV

PRELIMINARY FIELD RECONNAISSANCE AND POST IMPACT ASSESSMENT REPORT

By: ECOFOR, P.O. Box 1270 Fort St James, B.C. V0J 1P0 (250) 996 2151

J. Mooney, K. Solonas

Prince George, BC V2L 2X8

MoF Mackenzie

J. Mooney

PO Box 1270 Fort St James, BC V0J 1P0 (250) 996-2151 FAX (250) 996-2186

Survey Date(s):

Report Date(s):

PRELIMINARY FIELD RECONNAISSANCE and POST IMPACT ASSESSMENT REPORT

PROJECT AREA: Roc	her Deboul	e Mine	rals	- Manson (Creek	(Granite Cree	k Drill Hole	Locations)
Ecofor Project Number:	09-1030	-001			TS	L/FL/UBI:	N/A	
UTM (NAD 83):	Zone:	10	E	412991	-	6171265	Method:	GPS
NTS Map:		· · · ·			RC	CS Man(s).	00371 060	

Report Distribution: Client: Rocher Deboule Minerals Corp. Contact: Ed Lee 2A 15782 Marine Drive Tel. (604) 531-9639 White Rock, B.C. Fax. (604) 531-9634 V4B 1E6 **Affiliated First Nations:** McLeod Lake Indian Band Contact: Alec Chingee PO Box 87 Tel. (250) 788-2227 Chetwynd, BC V0C 1J0 Fax. (250) 788-8824 Halfway River First Nation Contact: Roslyn Pokiak Box 59 Tel. (250) 772-5135 Wononwon, BC V0C 2N0 Fax. (250) 772-5124 Takla Lake First Nation Contact: Chief Dolly Abraham Takla Landing, BC Tel. (250) 996-7877 **V0J2T0** Fax. (250) 996-7874 Nak'azdli Band Contact: Chief Fred Sam Box 1329 Tel. (250) 996-0088 Fort St. James, BC V0J 1P0 Fax. (250) 996-7634 West Moberly First Nations Contact: Teena Demeulemeester Box 90 Tel. (250) 788-3676 Moberly Lake, BC V0C 1 X0 Fax. (250) 788-2948 Tsay Keh Dene Contact: Johnny Pierre #11 - 1839 First Ave Tel. (250) 562-8882

RESULTS SUMMARY		
Sites identified that are protected by the Heritage Conservation Act	Yes	⊠ No

Contact:

Ecofor EPN 2009-1030-1

Ministry of Forests &

Range:

Field Crew:

Report Author:

PFR Rocher Deboule Manson Creek

Fax. (250) 562-8899

Tel. (250) 997-2212 Fax. (250) 997-2236

Hans Beurskens

October 8, 2009; November 6, 2009

December 16, 2009

Last Modified: 12/16/2009 1:08:00 PM

Sites identified that are not protected by the Heritage Conservation Act (post-1846) Yes No

Site	Management Recommendation	
J-1	Avoidance of post-1846 CMT and blazes; and First Nation consultation	
J-2	Avoidance of post-1846 CMT and blazes; and First Nation consultation	

Further archaeological work required? (e.g. Archaeological Impact Assessment)

Yes	M	No
1 00	$\nu \nu$	140

PROJECT AREA DESCRIPTION	
Location and Access:	This drill target area is located in the Mackenzie Forest District, ranging beginning approximately 100 m east of Granite Creek, and approximately 4 km northeast of Manson Creek. To access this location from Ft. St. James travel north along the North Road over the Nation River, onto the Thutade FSR, past the Findlay Nation FSR to cross the Manson River and onto the Findlay Manson FSR. Turn left and continue to approximately km 56 and watch for the deactivated Granite Creek FSR to the right. Proceed on foot or quad down Granite Creek FSR.
Description of Development:	Proposed three-hole diamond drilling program on east side of Granite Creek along timber access roads.
Elevation Range:	1080 to 1130 m ASL
Biogeoclimatic Zone:	SBS dominated by lodgepole pine and spruce age class 8 (141 to 250 years old).
Recorded Cultural Features (Prior to Investigations):	No previously recorded sites or cultural features within 5 km of the proposed drilling program.
Modeled Archaeological Potential:	N/A no model developed for this area but expected low to moderate potential for buried resources and moderate potential for CMTs due to age class 8 (141 to 250 years).
Remarks:	Granite Creek FSR has a series of smaller deactivations and access was on foot.

DESCRIPTION OF SURVEY AREAS AND METHODOLOGY

An inspection of the study area was limited to reconnaissance level survey to identify CMTs, trails and other surficial cultural heritage resources and to assess potential impacts from proposed access and diamond drilling to these identified sites. The study area was also assessed for subsurface archaeological potential. All identified features (CMTs and blazes) were marked in the field using one band of white CMT flagging tape. During the preliminary field reconnaissance the ground was free of snow and visibility was excellent. During and after drilling the ground was covered in snow and the imprints of the tracked vehicle used in the area were very visible.

Based on the projected drill hole locations and the actual drill hole locations two study areas are discussed below. Study area 1 included the area proposed for drilling and study area two was the general area which was drilled (see attached map).

Survey Area 1 (Pr	oposed Drill Targe	et Area)					
Hydrology:		Granite Creek was approximately 100 m west and 100 m lower in elevation					
Landforms:		High slope area with no natural level areas suitable for buried resources					
Vegetation:		Area dominated by pine and spruce with understory of huckleberry, bunch berr mosses, fireweed, cranberry and currant.					
Assessed Archaeol	cological Potential: Low buried resources potential and low to moderate CMT potential						
Reconnaissance St	irvey:						
Transect:	Transect Space	ing: 15-20 m # of Transects: 15 Transect Strip Width: 45 - 60 m					
Orientation:		ing to compass bearing					
Remarks:	Ecofor was pr	rovided UTMs for proposed drill targets and Ecofor and MLIB participant walke target area on October 8, 2009 and again on November 6, 2009. The target area					

Ecofor EPN 2009-1030-1

PFR Rocher Deboule Manson Creek

	were located very near the timber access road in an area of very steep slope surrounded by standing mixed forest. The drill target areas were transected. Post-1846 blazes and two post-1846 CMTs were identified. No further cultural resources work is recommend for proposed drilling in this immediate area.
Sites Identified:	2 (J-1 and J-2)

RESULTS FOR PROJECT AREA Archaeological/Cultural Heritage Resources Found (Y/N)? Y Number of Sites: 2

Temporary Site #/ Borden #:	J-1	Site	Type:	Post 1846-CM	IT (Cambium Stripping
UTM (NAD 83):	Zone:	E	413440			6171172
Setting/Landforms:	Slope sloping h	illside				0.771.72
Approximate Dimensions:	10 m E/W x 10	m N/S				
Features, Artifacts and Age:	A single dead p	ine cambium stripp	oing.			
Investigations at Site:	The CMT was fully recorded but not cored. Additional survey of the area failed to identify any additional CMTs or high potential areas for sub-surface cultural materials. A representative increment core sample was obtained from a pine of similar size approximately 2 m to the east. This core revealed a germ date of 1936.					urface cultural materials. a pine of similar size
Current Condition/Potential Impact:						struction or skid trails.
Overall Significance:	Scientific, histo	ric and public sign	ificance a	are determined to	o be	e low.
Remarks and Interpretation:	Scientific, historic and public significance are determined to be low. The project area was revisited on November 6 and this CMT site was not impacted and no impacts to heritage resources were identified. No further work is recommended.					

Temporary Site #/ Borden #:	J-2		Site	Type:	Post 1846-CN	AT (Cambium Stripping
UTM (NAD 83):	Zone:		E	413021		N	
Setting/Landforms:	Slope slo	oping hillside			,		
Approximate Dimensions:	10 m E/\	W x 10 m N/S					
Features, Artifacts and Age:	A single	dead pine cambium	stripp	oing.			
Investigations at Site:	This CMT was not recorded or cored and also contained post-1846 blazes. Additional survey of the area failed to identify any additional CMTs or high potential areas for sub-surface cultural materials. Three post-1846 blazes were also observed in close proximity to this CMT.						
Current Condition/Potential Impact:	Intact. T	he site will not be in	npacte	d by dril	access or road	con	struction or skid trails.
Overall Significance:	Scientific	c, historic and public	c sign	ificance a	re determined t	to be	e low.
Remarks and Interpretation:	The proj	Scientific, historic and public significance are determined to be low. The project area was revisited on November 6 and this CMT site was not impacted and no impacts to heritage resources were identified. No further work is recommended.					

Survey Area 2 (Actual Drill	Target Area)
Hydrology:	Granite Creek was approximately 600 m south and a tributary to Granite Creek was approximately 200 m west.
Landforms:	High slope area with no natural level areas suitable for buried resources
Vegetation:	This area is within a recently harvested clear cut with little to no standing trees and mixed ground cover.
Assessed Archaeological Potential:	Low buried resources potential and no potential for CMTs.
Remarks:	Post-impact assessment of the proposed drill target area revealed that no drilling was conducted in the original area (Study Area 1). Imprints of the tracked vehicle(s) used to drill and re-set the road deactivations were clearly visible. These tracks showed no drill impacts in the original proposed drill target area. However, the tracks were followed along the timber access road, over the Granite Creek crossing and back to the northwest. Visual inspection from the timber access road, in coordination with photos

	of the drill hole locations, revealed that the two drill set-ups were located on the existing timber access road, within the clear cut area. No further work is recommended for this immediate area. However, if drilling continues in another adjacent area, a similar preliminary field reconnaissance is recommended. If an additional mineral exploration program or a mineral extraction project is proposed, additional work is recommended to assess possible impacts. This work may include a full Archaeological Impact Assessment (AIA).
Sites Identified:	None

RECOMMENDATIONS

- The post-1846 sites identified within this assessment are not protected by the Heritage Conservation Act and require no further work to mitigate impact. CMTs are considered cultural heritage resources and may require management considerations "to conserve, or, if necessary, protect cultural heritage resources that are the focus of a traditional use by an aboriginal people that is of continuing importance to that people, and not regulated under the Heritage Conservation Act" (Forest Planning and Practices Regulation Sec. 10 under FRPA). This can be determined through communication with the Ministry of Forests and relevant First Nations. Where operationally feasible, consider avoidance of the post-1846 sites through access and/or component redesign, or the implementation of wildlife tree-patches or machine-free zones.
- No further archaeological/survey work is recommended for this development area.

NOTE:

Although every attempt was made to locate and record all archaeological and cultural heritage features located within the specified survey area, the possibility exists that remains may have been missed. If any unidentified archaeological or cultural heritage remains are encountered during development activities, work in the nearby vicinity must stop and the Ministry of Tourism, Culture, and the Arts; Archaeology Branch, relevant First Nations, and the Ministry of Forests, Mackenzie District must be informed. These agencies will then provide direction as to an appropriate course of action to take regarding management of the remains.

It was not the intent of this survey to identify, evaluate, or comment on the presence or absence of Aboriginal Rights in the survey area. Completion of this survey does not "abrogate or derogate from aboriginal treaty rights" (Heritage Conservation Act Sec. 8). The results of this assessment have been forwarded to the appropriate First Nations, who may have additional management recommendations for the located sites and/or the proposed development area. The survey was conducted without prejudice to First Nations Treaty Negotiations, aboriginal rights, or aboriginal title.

James Mooney, MA

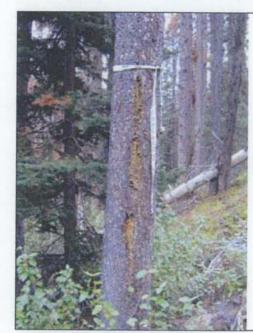
Project Archaeologist james@ecofor.ca

December 16, 2009

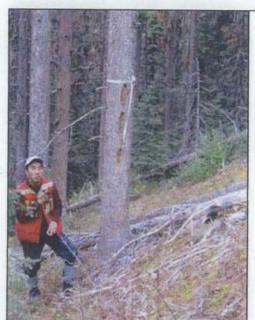
Dated

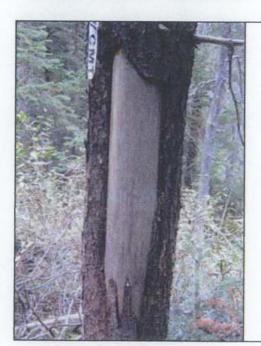
Archaeological Survey Photodocumentation

Permit: n/a


Development Area: Granite Creek Area

Client: Rocher Deboule Minerals


Date: December 16, 2009


Ken Solonas near Drill Hole proposed location #1

Post-1846 blazes on tree near Drill Hole proposed location #1

Ken Solonas near Drill Hole proposed location #1 with triple blaze

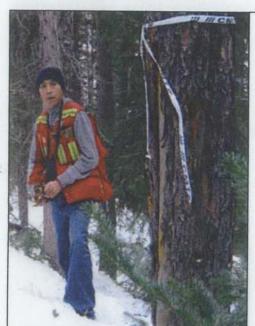
J-1 CMT #1

Archaeological Survey Photodocumentation

Permit: n/a

Development Area: Granite Creek Area

Client: Rocher Deboule Minerals


Date: December 16, 2009

Increment coring of a representative tree with J-1 CMT #1 and Ken Solonas in background

J-2 CMT #1

Ken Solonas and J-2 CMT #1

Archaeological Survey Photodocumentation

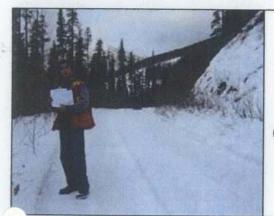
Permit: n/a

Development Area: Granite Creek Area

Client: Rocher Deboule Minerals

Date: December 16, 2009

Completed Drill Hole Location in Clear Cut looking northeast (note road in center)


Drill Hole Location #1 looking north

Drill Hole Location #2 looking south

Drill Core Storage Location looking eastsoutheast

Ken Solonas at Proposed Drill Hole Location #1 (note clear cut in background)

Ken Solonas on east side of Granite Creek in area of soil erosion control looking southwest

APPENDIX V

AIRBORNE GEOPHYSICAL SURVEY REPORT LONNIE PROPERTY

Airborne Geophysical Survey Report

Precision

Lonnie Property

Prepared for: Rara Terra Capital Corp.

February 2011 Shawn Walker, M.Sc., GIT

Table of Contents

1.0	Introduction			
	1.1		3	
2.0	Geop	3		
	2.1	Magnetic Data	4	
3.0	Surve	ey Operations	4	
4.0	Equip	5		
	4.1		5	
	4.2			
	4.3	Base Station	6	
	4.4	Laser Altimeter	7	
5.0	Data	8		
	5.1	Magnetic Processing	8	
	5.2			
Арр	endix A	A: Maps	10	

1.0 Introduction:

This report outlines the survey operations and data processing actions taken during the airborne geophysical survey flown at the Lonnie Property. The airborne geophysical survey was flown by Precision GeoSurveys Inc. for Rara Terra Capital Corp. The geophysical survey, carried out on February 26, 2011, saw the acquisition of magnetic data.

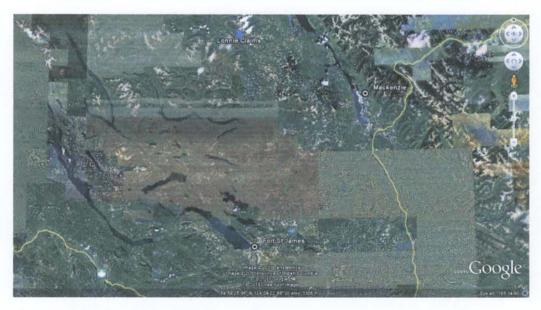


Figure 1: Lonnie claims survey area location.

The Lonnie claims are located approximately 140 km north of Fort St. James, BC and 90 km west-northwest of Mackenzie, BC (Figure 1). The survey area of the Lonnie claims is approximately 5.6 km by 3.9 km. A total of 173.8 line kilometres of magnetic data were flown for this survey. The survey lines were flown at 100 metre spacing at a $060^{\circ}/240^{\circ}$ heading; the tie lines were flown at 1000 metre spacing at a heading of $150^{\circ}/330^{\circ}$ (Figure 2 & 3).

Figure 2: Airborne geophysical survey lines in blue, tie lines in red and the boundary in yellow.

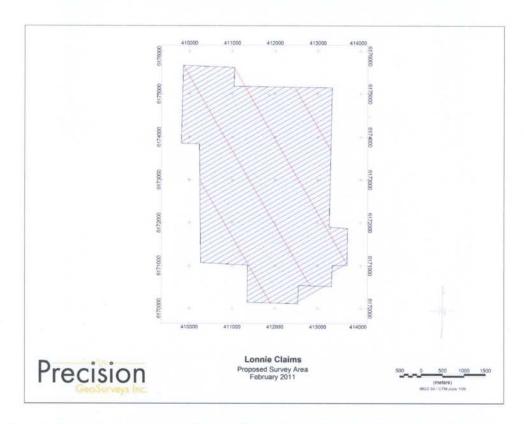


Figure 3: Proposed survey basemap with survey lines in blue and tie lines outlined in red and the boundary in black. The Easternmost proposed tie line was not completed due to poor weather conditions.

1.1 Survey Specifications:

The geodetic system used for this survey is WGS 84 and the survey area is within UTM zone 10N. The survey data acquisition specifications and coordinates for the Lonnie Claims are specified as followed (Table 1 and Table 2).

Survey Block Name	Line Spacing m	Survey Line km	Tie Line km	Total Line km	Survey Line Orientation
Lonnie Claims	100	157.6	16.2	173.8	060°/240°
Total				173.8	

Table 1: Lonnie Claims survey acquisition specifications.

Longitude	Latitude	Easting	Northing
-124.26.05.99	55.43.06.02	409856	6175665
-124.24.57.59	55.43.05.23	411049	6175616
-124.24.57.88	55.42.51.18	411035	6175182
-124.22.46.32	55.42.51.55	413331	6175147
-124.22.46.17	55.41.06.51	413269	6171900
-124.22.21.70	55.41.05.88	413696	6171872
-124.22.21.46	55.40.37.99	413683	6171010
-124.22.41.21	55.40.37.77	413338	6171010
-124.22.41.45	55.40.21.72	413324	6170514
-124.23.25.65	55.40.22.10	412552	6170541
-124.23.26.36	55.40.08.28	412531	6170114
-124.24.33.86	55.40.08.61	411352	6170148
-124.24.34.07	55.40.36.72	411366	6171017
-124.25.36.92	55.40.37.77	410269	6171072
-124.25.42.12	55.42.07.16	410235	6173837
-124.26.06.25	55.42.07.56	409814	6173858

Table 2: Lonnie Claims survey polygon coordinates using WGS 84 in UTM zone 10N.

2.0 Geophysical Data:

Geophysical data are collected in a variety of ways and are used to aid in the exploration and determination of geology, mineral deposits, oil and gas deposits, contaminated land sites and UXO detection.

For the purposes of this survey magnetic data were collected to serve in the exploration of the Lonnie Claims which contains rocks that are prospective for niobium and rare earth elements.

2.1 Magnetic Data:

Magnetic surveying is probably the most common airborne survey type to be conducted for both mineral and hydrocarbon exploration. The type of survey specifications, instrumentation, and interpretation procedures, depend on the objectives of the survey. Typically magnetic surveys are performed for:

- Geological Mapping to aid in mapping lithology, structure and alteration in both hard rock environments and for mapping basement lithology, structure and alteration in sedimentary basins or for regional tectonic studies.
- Depth to Basement Mapping; for exploration in sedimentary basins or mineralization associated with the basement surface.

3.0 Survey Operations:

Precision GeoSurveys flew the Lonnie claims using a Bell 206 BIII Jet Ranger (Figure 4) contracted from Interior Helicopters Ltd. From their base at Fort St. James. The survey lines were flown at a nominal line spacing of one hundred (100) metres and the tie lines were flown at one thousand (1000) metres spacing for the magnetometer data. The experience of the pilot helped to ensure that the data quality objectives were met and that the safety of the flight crew was never compromised given the potential risks involved in airborne surveying.

Figure 4: Bell 206 Jet Ranger equipped with mag stinger for magnetic data acquisition.

The survey was performed from the Fort St James Airport located approximately 140 km south of the Lonnie Claims. The Precision crew consisted of a total of two members:

Brad Van Koughnett – Pilot Shawn Walker – Operator/on-site geophysicist

The survey was flown on February 26, 2010. The survey was complete within one day. The easternmost tie-line was omitted due to failing weather conditions.

4.0 Equipment:

For this survey a magnetometer, base station magnetometer, laser altimeter, and a data acquisition system were required to carry out the survey and collect quality, high resolution data.

4.1 AGIS:

The Airborne Geophysical Information System, AGIS, (Figure 5), is the main computer used in data recording, data synchronizing, displaying real-time QC data for the geophysical operator, and generation of navigation information for the pilot display system.

Figure 5: AGIS installed in the Bell 206.

The AGIS was manufactured by Pico Envirotec; therefore the system uses standardized Pico software and external sources are connected to the system via RS-232 serial communication cables. The AGIS data format is easily converted into Geosoft or ASCII

file formats by a supplied conversion program called PEIView. Additional Pico software allows for post survey quality control procedures.

4.2 Magnetometer:

The magnetometer used by Precision GeoSurveys is a Scintrex cesium vapor CS-3 magnetometer. The system was housed in a front mounted "stinger" (Figure 6). The CS-3 is a high sensitivity/low noise magnetometer with automatic hemisphere switching and a wide voltage range, the static noise rating for the unit is +/- 0.01 nT. On the AGIS screen the operator can view the raw magnetic response, the magnetic fourth difference and the survey altitude for immediate QC of the magnetic data. The magnetic data are recorded at 10 Hz. A magnetic compensator is also used to remove noise created by the movement of the helicopter as it pitches, rolls and yaws within the Earth's geomagnetic field.

Figure 6: View of the mag stinger.

4.3 Base Station:

For monitoring and recording of the Earth's diurnal magnetic field variation, Precision GeoSurveys uses a Scintrex proton precession Envi Pro magnetometer as its base station. This is mounted as close to the survey block as possible to give high, accurate magnetic field data. The Envi Pro base station (Figure 7) uses the well proven precession technology to sample at a rate of 0.5 Hz. A GPS is integrated with the system to record real GPS time that is used to correlate with the GPS time collected by the airborne CS-3 magnetometer.

Figure 7: Scintrex Envi Pro proton precession magnetometer.

4.4 Laser Altimeter:

The pilot is provided with terrain guidance and clearance with an Acuity AccuRange AR3000 laser altimeter (Figure 8). This is attached at the aft end of the magnetometer boom. The AR3000 sensor is a time-of-flight sensor that measures distance by a rapidly-modulated and collimated laser beam that creates a dot on the target surface. The maximum range of the laser altimeter is 300 m off of natural surfaces with 90% reflectance and 3 km off special reflectors. Within the sensor unit, reflected signal light is collected by the lens and focused onto a photodiode. Through serial communications and analog outputs, the distance data are transmitted and recorded by the AGIS at 10 Hz.

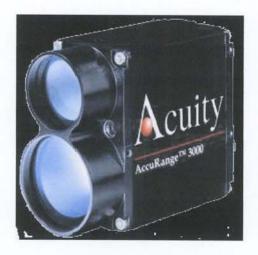


Figure 8: Acuity AccuRange AR3000 laser altimeter.

5.0 Data Processing:

After all the data are collected after a survey flight several procedures are undertaken to ensure that the data meet a high standard of quality. All data were processed using Pico Envirotec software and Geosoft Oasis Montaj geophysical processing software.

5.1 Magnetic Processing:

During aeromagnetic surveying noise is introduced to the magnetic data by the aircraft itself, movement in the aircraft (roll, pitch and yaw) and the permanent magnetization of the aircraft parts (engine and other ferric objects) are large contributing factors to this noise. To remove this noise a process called magnetic compensation is implemented. The magnetic compensation process starts with a test flight at the beginning of the survey where the aircraft flies in the four orthogonal headings required for the survey (057°/242° and 152°/324° in the case of this survey) at an elevation where there is no ground effect in the magnetic data. In each heading roll, pitch and yaw maneuvers are performed by the pilot, these maneuvers provide the data that is required to calculate the necessary parameters for compensating the magnetic data. A computer program called PEIComp is used to create a model for each survey to remove the noise induced by aircraft movement; this model is applied to each survey flight so the data can be further processed.

A magnetic base station is set up before every flight to ensure that diurnal activity is recorded during the survey flights. Precision GeoSurveys uses a Scintrex Envi Pro base station with an integrated GPS antenna that samples at every 2.0 seconds. Base station readings were reviewed at regular intervals to ensure that no data were collected during periods with unacceptably high diurnal activity (greater than 10 nT per minute). The base station was installed at a magnetically noise-free area, away from metallic items such as steel objects, vehicles, or power lines. The magnetic variations recorded from the stationary base station are removed from the magnetic data recorded in flight to ensure that the anomalies seen are real and not due to solar activity.

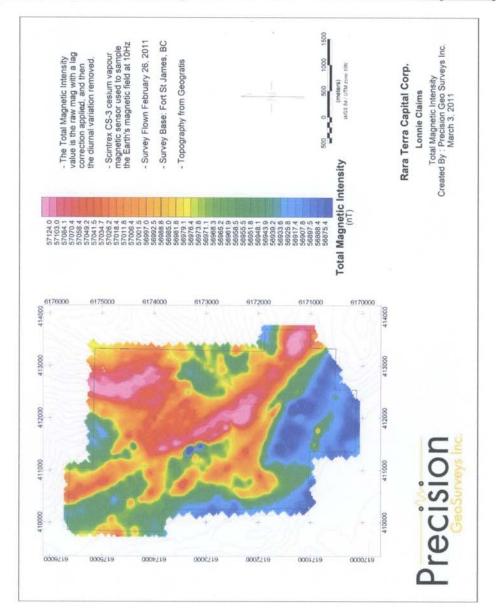
A lag correction was applied to the total magnetic field data to compensate for the lag in the recording system as the magnetometer sensor flies 5.25 m ahead of the GPS antenna and from the computer processing time. Thus, a lag correction of 1.7 seconds was performed to the total magnetic field data.

Some filtering of the magnetic data is also required. A Non Linear filter was used for spike removal. The 1D Non-Linear Filter is ideal for removing very short wavelength, but high amplitude features from data. It is often thought of as a noise spike-rejection filter, but it can also be effective for removing short wavelength geological features, such as signals from surficial features. The 1D Non-Linear Filter is used to locate and remove data that are recognized as noise. The algorithm is 'non-linear' because it looks at each data point and decides if that a datum is noise or a valid signal. If the point is noise, it is simply removed and replaced by an estimate based on surrounding data points. Parts of the data that are not considered noise are not modified. The combination of a Non-Linear filter for noise removal and a low pass trend enhancement filter resulted in level data as

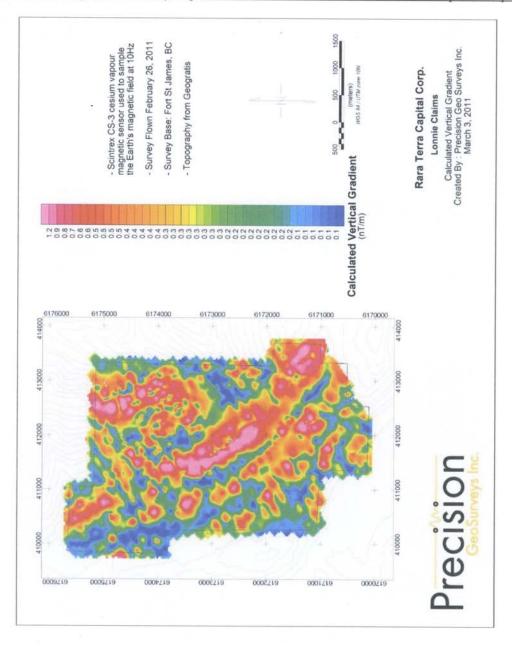
indicated in the results section of this report. The low pass filters simply smoothes out the magnetic profile to remove isolated noise.

5.2 Final Data Format

Abbreviations used in the GDB files are as follows:


X – Easting in WGS84, UTM zone 10N
Y – Northing in WGS84, UTM zone 10N
Galt – gps laser altimeter readings in metres
LAlt – laser altimeter readings in metres
dtm – digital terrain model
GPStime – GPStime
basemag – diurnal data in nT
mag_final – final corrected total magnetic field in nT
mag_fourth_diff – magnetic fourth difference in nT
Rmag_lag – lagged total magnetic field in nT
RMg1_nT – raw magnetic field in nT

The data files are provided in two (2) formats, the first is a .GDB file for use in Geosoft Oasis Montaj, the second format is a .XYZ file, this is a text file.


Appendix A Maps

Map 1: Lonnie claims total magnetic intensity.

Map 2: Lonnie claims calculated vertical gradient.

