Technnical Report on the Copper Hills Property

Cat Mountain Mining District, Socorro County, New Mexico, USA Northwest: 107° 24' 49" W, 34° 4' 50" N Southeast: 107° 23' 30" W, 34° 3' 45" N

> Effective Date: April 30, 2011

Prepared for:

Enertopia Corporation Suite 950, 1130 West Pender Street Vancouver, BC, V6E 4A4, Canada Prepared by

I-Cubed LLC

811 N Promontory Dr. Tucson, Arizona 85748 USA Tel (520) 721-9507 cwiese@i-cubed-arizona.com

Principal Author and Qualified Person: Claus G. Wiese, P. Eng.

Claus Wiese, P. Eng. I-Cubed LLC Independent Consultant to the Mineral Industry Tucson, Arizona USA

ERTOPIA

CORPORATION

2011

Table of Contents

1.0	Summary1
2.0	Introduction5
2.1	Terms of Reference5
2.2	Sources of Information5
2.3	Involvement of Qualified Person6
2.4	Abbreviations and Units of Measurement7
2.5	Disclaimer9
3.0	Reliance on Other Experts10
4.0	Property Description and Location11
4.1	Location11
4.2	Property Description13
4.3	Permitting and Reclamation13
4.4	Other Considerations14
4	.4.1 Royalty Agreement15
5.0	Accessibility, Climate, Local Resources, Infrastructure and Physiography16
6.0	History18
6.1	Area History – Socorro County18
6.2	Previous Work19
6	2.1 Cat Mountain
6	2.2.2 Copper Hills prospect
6	2.2.3 Other Work
7.0	Geological Setting21
7.1	Regional Geology21
7.2	Property Geology23
7	26.2.1 Stratigraphy
7	27.2.2 Intrusive Rocks
7	27.2.3 Structure
8.0	Deposit Types
8.1	Epigenetic Supergene Copper-Silver Deposits
8.2	Epithermal Vein Gold-Silver Deposits31

0.0 Minerelization	22		
	33		
Copper Hills Prospect			
9.2 Vein Prospects	36		
10.0 Exploration	38		
10.1 Ground Geophysics	38		
10.2 Geological Mapping and Rock Sampling	43		
10.2.1 Results	43		
10.3 Soil Geochemistry	47		
10.3.1 Results	49		
11.0 Drilling	51		
12.0 Sampling Method and Approach	52		
12.1 Rock Chip Sampling	52		
12.2 Soil Sampling	52		
13.0 Sample Preparation, Analyses and Security	54		
13.1 Rock Samples	54		
13.2 Soil Samples	55		
14.0 Data Verification	56		
15.0 Adjacent Properties	57		
16.0 Mineral Processing and Metallurgical Testing	58		
17.0 Mineral Resource Estimates	59		
18.0 Other Relevant Data and Information	60		
19.0 Interpretation and Conclusions	61		
19.1 Interpretation	61		
19.1.1 Ground Magnetics Survey	61		
19.1.2 Soil Geochemical Survey	65		
19.2 Conclusions	69		
20.0 Recommendations	70		
20.1 Phase 1 Program	70		
20.2 Phase 2a and 2b Program	70		
01.0 Deferences	72		

22.0 Certificate of Qualified Person......74

23.0	Additional Requirements for Technical Reports on Development Properties		
	and Production Properties	76	
Appen	ndix A - List of Claims	.77	
Apper	ndix B – Report on Soil Geochemistry Survey	80	

List of Figures

Figure 4-1	Property Location Map	12
Figure 5-1	Typical Terrain at Copper Hills, New Mexico	17
Figure 7-1	Regional Geology [NMBGMR]	22
Figure 7-2	Property Geology Map	25
Figure 7-3	Stratigraphic Column	26
Figure 7-4	Major Structural Features	29
Figure 9-1	Oblique View (345°) Copper Hills Prospect	35
Figure 9-2	Cross-section View – Copper Hills prospect	36
Figure 10-1	Ground Magnetics Survey grid	42
Figure 10-2	Rock Chip Samples – Copper Hills prospect	44
Figure 10-3	Soil Survey grid	48
Figure 19-1	Geophysical Interpretation with Geology	64
Figure 19-2	Soil Geochemical Results (Cu) with Geology	67
Figure 19-3	Soil Survey Showing Copper Anomaly	68

List of Tables

Table 10.2-1	Copper Hills Prospect Rock Sample Assay Statistics	45
Table 10.2-2	Vein Rock Sample Statistics	46

Table 10.2-3	Nipple Mountain Tuff Sample Statistics	47
Table 10.3-1	Elemental Thresholds used for Contouring	50
Table 19.1-1	Selected Elemental Thresholds	65

1.0 SUMMARY

The Copper Hills property is located in Socorro County, New Mexico, approximately 15 km west of the village of Magdalena. Access is along US Hwy 60 from the city of Socorro, some 60 km to the east.

Enertopia Corporation has entered into a definitive mineral property option agreement dated April 11, 2011 with Wildhorse Copper Inc. and its wholly owned subsidiary Wildhorse Copper (AZ) Inc. respecting an option to earn a 100% interest, subject to a 1% NSR capped to a maximum of \$2,000,000 on one claim, in the Copper Hills property. The Copper Hills property is comprised of 56 located mining claims covering a total of 1,150 acres (468 hectares) located in New Mexico, USA. Wildhorse Copper Inc. holds the Copper Hills property directly and indirectly through property purchase agreements between Wildhorse Copper Inc. and third parties (collectively, the "Indirect Agreements"). Pursuant to the option agreement Wildhorse Copper Inc. has assigned the Indirect Agreements to Enertopia Corporation.

In order to earn the interest in the Copper Hills property, Enertopia Corporation is required to make aggregate cash payments of \$591,650 over an eight year period and issue an aggregate of 1,000,000 shares of its common stock over a three year period. As of April 11, 2011, Enertopia Corporation has made aggregate cash payments of \$61,650 to the respective claim owners and issued 500,000 shares to Wildhorse Copper Inc. The securities issued in the acquisition are subject to a hold period in Canada expiring on August 12, 2011. These securities are also restricted for United States securities laws purposes and are subject to the applicable hold periods.

The property is located within the physiographic province known as the Datil-Mogollon Section, locally characterized by volcanic highlands.

The geology of the project area was described by Wilkinson (1976). A northerly trending fault separates volcanic rocks to the west from younger piedmont gravels, alluvium and basalt to the east. Volcanic rocks are dominantly Oligocene 'Spears Formation' and esitic

volcaniclastics. The important 'Nipple Mountain' tuff member is an interbedded lithic and variably welded tuff with deposition controlled by northeast and east-northeast trending, partly fault bounded paleovalleys. The overlying 'Hells Mesa Formation' and the 'A-L Peak Tuff' represents a change to ash flow volcanism related to the Mt. Withington caldera collapse. The caldera margin is situated 7 ½ km south of the Copper Hills prospect.

Structurally the property is situated within a north-northwest trending uplifted block bounded to the east by the 'Mulligan Gulch' graben. Three major structural trends are present at Copper Hills. The west-northwest trending 'Capitan' lineament is a prevolcanic feature that was reactivated in the Oligocene. The northeast to east-northeast trending 'Morenci-Magdalena' lineament is also a basement feature that in part controlled deposition of the Nipple Mountain tuff. The north to 335° trend reflects the monoclinal eastern edge of the uplifted block and controlled the emplacement of intrusive stocks and later Basin and Range faulting. Convergence of the three structural trends in the vicinity of the Copper Hills prospect resulted in an intense shattering of the rocks.

Mineralization at Copper Hills includes fracture controlled and disseminated copper oxides (plus silver) at the Copper Hills prospect and epithermal gold-silver veins. Wilkinson (1976) describes previous work conducted on the property. Various stakeholders held mining claims in the area almost continuously between 1950 and 2007. During the 1950's minor copper oxide production from the Copper Hills main outcrop took place and five short holes were drilled. In 1968 the Banner Mining Company reportedly drilled a deeper hole to 1,622 ft (494.5 m) and intersected pervasive propylitic alteration with abundant fresh and oxidized pyrite throughout the hole. Samples taken from the last 100 ft reportedly contained small amounts of pyrite plus chalcopyrite, sphalerite and galena. Numerous other prospecting pits and shafts are found on the property and most appear to be related to exploration and minor extraction of minerals associated with epithermal vein type systems.

The deposit model being investigated by Wildhorse Copper for economic potential at the Copper Hills project is that of epigenetic supergene Cu-Ag deposits.

The most recent exploration work done at Copper Hills was by Coyote Copper in the early part of 2008 which included a ground magnetics geophysical survey, followed by a reconnaissance and field verification mapping and rock chip sampling program and a soil sampling geochemical survey. The author of this report visited the Copper Hills project during that time in early February, 2008 on behalf of Coyote Copper.

Compilation of historical information on the Copper Hills prospect combined with the outcome of the above mentioned exploration work, as carried out by Coyote Copper and its consultants, have herein resulted in a recommendation for further work to be performed by Enertopia Corporation.

This proposal is based on a two phase (Phase 1 and Phase 2a, b) exploration program. Phase 1 would commence with a comprehensive ground IP and resistivity survey. The Phase 1 program budget is estimated at US\$125,000.

Contingent upon Phase 1 providing positive results it is recommended for Phase 2a that initial drilling at the Copper Hills prospect be undertaken to verify the nature of the copper (+silver) mineralization as documented by previous operators. This is expected to require about 1,125 m of drilling in 15 reverse circulation holes each about 75 m in depth spaced on a 50 m x 50 m grid.

Depending on the success of the Phase 2a drilling program a further 2,700 m expansion drilling program is recommended, as Phase 2b. This is estimated to require an additional 27 reverse circulation holes each between 75 m and 100 m in depth spaced on a 50 m x 50 m grid adjoining the initial drilling grid to the northeast and southwest. An additional 1,500 m of core drilling is also recommended to gather detailed geological and structural data. Other facets of a Phase 2b program include expanding the soil sampling grid and conducting additional geological mapping, prospecting and sampling of priority targets based on geophysical and geochemical survey interpretations.

The Phase 2a program budget is estimated at US\$225,000 and Phase 2b is expected to be US\$925,000.

The total for both Phase 1 and 2 (a and b) programs is therefore US\$1,275,000.

This report has been prepared in accordance with Canadian National Instrument 43-101 Standards of Disclosure for Mineral Projects ("NI 43-101"). The report was prepared by Claus Wiese, P.Eng., of Tucson, Arizona, USA, an independent Qualified Person (as defined within the connotation of NI 43-101).

2.0 INTRODUCTION

2.1 Terms of Reference

This technical report has been prepared for Enertopia Corporation ("Enertopia") with the purpose of presenting the results of a preliminary geological investigation and providing an independent opinion as to the mineral potential of the Copper Hills property, located in the Cat Mountain Mining District of Socorro County, New Mexico, USA. This evaluation is based on research of historical data and documents as well as from results of field work that was carried out by Coyote Copper ("Coyote") and its contractors and consultants during 2007 and the early part of 2008. This report also presents a recommendation for additional work on this property.

This report was prepared to comply with the "CNSX" Canadian National Stock Exchange regulatory requirements and follows the guidelines and framework defined in the Form 43-101F1, pertaining to the National Instrument 43-101: Standards of Disclosure for Mineral Projects.

2.2 Sources of Information

Information relating to the historical background and particularly into the geological mapping and other investigations is largely based on a thesis entitled "Geology of the Tres Montosas - Cat Mountain Area, Socorro County, New Mexico", by William Holbrook Wilkinson, New Mexico Institute of Mining and Technology, March 1976. Many references by Wilkinson relate to work done in this area dating as far back as 1900.

During the 1950's copper was mined from a deposit known as the Sixty Copper prospect. This prospect is herein renamed the Copper Hills prospect.

James Wright ("Wright"), a consulting geophysicist, recommended a geophysical program that would be best suited to define and delineate structures, lithologies and alteration related to copper mineralization at the Copper Hill property. Wright visited the

2011

property in December 2007 and suggested that a ground magnetic survey would be appropriate for this terrain. J.L. Wright Geophysics of Spring Creek, Nevada planned and managed the magnetic survey (with GPS navigation control) over the Copper Hills property. Wright recommended that the field work be carried out by Magee Geophysical Services ("Magee") of Reno, Nevada, who completed the work between January 6 and 12, 2008. A comprehensive geophysical report was published by Wright on January 18, 2008.

James N. Mayor ("Mayor"), a mining geologist based in Tucson, Arizona carried out a rock chip sampling program, focused in areas of known mineralization, together with reconnaissance mapping and prospecting in other prospective areas, including those newly interpreted from geophysical results.

A soil sampling geochemical program over and adjacent to the main mineralized area of the property was carried out. The survey was completed by February 7, 2008 and the samples were taken to Tucson, Arizona and shipped to ALS Chemex Laboratories in Elko, Nevada who forwarded the order to their preparation lab in Winnemucca, Nevada. The prepared sample splits were then shipped to ALS Chemex in Vancouver for gold and multi-element analysis.

Other sources of information used in the preparation of this report include reports and data available in the public domain. Where cited, references are referred to in the text. The complete list of references is found in section 21.0 of this report.

2.3 Involvement of Qualified Person

On Feb 6 and 7, 2008 Claus Wiese ("Wiese") of I-Cubed LLC of Tucson, Arizona ("I-Cubed") and author of this report, visited the Copper Hills property. During that time the author visited the relevant areas as documented in Wilkinson (1976) and other areas of significance as determined in previous reports and visits by Mayor. The soil survey crew was observed and their field procedures were reviewed. Independent location

measurements were taken (handheld GPS) and two rock samples were collected for independent analysis.

2.4 Abbreviations and Units of Measurement

Unless otherwise specified, all units of measurement in this report are metric and all costs and/or prices are expressed in United States dollars.

Companies, consultants and other reference abbreviations include:

Abbreviation in text	Full Name			
ALS Chemex	ALS Chemex Laboratories			
Banner	Banner Mining Company			
BLM	Bureau of Land Management (US Federal Government)			
Coyote	Coyote Copper (Arizona) Inc.			
Donaldson	W. Scott Donaldson, attorney			
Enertopia	Enertopia Corporation			
I-Cubed	I-Cubed LLC			
Magee	Magee Geophysical Services LLC			
Mayor	James N. Mayor, consulting mining geologist			
Timberwolf	Timberwolf Minerals Ltd.			
Wiese	Claus Wiese P.Eng. (I-Cubed LLC, President and Q.P.)			
Wildhorse	Wildhorse Copper (AZ) Inc.			
Wilkinson	William H. Wilkinson, geologist			
Wright	J.L. Wright Geophysics (James Wright), geophysicist			

Inductively Coupled Plasma

Abbreviation	Meaning
Cu	copper
Ag	silver
Au	gold
Pb	lead
Oz.	Troy ounce

Other commonly used acronyms and abbreviations in this report are:

GPS	Global Positioning System
NSR	Net Smelter Returns
Zn	zinc
ppm	Parts per million (concentration)
ppb	Parts per billion (concentration)

Common units of measure and conversion factors

ICP

Metric unit	Imperial conversion factor
Hectare (ha)	ha x 2.471044 = acres
Meters (m)	m x 3.28083 = feet
Kilometers (km)	km x 0.6213712 = miles
Celsius (°C)	C° x (9/5) + 32 = fahrenheit

2.5 Disclaimer

This report is based on a review of information provided by Coyote and Wildhorse, published reports, observations made during the property visit and land status review. All interpretations and conclusions are based on the writer's independent research and personal property examination.

This report has been prepared in accordance with Canadian National Instrument 43-101 Standards of Disclosure for Mineral Projects ("NI 43-101"). The report was prepared by Claus Wiese, P.Eng., an independent Qualified Person (as defined within the connotation of NI 43-101) and Professional Engineer. Mr. Wiese is a geological engineer and the President of I-Cubed LLC. I-Cubed LLC is an independent consulting company to the mineral industry and specialized in mineral resource evaluations and mining reserve studies.

James L. Wright is a 'Qualified Person', as defined in the Companion Policy 43-101CP sub-part 3.2. The author disclaims responsibility for the correctness of all information that is contained in the References section 21.0.

3.0 RELIANCE ON OTHER EXPERTS

The author has relied on data and information from Wildhorse regarding land ownership, property agreements, and the status of unpatented mining claims. Wildhorse's land information comes from the Bureau of Land Management (BLM) records and filings for new claims. These data have been subject to further validation by, a mining land law attorney, W. Scott Donaldson (Donaldson), of Phoenix, Arizona and a mining claim surveyor, Robert Breen of Environmental Field Services, LLC of Oracle, Arizona. The author notes that these professionals are recognized land specialists and believes that this work can be relied upon to be correct and accurate.

4.0 **PROPERTY DESCRIPTION AND LOCATION**

4.1 Location

The Copper Hills property is located in Socorro County, New Mexico, approximately 15 km west of the village of Magdalena. The Copper Hills property consists of a group of 56 contiguous unpatented lode mining claims. Access is via US Hwy 60 from the city of Socorro, some 60 km to the east. The property straddles two United States Geological Survey 7.5' quadrangle map sheets (Tres Montosas, New Mexico [west] and Arroyo Landavaso, New Mexico [east]). The claims cover parts of:

Meridian 23 Township 3S Range 5W Sections 6,7 Meridian 23 Township 3S Range 6W Sections 1,12

Geographic coordinates that bound the claims are as follows:

Northwest	107° 24' 49" W, 34° 4' 50" N
Southeast	107° 23' 30" W, 34° 3' 45" N

Figure 4-1 shows the location of the Copper Hills claim block. Also shown is access to the property. A list of claims can be found in **Appendix A**.

Figure 4-1 Property Location Map

4.2 Property Description

The Copper Hills property consists of 56 contiguous unpatented lode mining claims (COPPER HILLS #1, Wildhorse 1-15; 21-24; 30-55 and Timberwolf 16-20; 25-29). All of the claims are owned or controlled by Wildhorse Copper (AZ), Inc., an Arizona corporation. Wildhorse Copper (AZ), Inc. is a wholly owned subsidiary of Wildhorse Copper, Inc., a British Columbia, Canada corporation. The combined area of the landholdings represents approximately 468 hectares (~1,150 acres). The property has not been legally surveyed.

The Bureau of Land Management (United States Federal government) holds the surface rights. There is no privately held land on the Copper Hills property,

The 46 Wildhorse claims and 10 Timber Wolf claims were located with the use of a global positioning system ("GPS") and tied to section corners and geodetic control points. The claim staking work was carried out on behalf of Wildhorse by Environmental Field Services, LLC, of Oracle, Arizona, a firm specializing in land surveying and claim staking. This work was completed between February 28 and March 1, 2011.

A yearly maintenance fee of US\$140 per claim must be paid to the Bureau of Land Management on or before September 1 of each year to maintain the title to the claims in good standing. In addition an annual "Notice of Intent to Hold" for each claim must be filed with the Socorro County Recorder. The county recordation filing fee per claim is \$9.00 per document page plus \$2.00 per each additional page.

Maintenance and recordation fees through the 2011 maintenance year have been paid to the Bureau of Land Management and the Socorro County Recorder's office.

4.3 Permitting and Reclamation

To the author's knowledge the property interest is subject only to the normal environmental regulations and liabilities as stipulated under the laws of New Mexico and the United States of America and the sufficiency of rights for exploration and mining

2011

operations on the property is subject only to the normal procedures and permits under the laws of the United States of America.

Prior to the commencement of any activity that may produce a disturbance to the surface (i.e. drilling), Enertopia will need to provide the Bureau of Land Management a financial guarantee under an approved 'Notice of Plan'. The 'bond' amount must cover the estimated cost to contract a third party to reclaim the disturbance due to operations. The Bureau of Land Management State office will authorize and maintain the bond instrument. Permits will then be needed to required construct drill sites and drainage sumps.

At the time of this report Enertopia had not made application for any permits nor had posted a financial assurance bond.

Reclamation of some disturbances by previous owners has occurred. The author understands that the Bureau of Land Management covered and secured at least one site (a shallow shaft) on the property in late 2007.

4.4 Other Considerations

During the currency of the agreement, Enertopia is responsible for its obligations to Wildhorse as outlined below, and responsible for the obligations of Wildhorse to Timber Wolf as outlined below, and responsible for the obligations of Wildhorse to the holder of the capped royalty on commercial production from the Copper Hills #1 mining claim.

To acquire 100% of Wildhorse's right, title, and interests to the Copper Hills property Enertopia must make the following cash payments to Wildhorse Copper (AZ) Inc. and issue the following shares to Wildhorse Copper Inc.:

- paying \$7,500 on signing the letter of intent,
- paying \$51,150 on or before the execution of the Enertopia/Wildhorse Copper (AZ) Inc./Wildhorse Copper Agreement to Wildhorse Copper (AZ) Inc. and

issuing to Wildhorse Copper Inc. 500,000 common shares in the capital stock of Enertopia as soon as practicable following the execution of this Agreement,

- issuing to Wildhorse Copper Inc. 150,000 shares in the capital stock of Enertopia on or before the first anniversary of this Agreement,
- issuing to Wildhorse Copper Inc. 150,000 shares in the capital stock of Enertopia on or before the second anniversary of the Agreement, and
- issuing to Wildhorse Copper Inc. 200,000 shares in the capital stock of Enertopia on or before the third anniversary of the Agreement.

To acquire the 10 Timber Wolf claims Wildhorse is required to make payments totaling \$532,500.00 in cash to Timber Wolf over an eight year period.

4.4.1 Royalty Agreement

One of Wildhorse Copper (AZ) Inc.'s located mining claims, the Copper Hills #1 mining claim, is subject to a 1% NSR Royalty capped at \$2,000,000 from production from the Copper Hills #1 mining claim to an underlying royalty holder.

5.0

The Copper Hills project area is located within Socorro County, New Mexico, approximately 15 km west of the village of Magdalena (pop. 900). The City of Socorro (pop. 9,000) located about 60 km west of the property offers a broad range of services. Albuquerque, New Mexico (pop.+500,000) is approximately 150 km north-northeast of the property, and is a major center for equipment, supplies, labor, logistics and services.

There is easy access to the property from Socorro (through Magdalena) along US Hwy 60, which crosses the property. Electric power and fiber optic telecommunications parallel Hwy 60. There are numerous unimproved ranch roads and trails that provide good access to the remainder of the area.

The property is located within the physiographic province known as the Datil-Mogollon Section, locally characterized by volcanic highlands (Hawley, 1986). The claim group is situated between the Gallinas Mountains to the north and the San Mateo Mountains in the south. Local terrain is flat to rolling hills with elevations between 2,125 m (6,970 ft) and 2,260 m (7,410 ft). The area is part of New Mexico's woodland rangelands; vegetation is classified as belonging to the Juniper Savanna ecotone. Juniper, cedar and some pinon bushes are common atop grassy surface growth.

The climate is considered semi-arid with precipitation between 1-2 cm per month and 5 cm per month average during summer monsoon season (July – September). The temperature is mild to moderate. Ambient temperatures for this region range from -5°C to +10°C (fall/winter) and +5°C to +30°C (spring/summer).

The physiography and climate pose no significant difficulties to exploration and mining activities in the area. The property has ample room for potential mine and mill operations and facilities. **Figure 5-1** is a photograph taken by the author at Copper Hills, New Mexico showing the typical vegetation of the area.

Figure 5-1 Typical Terrain at Copper Hills, New Mexico

6.0 **HISTORY**

6.1 Area History – Socorro County

The following mining history for the area is summarized from Padilla (2001).

In 1866 lead was discovered in the Magdalena district, and in 1867 silver was found in the Socorro Peak district. By the 1880's, the mining boom in Socorro County was in full swing, with crowded camps and tent cities dotting the land. In a six-month period in 1880-81, nearly 3,000 different mineral deposits were located and dozens of new towns developed including Kelly (population 5,000) and Magdalena, the two principal boom towns in Socorro County. Magdalena, which had begun as a collection of tents, grew substantially with the development of a railroad line from Socorro. A smelting plant erected in 1881 near Socorro treated ore from the Kelly and other mines until 1893. In 1896, a new smelter was constructed in Magdalena which then became the smelting town for the mine operations in both Magdalena and Kelly districts.

In a forty-year period, from the 1880's to the 1920's, Magdalena district production was valued at some \$60 million. In addition, coal mines were opened near Carthage between 1880 and 1885 to supply fuel for locomotives, mills, and smelters. This further increased the mineral production level during Socorro County's boom years.

In the early 1900's, as lead and silver were being mined, a zinc carbonate mineral, smithsonite, was discovered at Kelly. Smithsonite was previously discarded as waste rock.. Kelly's second wind of prosperity started as smithsonite was recovered from tailings piles and other leased properties. The mines of the Kelly area became New Mexico's leading zinc producers and were known for the high quality smithsonite mined from the area. By 1931 the smithsonite deposits were exhausted and mining throughout the district decreased.

6.2 Previous Work

Prior to Coyote acquiring its land position in the Copper Hills area, various stake holders had actively held mining claims there continuously between 1950 and 2007. The most active period occurred between 1950 and 1995 in which a core part of the property was held by a consortium of partners for as many as 45 years.

Previous work in and surrounding the Copper Hills project area was focused on the epithermal gold-silver vein mineralization in the Cat Mountain Mining district and disseminated copper (+/- silver) mineralization at the Copper Hills prospect. Wilkinson (1976) provides an overview of known historical work and previous operators.

6.2.1 Cat Mountain

The Cat Mountain gold mining district, 1.5 miles (2.4 km) south of the Copper Hills property, was active around 1900. A 20-stamp amalgamating mill was erected in 1902. The mill operated for a short time until 1903 when it was closed down. It was reported (Jones, 1904) that the gold mineralization at Cat Mountain was mainly refractory in nature. Hence, recovery was poor owing to the technology of the time. Production figures are not documented. The author is not aware of any other particulars including names of the operators.

6.2.2 Copper Hills prospect

The Copper Hills prospect is located in Township 3S, Range 5W and Section 6, approximately 1600 ft (about 490 m) south of US Hwy 60. It is an oxide copper body with mineralization disseminated in a highly silicified and fractured Tertiary volcanic tuff unit. Workings consist of a shaft and several excavations, one of which is 130 m in length. It is thought this work was carried out in the early 1950's, but details are not confirmed at this time. The author is not specifically aware of who all the individual operators were and has relied on Wilkinson's (1976) report for these descriptions. Total production was

said to be 356 tons which averaged 3.01 oz. silver per ton and 0.81% copper. Trace gold and up to 1.33% lead have also been reported.

On the ridge above the excavation at the Copper Hills prospect, 5 short drill holes were completed, oriented along a northeast-southwest line. It is thought this drilling was done during the early 1950's. Wilkinson (1976) reports that the drill holes, apparently completed during the 1950's, all intersected copper mineralization.

In 1968, Banner Mining Company drilled a vertical diamond drill hole to 1,622 ft. (494.5 m.). It was located approximately 10 m south of the Copper Hills prospect. Copper, lead and zinc sulphide mineralization was encountered towards the bottom of the hole. The author has not seen the original report by Banner and has relied on Wilkinson (1976).

6.2.3 Other Work

Numerous prospecting pits and shafts are found on the property north of Hwy. US 60. Most appear to be related to exploration and extraction of minerals associated with epithermal vein type systems. It is unclear when, or over what period of time this work was carried out, or by whom.

During 1971 and 1975 Wilkinson conducted detailed geologic mapping at a scale of 1:24,000 for the Tres Montosas 7.5-minute mile quadrangle. In addition detailed mapping of the Copper Hills prospect was done at 1:2,400 scale. The results of this work and the ensuing research and interpretations were published as a Masters thesis and were presented to the Department of Geosciences, New Mexico Institute of Mining and Technology, Socorro, New Mexico.

The COPPER HILLS #1 mineral claim was located on the Copper Hills prospect in 1996 and again in 2000. This claim was held in good standing and in 2007 the owner sold his interest in the COPPER HILLS #1 mineral claim to Coyote.

7.1 Regional Geology

The regional geology of southwestern New Mexico is described in a document summarized by the New Mexico Bureau of Geology and Mineral Resources at http://geoinfo.nmt.edu/tour/provinces/mogollon_datil_volcanic_field.

The Copper Hills property is located in the Mogollon-Datil volcanic field, part of a discontinuous belt of middle Cenozoic volcanism that runs from the Sierra Madre Oriental in central Mexico, through the Trans-Pecos volcanic field in west Texas, and northward to the San Juan volcanic field in southwestern Colorado. **Figure 7-1** shows the Copper Hills property outline in relation to the northeast part of the Mogollon-Datil volcanic field.

Lavas and tuffs erupted from andesitic to silicic volcanoes, domes, and calderas coalesced to form the 40,000 square km Mogollon-Datil volcanic field in southwestern New Mexico between ~24 to 40 million years ago. Andesite volcanoes erupted 40 to 36 million years ago followed by both basaltic and andesitic volcanoes and silicic calderas between 36 and 24 million years ago. The Mogollon-Datil volcanic field is composed of two caldera complexes that were active at about the same time. The oldest eruptions of the southern complex occurred in the Organ Mountains near Las Cruces, New Mexico about 36 million years ago. Volcanic activity migrated 220 km northwest from the Organ Mountains and ended with the eruption of ash flows of the 28 million year old Bursum caldera located northwest of Silver City, New Mexico. Caldera formation in the northern complex started near Socorro about 32 million years ago and migrated toward the southwest.

Normal faults and distinct mountain blocks with intervening sediment-filled valleys formed during extensional events 36 million years ago. The extensional faults trend north on the east side of the volcanic field, northeast on the northwest side of the field and northwest on the southwest side of the field.

Figure 7-1 Regional Geology [NMBGMR]

7.2 Property Geology

A 1:24,000 scale geological map of the Tres Montosas Quadrangle was completed by Wilkinson (1976), as part of the requirement of a Masters of Science degree at the New Mexico Institute of Mining and Technology. The Copper Hills property falls within this map area and most of the following description is from his work. A map of the property scale geology is shown in **Figure 7-2**.

The property is underlain by Tertiary volcanic rocks, except for Paleozoic Abo Formation quartzite in the extreme northwest corner of the property. The northerly trending Council Rock fault separates volcanic rocks in the west from younger piedmont gravels, alluvium and basalt to the east.

Volcanic rocks on the property are dominantly undivided Oligocene age (37.1 Ma) andesitic volcaniclastics belonging to the Spears Formation. The important Nipple Mountain member is an interbedded lithic and variably welded tuff with deposition controlled by northeast and east-northeast trending, partly fault-bounded paleovalleys.

The overlying Hells Mesa Formation (30.6 Ma) and the A-L Peak Tuff (31.8 +/- 1.7 Ma) represents a change to ash flow volcanism related to the Mt. Withington caldera collapse. The caldera margin is situated 7 ½ km south of the Copper Hills prospect

Within the map area Spears Formation is the dominant rock unit but exposures are rare; mainly as distinctive "float" on low, rounded hills. The unit has been dated at 37.1 Ma. In a typical section the Spears Formation is subdivided into lower and upper members, both largely include volcaniclastic rocks with lesser latite flows separated by the distinctive ash flow tuff of the Nipple Mountain. Wilkinson (1976) mapped the Spears Formation (undivided) and the Nipple Mountain Tuff.

The Nipple Mountain Tuff is generally a pink moderately to densely welded crystal poor ash flow tuff. Phenocrysts ranging from 3 to 10% are mostly plagioclase and sanidine.

The unit is variable in thickness, from 20 m in the Banner drill hole at Copper Hills to in excess of 150 m.

Figure 7-2 Property Geology Map

7.2.1 Stratigraphy

A generalized stratigraphic column of rocks in the project area is presented here as Figure 7-3. The stratigraphic column is from Wilkinson (1976). A brief description of the units follows:

Figure 7-3

Stratigraphic Column

Addesite of Gray Hill Tpc It of Gray Hill Tgh Addesite of Gray Hill Tgh The Badda Th Top Tal The Badda Ts Top Ts Tal Ts Ts Spears Formation Promation Promation Formation Pra The Badda Formation Pra The Badda Pra The Badda Pra The Badda Pra The Badda Pra<	QUAT.	Basa Piedn Grav TM	alt CR mont vels Stock	MC Stock	Dikes	Qal,Qs & Qt Qb TQpg Tn	Qal, Qs & Qt <u>Quaternary deposits</u> - stream deposits of sand and gravel, colluvium, sand and gravel
Tuff	-	Pota	ato von		55655 556555 55655 55655 55655 567555 56755 56755 56755 56755 567555 56755 56755 56755 56755 56755 56755 567555 56755 56755 567555 56755 56755 56755 56755 5775 57755 57	Трс	Qb <u>Council Rock Basalt</u> – dense basaltic andesite flows.
of Gray Hill Tgh Tn Tretary intrusives undivided – late Tertiany intrusives (andesite to granites and monzonite dikes). AL Peak Tuff Tir Tal Tpc Potato Canyon Tuff – moderately to densely welded crystal-rich ash flow tuffs. Hells Mesa Tuff Tir Tal Thm Tgh Tgh <td>8</td> <td>Tu</td> <td>ff</td> <td></td> <td></td> <td></td> <td>TQpg <u>Piedmont gravels</u> – poorly to moderately indurated, poorly sorted heterolithic sands and gravels</td>	8	Tu	ff				TQpg <u>Piedmont gravels</u> – poorly to moderately indurated, poorly sorted heterolithic sands and gravels
Andesite of Reservoir. Andesite of Reservoir. Thr Thr At Hells Tuff The Mesa Tuff Thr Thr Hells Tuff The Mesa Tuff Thm The The The The The The The The The The		or Gra Hi	t ay ill			Tgh	Tn <u>Tertiary intrusives undivided</u> – late Tertiary intrusives (andesite to granites and monzonite
All Peak Tuff Thr Tal Tpc Potato Canyon Tuff – moderately to densely welded crystal-rich ash flow tuffs. Heils Mesa Tuff Thr Tal Thr Tal Tgc Potato Canyon Tuff – moderately to densely welded crystal-rich ash flow tuffs. Heils Mesa Tuff Thr Thr Tal Tgc Potato Canyon Tuff – moderately to densely welded crystal-rich ash flow tuff. Ugg Trs Ts Ts Tal Thr Heils Mesa Tuff – moderately to densely welded crystal-poor ash flow tuff. Ugg Ts Ts Ts Ts Thr Heils Mesa Tuff – aphanitic platy basaltic andesite flows. Ugg Ts <		Andes	ite of	<u>J</u>	A		dikes).
Tuff Tai densely welded crystal-rich ash flow tuffs. Tuff Thm Thm Thm Tuff Thm Tsg Tir Landavaso Reservoir Andesite – aphanitic platy basaltic andesite flows. Tai A-L Peak Tuff – densely welded, crystal poor, ash flow tuff. Tsn Tsn Tsn Ts Tsn Tsn Ts Madera Tsn Tsn Madera Pa Pa Madera Pm Ps Madera Pm Ps		Reser	rvoir Peak	RE)		Tlr	Tpc Potato Canyon Tuff - moderately to
Type Tuff of Gray Hill – moderately to densely welded crystal-poor ash flow tuff . Botryoida pumice tuff at base.TimThmUnitTragUnitTrag <th< td=""><td></td><td>Tu</td><td>uff</td><td></td><td>3</td><td>Tal</td><td>densely welded crystal-rich ash flow tuffs.</td></th<>		Tu	uff		3	Tal	densely welded crystal-rich ash flow tuffs.
Image: standia formation Pa Madera Linestone Pa Pa Pa	RTIARY	He Me Ti	ells esa uff			Thm	Tgh <u>Tuff of Gray Hill</u> – moderately to densely welded crystal-poor ash flow tuff . Botryoidal pumice tuff at base.
Under Name Madera Limestone Pa Madera Limestone Pa Madera Limestone Pa Sandia Formation Pm Promation Pa Partial A-L Peak Tuff – densely welded, crystal poor, ash flow tuff. Ts Ts Ts	ΤE		Member			Tsg	Tlr <u>Landavaso Reservoir Andesite</u> – aphanitic platy basaltic andesite flows.
Madera Madera Pa Madera Madera Pa Madera Pa Madera Pa Madera Pa Sandia Pa Pa Pa </td <td></td> <td>c</td> <td rowspan="2">ars Formation Upper I</td> <td></td> <td></td> <td></td> <td>Tal <u>A-L Peak Tuff</u> – densely welded, crystal- poor, ash flow tuff.</td>		c	ars Formation Upper I				Tal <u>A-L Peak Tuff</u> – densely welded, crystal- poor, ash flow tuff.
Madera Madera Pa Madera Pa Madera Pa Sandia Pa Pa Pa Pa Pa Madera Pa Sandia Pa Pa Pa		rs Formation		00000	0000	Ts	Thm <u>Hells Mesa Formation</u> – densely welded, massive blocky, crystal-rich, ash flow tuff.
Abo Formation Pa Madera Pm Sandia Pm Sandia Pm Sandia Ps		Spea			1000	Tsn	Tsg <u>Granite Mountain Tuff</u> – moderately to densely welded crystal-rich ash flow tuff.
Abo Pa Madera Pm Sandia Pm Sandia Ps			. Member	000000000000000000000000000000000000000	0.000	Ts	Ts <u>Spears Formation</u> – porphyritic, dense andesite flows, latitic to andesitic mudflow breccias and conglomerates.
Abo Formation Madera Limestone Sandia Formation Pm Ps Pa Pa Pa Pa Pm Ps			Lower	000	0		Tsn Nipple Mountain Tuff – poorly to densely
Madera Limestone Pm amygdaloidal andesite flow at base. The Sandia Formation Pm Ps Ps Ps Ps Ps Ps	Abo Formation		0.00	0.00	Pa	welded lithic-rich ash flow tuff with interbedded porphyritic andesite flows. Coarsely porphyritic	
Sandia Formation Ps	~	Ma	dera			Pm	amygdaloidal andesite flow at base. The
	PEN	Sar	ndia			Pe	Copper mills prospect is nosted in TSN.
	_	Form	nation			F5	

Pa <u>Abo</u> Formation – fine grained, thin bedded quartz arenites and siltstones. Interbedded limestone pebble conglomerate and quartzite breccias.

Pm <u>Madera Limestone</u> - thin medium grained siltstones and micrites. (not exposed in project area).

Ps <u>Sandia Formation</u> – medium to coarse grained quartzites, sandy carbonaceous shales and siltstones with thin beds of limestone. (not exposed in project area).

7.2.2 Intrusive Rocks

Latite dikes are present in two locations outside the Copper Hills claims (around the periphery of the Tres Montosas stock and at Cat Mountain) and are relative to lineaments and lineament intersections.

Those dikes near the stock are radially distributed about the stock for a distance of as much as two miles.

At Cat Mountain the steeply dipping dike swarm trending north-northwest to northnortheast crop out over an area of 2.4 km x 3.2 km. Dikes up to 3 m wide are propylitically altered. The dike swarm in association with the quartz-calcite veins, as well as regional magnetics has been interpreted by Wilkinson and others to indicate the presence of a pluton buried beneath the Cat Mountain mining district.

The Tres Montosas stock is exposed northwest of the Copper Hills claims and is a composite body consisting of three facies: andesite to granodiorite, latite to quartz monzonite and granite. The Tres Montosas stock intrudes rocks ranging in age from the lower Spears Formation to the A-L Peak Tuff, and thus has a maximum age of 31.8 Ma.

In the Copper Hills area the ground magnetic survey, carried out by Coyote, has located several magnetic highs interpreted as buried intrusives (Wright, 2008).

7.2.3 Structure

Structurally the claims are situated within a north-northwest trending uplifted block bounded to the east by the Mulligan Gulch graben. The three major structural trends and topographic features present at Copper Hills are shown in **Figure 7-4**. This map is modified after Wilkinson 1976.

- 1. The west-northwest trending Capitan lineament is a pre-volcanic feature that was reactivated in the Oligocene.
- 2. The northeast to east-northeast trending Morenci-Magdalena lineament is also a basement feature that in part controlled deposition of the Nipple Mountain tuff.
- 3. The north to 335° structures reflect the monoclinal eastern edge of the uplifted block and appear to have controlled the emplacement of intrusive stocks and later Basin and Range faulting.

The result is an intense "shattering" of the rocks in the vicinity of the Copper Hills prospect as noted by Mayor (2008).

8.0 DEPOSIT TYPES

There are two deposit types at the Copper Hills project; epigenetic copper-gold deposits and epithermal gold-silver vein deposits. A brief discussion of each of these follows.

8.1 Epigenetic Supergene Copper-Silver Deposits

The processes of weathering can be responsible for the *in situ* enrichment of copper, as well as other metals such as zinc, silver and gold in many deposits that occur at or near the surface. The process is referred to as 'supergene enrichment' and is a product of oxidation and dissolution of sulphide minerals in the upper portions of the weathering profiles (Robb, 2008).

Supergene enrichment in these systems occurs when a copper protore (low grade primary mineralization) is leached in an acidic (commonly caused by dissolution of pyrite) oxidizing environment (low temperature meteoric water) above the water table and then re-precipitated in a 'blanket zone' after it is transported downward to a reducing environment below the water table. This process continues to re-concentrate the copper through time as the water table elevation falls concurrently with the erosion of the land surface (Ingebritsen, 1998).

At any given time the 'oxide zone' above the water table contains secondary oxide copper mineral assemblages such as chrysocolla, malachite, azurite and cuprite. Below the water table the 'supergene zone' commonly has secondary minerals such as native copper and copper sulphides including chalcocite, covellite, and chalcopyrite.

Factors such as an increase in the concentration of a component in the solution, a decrease in temperature or pressure, reaction with surrounding rocks and minerals, and mixing with other solutions can result in very complex precipitation assemblages, patterns and geometries.

8.2 Epithermal Vein Gold-Silver Deposits

Epithermal, volcanic hosted gold-silver deposits can be classified as low sulphidation or high sulphidation. The Copper Hills veins are of the low sulphidation type. These deposits are characterized by quartz veins, stockworks and breccias carrying precious metals as well as variable amounts of base metals that form in high-level to near-surface environments. The mineralization commonly exhibits open space filling textures and is associated with volcanic-related hydrothermal systems (Panteleyev, 1996).

Host rocks are felsic to intermediate in composition and occur in continental volcanic fields with extensional structures.

Deposits are frequently spatially and/or genetically related to caldera margins, fracture systems related to grabens, and/or volcanic intrusions and are commonly of Tertiary age. All of these depositional environments exist within the exploration area.

Epithermal precious metal mineralizing systems can develop one or more of several styles of potentially economic deposits within a given area. Whether any one of the deposit styles develops is dependent upon a complex interaction of the local structure, the stratigraphy, the chemistry of hydrothermal fluid, the chemistry and interaction with groundwater, the duration of the system, and the number of precious metal bearing pulses the hydrothermal system generates. Deposits can develop close to or at the paleosurface if the system's hydrologic /hydraulic conditions allow the precious metal bearing fluids to reach shallow levels. By contrast, the precious metals may be deposited at considerable depth below the paleosurface, as much as 1.5 to 2 km, if shallow level access is restricted or capped. Each hydrothermal system has its own unique set of factors and conditions.

Shallow, often lower grade deposits can occur as disseminated, bedded siliceous, stockwork, or as breccia hosted. Deposits formed deeper in the hydrothermal system are often veins, stockworks, and breccias, although disseminated and stratigraphic controlled deposits can occur. Veins, stockworks, and breccias can be low grade, high
grade, or even bonanza grade. It is not unusual in epithermal deposits for precious metals to be present at trace to very low concentrations for several hundred to more than one thousand feet below the paleosurface and yet host high grade to bonanza grade deposits at depth. Such is the case at Creede, Colorado and Comstock in Nevada. Veins, breccias, and stockworks often do not reach shallow levels of the hydrothermal system.

It is the opinion of the author that this deposit style at Copper Hills be investigated by Enertopia with a lower priority to that of the epigenetic supergene copper-silver type as discussed in the previous section.

9.0 MINERALIZATION

Mineralization within the claims includes fracture controlled /disseminated copper oxides (Copper Hills prospect) and epithermal style veins (Vein prospects). Enertopia's interest lies with the former, namely the fracture controlled /disseminated copper oxides style. Both styles are discussed below.

9.1 Copper Hills Prospect

At the Copper Hills prospect the Tertiary host rock is intensely silicified and fractured Nipple Mountain tuff. The predominant minerals are chrysocolla, mottramite, malachite, tenorite, cuprite, azurite and chalcocite together with iron oxides after pyrite. The chrysocolla, malachite and chalcocite are disseminated throughout the rock as tiny blebs often replacing feldspar and as fracture coatings. The mottramite, tenorite and azurite are strictly fracture coatings or filling vugs. Cuprite occurs as crystals associated with tenorite. Limonite-hematite is present as fracture coatings, dissemination and 'liesegang' bands (Mayor, 2008).

The most intense copper mineralization occurs along fractures where the copper minerals have apparently been re-mobilized and re-deposited by circulating groundwater. Copper mineralization also occurs as disseminations within the host rock. The copper mineralization is not always apparent on weathered surfaces.

Minor micro crystals of quartz and barite were noted as rare fracture fillings. Possible galena and tetrahedrite (silver) was noted at one site.

The mineralization described herein is exposed in two outcrops of the Nipple Mountain tuff. The boundaries of this mineralization are well defined by faults on the south and east sides. Part of the west side is also bounded by a fault.

Historic drilling, drill hole sections and reports of excavation and minor production given in Wilkinson (1976) indicate the copper mineralization is an irregularly shaped "blanket"

2011

about 800 ft. (~245 m) long by about 500 ft (~150 m) wide and of supergene origin (**Figure 9-1**). This estimate of dimensions is based on the drilling information mentioned above, plus copper oxide exposures at and adjacent to the east and north of the Copper Hills prospect. **Figure 9-2** is a cross-section through the copper mineralization "blanket" depicting the interpreted mineralization.

Mayor (2008) postulates that this mineralization may have formed from the supergene weathering of a zone of epithermal veinlets hosted in fractured and silicified Nipple Mountain tuff. Base metals and silver could have been transported by acidic ground water at low temperatures and mineralization localized at the convergence of various faults.

The origin of the protore is unknown, though a possible origin may be from the hydrothermal alteration related to a mineralized intrusive now buried beneath the Mulligan Gulch graben (Mayor, 2008).

In 1968, the Banner Mining Company drilled a deeper hole collared just south of the main outcrop. The hole was collared in mineralized rock but little additional mineralization occurs within core extending through the Nipple Mountain tuff. The hole was drilled to 1,622 ft (494.5 m) and bottomed in what was originally interpreted as Mesozoic sedimentary rock. Subsequent work indicated that these carbonaceous siltstones are probably the Sandia Formation. It was reported that propylitic alteration (low temperature and pressure mineral assemblages) was pervasive throughout the hole with abundant fresh and oxidized pyrite. The pyrite occurs as disseminated cubes, veinlets, and in quartz-calcite veinlets in amounts ranging from 0 to 4%. Below about 1,330 ft (406 m) quartz-calcite-epidote veinlets become abundant. It was reported that samples taken from the last 100 ft of the hole contained small amounts of pyrite plus chalcopyrite, sphalerite and galena hosted in quartz veinlets.

Figure 9-1 Oblique View (345°) Copper Hills Prospect

Figure 9-2 Cross-section View – Copper Hills prospect

9.2 Vein Prospects

Two small vein districts are reported in the general Copper Hills area; at Council Rock, 3 miles to the north of the claims, and; at Cat Mountain, 1.5 miles south of the Copper Hill claims. No production figures are available.

Within the Copper Hills project area, steeply dipping epithermal veins are found associated with only Abo and Spears Formation rock units. Numerous pits and shafts occur across the property located on outcropping veins. The veins typically trend north to N30°W and N50°E and vary in width from few millimeters to 2.4 m. Pinching and swelling of veins is common and some can be traced up to 1.5 km. The pinching and swelling may also occur vertically.

Bladed barite fills cavities in black calcite and quartz. Fluorite occurs as crystals filling vugs in quartz and calcite. Quartz veins are massive or form interstitial fillings in brecciated host rock. Amethystine quartz and late stage clear quartz filling vugs was also noted.

The black calcite may be iron and/or manganese-rich. It forms as masses of intergrown crystals often occurring as alternating bands with quartz. Later stage calcite is clear and forms small platy crystals filling cavities scattered through the veins (Mayor, 2008).

Evidence of sulphides is not common. Minor iron oxides after pyrite and traces of possible galena-tetrahedrite are noted.

Enertopia has indicated to the author that the vein prospects at exist in the Copper Hills area are not of interest in their exploration strategy at this time.

10.0 EXPLORATION

Historical exploration and development work done on the ground covered by the Copper Hills claims has been discussed in a previous section of this report (<u>6.2 Previous Work</u>). The following is a discussion of the mineral exploration work completed by Coyote in 2008.

In January 2008 Coyote carried out a ground magnetics geophysical survey. This was followed in February 2008 by a soil sampling geochemical survey and a reconnaissance mapping and rock chip sampling program.

The author of this report visited the Copper Hills project on February 6 and 7, 2008 and witnessed the geochemical sampling and mapping programs as they were underway.

All work carried out on behalf of Coyote was done by contract or consulting personnel. Those companies or individuals are named in their appropriate sections, below.

10.1 Ground Geophysics

A ground magnetic survey was conducted by contactor Magee Geophysical Services LLC of Reno, Nevada. The survey area covered a large part of the Copper Hill claims (see **Figure 10-1**). A total of approximately 129 line kilometers of magnetic data were acquired. Real-time differentially-corrected GPS was used for positioning. The field operations were based out of Socorro, New Mexico.

Magnetic data from this survey were diurnally corrected and forwarded to consulting geophysicist, James Wright (J.L. Wright Geophysics Inc., Spring Creek, Nevada) for further processing and interpretation. Details about the survey method, equipment, procedures, and results are taken and summarized from the final report from J.L. Wright Geophysics Inc, dated January 18, 2008 and are quoted below. A total of eighteen (18) specific locations and six (6) larger scale structures all requiring ground investigation

were identified as a result of the geophysics program. Note that any reference below to the "Sixty Prospect" refers to the Copper Hills prospect as they are one and the same.

Quoting Wright below:

Introduction

In January 2008, a ground magnetic survey was completed over the Copper Hills property controlled by Coyote Copper (Arizona) Inc. Objective was to delineate structures, lithologies, and alteration related to copper mineralization present on the property. Copper deposits are often associated with porphyry intrusions and can occur as veins, stock works, breccias and disseminations within and adjacent to the intrusions. In addition, alteration observed at the Copper Hills pit includes extensive structurally controlled silicification, which could well be magnetite destructive and thus produce a low magnetic response. These factors lead to the implementation of the ground magnetic survey reviewed by this report.

Survey Logistics

Magee Geophysical Services LLC based in Reno, Nevada acquired the ground magnetic data from January 6 - 12, 2008. Line orientation is east-west with a spacing of 50 and 100m. The area of reduced line spacing covers complex magnetic responses in the vicinity of the Sixty Prospect. A total of approximately 129 line kilometers / 44978 readings of the magnetic field were acquired using Geometrics Model G-858 Cesium Vapor magnetometers. Measurements of the total magnetic intensity were taken in the continuous mode at two-second intervals resulting in a station spacing of approximately two to three meters.

A base magnetometer was operated during all periods of data acquisition and recorded readings every two seconds. The NAD27/ UTM ZONE 13N coordinates (in meters) of the base magnetometer location are 278925.99m E and 3373197.45m N with a NAVD88 elevation of 2189.79 m. An International Geomagnetic Reference Field (IGRF) 2005 value of 49600 nT was assigned to the base magnetometer location using a latitude of N34.07797°, a longitude of W-107.39580° and an elevation of 2189.79m on January 6, 2008.

Trimble Model GeoExplorer XT GPS receivers were used to provide navigation and positioning. The receivers were configured to receive differential corrections in realtime from WAAS (Wide Area Augmentation System) geo-stationery satellites. The resulting positions usually have an accuracy of about two meters. After downloading the magnetic data from the magnetometers onto a notebook PC, diurnal corrections were applied by assigning a value of 49600 nT to the base magnetometer location using the Geometrics software package, MagMap2000. Geosoft compatible XYZ files were then generated with WGS-84 geographic coordinates for each magnetic measurement. After importing the XYZ files into a Geosoft Oasis montaj database, NAD27 UTM coordinates were generated, profiles were prepared, and additional editing was performed as necessary. The editing mostly consists of deleting readings affected by cultural noise and deleting dropouts which are large-amplitude negative spikes that occur when the magnetometer sensor is tilted too far from a vertical orientation.

Data Processing

The diurnally corrected total field values were gridded with a 15m interval using a kriging algorithm. The grid was then filtered with a three pass, nine point Gaussian filter to yield the final total field grid, which was pole reduced (RTP) with the USGS algorithm to produce the RTP grid. Next the RTP grid was recursively filtered 500 times with the same nine point Gaussian filter to produce a regional, which was subtracted from the RTP grid to yield a RTP residual. Finally, all grids (i.e. total field, RTP, residual, regional) were mask to the survey boundary.

A rectangle shaped area surrounding the Sixty Prospect with boundaries 277500 - 278700 mE / 3772800 - 3773700 mN was extracted in order to adjust the coloration and contouring to better accentuate detail in the data. This area is referred to as the "detail" area.

Conclusions and Recommendations

Note: Wright used other available data (regional and property scale) to formulate his interpretation. This included United States Geological Survey reduced to pole Airborne Magnetics survey, United States Geological Survey Gravity survey, and Wilkinson's geology map (Wilkinson, 1976). Wright also continues:

The ground magnetic survey reveals a complex structural / lithologic picture on the property, which is consistent with the regional setting. Mineralization at the Sixty Prospect falls at a major structural intersection between two regional scale lineaments. Furthermore, an interpreted intrusion centers approximately one kilometer to the northeast, which may not be related to the Tres Montosas intrusion. Extensive areas of magnetite destructive alteration are also interpreted, as well as two unusual magnetic lows possibly produced by a much different alteration type.

Significantly, the magnetic data and associated interpretation show good agreement with geologic controls.

A target hypothesis is defined which identifies eighteen (18) specific locations and six (6) larger scale structures all requiring ground investigation. In addition to the various targets, a number of locations are identified for ground examination which should help confirm the interpretation. Indeed, the next exploration effort should be a geologic evaluation including, among other goals, the support / confirmation of concepts / interpretations set forth herein. No additional geophysical work is recommended until completion of the geologic work.

Figure 10-1 Ground Magnetics Survey grid

Coyote retained Mayor, an independent mining exploration geologist, to carry out a brief reconnaissance mapping, prospecting and rock chip sampling program focused on areas of known mineralization. This work consisted of investigating and sampling the two mineralization types and to formulate a framework for further exploration at the property.

A total of 54 rock samples were collected from the Copper Hills prospect, vein prospects and the Nipple Mountain tuff. The analytical results are documented below.

10.2.1 Results

Copper Hills Prospect

A total of 21 rock samples were collected from the Copper Hills prospect. A total of 18 chip samples across selected mineralization returned up to 1.18% copper, 27.1 ppm silver and 0.24% lead over 1.0 m. An 86.5 m chip sample traverse (non-continuous 16 samples) across the face of the main excavation at the Copper Hills prospect returned a total weighted average of 0.16% copper, 8.9 ppm silver and 0.09% lead (see **Figure 10-2**). Three grab samples were collected from outside the excavation area and returned up to 0.05% copper, 19.9 ppm silver and 0.10% lead.

Figure 10-2 Rock Chip Samples – Copper Hills prospect

44 | P a g e

Wilkinson (1976) quotes a report by Thurmond of a 350 ton shipment in the 1950's that assayed 3.01oz/t Ag and 0.81% Cu.

Both Cu and Ag values as documented for the bulk sample are greater than in the grab and chip samples of the current program. This may be due to surface oxidation of the mineralization as it has been exposed to the environment for over 50 years.

The basic statistics of assays for selected elements of the Copper Hills prospect sample population is presented in **Table 10.2-1** below.

Copper Hills Prospect Assay Statistics - all sample types											
	CU	AU	AG	PB	ZN	MO	AS	BA	HG	MN	SB
samples	21	21	21	21	21	21	21	21	21	21	21
units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Mean	1774.2	.0048	9.0	888.9	25.6	2.4	9.8	363.8	.64	52.9	13.4
Median	665.0	.0040	7.9	678.0	15.0	1.0	8.0	190.0	.50	38.0	13.0
Minimum	87	.003	1.4	105	3	<1	4	30	<1	20	3
Maximum	11800	.007	27.1	2800	103	13	26	1900	2	217	44

Table 10.2-1 Copper Hills Prospect Rock Sample Assay Statistics

Veins

Two samples from a N25°W trending vein bounding the Nipple Mountain tuff block that hosts the Copper Hills prospect returned two anomalous gold values (0.306 and 0.235 ppm Au). In the northern part of the property, two other samples taken from altered vein material near an old prospect pit also returned anomalous gold values (0.191 and 0.128 ppm Au).

The highest Pb and Zn values of the sampling program are associated with these same four samples, showing a strong correlation between Au-Pb-Zn.

The basic statistics of assay for selected elements of the vein sample population is presented in **Table 10.2-2** below.

	Vein Sample Assay Statistics											
		CU	AU	AG	PB	ZN	MO	AS	BA	HG	MN	SB
	samples	18	18	18	18	18	18	18	18	18	18	18
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
N	lean	98.0	.067	5.8	3110.4	3475.0	6.3	28.3	1558.9	.67	1782.3	2.5
N	ledian	31.5	.028	2.8	481.5	697.5	1.0	24.5	1510.0	.50	1532.5	2.5
N	linimum	9	.009	<.2	87	162	1	5	200	<1	182	<2
N	laximum	1000	.306	45.3	24800	26800	47	114	3200	1	4790	6

 Table 10.2-2
 Vein Rock Sample Statistics

Nipple Mountain Tuff

Based on the Copper Hills prospect, silicified, pyritized and fractured (dominantly N20°-30°W Fe-oxide coated fractures), Nipple Mountain tuff is the preferred host to the copper mineralization. The widely spaced reconnaissance samples do not provide a specific focus. One other potential target is a belt of Nipple Mountain tuff trending WSW away from the Copper Hills prospect and represented by several samples. At one location N40°W Fe-oxide-barite fractures cut the strongly silicified and pyritized rock. Copper values, however, are not elevated in these samples.

The geochemical data does not support the concept of gold mineralization hosted in the Nipple Mountain tuff sampled as part of this program.

The basic statistics of assays for selected elements of this Nipple Mountain tuff sample population is presented in **Table 10.2-3** below.

	Nipple Mountain Tuff Sample Assay Statistics											
		CU	AU	AG	PB	ZN	MO	AS	BA	HG	MN	SB
	samples	15	15	15	15	15	15	15	15	15	15	15
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Mean		28.1	.007	.17	131.0	220.9	2.2	12.8	528.7	.667	216.2	1.6
Median		16.0	.004	.10	36.0	70.0	1.0	9.0	160.0	.500	137.0	1.0
Minimum		4	.003	<.2	9	19	<1	<2	50	<1	69	<2
Maximum		118	.032	.5	835	1415	11	35	2750	1.0	1130	3

 Table 10.2-3
 Nipple Mountain Tuff Sample Statistics

10.3 Soil Geochemistry

In 2008, Coyote carried out a soil sampling program over the central part of the Copper Hills project area. The sampling program was laid out on the same grid as used for the ground magnetic survey. In this case only the detailed portion of that grid was sampled using a 50m x 50m density. This resulted in a coverage area of 230.5 ha. **Figure 10-3** shows the sample grid.

A total of 958 samples were collected over an 8 day period. Due to cultural and physical obstacles (mainly roads) a few locations were not sampled.

The complete report entitled "Soil Geochemistry Report on the Copper Hills Property" prepared for Coyote Copper in August 2008 is attached to this report as **Appendix B**.

10.3.1 Results

According to the United States Department of Agriculture (USDA), the Natural Resources Conservation Service branch has completed an updated soil survey in the area as recently as 2004. This is part of their nation-wide initiative and all information is contained in the Soil Survey Geographic (SSURGO) database.

Their soil maps define 4 separate soil units within the area of the Copper Hill claims. These 4 units have slightly different characteristics but generally are described as sandy to gravelly, loam material of neutral to slightly alkaline pH. Vertical profiles are described by the USDA as 'horizons', with Coyote's soil survey sampling depths between 7 and 10 cm falling within their upper 1 or 2 horizons (H1 or H2). It is reasonable to expect that in this terrain elemental concentrations found in these near surface soil horizons are a result of proximal sources.

In addition, and in reference to a report entitled "A Regional Geochemical Atlas For Part of Socorro County, New Mexico", by James Watrus, 1998, elemental baseline values and thresholds can be said to have been determined in the regional sense. Some of the data in this report was used to interpret meaningful thresholds as related to the Copper Hills soil assay results.

Analytical results have been reviewed by the author and some basic observations are herein discussed.

Basic statistics on the assay data have determined several sets of elemental correlations. The most significant is Cu correlating with (in order of correlation

coefficient) Pb, Ag, V, and Zn. Another clear correlation is shown by Au related with Zn, Ga, Ba, and Mn.

To investigate the spatial distribution of the correlating elements the data were gridded and contoured. The following **Table 10.3-1** shows the four thresholds used to contour each of the elements studied. These were computed using the 'Jenks optimization method' or goodness of variance fit.

Element Threshold	Cu ppm	Pb ppm	Ag ppm	V ppm	Zn ppm
1	>= 18	>= 40	>= 0.20	>=60	>= 80
2	> 50	> 137	> 0.25	> 70	> 112
3	> 100	> 363	> 0.35	> 135	> 202
4	> 200	> 898	> 0.50	> 200	> 350

 Table 10.3-1
 Elemental Thresholds used for Contouring

In addition to the statistics of Cu elemental correlations with Pb, Ag, V and Zn, the anomalous patterns formed by all these elements are generally coincident. There are two distinctly separate anomalous areas within the survey grid. One of these is directly related to the Copper Hills prospect and the other is located from 200m to 500m south of there.

2011

11.0 DRILLING

A minor amount of historical drilling has been carried out in the area of the Copper Hills project. Results of these campaigns have been discussed in previous sections of this report (sections 6.2.2 and 9.1).

12.0 SAMPLING METHOD AND APPROACH

During January and February 2008, Coyote carried out a reconnaissance rock sampling program and a soil sampling survey.

12.1 Rock Chip Sampling

Mayor undertook to sample selected mineralized outcrops. A total of 55 samples were collected as follows: 21 from the Copper Hills prospect, 18 from vein prospects and 16 of the Nipple Mountain tuff.

The material was broken using a rock hammer and the pieces were packed in heavy cloth sample bags, tied with cloth laces, and marked with a unique sample identification number. The sample location was taken using a handheld GPS device (setup in UTM Zone 13N coordinates and using the NAD27 datum). The sample was geologically described and together with the location information recorded into a field book. Sample weights ranged from 1.5 to 6 kg.

All samples were taken back to Tucson, Arizona by Mayor from where he shipped them to ALS Chemex Laboratories in Elko, Nevada for preparation and subsequent analysis in Vancouver, Canada.

12.2 Soil Sampling

A two person sampling team was considered practical from the efficiency and safety standpoint. In preparation for the field work the predetermined grid coordinates were programmed in to the GPS system. The GPS was set up to use the UTM Zone 13N coordinate system (meters) projected to the NAD27 datum. In addition, kraft paper soil sample bags were pre-numbered with the sample number as associated with the grid coordinate. The soil bags were organized and carried in stacks according to grid travel.

The sample crew used the GPS for positioning and to navigate to the next grid sample station. The GPS data logger was used to store the location coordinate and sample number. The samples were collected by digging a small hole between 7 to 10 cm deep using a hand mattock. Material taken from the hole was first passed/shaken through a kitchen sieve to remove the larger gravel material. The undersize material was packed into the sample bag and hauled in a pail or packsack by the crew.

A total of 958 samples were collected over an 8 day period. At the completion of the program the survey crew returned the samples to Tucson, Arizona. They were delivered to Mayor where they were repacked for shipment to ALS Chemex labs in Elko, Nevada. The samples were then forwarded by ALS Chemex to their soils preparation facility in Winnemucca, Nevada and subsequent analysis was done in Vancouver, British Columbia, Canada.

13.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

As described previously, rock and soil samples were collected from the Copper Hills project in early 2008. The preparation and analysis procedures for the two sample types are described below. All sample preparation and analyses were carried out by ALS Laboratory Group's Mineral Division. ALS Chemex maintains an ISO 9001:2000 certification at all locations.

13.1 Rock Samples

The 55 rock samples were collected, packed in heavy cloth sample bags secured with cloth laces, stored and shipped by FEDEX courier to ALS Chemex in Elko, Nevada by Mayor in two separate consignments. Two additional rock samples were collected by the author and submitted to the same batch as Mayor's second consignment. The primary elements to be analyzed were Cu, Au, Ag, Pb, and Zn. Lab packages were selected to best accommodate these analyzes at appropriate levels of detection. Based on ALS Chemex's catalog codes, these are Au-ICP21 (for Au) and ME-ICP41 (for Cu, Ag, Pb, Zn and others) and these will be described more fully below.

Once the samples arrive at the ALS Chemex preparation facility, they are bar coded (for sample inventory logging), weighed, oven dried, finely crushed to 70% -2mm or better, split off (250g) and pulverized by "ring and puck" grinding mill (to greater than 85% passing a 75 micron screen). The prepared samples were sent by UPS courier to the ALS Chemex analytical lab in Vancouver, Canada. These samples were cleared through international customs by ALS Chemex's custom broker.

Gold was analyzed by fire assay with an Inductively Coupled Plasma ("ICP") finish on a 30g sample weight (Au-ICP21). The other elements were analyzed as part of a package suite which includes the Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W and Zn. These elements were analyzed by aqua regia digestion and ICP finish. Analyzes for Cu, Pb and Zn on over limit concentrations were re-done to detect the higher values.

ALS Chemex maintains an internal program for quality control which includes the random introduction of blanks, duplicate and standard samples into the sample analysis job flow. At this stage, Coyote dis not send duplicate samples for check procedures nor were any sample pulps sent to other labs for quality control purposes.

Final assay results were transmitted by e-mail initially and in addition paper reports were mailed.

It is the opinion of the author that the sample preparation, analytical and security protocols as stated by ALS Chemex in their results to Coyote are adequate to realize reliable results for the scope of this program.

13.2 Soil Samples

The soil sampling crew collected on average about 120 samples per day. Each day's yield was stored in their locked vehicle. At the end of the program the crew returned the samples in 5 large plastic tubs and delivered them to Mayor in Tucson, Arizona at which point they were re-packed in cardboard boxes and shipped by FEDEX courier to ALS Chemex's preparation facility in Elko, Nevada. Coyote sent ALS Chemex a complete inventory list of sample numbers, without their corresponding grid coordinates, to assist in validating the large inventory received. ALS Chemex immediately dispatched the shipment with MGL Trucking (their regular contractor) to their Winnemucca, Nevada preparation facility. There, the entire batch was split into 5 separate work orders. All samples were bar coded and weighed. The bar coding (logging procedures) sets up a chain of custody for sample tracking purposes. Reportedly some of the samples were first oven dried. All samples were sieved to 180 micron. Both over- and under-size are retained. The under size material split is ready for analysis. This batch was sent to the ALS Chemex Analytical Laboratory in Vancouver, Canada. ALS Chemex uses UPS courier service for this transportation and the batch was cleared through customs by their broker. ALS Chemex also used their soil permit to facilitate legal entry of the inorganic materials to Canada.

The analysis packages for the soils samples was the same as for the rock samples as described above (Au by Au-ICP21 & multi-elements by ME-ICP41).

Gold was analyzed by fire assay with an ICP finish on a 30g sample weight (Au-ICP21). The other elements were analyzed as part of a package suite which includes the Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W and Zn. These elements were analyzed by aqua regia digestion and ICP finish (ME-ICP41).

As mentioned before, ALS Chemex maintains an internal program for quality control which includes the random introduction of blanks, duplicate and standard samples into the sample analysis job flow.

Final assay results were transmitted by e-mail initially and in addition paper reports were mailed.

It is the opinion of the author that the sample preparation, analytical and security protocols as stated by ALS Chemex in their results to Coyote are adequate to realize reliable results for the scope of this program.

14.0 DATA VERIFICATION

Land purchase documents and other legal agreements were verified by the author with documents supplied by Coyote and through communications with Coyote's attorney, Donaldson. Land records were independently verified with the Bureau of Land Management using their LR2000 web based data retrieval system.

The geophysical report and interpretation, by Wright, was reviewed by the author.

All the analytical data ensuing from the programs have been reviewed and verified by the author. All assays from current programs were received in electronic form and were deemed 'finalized' by the laboratory, ALS Chemex. Check assaying was not considered warranted for this reconnaissance sampling program. Rock and soil sample routing/transportation procedures and logistics were reviewed and verified, by the author, with customer service personnel at ALS Chemex in Vancouver, Canada..

All sample locations for the soil and rock sampling programs were cross-referenced with field notes and sample numbers to ensure accuracy.

The author made a property examination prior to the commencement of this report. At that time the author witnessed the soil and rock sampling programs and procedures. Independent location checks, a review of sampling procedures and the collection of separate rock samples was also carried out during this time.

The author cannot directly verify the accuracy of the data and results as portrayed in Wilkinson's 1976 geological report, however it is the author's opinion that Wilkinson's research was thorough and well done, leading to comprehensive interpretations and conclusions.

15.0 ADJACENT PROPERTIES

There are no mineral properties adjacent to the Copper Hills property.

Not applicable to this report.

17.0 MINERAL RESOURCE ESTIMATES

Not applicable to this report.

18.0 OTHER RELEVANT DATA AND INFORMATION

Not applicable to this report.

19.0 INTERPRETATION AND CONCLUSIONS

19.1 Interpretation

19.1.1 Ground Magnetics Survey

Wilkinson's mapping was used as geologic control for the interpretation of the ground magnetics results.

Four general domains were identified which can be correlated with the geology.

- In the northwest corner of the property, the Abo Formation appears to be domed by a lobe of the Tres Montosas intrusion. Faulting mapped by Wilkinson (1976) supports a doming mechanism resulting in exposure of the Abo Formation. The ground magnetics show a steep gradient in the extreme northwest corner, indicating the intrusive margin at depth.
- 2. Further south is an area of quite subdued magnetics bounded to the northeast and south by abrupt changes in the magnetic character. This area is interpreted as Abo Formation overlain by a thin cover of Spears Formation [Wilkinson]. Such smooth magnetics would be consistent with a sedimentary lithology, such as the Abo Formation.
- 3. Across in the southwest corner of the survey, the magnetics are quite active with a number of north-south directed linear features. A similar pattern is noted to the east and northeast of the interpreted Abo Formation. Wilkinson documented the latite dikes to contain 1% magnetite. Such a concentration would produce moderate strength magnetic anomalies similar to those noted. It is interpreted that the north-south latite dike swarm mapped by Wilkinson (south of the survey area) continues north into the survey area and is responsible for much of the active magnetics.

4. The fourth domain, termed the Mulligan Gulch Graben, lies east of the prominent north-south linear magnetic feature and extends the full length of the survey. This linear high is interpreted as dike material filling the Council Rock Fault. The course of the interpreted fault from Wilkinson's mapping can be compared with this magnetic feature. As expected, magnetic responses within the graben are subdued as a result of basin fill cover; however, several strong magnetic anomalies do fall within the graben. These correlate with a quaternary basalt unit termed the Council Rock Basalt, which appears to overlie the basin fill material.

The residual pole reduced (RTP) magnetics accentuates finer detail in the data. Interpreted dikes and structures are readily delineated. Elements of the Copper Hills and Morenci-Magdalene lineaments are also identified, which appear to form boundaries to the previously identified area of shallow Abo Formation. The multitude of dikes are terminated and offset by numerous structures. Two magnetic highs east of the Council Rock Fault are interpreted as possibly reflecting buried intrusions. One of these is located near the intersection of the Copper Hills and Morenci-Magdalena lineaments. Furthermore, the intrusive appear to feed a dike filling the Council Rock Fault to the south-southwest. This dike's magnetic response is diminished and more continuous than the latite dike responses. In fact, strong latite dike responses appear to cross-cut this anomaly immediately west of the main intrusive body. Similar magnetic responses are noted along the Morenci-Magdalena lineament. These observations suggest the interpreted intrusion differs from the latite dikes in composition and may well be unrelated to the Tres Montosas intrusive.

Alteration mapped by Wilkinson (1976) can be generally compared with the alteration pattern derived from the magnetics. Wilkinson (1976) notes the mapped alteration can be characterized as pyrite, or evidence of pyrite, in the rock. Identification of alteration with magnetic data can be subjective. It is generally based upon the reduction of magnetic response due to removal of magnetic material in the rock. This process is generally gradational, but structurally / lithologically controlled. Therefore boundaries are generally difficult to define precisely and weathering / rock changes can mimic alteration.

Nevertheless, the alteration mapped by Wilkinson generally correlates with reduced magnetic amplitudes, suggesting a magnetite destructive type of alteration.

The interpreted alteration extends considerably along the Morenci-Magdalena lineament, as well as along the north-south structural fabric. This alteration occurs immediately west of the interpreted intrusions in the horst block. Basin fill material masks identification of alteration in the vicinity of the interpreted intrusions. It is conceivable the interpreted intrusion is the source of the observed alteration with the Tres Montosas intrusive playing a minor role.

Figure 19-1 summarizes the interpretation by combining the elements discussed previously with the geological mapping after Wilkinson (1976). Of immediate note is that the Copper Hills prospect falls directly on structural intersections related to the Copper Hill and Morenci-Magdalene lineaments and within the interpreted alteration limits. This suggests structural intersections and structures proximal to the interpreted alteration and Copper Hill prospect represent targets for similar mineralization.

Numerous other structures and intersections are identified by the interpretation.

19.1.2 Soil Geochemical Survey

Analytical results have been reviewed by the author and some basic observations are herein discussed.

Basic statistics on the assay data have determined several sets of elemental correlations. The most significant is Cu correlating with (in order of correlation coefficient) Pb, Ag, V, and Zn. Another clear correlation is shown by Au related with Zn, Ga, Ba, and Mn.

To investigate the spatial distribution of the correlating elements the data were gridded and contoured. The following **Table 19.1-1** shows the four thresholds used to contour each of the elements studied. These were computed using the 'Jenks optimization method' or goodness of variance fit.

Element Threshold	Cu ppm	Pb ppm	Ag ppm	V ppm	Zn ppm
1	>= 18	>= 40	>= 0.20	>=60	>= 80
2	> 50	> 137	> 0.25	> 70	> 112
3	> 100	> 363	> 0.35	> 135	> 202
4	> 200	> 898	> 0.50	> 200	> 350

Table 19.1-1 S

Selected Elemental Thresholds

In addition to the statistics of Cu elemental correlations with Pb, Ag, V and Zn, the anomalous patterns formed by all these elements are generally coincident. There are two distinctly separate anomalous areas within the survey grid. One of these is directly related to the Copper Hills prospect and the other is located from 200m to 500m south of there.

 Over the Copper Hills prospect, all correlated elements define anomalies closely associated with the known mineralization. It is significant to note that both Cu and Pb form an anomalous halo extending about 200 meters to the NE of the surface mineralization at the Copper Hill prospect. In addition, a southeasterly trending linear extension to this anomaly, from the Copper Hills prospect, can be identified by elevated levels of Cu, Pb and to some extent Zn. On the surface this pattern is directly correlated to deposits of alluvium in low lying terrain which probably served as drainage channels away from the Cu mineralization at surface.

 The other anomalous pattern is defined by common Cu-Pb-Zn-V (no Ag) and is situated over what has been mapped as Spears Formation. Cu-V anomalous patterns follow an E-W trend up to 500m in length. Pb-Zn anomalies in the same area display a strong N-S alignment up to 650m in length. This area was not geologically investigated by Coyote during their program. Based on these coincident elemental anomalies this area warrants detailed follow-up to assist in defining the significance of these geochemical results.

In summary, the elemental associations noted above are consistent with the mineralization models sought at Copper Hills. Anomalous patterns pertaining to these elements and/or associations highlighted at the Copper Hills prospect can be interpreted as significant to mineralization.

Figure 19-2 shows the location of the geochemical survey grid on the geological map Wilkinson (1976) and includes, in this case, the contoured Cu anomalies. **Figure 19-3** offers an enlarged view of the Cu contours in relation to the Copper Hills prospect.

67 | Page

Figure 19-3Soil Survey Showing Copper Anomaly

19.2 Conclusions

The primary focus of the last mineral exploration program at the Copper Hills project was to follow-up known Cu-Ag mineralization in and around the Copper Hills prospect.

Results of the geophysical survey, and the subsequent interpretations, fit well with the geology as mapped by Wilkinson (1976). Interpretations of structural trends, proximity to inferred buried intrusives and mapping of alteration (of a possible pyritic nature) focus exploration efforts in several areas, and importantly, confirm a favorable target area precisely in the area known to host the Copper Hills prospect.

Soil geochemistry anomalies (Cu, Pb, Ag, V, and Zn) define patterns consistent with known mineralization at the Copper Hills prospect and surroundings, yet extend to other areas signified and related to geophysical targets independently suggested for follow-up.

Results of the detailed mapping and geophysical investigations suggest a complex structural / lithological scenario in this area. The existence of numerous documented pits, workings, and other showings add credibility to these interpretations

It is the opinion of the author that the results of Coyote's exploration program verified the mineral potential of the Copper Hills prospect and extended the knowledge of the geological framework related to the known Cu-Ag mineralization there. Their initial investigation defined a significant cause to formulate a follow-up exploration program at this property.

20.0 RECOMMENDATIONS

The overall intent of the recommended program is the discovery of a potentially economic copper deposit. A two phase (Phase 1 and Phase 2a, b) exploration program is herein recommended for the Copper Hills project.

The total estimated budget for both programs as described herein is expected to be US\$1,275,000.

20.1 Phase 1 Program

Phase 1 would commence with a comprehensive ground IP and resistivity survey. The object of Phase 1 is to define and prioritize targets for drilling at the Copper Hills prospect and the surrounding areas for the Phase 2 program.

The Phase 1 program budget is estimated at US\$125,000.

20.2 Phase 2a and 2b Program

Contingent upon Phase 1 providing positive results it is recommended for Phase 2a that initial drilling at the Copper Hills prospect be undertaken to verify the nature of the copper (+silver) mineralization as documented by previous operators. This is expected to require about 1,125 m of drilling in 15 reverse circulation holes each about 75 m in depth spaced on a 50 m x 50 m grid.

Depending on the success of the Phase 2a drilling program a further 2,700 m expansion drilling program is recommended, as Phase 2b. This is estimated to require an additional 27 reverse circulation holes each between 75 m and 100 m in depth spaced on a 50 m x 50 m grid adjoining the initial drilling grid to the northeast and southwest. An additional 1,500 m of core drilling is also recommended to gather detailed geological and structural data. Other facets of a Phase 2b program include expanding the soil sampling grid and

conducting additional geological mapping, prospecting and sampling of priority targets based on geophysical and geochemical survey interpretations.

The Phase 2a program budget is estimated at US\$225,000 and Phase 2b is expected to be US\$925,000.

The total for both Phase 1 and 2 (a and b) programs is therefore US\$1,275,000.

21.0 REFERENCES

BLM, website, LR2000 system, http://www.blm.gov/lr2000/

Coyote Copper Inc., March 6, 2007, Copper Hills Property Agreement

Donaldson, W. Scott, September 21, 2007, Letter Agreement - Coyote Copper (Arizona), Inc., - Lars Wakeman

Hawley, J.W., 1986, New Mexico in Maps, University of New Mexico Press

Ingebritsen, S.E., 1998, Groundwater in Geologic Processes.

Jones, F., 1904, New Mexico Mines and Minerals: Santa Fe, The New Mexican Printing Company

Lasky S.G., 1932, The Ore Deposits of Socorro County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Bulletin 8.

Mayor, J.N., 2008, Copper Hills Prospect, Socorro Co., N.M. - Rock Chip Geochemical Sampling, Jan 25 to Feb 1, 2008.

Mayor, J.N., 2008, Addendum to: Copper Hills Prospect, Socorro Co., N.M. - Rock Chip Geochemical Sampling, Jan 25 to Feb 1, 2008.

NMBGMR (New Mexico Bureau of Geology & Mineral Resources), 2003, Geologic Map of New Mexico

NMBGMR (New Mexico Bureau of Geology & Mineral Resources), 2007, Data Resources on the web at <u>http://geoinfo.nmt/edu</u>

Padilla, Sam-Quito, 2001, A History of Socorro County, New Mexico

Panteleyev, A., 1996, Epithermal Au-Ag: Low Sulphidation, in Selected British Columbia Mineral Deposit Profiles

Robb, Lawrence, 2008, Introduction to Ore-Forming Processes.

Watrus, James, 1998, A Regional Geochemical Atlas For Part of Socorro County, New Mexico

Wilkinson William H., Jr., March 1976, Geology of the Tres Montosas-Cat Mountain Area, Socorro County, New Mexico

Wright James L., January 18, 2008, Copper Hills Property Ground Magnetic Survey GIS Database

22.0 CERTIFICATE OF QUALIFIED PERSON

- I, Claus Wiese, P.Eng., hereby certify that:
- I am a self-employed Consulting Engineer and sole proprietor of: I-Cubed, LLC 811 N Promontory Dr Tucson, Arizona 85748
- 2) I graduated with a Bachelor of Applied Science and Engineering degree in Geological Engineering from the University of Toronto, Toronto, Ontario, in 1978.
- I am registered as a Professional Engineer in the Province of Ontario and am a member of the Society of Mining Engineers.
- I have worked as a Professional Engineer for a total of 33 years since my graduation from the University of Toronto.
- 5) I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 6) I am responsible for preparation of all sections (except chapter 10.1 "Ground Geophysics") of the technical report titled "Technical Report on the Copper Hills Property Cat Mountain Mining District Socorro County, New Mexico, USA". I visited the Copper Hills property on February 6 and 7, 2008 to collect information first hand for the purpose of preparing this report.
- I have had prior involvement with the property that is the subject of the Technical Report during my assignment with Coyote Copper in 2008.

- 8) I am not aware of any material facts or material changes with respect to the subject matter of the technical report not contained within the report, of which the omission to disclose makes the report misleading.
- I am independent of the issuer applying all of the tests in section 1.4 of National Instrument 43-101 (also section 3.5 of 43-101CP).
- 10) I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.
- 11) I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.
- 12) The effective date of this report is April 30, 2011.

Original certificate signed and sealed by Claus G. Wiese

Claus Wiese, P.Eng. Address: 811 N Promontory Dr Tucson, Arizona 85748 Telephone: (520) 721-9507 E-mail: cwiese@i-cubed-arizona.com

23.0 ADDITIONAL REQUIREMENTS FOR TECHNICAL REPORTS ON DEVELOPMENT PROPERTIES AND PRODUCTION PROPERTIES

Not applicable.

Appendix A - List of Claims

MINING CLAIMS

Claim Name	Date of Location	Socorro County, New Mexico Instrument Number	BLM NMMC No.			
WILDHORSE 1	3/1/2011	201100729	190849			
WILDHORSE 2	3/1/2011	201100730	190850			
WILDHORSE 3	3/1/2011	201100731	190851			
WILDHORSE 4	3/1/2011	201100732	190852			
WILDHORSE 5	3/1/2011	201100733	190853			
WILDHORSE 6	3/1/2011	201100734	190854			
WILDHORSE 7	3/1/2011	201100735	190855			
WILDHORSE 8	3/1/2011	201100736	190856			
WILDHORSE 9	3/1/2011	201100737	190857			
WILDHORSE 10	3/1/2011	201100738	190858			
WILDHORSE 11	3/1/2011	201100739	190859			
WILDHORSE 12	3/1/2011	201100740	190860			
WILDHORSE 13	3/1/2011	201100741	190861			
WILDHORSE 14	3/1/2011	201100742	190862			
WILDHORSE 15	3/1/2011	201100743	190863			
TIMBERWOLF 16	3/1/2011	201100744	190864			
TIMBERWOLF 17	3/1/2011	201100745	190865			
TIMBERWOLF 18	3/1/2011	201100746	190866			
TIMBERWOLF 19	3/1/2011	201100747	190867			
TIMBERWOLF 20	3/1/2011	201100748	190868			
WILDHORSE 21	3/1/2011	201100749	190869			
WILDHORSE 22	3/1/2011	201100750	190870			
WILDHORSE 23	2/28/2011	201100751	190871			
WILDHORSE 24	2/28/2011	201100752	190872			
TIMBERWOLF 25	2/28/2011	201100753	190873			
TIMBERWOLF 26	2/28/2011	201100754	190874			
TIMBERWOLF 27	2/28/2011	201100755	190875			
TIMBERWOLF 28	2/28/2011	201100756	190876			
TIMBERWOLF 29	2/28/2011	201100757	190877			

78 | P a g e

Claim Name	Date of Location	Socorro County, New Mexico Instrument Number	BLM NMMC No.
WILDHORSE 30	2/28/2011	201100758	190878
WILDHORSE 31	2/28/2011	201100759	190879
WILDHORSE 32	2/28/2011	201100760	190880
WILDHORSE 33	2/28/2011	201100761	190881
WILDHORSE 34	2/28/2011	201100762	190882
WILDHORSE 35	2/28/2011	201100763	190883
WILDHORSE 36	2/28/2011	201100764	190884
WILDHORSE 37	2/28/2011	201100765	190885
WILDHORSE 38	2/28/2011	201100766	190886
WILDHORSE 39	2/28/2011	201100767	190887
WILDHORSE 40	2/28/2011	201100768	190888
WILDHORSE 41	2/28/2011	201100769	190889
WILDHORSE 42	2/28/2011	201100770	190890
WILDHORSE 43	2/28/2011	201100771	190891
WILDHORSE 44	2/28/2011	201100772	190892
WILDHORSE 45	2/28/2011	201100773	190893
WILDHORSE 46	2/28/2011	201100774	190894
WILDHORSE 47	2/28/2011	201100775	190895
WILDHORSE 48	2/28/2011	201100776	190896
WILDHORSE 49	2/28/2011	201100777	190897
WILDHORSE 50	2/28/2011	201100778	190898
WILDHORSE 51	2/28/2011	201100779	190899
WILDHORSE 52	2/28/2011	201100780	190900
WILDHORSE 53	2/28/2011	201100781	190901
WILDHORSE 54	2/28/2011	201100782	190902
WILDHORSE 55	2/28/2011	201100783	190903
COPPER HILLS #1	9/14/2000	n/a	169266

Appendix B – Report on Soil Geochemistry Survey

on the

Copper Hills Property

Cat Mountain Mining District Socorro County, New Mexico, USA

West: 107° 26' 39" W, East: 107° 22' 22" W, North: 34° 6' N, South: 34° 3' 40" N

Effective Date:

August 21, 2008

Prepared for:

220-17010 103rd Ave. Edmonton, AB, Canada, T5S 1K7 Tel: (888) 432-8788 Fax: (780) 428-3476

Prepared by:

Claus G. Wiese, P.Eng.

I-Cubed LLC

811 N Promontory Dr. Tucson, AZ 85748 USA Tel/Fax: (520) 721-9507

Table of Contents

1.0	Summary	2
2.0	Previous Work	4
2.1	Regional Geochemical Studies	4
3.0	Current Program	5
3.1	Sampling Location, Procedures and Logistics	5
3.	1.1 Lab Procedure	7
3.2	Analytical Results & Statistics	8
4.0	Interpretation and Conclusions	12
4.1	Interpretation	12
4.2	Conclusions	13
5.0	References	15

List of Figures

Figure 1-1	Location Map	3
Figure 3-1	Soil Survey Grid	6

List of Tables

I tot of Ammo		
Table 3.2-2	Elemental Thresholds used for Contouring1	0
Table 3.2-1	Elemental Class Breaks from Jenks Method1	0

List of Appendices

Appendix A – Soil Survey Assay Results	16
Appendix B – Soil Sample Assay Statistics	53
Appendix C – Factor Analysis (Component Matrix)	60

1.0 Summary

In early 2008 Coyote Copper Inc. ("Coyote") carried out a soil sampling geochemical survey as part of an initial reconnaissance exploration program. Coyote retained Darling Environmental and Surveying, Ltd. ("Darling") to carry out the collection of the samples. The sampling program was laid out by Coyote and was based on the same grid as used for the previous ground magnetic geophysical survey [Wright, 2008]. The geochemical survey grid covers only the central portion of the overall grid and was sampled with a 50m x 50m density. The area of coverage is 230.5 ha. See the location map in **Figure 1.1**.

Darling mobilized a crew chief and two survey technicians to the property on January 30, 2008. Prior to commencing the survey an orientation was given to the sampling crew by Coyote's consulting geologist, Mr. James Mayor ("Mayor"), to ensure procedural consistency and quality control throughout the program.

A total of 958 samples were collected over an 8 day period. Due to cultural and physical obstacles (mainly roads) a few locations were not sampled.

Upon completion of the field work the samples were transported back to Darling's office in Tucson, AZ and subsequently shipped by Mayor to ALS Chemex's lab in Elko, NV. The samples were then forwarded by ALS Chemex to their soils preparation facility in Winnemucca, NV and subsequent chemical analysis was done by ALS Chemex in Vancouver, BC, Canada.

Final assay results were transmitted to Coyote by e-mail initially and, in addition, paper reports were mailed.

Figure 1-1

Location Map

Analytical results have been reviewed by the author of this report and observations are herein discussed. A complete listing of all analytical results is presented in **Appendix A** of this report.

Maps were produced at a metric scale of 1:2000 that display data postings and the interpretive concentration contours of the significant elements discussed in this report. In addition, two compilation maps were prepared showing; a) Cu contours on geology and b) Cu contours relative interpreted features from geophysical work. These maps are contained in a separate volume addendum (Addendum 1 – Accompanying Maps – Soil Geochemistry Report - Copper Hills Project). These maps are referred to within this text in relation to the author's interpretations.

2.0 Previous Work

2.1 <u>Regional Geochemical Studies</u>

According to the United States Department of Agriculture (USDA), the Natural Resources Conservation Service branch has completed an updated soil survey in the area as recently as 2004. This is part of their nation-wide initiative and all information is contained in the Soil Survey Geographic (SSURGO) database.

Their soil maps define 4 separate soil units within the area of the Copper Hill claims. These 4 units have slightly different characteristics but generally are described as sandy to gravelly, loam material of neutral to slightly alkaline pH. Vertical profiles are described by the USDA as 'horizons', with Coyote's soil survey sampling depths between 7 and 10 cm falling within their upper 1 or 2 horizons (H1 or H2). It is reasonable to expect that in this terrain elemental concentrations found in these near surface soil horizons are a result of proximal sources.

In addition, and in reference to a report entitled "A Regional Geochemical Atlas For Part of Socorro County, New Mexico", by James Watrus, 1998 [Watrus, 1998], elemental baseline values and thresholds can be said to have been determined in the regional sense. Some of the data in this report was used to interpret meaningful thresholds as related to the Copper Hills soil assay results.

3.0 Current Program

3.1 <u>Sampling Location, Procedures and Logistics</u>

The geochemical survey grid covers only the central portion of the overall grid as established for the geophysical ground magnetics survey. This results in a coverage area of 230.5 ha. The sample spacing was 50m x 50m .

Figure 3.1-1 shows the location of the sample grid relative to the property boundary. The known Copper Hills prospect lies central to the sample grid.

A two person sampling team (Darling) was considered practical from the efficiency and safety standpoint. In preparation for the field work the predetermined grid coordinates were programmed in to the GPS system. The GPS was set up to use the UTM Zone 13N coordinate system (meters) projected to the NAD27 datum. In addition, kraft paper soil sample bags were prenumbered with the sample number as associated with the grid coordinate. The soil bags were organized and carried in stacks according to grid travel.

The sample crew used the GPS for positioning and to navigate to the next grid sample station. The GPS data logger was used to store the location coordinate and sample number. The samples were collected by digging a small hole between 7 to 10 cm deep using a hand mattock. Material taken from the hole

Figure 3-1 Soi

Soil Survey Grid

I-Cubed LLC August 21, 2008

Page 6

Soil Geochemistry – Copper Hills , New Mexico Coyote Copper Inc.. was first passed/shaken through a kitchen sieve to remove the larger gravel material. The undersize material was packed into the sample bag and hauled in a pail or packsack by the crew.

A total of 958 samples were collected over an 8 day period. At the completion of the program the survey crew returned the samples to Tucson, AZ. They were delivered to Mayor where they were repacked for shipment to ALS Chemex labs in Elko NV. The samples were then forwarded by ALS Chemex to their soils preparation facility in Winnemucca, NV and subsequent chemical analysis was done in Vancouver, BC, Canada.

3.1.1 Lab Procedure

All sample preparation and analyses were carried out by ALS Laboratory Group's Mineral Division, ALS Chemex maintains an ISO 9001:2000 certification at all locations.

The entire batch of samples was split into 5 separate work orders. All samples were bar coded and weighed. The bar coding (logging procedures) sets up a chain of custody for sample tracking purposes. Reportedly some of the samples were first oven dried. All samples were sieved to 180 micron. Both over- and under-size are retained. The under size material split is ready for analysis. This batch was sent to the ALS Chemex Analytical Laboratory in Vancouver, BC, Canada.

The analysis packages for the soils samples were ALS Chemex catalog items;

a) Gold (Au-ICP21)

b) Multi-elements (ME-ICP41).

Gold was analyzed by fire assay with an ICP finish on a 30g sample weight (Au-ICP21). The other elements were analyzed as part of a package suite which includes the Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W and Zn. These elements were analyzed by aqua regia digestion and ICP finish (ME-ICP41).

ALS Chemex maintains an internal program for quality control which includes the random introduction of blanks, duplicate and standard samples into the sample analysis job flow.

Final assay results were transmitted to Coyote by e-mail initially and in addition paper reports were mailed.

It is the opinion of the author that the sample preparation, analytical and security protocols as stated by ALS Chemex in their results to Coyote are adequate to realize reliable results for the scope of this program.

3.2 Analytical Results & Statistics

Analytical results have been reviewed by the author and observations are herein discussed. A complete listing of all analytical results is presented in **Appendix A** of this report.

Prior to computing the basic statistics for all the elements analyzed, the values reported as "below analytical detection" were methodically adjusted so that meaningful statistics could be generated. The method used to achieve this is as follows. Where a value is reported by the lab as below detection, the lab report shows a "<detection limit" symbol (eg. <0.2). Since these cannot be used when computing statistics these values were adjusted by removing the "<" symbol and dividing the result by 2 (eg. <0.2 becomes 0.1).

The adjusted data were processed using the SPSS11 statistical software package. Bivariate statistics on the complete population of the assay data have determined a strong correlation among certain elements. The results show that Cu correlates with (in order of correlation coefficient) Pb, Ag, V, and Zn. Other elements, more weakly correlated, are Sb, Ba and Cd. **Appendix B** contains the correlation matrix, as well as basic statistics and distribution frequency histograms for these elements.

The data were also processed using factor analysis (principal component analysis extraction method). The result confirmed the elemental correlations discussed above. It appears that component 2 mostly explains the variance relationship with the elements that are correlated to Cu. The component matrix is listed in **Appendix C**.

The data were plotted using ArcMap software to investigate any anomalous trends. Elemental thresholds (class intervals) were computed using the 'Jenks optimization method' or goodness of variance fit (ArcMap). With the Jenks method the classes are based on natural groupings inherent in the data. The technique identifies break points by picking the class breaks that best group similar values and maximize the differences between classes. The features are divided into classes whose boundaries are set where there are relatively big jumps in the data values. The outcome ranges are listed in **Table 3.2-1** below.

Element Range	Cu ppm	Pb ppm	Ag ppm	V ppm	Zn ppm
1	2-18	3-40	0.0-0.1	4-40	1-49
2	>18-75	>40-137	>0.1-0.2	>40-50	>49-70
3	>75-187	>137-363	>0.2-0.3	>50-66	>70-112
4	>187-362	>363-898	>0.3-0.5	>66-135	>112-202
5	>362-1195	>898-1800	>0.5-1.1	>135-354	>202-596

 Table 3.2-1
 Elemental Class Breaks from Jenks Method

To investigate the spatial distribution of the correlating elements the data were gridded and contoured using Surfer 8 software. The gridding method selected was "triangulation with linear interpolation". This method does not extrapolate the element values beyond the range of the data and seemed to work best with this data. As with most gridding techniques, needed to produce computer generated contours, the data becomes somewhat smoothed. The following **Table 3.2-2** shows the four thresholds selected to contour each of the elements studied. As can be seen, these threshold values, for the most part, tie in closely with the elemental class breaks defined by the Jenks method.

Element Contour Threshold	Cu ppm	Pb ppm	Ag ppm	V ppm	Zn ppm
1	>= 18	>= 40	>= 0.20	>=60	>= 80
2	> 50	> 137	> 0.25	> 70	> 112
3	> 100	> 363	> 0.35	> 135	> 202
4	> 200	> 898	> 0.50	> 200	> 350

Table 3.2-2	Elemental	Thresholds	used f	or Cor	touring
-------------	-----------	------------	--------	--------	---------

The values for each element were plotted as variably sized symbols according to their class range to identify clusters and also as concentration contours to study anomalous trends. These maps were produced as overlays in ArcMap and used to compare the elements with each other (associations) and to lithology [Wilkinson, 1976] and to the geophysical interpretations as rendered by the ground magnetics survey [Wright, 2008]. These maps are contained in the Addendum 1 – Accompanying Maps – Soil Geochemistry Report - Copper Hills Project.

4.0 Interpretation and Conclusions

4.1 Interpretation

The anomalous patterns formed by contouring Cu, Pb, Ag, V and Zn are generally coincident. There are two distinctly separate anomalous areas within the survey grid. One of these is directly related to the Copper Hills prospect and the other is located from 200m to 500m south of there.

- Over the Copper Hills prospect, all correlated elements define anomalies closely associated with the known mineralization. It is significant to note that both Cu and Pb form an anomalous halo extending about 200 meters to the NE of the surface mineralization at the Copper Hill prospect. In addition, a southeasterly trending linear extension to this anomaly, from the Copper Hills prospect, can be identified by elevated levels of Cu, Pb and to some extent Zn. On the surface this pattern is directly correlated to deposits of alluvium in low lying terrain which probably served as drainage channels away from the Cu mineralization at surface. The geophysical survey interpretation indicates that this area also is at the locus of two prominent structures and conforms to an area of interpreted pyritic alteration.
- The other anomalous pattern is defined by common Cu-Pb-Zn-V (no Ag) and is situated over what has been mapped as Spears Formation. Cu-V anomalous patterns follow an E-W trend up to 500m in length. Pb-Zn anomalies in the same area display a strong N-S alignment up to 650m in length. The Cu, Pb, Zn and V anomalies are all open to the south of the survey area. The geophysical survey interpretation in this area defines two

Page 12

parallel NE trending structures that appear to relate to the soil anomalies. This part of the property was not geologically investigated by Coyote during the initial program. Based on these coincident elemental anomalies this area warrants detailed follow-up to assist in defining the significance of these geochemical results.

In summary, the elemental associations noted above are consistent with the mineralization models sought at Copper Hills. Anomalous patterns pertaining to these elements and/or associations highlighted at the Copper Hills prospect can be interpreted as significant to mineralization.

4.2 Conclusions

The primary focus of the mineral exploration program carried out by Coyote Copper at its Copper Hills project was to follow-up known Cu-Ag mineralization in and around the Copper Hills prospect.

Results of the geophysical survey, and the subsequent interpretations, fit well with the geology as mapped by Wilkinson [Wilkinson, 1976]. Interpretations of structural trends, proximity to inferred buried intrusives and mapping of alteration (of a possible pyritic nature) focus exploration efforts in several areas, and importantly, confirm a favorable target area precisely in the area known to host the Copper Hills prospect.

Soil geochemistry anomalies (Cu, Pb, Ag, V, and Zn) define patterns consistent with known mineralization at the Copper Hills prospect and surroundings, yet extend to other areas signified and related to geophysical targets independently suggested for follow-up. It is the opinion of the author that the results of Coyote's initial soil geochemistry program verified the nature and location of the Copper Hills prospect and has extended the potential target area significantly. In addition, the fact that the same correlating elements form consistent anomalous clusters and trends in the area south of the Copper Hills prospect may indicate that similar mineralizing processes occurred there as well.

This initial investigation has defined a significant cause to formulate a follow-up exploration program at this property.

5.0 References

Watrus, James, 1998, A Regional Geochemical Atlas For Part of Socorro County, New Mexico

- Wilkinson William H., Jr., March 1976, Geology of the Tres Montosas-Cat Mountain Area, Socorro County, New Mexico
- Wright James L., January 18, 2008, Copper Hills Property Ground Magnetic Survey GIS Database

Appendix A – Soil Survey Assay Results

Units of concentration

Element	Unit
Au	ppm
Ag	ppm
Al	%
As	ppm
В	ppm
Ва	ppm
Ве	ppm
Bi	ppm
Са	%
Cd	ppm
Со	ppm
Cr	ppm
Cu	ppm
Fe	%
Ga	ppm
Hg	ppm
К	%
La	ppm
Mg	%
Mn	ppm
Мо	ppm
Na	%
Ni	ppm
Р	ppm
Pb	ppm
S	%
Sb	ppm
Sc	ppm
Sr	ppm
Th	ppm
Ti	%
TI	ppm
U	ppm
V	ppm
W	ppm
Zn	ppm

Sample	Wt	Au	Ag	AI	As	В	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	ĸ
50000	0.14	0.003	<0.2	1.28	6	<10	160	0.6	<2	0.37	<0.5	8	18	12	2.92	<10	<1	0.12
50005	0.14	0.003	<0.2	1.19	4	<10	220	0.6	<2	0.33	<0.5	8	17	15	2.44	<10	<1	0.19
50010	0.13	0.004	<0.2	1.29	5	<10	210	0.7	<2	0.5	<0.5	6	14	13	2.24	<10	<1	0.19
50015	0.15	0.004	<0.2	1.27	4	<10	230	0.7	<2	0.3	<0.5	6	16	12	2.31	<10	<1	0.18
50020	0.14	0.005	<0.2	1.59	6	<10	390	0.8	<2	1.44	<0.5	7	14	13	2.34	<10	<1	0.19
50025	0.11	0.012	0.2	1.96	11	<10	810	0.9	<2	4.21	<0.5	6	15	15	2.26	<10	<1	0.2
50030	0.08	0.01	0.2	1.87	7	<10	270	1.1	<2	0.53	<0.5	11	16	22	2.83	10	<1	0.27
50035	0.13	0.01	<0.2	2	6	10	380	0.9	<2	3.17	<0.5	7	13	20	2.39	10	<1	0.19
50040	0.11	0.005	<0.2	1.49	5	<10	210	0.7	<2	0.38	<0.5	7	17	13	2.46	10	<1	0.16
50045	0.11	0.004	<0.2	1.49	7	<10	250	0.7	<2	0.4	<0.5	7	17	14	2.27	<10	<1	0.2
50050	0.12	0.008	<0.2	1.45	7	<10	340	0.7	<2	1.95	<0.5	6	16	13	2.11	<10	<1	0.27
50055	0.13	0.004	<0.2	1.4	4	<10	230	0.7	<2	0.32	<0.5	8	16	14	2.07	<10	<1	0.23
50060	0.14	0.004	<0.2	1.46	6	<10	250	0.8	<2	0.29	<0.5	9	16	17	2.12	<10	<1	0.24
50065	0.14	0.007	<0.2	1.38	5	<10	260	0.7	<2	0.27	<0.5	9	17	16	2.33	<10	<1	0.22
50070	0.13	0.004	<0.2	1.34	5	<10	210	0.7	<2	0.25	<0.5	8	17	15	2.26	<10	<1	0.24
50080	0.14	0.004	<0.2	1.31	3	<10	180	0.7	<2	0.42	<0.5	7	18	12	2.05	<10	<1	0.29
50085	0.13	0.006	<0.2	1.38	3	<10	190	0.7	<2	0.32	<0.5	8	19	13	2.12	<10	<1	0.23
50090	0.15	0.004	<0.2	1.42	3	<10	220	0.7	<2	0.34	<0.5	8	17	16	2.16	<10	<1	0.27
50095	0.13	0.004	<0.2	1.48	5	<10	180	0.7	<2	0.5	<0.5	8	23	16	2.19	<10	<1	0.27
50100	0.12	0.008	<0.2	1.42	5	<10	150	0.7	<2	0.42	<0.5	8	27	15	2.48	<10	<1	0.23
55000	0.15	0.003	<0.2	1.27	8	<10	220	0.6	<2	0.47	<0.5	8	18	16	2.92	<10	<1	0.13
55005	0.1	0.007	<0.2	1.43	<2	<10	180	0.7	<2	0.79	0.5	9	16	17	2.57	<10	<1	0.2
55010	0.15	0.002	<0.2	1.16	<2	<10	160	0.6	<2	0.32	<0.5	7	15	16	2.23	<10	<1	0.17
55015	0.1	0.007	<0.2	1.21	<2	<10	130	0.7	<2	0.38	0.5	9	17	16	2.67	10	<1	0.14
55020	0.13	0.007	<0.2	1.05	3	<10	170	0.6	<2	0.26	<0.5	7	13	13	2.13	<10	<1	0.16
55025	0.12	0.005	0.2	1.47	<2	<10	310	0.8	<2	0.59	1	10	15	18	2.44	10	<1	0.2
55030	0.13	0.009	<0.2	1.69	2	<10	420	0.8	<2	2.65	1	8	13	19	2.35	10	<1	0.2
55035	0.13	0.009	<0.2	1.66	<2	<10	280	0.9	<2	0.56	0.7	10	13	19	2.7	10	<1	0.2
55040	0.13	0.008	<0.2	1.22	<2	<10	200	0.7	<2	0.31	<0.5	8	15	17	2.45	10	<1	0.17
55045	0.11	0.007	<0.2	1.1	<2	<10	170	0.6	<2	0.26	<0.5	7	16	14	2.31	<10	<1	0.15
55050	0.12	0.004	<0.2	1.06	<2	<10	180	0.6	<2	0.25	0.5	7	15	14	2.08	<10	<1	0.18
55055	0.15	0.004	<0.2	1.18	<2	<10	210	0.6	<2	0.27	0.5	9	16	16	2.15	<10	<1	0.21
55060	0.17	0.002	<0.2	1.37	<2	<10	210	0.7	<2	0.45	<0.5	7	18	14	2.4	<10	<1	0.21
55065	0.13	0.004	<0.2	1.22	2	<10	210	0.6	<2	0.33	<0.5	8	18	15	2.27	<10	<1	0.2
55070	0.13	0.004	<0.2	1.3	<2	<10	180	0.7	<2	0.3	<0.5	7	21	14	2.31	<10	<1	0.21
55080	0.08	0.007	<0.2	1.79	5	<10	200	0.8	<2	0.6	<0.5	6	21	15	2.41	10	<1	0.3
55085	0.11	0.007	<0.2	1.8	<2	<10	200	0.9	<2	0.45	<0.5	7	21	15	2.32	10	1	0.29
55090	0.14	0.004	<0.2	1.79	<2	10	230	0.8	<2	3.68	<0.5	9	19	19	2.02	<10	<1	0.37
55095	0.15	0.004	<0.2	2.07	4	<10	320	1.1	<2	0.46	1.1	12	19	23	2.44	10	<1	0.42
55100	0.14	0.006	< 0.2	1.54	<2	<10	180	0.8	<2	0.47	< 0.5	8	27	18	2.39	<10	<1	0.27
60000	0.14	0.005	< 0.2	1.41	2	<10	140	0.7	<2	0.55	<0.5	9	17	16	2.65	<10	<1	0.16
60005	0.14	0.004	<0.2	1.32	<2	<10	120	0.7	<2	0.39	<0.5	8	18	16	3.06	<10	<1	0.13
60010	0.15	0.004	<0.2	1.22	4	<10	120	0.7	<2	0.41	<0.5	9	16	17	2.88	<10	<1	0.17
60015	0.14	0.004	<0.2	1.39	3	<10	300	0.8	<2	2.51	<0.5	7	14	16	2.36	<10	<1	0.18
60020	0.14	0.004	< 0.2	0.9	<2	<10	110	0.5	<2	0.27	<0.5	6	14	11	2.46	<10	<1	0.12
60025	0.16	0.005	< 0.2	1.62	<2	<10	390	0.9	<2	0.4	1.1	11	16	18	2.31	10	<1	0.28
60030	0.13	0.008	< 0.2	1.19	<2	<10	280	0.6	<2	0.33	0.5		15	13	2.5	<10	<1	0.15
60035	0.1/	0.008	< 0.2	1.44	5	<10	1/0	0.7	<2	0.55	0.5	8	14	16	2.41	10	<1	0.2
60040	0.15	0.009	< 0.2	1.58	7	<10	2/0	0.9	<2	0.44	0.5	9	18	20	3.04	10	<1	0.21
60045	0.15	0.005	< 0.2	1.25	2	<10	180	0.7	<2	0.37	0.5		16	14	2.46	10	<1	0.15
60050	0.16	0.005	< 0.2	1.03	2	<10	160	0.6	<2	0.25	<0.5		16	12	2.34	<10	<1	0.13
60055	0.15	0.004	< 0.2	1.08	4	<10	180	0.6	<2	0.32	0.5	8	19	13	2.1	<10	<1	0.15
60060	0.16	0.004	< 0.2	1.18	<2	<10	240	0.6	<2	0.32	<0.5		18	11	2.15	<10	<1	0.13
00065	0.15	0.005	<0.2	1.41	<2	<10	∠40	U.7	<2	0.65	<0.5	8	-17	15	2.38	<10	<1	0.23

Sample	Wt	Au	Ag	AI	As	В	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	<u> </u>
60070	0.15	0.004	<0.2	1.44	<2	<10	230	0.7	<2	0.45	<0.5	6	23	15	2.39	10	1	0.23
60080	0.14	0.004	<0.2	1.18	<2	<10	150	0.6	<2	0.27	<0.5	8	23	14	2.3	<10	<1	0.18
60085	0.14	0.004	<0.2	1.46	4	<10	160	0.7	<2	0.37	<0.5	8	24	15	2.52	10	<1	0.23
60090	0.13	0.004	<0.2	1.71	5	<10	180	0.8	<2	0.4	<0.5	22	41	46	2.42	10	<1	0.28
60095	0.17	0.005	<0.2	1.82	3	10	160	0.8	<2	1.53	<0.5	9	27	18	2.46	10	<1	0.35
60100	0.15	0.003	<0.2	1.79	4	10	190	0.8	<2	0.5	<0.5	9	26	18	2.42	10	<1	0.33
65000	0.14	0.004	<0.2	1.02	6	<10	110	0.5	<2	0.25	<0.5	8	17	15	2.39	<10	<1	0.25
65005	0.11	0.004	<0.2	1.15	4	<10	110	0.5	<2	0.33	<0.5	9	18	16	2.94	<10	<1	0.14
65010	0.12	0.004	<0.2	1.39	2	<10	130	0.6	<2	0.55	<0.5	9	15	22	2.63	<10	<1	0.18
65015	0.17	0.004	<0.2	1.29	<2	<10	120	0.6	<2	0.49	<0.5	9	15	15	2.96	<10	<1	0.16
65020	0.13	0.005	<0.2	1.6	4	<10	130	0.9	<2	1.93	<0.5	11	16	20	3.33	10	<1	0.23
65025	0.09	0.008	<0.2	1.85	4	<10	560	0.9	<2	0.47	0.6	10	20	17	3.16	10	<1	0.22
65030	0.13	0.003	<0.2	1.4	2	<10	260	0.8	<2	0.29	1	10	15	20	2.41	<10	<1	0.24
65035	0.08	0.008	<0.2	1.45	5	<10	210	0.7	<2	0.41	0.5	9	16	19	2.43	10	<1	0.18
65040	0.15	0.004	<0.2	1.25	7	<10	160	0.7	<2	0.35	0.5	9	18	17	2.78	10	<1	0.17
65045	0.13	0.004	<0.2	1.26	2	<10	220	0.7	<2	0.28	0.6	9	16	18	2.27	<10	<1	0.22
65050	0.16	0.004	<0.2	1.72	6	<10	300	0.8	<2	1.7	<0.5	8	19	17	2.65	10	<1	0.26
65055	0.18	0.004	<0.2	1.25	2	<10	240	0.6	<2	0.44	<0.5	7	18	13	2.75	<10	<1	0.17
65060	0.17	0.004	<0.2	1.43	5	<10	280	0.6	<2	1.18	<0.5	7	16	25	2.26	<10	<1	0.25
65065	0.13	0.003	<0.2	1.5	5	10	310	0.6	<2	1.29	<0.5	8	17	17	2.3	10	<1	0.28
65070	0.13	0.005	<0.2	1.53	3	10	280	0.6	<2	2.37	<0.5	7	21	17	2.25	<10	<1	0.29
65080	0.17	0.004	<0.2	1.67	2	10	200	0.7	<2	1.09	<0.5	8	26	18	2.56	10	<1	0.29
65085	0.15	0.004	<0.2	1.29	4	<10	160	0.6	<2	0.32	<0.5	8	26	17	2.6	<10	<1	0.21
65090	0.17	0.004	<0.2	1.3	4	<10	130	0.6	<2	0.28	<0.5	8	30	16	2.62	<10	<1	0.18
65095	0.15	0.004	<0.2	1.42	5	<10	140	0.6	<2	0.41	<0.5	8	28	16	2.66	<10	<1	0.22
65100	0.12	0.004	< 0.2	1.72	5	<10	150	0.7	<2	0.48	<0.5	8	28	17	2.57	10	<1	0.28
70000	0.17	0.004	<0.2	1.45	5	<10	170	0.6	<2	0.53	<0.5	8	20	13	3.01	<10	<1	0.17
70005	0.15	0.004	<0.2	1.17	4	<10	130	0.5	<2	0.31	< 0.5	8	19	12	2.79	<10	<1	0.13
70010	0.14	0.003	<0.2	1.13	2	<10	110	0.5	<2	0.38	<0.5	9	21	14	3.05	<10	<1	0.15
70015	0.13	0.004	<0.2	1.3	4	<10	120	0.6	<2	0.62	<0.5	9	16	15	2.81	<10	<1	0.19
70020	0.12	0.004	<0.2	1.36	<2	<10	130	0.6	<2	0.42	<0.5	9	16	16	2.82	<10	<1	0.15
70025	0.12	0.01	<0.2	1.64	3	<10	850	0.9	<2	0.59	1	9	15	24	2.59	10	<1	0.25
70030	0.13	0.006	0.2	1.95	5	<10	320	0.8	<2	0.68	<0.5	14	19	35	3.32	10	<1	0.2
70035	0.18	0.005	<0.2	1.89	6	10	180	0.8	2	2.45	<0.5	11	21	29	2.96	10	<1	0.24
70040	0.15	0.007	<0.2	1.74	2	<10	280	0.9	<2	0.44	0.5	13	20	23	3.22	10	<1	0.19
70045	0.1	0.004	<0.2	1.89	9	<10	230	1.1	<2	0.66	1.3	15	48	29	3.06	10	<1	0.28
70050	0.09	0.004	<0.2	2.09	6	<10	310	1	<2	0.51	0.8	11	25	27	2.45	10	<1	0.37
70055	0.13	0.003	<0.2	1.69	5	<10	310	0.9	<2	0.38	1.1	12	17	22	2.31	10	<1	0.36
70060	0.14	0.003	<0.2	1.52	5	<10	230	0.8	<2	0.32	0.5	9	18	18	2.36	<10	<1	0.26
70065	0.1	0.004	0.2	1.2	5	<10	200	0.6	<2	0.35	0.7	7	16	15	2.24	<10	<1	0.2
70070	0.12	0.009	<0.2	1.81	5	<10	280	0.9	<2	0.54	0.7	9	18	16	2.38	10	<1	0.32
70080	0.13	0.005	<0.2	1.82	3	10	220	0.8	<2	1.72	0.6	9	26	18	2.44	10	1	0.31
70085	0.15	0.004	<0.2	1.83	7	10	210	0.8	<2	3.04	0.5	9	24	17	2.6	10	<1	0.29
70090	0.06	0.004	<0.2	1.75	3	10	190	0.8	<2	0.81	0.6	8	26	16	2.43	10	<1	0.28
70095	0.12	0.004	<0.2	1.61	7	10	180	0.7	<2	3.32	0.5	8	26	15	2.33	10	<1	0.29
70100	0.11	0.004	<0.2	1.68	6	<10	170	0.7	<2	0.53	<0.5	8	28	14	2.48	10	1	0.27
75000	0.15	0.004	<0.2	1.19	<2	<10	170	0.6	<2	0.27	0.6	9	16	14	2.33	<10	1	0.18
75005	0.17	0.004	<0.2	1.02	2	<10	120	0.5	<2	0.3	0.6	7	15	12	2.44	<10	1	0.16
75010	0.15	0.004	<0.2	1.13	4	<10	110	0.5	<2	0.41	<0.5	9	15	10	3.14	<10	<1	0.14
75015	0.17	0.004	<0.2	1.14	6	<10	130	0.5	<2	0.34	<0.5	8	16	10	2.91	<10	1	0.15
75020	0.12	0.008	<0.2	1.47	4	10	240	0.8	<2	2.17	0.5	9	13	16	2.5	<10	1	0.23
75025	0.13	0.006	<0.2	1.75	8	<10	730	1	<2	0.64	1.4	9	17	11	2.77	10	<1	0.2
75030	0.13	0.004	<0.2	1.79	5	<10	260	0.8	<2	0.66	0.6	10	23	15	3.22	10	1	0.2
75035	0.18	0.009	<0.2	1.81	6	<10	490	0.9	<2	0.99	1.2	10	30	18	2.86	10	<1	0.21

Sample	Wt	Au	Ag	AI	As	В	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	<u> </u>
75040	0.15	0.007	<0.2	1.81	7	<10	350	0.8	<2	2.56	1	9	32	16	2.44	10	<1	0.23
75045	0.33	0.004	<0.2	1.72	9	<10	290	0.8	<2	0.68	0.7	8	27	13	2.61	10	<1	0.27
75050	0.14	0.004	<0.2	1.33	5	<10	240	0.7	<2	0.33	1.1	8	16	15	2.23	<10	<1	0.23
75055	0.16	0.004	<0.2	1.73	5	<10	250	0.8	<2	0.45	0.6	8	20	13	2.86	10	1	0.27
75060	0.13	0.004	<0.2	1.5	4	<10	270	0.7	<2	0.67	0.5	7	18	13	2.54	10	1	0.25
75065	0.15	0.004	<0.2	1.59	4	<10	270	0.7	<2	0.59	0.6	7	18	13	2.48	10	<1	0.29
75070	0.12	0.004	<0.2	1.64	4	<10	220	0.7	<2	0.4	0.5	7	20	14	2.43	10	1	0.28
75080	0.11	0.004	<0.2	1.66	4	<10	210	0.7	<2	0.46	0.6	8	24	14	2.44	10	<1	0.28
75085	0.12	0.003	<0.2	1.59	4	<10	200	0.8	<2	0.44	<0.5	9	24	14	2.59	<10	<1	0.25
75090	0.15	0.005	<0.2	1.6	5	<10	190	0.7	<2	0.44	0.6	9	23	15	2.33	<10	1	0.27
75095	0.15	0.004	<0.2	1.52	3	<10	160	0.7	<2	0.34	0.5	7	27	12	2.55	<10	<1	0.21
75100	0.1	0.003	<0.2	1.64	6	<10	170	0.7	<2	0.49	0.5	6	27	14	2.46	10	<1	0.25
80000	0.14	0.003	<0.2	1.16	2	<10	190	0.5	<2	0.33	<0.5	8	20	9	3.25	10	1	0.16
80005	0.11	0.003	<0.2	0.98	3	<10	120	0.5	<2	0.35	0.5	7	16	10	2.57	<10	1	0.19
80010	0.14	0.003	<0.2	1.26	2	<10	140	0.6	<2	0.35	0.5	8	19	10	3.16	10	<1	0.15
80015	0.17	0.003	<0.2	1.27	4	<10	180	0.6	<2	0.3	0.5	7	15	11	2.26	<10	<1	0.17
80020	0.15	0.005	<0.2	1.07	<2	<10	140	0.6	<2	0.34	0.5	8	13	12	2.36	<10	<1	0.16
80025	0.15	0.004	<0.2	1.49	5	<10	200	0.9	<2	0.55	0.9	9	14	18	2.87	10	<1	0.18
80030	0.12	0.005	<0.2	1.88	5	10	800	0.9	<2	1.75	1.2	13	17	22	2.88	10	<1	0.25
80035	0.13	0.006	<0.2	1.98	6	<10	240	1	<2	0.58	1	12	21	22	3.3	10	1	0.23
80040	0.24	0.004	<0.2	1.56	4	<10	160	1	<2	0.42	0.7	12	15	34	3.85	10	<1	0.2
80045	0.15	0.003	<0.2	1.31	<2	<10	230	0.7	<2	0.3	<0.5	8	15	15	2.07	<10	1	0.18
80050	0.16	0.003	<0.2	1.18	<2	<10	210	0.6	2	0.26	0.5	9	15	14	2.15	<10	<1	0.18
80055	0.14	0.004	<0.2	1	<2	<10	180	0.5	<2	0.23	<0.5	7	13	12	1.81	<10	<1	0.17
80060	0.12	0.006	<0.2	1.28	3	<10	230	0.7	3	0.26	0.7	9	14	16	1.9	<10	<1	0.21
80065	0.13	0.004	<0.2	1.38	<2	<10	210	0.7	<2	0.78	<0.5	8	15	16	2.16	<10	<1	0.22
80070	0.18	0.004	<0.2	1.45	4	10	260	0.6	<2	4.47	<0.5	7	15	14	2.03	<10	<1	0.28
80080	0.13	0.004	<0.2	1.65	<2	<10	230	0.8	2	0.47	<0.5	8	16	15	2.17	10	<1	0.26
80085	0.14	0.003	<0.2	1.43	2	<10	240	0.7	<2	0.34	0.7	9	15	17	1.91	10	<1	0.25
80090	0.15	0.004	<0.2	1.67	<2	<10	290	0.9	<2	0.37	0.9	12	16	21	2.07	10	<1	0.3
80095	0.16	0.004	<0.2	2.05	<2	<10	320	1	3	0.48	0.8	12	18	23	2.26	10	1	0.38
80100	0.14	0.006	<0.2	1.43	<2	<10	190	0.7	2	0.33	<0.5	8	19	15	1.95	<10	<1	0.24
80105	0.14	0.004	<0.2	1.73	7	10	180	0.8	3	1.7	0.5	9	24	16	2.14	10	<1	0.31
80110	0.13	0.003	<0.2	1.37	<2	<10	160	0.7	<2	0.36	<0.5	7	25	15	2.05	<10	1	0.18
80115	0.14	0.003	<0.2	1.59	<2	<10	160	0.8	<2	0.41	<0.5	9	31	18	2.2	10	<1	0.21
80120	0.15	0.003	<0.2	1.77	3	10	160	0.8	<2	3.87	<0.5	10	38	19	2.26	10	<1	0.22
80125	0.15	0.004	<0.2	1.66	4	10	160	0.8	<2	4.73	<0.5	10	48	22	2.32	10	<1	0.19
85000	0.16	0.004	<0.2	1.64	2	10	200	0.8	2	3.09	<0.5	9	29	19	2.07	<10	<1	0.24
85005	0.18	0.004	<0.2	1.09	<2	<10	170	0.5	<2	0.32	<0.5	7	16	12	2.43	10	<1	0.12
85010	0.18	0.009	<0.2	0.95	<2	<10	120	0.5	<2	0.29	<0.5	7	14	12	2.25	<10	<1	0.13
85015	0.18	0.003	<0.2	1.27	<2	<10	120	0.6	2	0.49	<0.5	8	14	14	2.37	<10	<1	0.16
85020	0.16	0.003	<0.2	1.12	<2	<10	110	0.6	2	0.47	<0.5	8	14	13	2.42	<10	<1	0.14
85025	0.13	0.003	<0.2	1.51	<2	<10	150	0.8	2	0.4	<0.5	9	17	15	2.78	<10	<1	0.17
85030	0.17	0.003	<0.2	1.22	2	<10	180	0.7	<2	1.25	0.6	9	13	15	2.51	10	1	0.16
85035	0.12	0.006	<0.2	1.48	<2	<10	480	0.8	3	0.63	1	11	16	25	2.35	10	1	0.18
85040	0.19	0.005	<0.2	1.67	<2	10	300	0.9	4	3.07	0.7	9	16	32	2.38	10	1	0.18
85045	0.16	0.007	<0.2	1.33	<2	<10	230	0.7	2	0.34	0.6	9	14	14	2.11	10	<1	0.17
85050	0.11	0.006	<0.2	1.17	<2	<10	210	0.6	2	0.29	<0.5	8	17	13	1.99	<10	<1	0.15
85055	0.16	0.003	<0.2	1.04	<2	<10	210	0.6	<2	0.23	0.8	7	17	13	1.97	<10	<1	0.15
85060	0.16	0.003	<0.2	0.97	<2	<10	160	0.6	2	0.21	0.5	6	15	12	1.83	<10	<1	0.15
85065	0.14	0.002	<0.2	1.08	<2	<10	190	0.6	2	0.39	<0.5	7	14	14	1.92	<10	<1	0.18
85070	0.12	0.003	<0.2	1.04	<2	<10	150	0.5	2	0.29	<0.5	6	16	12	2.18	<10	<1	0.16
85080	0.17	0.003	<0.2	1.05	<2	<10	150	0.5	<2	0.25	<0.5	6	15	12	1.96	<10	1	0.15
85085	0.11	0.003	<0.2	1.43	<2	<10	200	0.7	2	0.53	<0.5	7	16	14	1.95	<10	<1	0.25

Sample	Wt	Au	Ag	AI	As	В	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	<u> </u>
85090	0.13	0.002	<0.2	1.36	<2	<10	200	0.7	3	0.31	0.5	9	19	16	1.96	<10	<1	0.25
85095	0.15	0.005	<0.2	1.46	<2	10	150	0.6	<2	0.62	<0.5	10	20	21	2.47	10	<1	0.23
85100	0.14	0.004	<0.2	1.43	<2	<10	160	0.7	3	0.37	<0.5	8	24	16	2.32	<10	<1	0.25
85105	0.14	0.004	<0.2	1.69	8	10	160	0.9	<2	0.73	<0.5	8	28	19	2.23	<10	<1	0.25
85110	0.16	0.004	<0.2	1.32	4	<10	140	0.7	<2	0.38	<0.5	9	39	18	2.34	<10	<1	0.18
85115	0.15	0.007	<0.2	1.54	3	<10	160	0.8	<2	0.46	<0.5	8	39	17	2.36	10	<1	0.2
85120	0.14	0.002	<0.2	1.34	4	<10	150	0.7	<2	0.36	<0.5	8	37	17	2.35	<10	<1	0.19
85125	0.13	0.003	<0.2	1.44	3	<10	150	0.7	<2	0.75	<0.5	7	30	16	2.19	<10	<1	0.21
90000	0.11	0.003	<0.2	1.21	5	10	200	0.7	<2	1.57	<0.5	8	14	17	2.28	<10	<1	0.22
90005	0.16	0.004	<0.2	1.41	4	10	170	0.8	<2	3.96	<0.5	8	12	17	2.45	<10	<1	0.21
90010	0.2	0.002	<0.2	1.02	2	<10	110	0.5	<2	0.29	<0.5	9	32	20	2.82	<10	<1	0.11
90015	0.16	0.003	<0.2	1.04	3	<10	140	0.5	<2	0.26	<0.5	7	19	11	2.41	<10	<1	0.15
90020	0.17	0.001	<0.2	0.92	3	<10	140	0.5	<2	0.24	<0.5	7	15	12	1.94	<10	<1	0.16
90025	0.16	0.008	<0.2	1.59	4	<10	440	0.9	<2	0.55	0.5	9	17	16	2.85	10	<1	0.21
90030	0.18	0.011	0.3	1.54	6	<10	790	1	<2	1.27	1.6	9	20	19	2.28	10	<1	0.23
90035	0.19	0.005	0.2	0.36	6	<10	40	<0.5	<2	0.07	<0.5	1	4	6	0.62	<10	<1	0.21
90040	0.15	0.006	<0.2	1.72	2	<10	260	1	<2	0.54	0.5	11	20	21	2.94	10	<1	0.23
90045	0.14	0.003	<0.2	1.09	5	<10	180	0.6	<2	0.28	<0.5	8	17	13	2.23	<10	<1	0.17
90050	0.14	0.002	<0.2	1.01	4	<10	170	0.6	<2	0.24	<0.5	7	16	12	1.94	<10	<1	0.16
90055	0.15	0.003	<0.2	0.86	4	<10	130	0.5	<2	0.22	<0.5	6	16	12	2	<10	<1	0.12
90060	0.14	0.005	<0.2	0.94	3	<10	140	0.5	<2	0.23	<0.5	6	15	12	1.85	<10	<1	0.15
90065	0.15	0.003	<0.2	1.22	4	<10	190	0.6	<2	0.27	<0.5	8	16	14	2.08	<10	<1	0.2
90070	0.16	0.003	<0.2	1.35	5	<10	210	0.7	<2	0.31	<0.5	9	18	15	2.2	<10	<1	0.26
90075	0.14	0.004	<0.2	1.36	4	<10	220	0.7	<2	0.46	0.5	9	17	17	1.91	<10	<1	0.31
90080	0.12	0.003	<0.2	1.43	4	<10	200	0.7	<2	0.34	<0.5	8	21	15	2.04	<10	<1	0.25
90085	0.11	0.006	<0.2	1.5	2	<10	170	0.7	<2	0.35	<0.5	8	25	16	2.28	<10	<1	0.23
90090	0.12	0.003	<0.2	1.72	7	<10	190	0.8	<2	0.53	<0.5	9	26	16	2.56	<10	<1	0.24
90095	-0.02	0.003	<0.2	1.31	3	<10	140	0.7	<2	0.35	<0.5	8	28	17	2.38	<10	<1	0.18
90100	0.17	0.003	<0.2	1.33	5	<10	140	0.7	<2	0.36	<0.5	8	32	16	2.32	<10	<1	0.2
90105	0.13	0.003	<0.2	1.53	4	<10	160	0.8	<2	0.44	<0.5	8	37	17	2.35	<10	<1	0.22
90110	0.11	0.003	<0.2	1.43	3	<10	160	0.7	<2	0.4	<0.5	9	39	16	2.45	<10	<1	0.19
90115	0.13	0.003	<0.2	1.33	4	<10	150	0.7	<2	0.34	<0.5	9	36	17	2.28	<10	<1	0.19
90120	0.12	0.003	<0.2	1.11	3	<10	140	0.6	<2	0.28	<0.5	8	32	15	2.11	<10	<1	0.19
90125	0.13	0.003	<0.2	1.16	3	<10	160	0.6	<2	0.26	<0.5	9	27	16	2.06	<10	<1	0.23
95000	0.15	0.002	< 0.2	1.08	4	<10	150	0.6	<2	0.38	<0.5	8	15	14	2.42	<10	<1	0.16
95005	0.11	0.002	< 0.2	0.13	3	10	<10	< 0.5	<2	0.01	< 0.5	<1	5	2	0.44	<10	<1	0.05
95010	0.14	0.003	< 0.2	1.05	4	<10	130	0.5	<2	0.28	< 0.5	/	16	11	2.32	<10	<1	0.17
95015	0.14	0.003	< 0.2	1.09	4	<10	110	0.6	<2	1.66	< 0.5	/	14	14	2.38	<10	<1	0.18
95020	0.13	0.003	< 0.2	1.19	4	<10	240	0.7	<2	0.28	<0.5	/	18	13	2.35	<10	<1	0.17
95025	0.16	0.004	< 0.2	1.6	4	<10	540	0.9	<2	0.94	< 0.5	10	17	20	2.5	10	<1	0.22
95030	0.15	0.007	< 0.2	1.64	4	10	1190	1.1	<2	1.69	3.4	9	1/	22	2.21	10	<1	0.25
95035	0.16	0.004	< 0.2	1.34	3	<10	360	0.8	<2	0.3	0.6	8	24	15	2.64	10	<1	0.16
95040	0.15	0.004	< 0.2	1.58	3	<10	210	0.8	<2	0.42	< 0.5	10	22	20	3.11	10	<1	0.17
95045	0.13	0.003	< 0.2	1.27	4	<10	240	0.7	<2	0.27	<0.5	8	20	13	2.38	10	<1	0.15
95050	0.15	0.007	< 0.2	1.46	6	<10	210	1.2	<2	0.44	1	10	16	20	2.2	10	<1	0.2
95055	0.15	0.003	< 0.2	1.1	3	<10	150	0.6	<2	0.26	< 0.5	6	1/	11	2.11	<10	<1	0.13
95060	0.15	0.003	< 0.2		4	<10	160	0.6	<2	0.26	<0.5	6	16	11	1.85	<10	<1	0.16
95065	0.17	0.003	< 0.2	1.23	5	<10	1/0	0.6	<2	0.27	<0.5	/	16	13	1.9	<10	<1	0.22
95070	0.15	0.003	< 0.2	1.42	4	<10	220	0.7	<2	0.26	<0.5	9	17	17	1.95	<10	<1	0.23
95075	0.16	0.004	< 0.2	1.57	2	<10	210	0.8	<2	0.49	<0.5	8	23	15	2.14	<10	<1	0.28
95080	0.16	0.003	< 0.2	1.6	3	<10	200	0.8	<2	0.5	<0.5	8	26	15	2.22	10	<1	0.23
95085	0.18	0.003	<0.2	1.51	3	10	1/0	0.7	< <u>2</u>	0.72	<0.5	8	25	16	2.15	< 10	<1	0.26
95090	0.14	0.003	< 0.2	1.29	4	<10	160	0.6	<2	0.3/	<0.5	ð N	27	15	2.38	<10	<1	0.19
92092	0.15	0.003	<0.2	1.49	6	<10	150	U./	<2	0.43	<0.5	9	25	17	2.52	10	<1	0.23

Sample	Wt	Au	Ag	AI	As	в	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	κ
95100	0.11	0.003	<0.2	1.5	3	<10	160	0.7	<2	0.44	<0.5	9	34	17	2.39	10	<1	0.25
95105	0.13	0.003	<0.2	1.57	5	<10	160	0.8	<2	0.51	<0.5	8	37	16	2.39	10	<1	0.22
95110	0.14	0.003	<0.2	1.46	2	<10	150	0.7	<2	0.36	<0.5	8	40	15	2.38	<10	<1	0.22
95115	0.14	0.003	<0.2	1.29	6	<10	140	0.6	<2	0.29	<0.5	8	38	14	2.34	<10	<1	0.17
95120	0.13	0.002	<0.2	1.37	4	<10	150	0.7	<2	0.34	<0.5	8	32	15	2.19	<10	<1	0.24
95125	0.13	0.004	<0.2	1.17	2	<10	130	0.6	<2	0.31	<0.5	7	27	15	2.01	<10	<1	0.21
100000	0.14	0.004	<0.2	1.37	3	10	590	0.6	<2	4.01	<0.5	8	13	14	1.97	<10	<1	0.2
100005	0.14	0.003	<0.2	0.89	2	<10	120	<0.5	<2	0.25	<0.5	7	19	11	2.67	<10	<1	0.11
100010	0.14	0.003	<0.2	0.98	3	<10	130	0.5	<2	0.22	<0.5	7	16	11	2.18	<10	<1	0.14
100015	0.16	0.002	<0.2	1.05	3	<10	150	0.5	<2	0.2	<0.5	6	15	10	1.89	<10	<1	0.14
100020	0.16	0.004	<0.2	1.38	4	<10	270	0.8	<2	0.34	0.6	8	16	15	2.43	10	<1	0.2
100025	0.15	0.003	<0.2	1.48	5	<10	380	0.8	<2	0.4	0.6	8	18	15	2.29	<10	<1	0.21
100030	0.16	0.003	<0.2	1.51	5	<10	540	1	<2	0.3	1.5	8	17	20	2.04	10	<1	0.21
100035	0.13	0.004	<0.2	1.59	4	<10	530	1	<2	0.43	1.1	10	27	18	2.38	10	<1	0.2
100040	0.12	0.002	<0.2	1.3	3	<10	210	0.7	<2	0.28	<0.5	8	26	12	2.79	10	<1	0.13
100045	0.13	0.003	<0.2	1.57	6	<10	260	0.9	<2	0.64	0.9	8	15	19	1.93	10	<1	0.2
100050	0.15	0.002	<0.2	1.46	4	<10	220	0.8	<2	0.62	<0.5	7	15	15	1.98	<10	<1	0.23
100055	0.16	0.005	<0.2	0.77	3	<10	100	<0.5	<2	0.22	<0.5	6	16	10	2.04	<10	<1	0.11
100060	0.15	0.002	<0.2	1.02	3	<10	140	0.5	<2	0.23	<0.5	6	15	11	1.75	<10	<1	0.14
100065	0.15	0.003	<0.2	1.3	3	<10	180	0.6	<2	0.27	<0.5	6	16	12	1.85	<10	<1	0.2
100070	0.14	0.002	<0.2	1.32	3	<10	200	0.7	<2	0.29	<0.5	7	15	13	1.7	<10	<1	0.22
100075	0.13	0.002	<0.2	1.48	2	<10	240	0.8	<2	0.44	<0.5	8	20	16	1.89	<10	1	0.25
100080	0.12	0.004	<0.2	1.49	3	<10	210	0.7	<2	0.46	<0.5	7	23	15	2	<10	<1	0.23
100085	0.14	0.003	<0.2	1.39	<2	10	190	0.7	<2	1.54	<0.5	7	23	16	1.89	<10	<1	0.26
100090	0.13	0.003	<0.2	1.5	<2	<10	190	0.8	<2	0.41	<0.5	9	27	16	2.06	10	1	0.25
100095	0.11	0.003	<0.2	1.61	3	10	200	0.8	<2	1.4	<0.5	9	34	17	2.23	<10	1	0.21
100100	0.14	0.003	<0.2	1.34	5	10	160	0.7	<2	3.34	<0.5	9	28	17	2.18	<10	1	0.21
100105	0.14	0.003	<0.2	1.38	3	<10	160	0.7	<2	0.82	<0.5	9	36	15	2.31	10	2	0.22
100110	0.14	0.003	<0.2	1.14	<2	<10	150	0.6	<2	0.29	<0.5	7	35	13	2.19	<10	<1	0.16
100115	0.1	0.003	<0.2	1.3	3	<10	150	0.7	<2	0.31	<0.5	7	31	13	2.03	<10	<1	0.18
100120	0.16	0.005	<0.2	2.06	4	<10	300	1	<2	0.5	0.5	11	20	35	2.23	10	<1	0.38
100125	0.16	0.003	<0.2	1.35	2	10	150	0.7	<2	3.55	<0.5	8	30	20	1.94	<10	<1	0.26
105000	0.14	0.006	<0.2	1.41	<2	<10	260	0.7	<2	0.38	<0.5	7	16	13	2.09	10	1	0.2
105005	0.12	0.003	<0.2	1.01	<2	<10	160	0.5	<2	0.25	<0.5	6	15	10	1.96	<10	1	0.18
105010	0.14	0.003	<0.2	1.01	2	<10	160	0.5	<2	0.21	<0.5	5	16	9	1.82	<10	1	0.13
105015	0.14	0.003	<0.2	1.12	<2	<10	170	0.6	2	0.24	<0.5	6	17	11	2	<10	<1	0.15
105020	0.12	0.004	<0.2	1.33	2	<10	260	0.7	<2	1.34	<0.5	7	16	15	1.89	<10	<1	0.21
105025	0.14	0.004	<0.2	1.49	4	10	320	0.8	<2	0.77	0.6	7	17	15	1.96	<10	<1	0.22
105030	0.11	0.004	< 0.2	1.27	4	<10	330	0.8	<2	0.47	1.2	7	16	17	1.84	<10	<1	0.2
105035	0.17	0.003	< 0.2	1.18	2	<10	330	0.8	<2	0.45	1.2	/	16	14	1.92	<10	2	0.21
105040	0.12	0.001	< 0.2	1.31	3	<10	190	1	<2	0.47	0.8	7	14	19	1.8	<10	1	0.22
105045	0.14	0.007	< 0.2	1.29	3	<10	200	0.9	2	0.51	0.6	/	14	16	1.72	<10	<1	0.2
105050	0.1	0.008	< 0.2	1.65	3	<10	220	0.9	<2	2.64	0.5	7	15	17	1.75	<10	1	0.26
105055	0.12	0.006	< 0.2	1.72	<2	<10	220	0.8	<2	0.37	< 0.5	7	17	11	2.13	10	1	0.19
105060	0.15	0.002	< 0.2	0.97	2	<10	150	0.5	<2	0.25	< 0.5	6	15	11	1.83	<10	<1	0.15
105065	0.13	0.003	< 0.2	1.12	<2	<10	1/0	0.6	<2	0.26	<0.5	6	17	11	1.87	<10	1	0.16
105070	0.15	0.004	< 0.2	1.17	6	<10	180	0.6	<2	0.29	<0.5	6	15	12	1./4	<10	1	0.21
105075	0.15	0.003	< 0.2	1.4	2	<10	260	0.7	<2	2.22	<0.5		15	13	1.72	<10	1	0.27
105080	0.14	0.003	< 0.2	1.58	4	10	230	0.7	<2	1.45	<0.5		20	16	1.94	10	1	0.28
105085	0.19	0.003	< 0.2	1.01	5	10	240	0.7	<2	3.3/	<0.5	8	22	1/	1.89	<10	<1	0.34
105090	0.15	0.007	< 0.2	1.5	3	<10	200	0.7	<2	1.04	<0.5	8	27	16	2.02	10		0.25
105095	0.14	0.005	<0.2	1.43	<2	<10	100	0.7	<u>~</u>	1.33	<0.5	ð 	29	10	2.15	< 10 <10		0.23
105100	0.15	0.003	< 0.2	1.20	4	<10	1/0	0.7	<2	0.43	<0.5		30	14	2.02	<10	1	0.23
105105	U.14	0.004	<0.2	1.66	5	<10	180	0.8	<2	0.55	<0.5	8	34	15	2.4	10	<1	0.22

Sample	Wt	Au	Ag	AI	As	В	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	к
105110	0.15	0.007	<0.2	1.48	2	<10	170	0.7	<2	1.65	<0.5	8	30	14	2.23	<10	<1	0.22
105115	0.12	0.006	<0.2	1.21	3	<10	140	0.6	<2	0.27	<0.5	7	25	13	2.01	<10	1	0.19
105120	0.14	0.006	<0.2	1.35	2	<10	160	0.7	<2	0.36	<0.5	8	32	16	2.28	<10	<1	0.21
105125	0.1	0.006	<0.2	1.55	5	<10	170	0.8	<2	0.79	<0.5	8	28	17	2.1	<10	<1	0.22
110000	0.13	0.006	<0.2	1.17	5	10	310	0.6	<2	3.86	<0.5	6	15	16	1.76	<10	<1	0.21
110005	0.16	0.003	<0.2	1.06	4	<10	210	0.6	<2	0.36	<0.5	6	16	13	2.04	<10	<1	0.17
110010	0.15	0.004	<0.2	1.23	4	<10	780	0.7	<2	0.55	<0.5	6	16	14	1.84	<10	<1	0.17
110015	0.16	0.003	<0.2	1.27	6	<10	300	0.8	<2	0.35	0.5	7	16	17	1.95	<10	<1	0.19
110020	0.12	0.007	<0.2	1.11	6	<10	180	0.6	<2	0.29	<0.5	6	16	12	1.83	<10	1	0.15
110025	0.14	0.003	0.3	1.3	4	<10	520	0.7	<2	0.96	0.6	6	16	13	1.87	<10	<1	0.22
110030	0.13	0.005	0.2	1.45	5	<10	420	0.8	<2	2.49	0.5	6	16	17	1.83	<10	<1	0.25
110035	0.16	0.006	<0.2	1.23	6	<10	700	0.8	<2	0.54	1.4	7	14	18	1.71	<10	<1	0.23
110040	0.14	0.003	<0.2	1.49	4	<10	200	0.9	<2	0.61	0.6	7	15	17	1.91	<10	<1	0.21
110045	0.14	0.007	<0.2	1.46	5	10	200	0.9	<2	3.88	<0.5	6	12	19	1.55	<10	1	0.32
110050	0.15	0.003	<0.2	1.13	4	<10	170	0.7	<2	0.41	0.6	6	14	15	1.7	<10	<1	0.2
110055	0.19	0.003	<0.2	0.93	4	<10	140	0.6	<2	0.24	<0.5	7	15	13	1.92	<10	<1	0.13
110060	0.17	0.003	<0.2	0.89	<2	<10	160	0.5	<2	0.2	<0.5	5	15	11	1.81	<10	1	0.13
110065	0.2	0.003	<0.2	0.87	<2	<10	130	0.5	<2	0.19	<0.5	5	15	10	1.76	<10	<1	0.14
110070	0.18	0.004	<0.2	1.35	4	10	290	0.7	<2	3.22	<0.5	6	15	13	1.71	<10	<1	0.27
110075	0.18	0.003	< 0.2	1.41	5	<10	220	0.7	<2	0.47	< 0.5	7	17	14	1.92	<10	1	0.26
110080	0.18	0.003	< 0.2	1.57	2	10	250	0.7	<2	2.82	< 0.5	6	17	16	1.87	<10	<1	0.33
110085	0.16	0.003	< 0.2	1.43	4	<10	200	0.7	<2	0.71	< 0.5		1/	15	1.89	<10	1	0.3
110095	0.19	0.003	<0.2	1.19	3	<10	170	0.6	<2	0.36	<0.5	/	23	14	1.98	<10	<1	0.22
110100	0.21	0.003	< 0.2	1.26	3	<10	150	0.6	<2	0.34	< 0.5	7	33	14	2.28	<10	<1	0.21
110105	0.16	0.003	< 0.2	1.31	<2	<10	1/0	0.7	<2	0.33	< 0.5	8	31	15	2.18	<10	<1	0.23
110110	0.16	0.003	< 0.2	1.48	5	<10	210	0.8	<2	0.3	< 0.5	10	24	16	2.09	<10	<1	0.26
110115	0.15	0.003	< 0.2	1.31	<2	<10	200	0.7	<2	0.3	< 0.5	/	20	26	2	<10	<1	0.23
110120	0.13	0.003	< 0.2	1.82	6	10	200	1	<2	1.69	<0.5	9	39	22	2.33	<10	<1	0.31
110125	0.17	0.003	<0.2	1.53	8	<10	190	0.9	<2	0.45	<0.5	10	31	21	2.32	<10	<1	0.28
115000	0.14	0.003	<0.2	1.13	4	<10	210	0.6	~2	1.17	<0.5	0	16	11	1.94	<10	1	0.19
115005	0.07	0.005	<0.2	0.90	2	<10	130	0.5	~2	0.2	<0.5	0	10	10	1.03	<10	< 1 - 1	0.14
115010	0.10	0.003	~0.2	1.04	2	<10	100	0.5	~2	0.20	<0.5	6	10	10	1.9	<10	~1	0.10
115020	0.15	0.003	~0.2	1.20	4	<10	180	0.0	~2	0.34	<0.5	- 0	17	14	1.90	<10	1	0.2
115025	0.15	0.000	<0.2	1.22	5	10	610	0.0	~2	5.08	<0.5	- 1	13	12	1.5	<10	1	0.10
115020	0.13	0.002	<0.2	1.10	6	<10	330	0.0	<2	0.00	<0.0	7	18	11	2.03	<10	<1	0.20
115035	0.10	0.000	<0.2	1.32	4	<10	250	0.7	<2	0.41	<0.0	7	17	15	2.00	<10	<1	0.10
115040	0.14	0.000	<0.2	1.02	2	<10	230	0.7	<2	1 48	0.5	6	15	13	1 77	<10	<1	0.2
115045	0.12	0.004	0.3	1 54	5	10	220	0.8	<2	5.38	0.5	6	13	21	1.61	<10	1	0.31
115050	0.12	0.003	<0.2	1.57	4	<10	190	0.9	<2	0.45	<0.5	8	14	21	2.26	10	<1	0.23
115055	0.16	0.004	<0.2	1 46	6	<10	410	1	<2	0.38	<0.5	8	17	20	2.28	<10	<1	0.19
115060	0.15	0.003	<0.2	1 16	3	<10	190	0.6	<2	0.27	<0.5	7	17	11	2.18	<10	<1	0.15
115065	0.15	0.002	<0.2	0.95	4	<10	150	0.5	<2	0.2	<0.5	6	14	12	1 75	<10	<1	0.14
115070	0.17	0.003	< 0.2	1.35	3	<10	200	0.6	<2	0.5	< 0.5	6	16	13	1.9	<10	<1	0.24
115075	0.18	0.004	<0.2	1.35	3	<10	220	0.6	<2	2 39	< 0.5	6	15	13	1 79	<10	<1	0.23
115080	0.16	0.003	<0.2	1.04	6	<10	150	0.5	<2	0.25	< 0.5	6	16	12	1.94	<10	<1	0.17
115085	0.15	0.003	< 0.2	1.33	3	<10	180	0.6	<2	0.79	<0.5	5	16	11	1.89	<10	<1	0.22
115090	0.16	0.003	< 0.2	1.06	3	<10	140	0.5	<2	0.25	< 0.5	6	17	11	1.99	<10	<1	0.17
115095	0.17	0.002	< 0.2	1.26	4	<10	160	0.6	<2	0.56	<0.5	6	19	12	2	<10	<1	0.23
115100	0.17	0.003	< 0.2	1.26	4	<10	150	0.6	<2	0.33	<0.5	7	21	13	1.99	<10	<1	0.22
115105	0.17	0.003	< 0.2	1.15	4	<10	150	0.6	<2	0.26	<0.5	7	19	16	1.9	<10	<1	0.2
115110	0.15	0.003	<0.2	1.87	6	10	270	0.9	<2	0.46	< 0.5	8	21	38	2.31	10	<1	0.35
115115	0.17	0.004	<0.2	1.52	4	<10	180	0.7	<2	0.32	<0.5	8	24	19	2.08	<10	<1	0.29
115120	0.14	0.003	<0.2	1.53	3	10	170	0.8	<2	1.37	<0.5	8	39	18	2.28	<10	<1	0.24
Sample	Wt	Au	Ag	AI	As	В	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	к
--------	------	-------	------	------	----	-----	-----	------	----	------	------	----	----	----	------	-----	----	------
115125	0.13	0.003	<0.2	1.52	5	<10	160	0.8	<2	0.46	<0.5	7	32	16	2.4	<10	<1	0.18
120000	0.12	0.002	<0.2	1.07	2	<10	150	0.5	<2	0.25	<0.5	6	16	10	1.99	<10	1	0.15
120005	0.17	0.003	<0.2	1.21	3	<10	180	0.6	<2	0.41	<0.5	6	15	10	1.85	<10	<1	0.17
120010	0.16	0.003	<0.2	1.19	3	<10	160	0.6	<2	0.25	<0.5	6	16	11	1.99	<10	<1	0.18
120015	0.12	0.003	<0.2	1.26	4	<10	150	0.6	<2	0.25	<0.5	7	16	12	2.02	<10	<1	0.18
120020	0.18	0.003	<0.2	1.45	5	<10	220	0.7	<2	0.34	<0.5	8	17	15	2.04	<10	<1	0.21
120025	0.13	0.005	<0.2	1.42	4	10	390	0.6	<2	4.25	<0.5	5	14	14	1.69	<10	<1	0.22
120030	0.12	0.004	<0.2	1.54	7	10	480	0.7	<2	3.44	<0.5	6	16	14	1.93	<10	<1	0.29
120035	0.12	0.002	<0.2	1.14	2	<10	160	0.5	<2	0.32	<0.5	6	17	13	2.09	<10	<1	0.15
120040	0.1	0.002	<0.2	1.54	4	<10	210	0.8	<2	0.47	<0.5	7	20	11	2.36	10	<1	0.17
120045	0.13	0.003	<0.2	1.37	4	<10	180	0.7	<2	0.76	<0.5	6	15	17	1.89	<10	<1	0.2
120050	0.1	0.005	<0.2	1.67	4	10	190	0.9	<2	0.9	0.5	7	15	20	2.11	10	<1	0.3
120055	0.17	0.004	<0.2	1.34	5	<10	210	0.7	<2	0.29	<0.5	8	17	11	2.18	<10	<1	0.15
120060	0.14	0.003	<0.2	1.09	3	<10	170	0.6	<2	0.22	<0.5	6	16	10	2.01	<10	<1	0.14
120065	0.15	0.004	<0.2	1.09	2	<10	180	0.5	<2	0.33	<0.5	6	14	11	1.8	<10	<1	0.2
120070	0.13	0.003	<0.2	1.09	4	<10	170	0.5	<2	0.26	<0.5	6	16	12	1.94	<10	<1	0.19
120075	0.16	0.003	<0.2	1.06	2	<10	150	0.5	<2	0.23	<0.5	7	16	12	1.92	<10	<1	0.16
120080	0.12	0.004	<0.2	1.23	3	<10	160	0.6	<2	0.31	<0.5	6	17	12	2.11	<10	<1	0.21
120085	0.15	0.003	<0.2	1.02	5	<10	140	0.5	<2	0.21	<0.5	6	16	11	1.91	<10	<1	0.16
120090	0.16	0.003	<0.2	1.03	4	<10	140	0.5	<2	0.25	<0.5	6	18	12	1.98	<10	<1	0.16
120095	0.2	0.003	<0.2	1.1	2	<10	140	0.5	<2	0.24	<0.5	7	20	12	2.13	<10	<1	0.18
120100	0.14	0.004	<0.2	2	4	<10	260	0.9	<2	0.96	<0.5	9	22	40	2.14	10	<1	0.32
120105	0.15	0.002	<0.2	1.38	4	<10	220	0.7	<2	0.41	<0.5	8	16	32	1.82	<10	<1	0.25
120110	0.17	0.002	0.2	1.5	4	<10	240	0.8	<2	0.42	<0.5	8	16	27	1.88	<10	<1	0.31
120115	0.16	0.002	<0.2	1.21	3	<10	140	0.6	<2	0.38	<0.5	7	34	16	2.07	<10	<1	0.21
120120	0.15	0.003	<0.2	1.43	7	<10	160	0.7	<2	0.38	<0.5	8	39	16	2.29	10	<1	0.19
120125	0.13	0.003	<0.2	1.48	4	<10	160	0.8	<2	0.5	<0.5	7	30	17	2.15	<10	<1	0.24
125000	0.17	0.003	<0.2	1.16	4	<10	160	0.5	<2	0.5	<0.5	5	14	11	1.68	<10	<1	0.2
125005	0.18	0.003	<0.2	0.94	4	<10	140	<0.5	<2	0.21	<0.5	5	14	10	1.72	<10	<1	0.17
125010	0.15	0.004	<0.2	1.05	2	<10	140	0.5	<2	0.26	<0.5	6	15	11	1.79	<10	<1	0.18
125015	0.2	0.003	<0.2	1.08	2	<10	140	0.5	<2	0.42	<0.5	5	15	11	1.75	<10	<1	0.2
125020	0.23	0.002	<0.2	1.25	2	<10	180	0.5	<2	1.82	<0.5	6	15	12	1.73	<10	<1	0.24
125025	0.15	0.006	<0.2	1.19	2	<10	190	0.5	<2	0.25	<0.5	5	16	10	1.8	<10	<1	0.17
125030	0.16	0.003	<0.2	1.36	4	<10	340	0.6	<2	1.16	<0.5	6	15	13	1.74	<10	<1	0.19
125035	0.15	0.004	<0.2	1.41	4	<10	260	0.7	<2	0.66	0.5	7	15	15	1.8	<10	<1	0.23
125040	0.17	0.007	<0.2	1.35	3	10	200	0.8	<2	1.06	0.5	6	13	20	1.65	<10	<1	0.3
125045	0.14	0.005	<0.2	1.48	7	<10	190	0.8	<2	0.65	0.5	6	15	14	1.82	<10	<1	0.23
125050	0.19	0.003	<0.2	1.42	3	10	240	0.8	<2	0.86	0.6	6	13	19	1.66	<10	<1	0.27
125055	0.19	0.005	<0.2	1.92	5	<10	270	1.1	<2	1.25	<0.5	7	14	15	2.21	10	<1	0.23
125060	0.16	0.003	<0.2	1.46	4	<10	190	0.7	<2	0.42	<0.5	7	17	12	2.21	10	<1	0.18
125065	0.21	0.002	<0.2	0.91	3	<10	130	0.5	<2	0.22	<0.5	5	14	11	1.67	<10	<1	0.15
125070	0.15	0.002	<0.2	1.04	4	<10	160	0.5	<2	0.24	<0.5	6	15	11	1.72	<10	<1	0.18
125075	0.16	0.001	<0.2	1.27	<2	<10	180	0.6	<2	0.4	<0.5	7	18	12	2.04	<10	<1	0.23
125080	0.18	0.001	<0.2	1	4	<10	140	0.5	<2	0.25	<0.5	7	16	12	1.88	<10	<1	0.19
125085	0.16	0.002	<0.2	1.05	3	<10	140	0.5	<2	0.27	<0.5	6	17	11	1.94	<10	<1	0.2
125090	0.13	0.001	<0.2	1.05	3	<10	130	0.5	<2	0.22	<0.5	6	17	12	1.81	<10	<1	0.18
125095	0.2	0.005	<0.2	1.35	3	<10	190	0.7	<2	0.42	<0.5	8	20	14	2.02	<10	<1	0.22
125105	0.13	0.003	<0.2	1.05	5	<10	180	0.5	<2	0.32	<0.5	7	18	19	2.06	<10	<1	0.2
125110	0.15	0.005	<0.2	1.77	3	<10	250	0.8	<2	0.51	<0.5	8	17	25	1.94	10	<1	0.36
125115	0.15	0.003	<0.2	1.53	3	<10	150	0.7	<2	0.44	<0.5	7	37	16	2.29	<10	<1	0.21
125120	0.12	0.004	<0.2	1.4	3	<10	160	0.6	<2	0.38	<0.5	8	34	15	2.24	<10	<1	0.21
125125	0.15	0.004	<0.2	1.63	5	<10	210	0.7	<2	5.44	<0.5	7	23	15	1.91	10	<1	0.26
130000	0.13	0.002	<0.2	1.32	2	<10	250	0.6	<2	0.38	<0.5	6	16	11	1.89	<10	<1	0.22
130005	0.16	0.003	<0.2	1	3	<10	140	0.5	<2	0.2	<0.5	6	16	11	1.8	<10	<1	0.16

Sample	Wt	Au	Ag	AI	As	В	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe (Ga	Hg	к
130010	0.15	0.001	<0.2	1.16	2	<10	150	0.5	<2	0.58	<0.5	6	17	11	1.93 <	10	<1	0.23
130015	0.13	0.002	<0.2	1	3	<10	140	<0.5	<2	0.32	<0.5	5	14	12	1.61 <	10	<1	0.18
130020	0.15	0.001	<0.2	1.22	<2	<10	170	0.5	<2	0.37	<0.5	7	15	13	1.75 <	10	<1	0.21
130025	0.15	0.002	<0.2	1.1	<2	<10	160	0.6	<2	0.29	<0.5	6	14	10	1.7 <	10	<1	0.16
130030	0.14	0.004	<0.2	1.16	<2	<10	330	0.6	<2	0.75	0.5	6	14	14	1.7 <	10	<1	0.18
130035	0.16	0.003	<0.2	1.24	<2	<10	210	0.6	2	0.45	0.5	4	15	12	1.76 <	10	<1	0.17
130040	0.16	0.003	<0.2	1.28	10	<10	200	0.7	<2	1.31	<0.5	5	13	13	1.64 <	10	<1	0.22
130045	0.14	0.005	<0.2	1.28	4	<10	180	0.7	<2	0.6	<0.5	5	13	15	1.68 <	10	<1	0.2
130050	0.16	0.002	<0.2	0.95	6	<10	140	0.6	<2	0.26	<0.5	6	14	11	1.8 <	10	<1	0.13
130055	0.16	0.003	<0.2	0.93	<2	<10	140	0.5	<2	0.24	0.5	6	15	13	1.85 <	10	<1	0.14
130060	0.15	0.003	<0.2	0.78	<2	<10	130	<0.5	<2	0.19	<0.5	5	13	9	1.53 <	10	<1	0.12
130065	0.14	0.02	<0.2	0.8	<2	<10	140	<0.5	<2	0.19	<0.5	6	13	9	1.54 <	10	<1	0.13
130070	0.15	0.002	<0.2	0.78	4	<10	120	<0.5	<2	0.17	<0.5	5	14	10	1.59 <	10	<1	0.13
130075	0.16	0.002	<0.2	0.79	4	<10	130	0.5	<2	0.17	<0.5	6	14	11	1.62 <	10	<1	0.14
130080	0.16	0.002	<0.2	0.87	5	<10	140	0.5	2	0.19	<0.5	6	16	12	1.81 <	10	<1	0.15
130085	0.12	0.005	<0.2	1.23	4	<10	180	0.7	<2	0.3	<0.5	8	17	15	1.89 <	10	<1	0.23
130090	0.15	0.001	<0.2	1.45	2	<10	240	0.8	<2	0.32	0.5	10	17	26	1.94 <	10	<1	0.27
130095	0.21	0.005	<0.2	1.01	4	<10	180	0.6	<2	0.33	<0.5	10	21	35	2.83 <	10	<1	0.16
130100	0.21	0.002	<0.2	1.29	5	<10	170	0.7	<2	2.2	<0.5	7	35	18	2.14 <	10	<1	0.2
130105	0.17	0.005	<0.2	1.35	4	<10	150	0.8	<2	0.45	<0.5	7	36	15	2.16 <	10	<1	0.2
130110	0.14	0.003	<0.2	1.45	4	<10	200	0.8	<2	0.34	0.5	9	20	19	1.93 <	10	<1	0.31
130115	0.17	0.002	<0.2	1.37	4	<10	150	0.7	2	0.42	<0.5	8	37	17	2.24 <	10	<1	0.22
130120	0.16	0.005	<0.2	1.28	5	10	150	0.6	<2	3.01	<0.5	8	35	18	2.33 <	10	<1	0.19
130125	0.18	0.002	<0.2	1.25	9	10	140	0.5	<2	4.17	<0.5	11	38	25	3.04 <	10	<1	0.18
135000	0.17	0.002	<0.2	0.91	3	<10	140	0.5	<2	0.2	<0.5	6	16	11	1.81 <	10	<1	0.14
135005	0.15	0.002	<0.2	1.09	6	<10	220	0.5	<2	3.3	<0.5	5	14	11	1.6 <	10	<1	0.18
135010	0.23	0.002	<0.2	0.97	7	<10	140	0.5	<2	0.28	<0.5	5	15	11	1.72 <	10	<1	0.16
135015	0.16	0.002	<0.2	0.99	4	<10	140	0.5	<2	0.24	<0.5	6	16	11	1.81 <	10	<1	0.17
135020	0.13	0.005	<0.2	1.13	5	<10	160	0.6	<2	0.34	<0.5	6	16	12	1.82 <	10	<1	0.21
135025	0.15	0.003	<0.2	1.16	4	<10	160	0.6	<2	0.33	<0.5	7	16	13	1.88 <	10	<1	0.2
135030	0.15	0.003	<0.2	1.09	5	<10	200	0.6	<2	0.3	<0.5	6	16	13	1.79 <	10	<1	0.18
135035	0.17	0.002	<0.2	0.95	5	<10	190	0.5	<2	0.21	<0.5	6	18	11	2.05 <	10	<1	0.13
135040	0.14	0.002	<0.2	0.91	5	<10	140	<0.5	<2	0.2	<0.5	6	17	9	2.01 <	10	<1	0.13
135045	0.19	0.002	<0.2	0.81	2	<10	120	<0.5	<2	0.19	<0.5	6	17	10	1.96 <	10	<1	0.12
135050	0.19	0.003	<0.2	1.04	4	<10	150	0.6	<2	0.32	<0.5	6	16	15	1.94 <	10	<1	0.16
135055	0.18	0.005	<0.2	1.33	5	<10	190	0.8	<2	0.87	0.5	6	15	17	1.92 <	10	<1	0.19
135060	0.15	0.006	<0.2	1.43	6	10	210	0.9	<2	2.31	<0.5	6	14	15	1.79 <	10	<1	0.24
135065	0.14	0.002	< 0.2	1.1	4	<10	150	0.6	<2	0.25	<0.5	6	18	10	2.15 <	10	<1	0.13
135070	0.16	0.003	< 0.2	0.94	<2	<10	140	0.5	<2	0.21	<0.5	6	14	13	1.64 <	10	<1	0.15
135075	0.14	0.002	< 0.2	1.2	4	<10	190	0.6	<2	0.33	<0.5		16	14	1.88 <	10	<1	0.22
135080	0.15	0.003	< 0.2	0.94	6	<10	150	0.5	<2	0.21	<0.5		14	18	1.69 <	10	<1	0.17
135085	0.13	0.005	< 0.2	0.92	4	<10	150	0.5	<2	0.24	< 0.5	/	16	22	2.02 <	10	<1	0.16
135090	0.14	0.003	< 0.2	1.36	3	<10	260	0.8	<2	0.42	< 0.5	8	15	47	1.82 <	10	<1	0.24
135095	0.17	0.004	< 0.2	1.27	4	<10	1/0	0.8	<2	0.35	< 0.5	8	33	1/	2.3 <	10	<1	0.19
135100	0.14	0.003	< 0.2	1.25	4	<10	180	0.7	<2	0.37	<0.5	8	30	17	2.0/ <	10	<1	0.21
135105	0.14	0.003	< 0.2	1.27	4	<10	150	0.7	<2	0.35	<0.5	/	30	15	2.1/ <	10	<1	0.2
135110	0.12	0.004	< 0.2	1.83	2	<10	250	0.9	<2	0.41	0.7	12	23	22	2.22 <	10	<1	0.4
135115	0.16	0.002	0.2	1.44	6	<10	170	0.7	<2	0.74	<0.5	9	31	21	2.5 <	10	<u> </u>	0.26
135120	0.16	0.004	<0.2	1.30	5	10	170	0.6	<2	1.98	<0.5	10	28	22	2.4 <	10	11>	0.24
130125	0.17	0.003	<0.2	1.32	/ 	10	1/0	0.5	<u>~</u> 2	3.5	<0.5	9	20	20	2.33 <	10	<u> </u>	0.2
140000	0.13	0.002	~0.2	1.22	0 6	10	100	0.0	2	2 4 1	<0.5 <0.5		1/	10	1.94 <	10	$-\frac{1}{1}$	0.21
140005	0.12	0.000	~0.2	1.10	0		180	0.5	2	2.41	~0.0 <0 E	6	14	14	1.00 <	10	-1	0.23
140010	0.13	0.005	~0.2	1.19	4	<10	160	0.5	~2	2 1 9	~0.5	0	10	10	1.01 <	10	$\frac{1}{21}$	0.10
140015	0.14	0.005	~∪.Z	1.31	- 4	~10	100	0.0	<u>~</u> ∠	∠.40	~ 0.0	J	14	12	1.04 <	10	N	0.19

Sample	Wt	Au	Ag	AI	As	в	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	κ
140020	0.11	0.004	<0.2	1.31	6	<10	170	0.6	<2	2.03	<0.5	5	14	14	1.69	<10	<1	0.23
140025	0.16	0.004	<0.2	1.33	3	<10	160	0.6	<2	0.46	<0.5	6	16	13	1.9	<10	<1	0.21
140030	0.15	0.006	<0.2	1.43	5	<10	170	0.6	<2	0.75	<0.5	6	15	12	1.77	<10	<1	0.21
140035	0.14	0.006	<0.2	1.46	2	<10	430	0.7	<2	0.63	0.5	6	18	18	2.03	<10	1	0.18
140040	0.14	0.005	<0.2	1.36	3	10	360	0.7	<2	3.16	0.5	4	14	16	1.66	<10	1	0.23
140045	0.14	0.004	<0.2	1.31	8	<10	180	0.7	<2	1	0.5	6	14	14	1.8	<10	<1	0.2
140050	0.15	0.002	<0.2	1.26	8	<10	160	0.7	<2	0.4	0.6	5	14	16	1.78	<10	<1	0.18
140055	0.12	0.002	<0.2	1.38	4	<10	210	0.8	<2	1.17	0.8	6	14	16	1.75	<10	<1	0.23
140060	0.15	0.005	<0.2	1.31	6	<10	240	0.9	<2	0.34	<0.5	6	16	13	2.04	<10	1	0.18
140065	0.17	0.003	<0.2	1.13	6	<10	200	0.7	<2	0.46	<0.5	7	18	11	2.44	<10	<1	0.14
140070	0.15	0.001	<0.2	0.93	3	<10	130	0.5	<2	0.21	<0.5	6	17	9	2.03	<10	<1	0.12
140075	0.14	0.001	<0.2	1.07	<2	<10	160	0.6	<2	0.22	0.5	7	17	19	2.25	<10	<1	0.17
140080	0.17	0.005	<0.2	1.34	<2	<10	200	0.7	<2	0.32	0.5	7	18	24	2.07	<10	1	0.26
140085	0.14	0.002	<0.2	1.28	<2	<10	190	0.7	<2	0.36	<0.5	7	19	21	2.26	<10	<1	0.2
140090	0.13	0.006	<0.2	1.56	<2	<10	210	0.8	<2	0.45	0.6	8	23	20	2.15	10	<1	0.32
140095	0.13	0.007	<0.2	1.59	4	10	210	0.8	<2	0.9	0.6	8	29	19	2.31	<10	<1	0.32
140100	0.12	0.005	<0.2	1.65	3	<10	190	0.8	<2	0.51	<0.5	6	32	15	2.42	10	1	0.21
140105	0.13	0.011	<0.2	1.31	4	<10	140	0.6	<2	0.31	<0.5	5	28	13	2.14	<10	<1	0.2
140110	0.12	0.006	<0.2	1.87	3	<10	250	0.9	<2	0.38	0.7	11	21	22	2.24	10	<1	0.4
140115	0.13	0.004	<0.2	1.6	4	<10	160	0.7	<2	0.47	<0.5	8	39	18	2.55	10	1	0.26
140120	0.16	0.002	<0.2	1.33	2	<10	170	0.6	<2	2.78	<0.5	7	27	16	2.45	<10	<1	0.18
140125	0.15	0.003	<0.2	1.4	8	<10	160	0.6	<2	3.73	<0.5	8	26	18	2.49	<10	<1	0.22
145000	0.16	0.006	<0.2	1.83	<2	<10	200	0.8	<2	0.49	<0.5	8	22	15	2.51	10	<1	0.27
145005	0.13	0.004	<0.2	1.41	5	<10	160	0.7	<2	0.55	<0.5	9	19	14	2.3	10	<1	0.23
145010	0.15	0.016	<0.2	1.18	3	<10	140	0.5	<2	0.31	<0.5	5	16	10	1.94	<10	<1	0.16
145015	0.14	0.002	<0.2	1.35	7	<10	150	0.6	<2	0.34	<0.5	6	17	11	2.07	<10	<1	0.2
145020	0.15	0.005	<0.2	1.25	4	<10	130	0.6	<2	0.28	<0.5	5	20	10	2.23	<10	<1	0.15
145025	0.2	0.003	<0.2	0.97	5	<10	120	0.5	<2	0.21	<0.5	5	15	11	1.79	<10	<1	0.14
145030	0.14	0.004	<0.2	1.25	6	<10	210	0.8	<2	0.33	<0.5	5	17	16	2.04	<10	1	0.17
145035	0.13	0.006	<0.2	1.35	4	<10	220	0.8	<2	0.28	0.5	6	18	15	2.03	<10	<1	0.17
145040	0.11	0.006	0.3	1.17	3	10	700	0.7	<2	4.01	0.6	4	13	19	1.53	<10	1	0.18
145045	0.08	0.007	<0.2	1.05	7	<10	170	0.7	<2	0.37	0.7	5	14	17	1.74	<10	<1	0.15
145050	0.13	0.003	<0.2	1.26	6	<10	190	0.8	<2	0.73	1.1	6	14	21	1.76	<10	1	0.25
145055	0.11	0.006	<0.2	1.26	4	<10	180	0.8	<2	0.38	0.6	6	16	13	2.06	<10	<1	0.16
145060	0.12	0.005	<0.2	1.4	6	<10	380	1.1	<2	0.59	0.6	7	13	24	2.01	10	<1	0.18
145065	0.14	0.004	<0.2	1.04	5	<10	150	0.7	<2	0.21	<0.5	6	17	15	2.29	<10	1	0.12
145070	0.17	0.003	<0.2	1.51	3	<10	310	0.8	<2	0.45	<0.5	8	17	23	2.13	<10	<1	0.22
145075	0.15	0.002	<0.2	1.07	2	<10	170	0.6	<2	0.27	<0.5	6	16	21	2.09	<10	<1	0.19
145080	0.15	0.004	<0.2	1.13	5	<10	160	0.6	<2	0.88	<0.5	7	16	15	1.89	<10	<1	0.2
145085	0.14	0.003	<0.2	1.48	4	<10	220	0.7	<2	2.46	<0.5	7	22	17	2.05	<10	<1	0.29
145090	0.14	0.003	<0.2	1.25	2	<10	180	0.7	<2	0.4	<0.5	6	21	16	1.98	<10	<1	0.26
145095	0.14	0.001	<0.2	1.31	2	<10	180	0.7	<2	0.76	<0.5	6	24	15	2.09	<10	<1	0.21
145100	0.13	0.003	<0.2	1.29	6	<10	160	0.7	<2	0.29	<0.5	7	24	13	2.15	<10	<1	0.19
145110	0.15	0.003	<0.2	1.76	5	<10	240	0.9	<2	0.42	0.8	10	20	21	2.16	10	<1	0.35
145115	0.03	0.004	<0.2	1.04	9	<10	140	0.5	<2	1.65	<0.5	7	25	13	2.21	<10	<1	0.18
145120	0.14	0.003	<0.2	1.17	6	<10	160	0.5	<2	2.59	<0.5	8	25	15	2.29	<10	<1	0.2
145125	0.12	0.003	<0.2	1.27	6	10	180	0.5	<2	3.46	<0.5	9	22	22	2.27	<10	1	0.25
150000	0.12	0.003	<0.2	1.45	7	<10	210	0.6	<2	0.68	<0.5	6	17	13	2.01	<10	<1	0.23
150005	0.13	0.002	<0.2	1.45	4	<10	180	0.6	<2	0.44	<0.5	6	18	14	2.11	<10	1	0.22
150010	0.15	0.004	<0.2	1.42	5	<10	200	0.6	2	0.29	<0.5	6	18	10	2.09	<10	1	0.17
150015	0.16	0.003	<0.2	1.17	6	<10	150	0.5	2	0.27	< 0.5	5	16	9	1.96	<10	<1	0.16
150020	0.13	0.003	<0.2	0.92	4	<10	120	0.5	<2	0.22	< 0.5	4	15	9	1.77	<10	<1	0.13
150025	0.17	0.005	< 0.2	0.99	4	<10	130	0.5	<2	0.25	< 0.5	5	14	17	1.62	<10	<1	0.15
150030	0.13	0.003	<0.2	1.23	7	<10	230	0.9	<2	0.34	0.5	5	16	20	1.97	<10	<1	0.17

Sample	Wt	Au	Ag	AI	As	В	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	к
150035	0.11	0.006	<0.2	1.52	10	10	1780	1.2	<2	4.09	1.4	6	13	30	1.64	<10	<1	0.27
150040	0.14	0.003	<0.2	1.28	5	<10	650	1	<2	0.32	1.4	8	20	18	2.2	<10	<1	0.17
150045	0.15	0.003	<0.2	1.08	<2	<10	180	0.5	<2	0.24	<0.5	6	19	12	2.2	<10	1	0.14
150050	0.16	0.003	<0.2	1.03	9	<10	160	0.5	<2	0.21	<0.5	6	17	10	2.01	<10	<1	0.14
150055	0.14	0.004	<0.2	1.31	4	<10	240	0.7	<2	0.27	0.5	7	16	23	1.95	<10	1	0.2
150060	0.16	0.004	<0.2	1.72	4	<10	330	1	<2	0.35	<0.5	10	18	29	2.17	10	1	0.26
150065	0.13	0.003	<0.2	1.03	<2	<10	140	0.6	<2	0.23	0.5	7	14	19	1.93	<10	1	0.16
150070	0.12	0.003	<0.2	1.35	9	<10	170	0.7	<2	0.31	<0.5	7	19	22	2.3	<10	<1	0.2
150075	0.12	0.002	<0.2	1.16	<2	<10	160	0.6	<2	0.26	<0.5	5	17	13	1.99	<10	<1	0.17
150080	0.13	0.005	<0.2	1.37	4	<10	210	0.6	<2	3.37	<0.5	5	14	14	1.75	<10	1	0.26
150085	0.15	0.003	<0.2	1.35	3	<10	180	0.6	<2	0.52	<0.5	6	17	16	1.98	<10	1	0.28
150090	0.13	0.004	<0.2	1.52	5	<10	200	0.7	<2	0.97	<0.5	7	19	16	2.08	<10	<1	0.29
150095	0.15	0.003	<0.2	1.14	5	<10	160	0.6	<2	0.32	<0.5	9	21	18	1.92	<10	<1	0.2
150100	0.16	0.003	<0.2	0.95	<2	<10	140	0.5	<2	0.24	<0.5	6	20	11	1.9	<10	<1	0.15
150110	0.15	0.003	<0.2	1.61	2	<10	220	0.8	<2	0.39	0.5	10	18	20	2	<10	<1	0.34
150115	0.14	0.003	<0.2	1.35	5	<10	180	0.7	<2	0.58	<0.5	8	18	16	2.1	<10	<1	0.26
150120	0.15	0.003	<0.2	1.14	5	<10	160	0.5	<2	3.16	<0.5	7	21	15	2.05	<10	<1	0.2
150125	0.15	0.004	<0.2	1.21	6	<10	180	0.5	<2	3.11	<0.5	8	21	18	2.15	<10	1	0.22
155000	0.12	0.003	<0.2	1.16	3	<10	160	0.5	<2	0.33	<0.5	6	18	12	1.86	<10	1	0.17
155005	0.13	0.003	<0.2	1.23	3	<10	120	0.7	<2	0.32	<0.5	8	24	13	2.34	<10	<1	0.13
155010	0.16	0.003	<0.2	1.25	4	<10	160	0.9	<2	0.34	<0.5	7	17	16	1.91	<10	<1	0.18
155015	0.16	0.004	<0.2	2.08	6	<10	160	0.9	<2	0.35	<0.5	9	26	13	2.77	10	<1	0.17
155020	0.12	0.004	<0.2	1.35	<2	<10	140	0.7	<2	0.31	<0.5	7	22	11	2.43	<10	1	0.14
155025	0.13	0.003	<0.2	1.15	3	<10	120	0.6	<2	0.25	<0.5	6	17	15	1.84	<10	<1	0.14
155030	0.12	0.003	<0.2	1.66	2	<10	240	0.9	<2	0.31	<0.5	11	19	19	2.09	10	<1	0.29
155035	0.18	0.007	<0.2	1.77	7	<10	670	1.2	<2	0.45	0.9	9	19	25	2.76	10	<1	0.17
155040	0.17	0.003	1.1	1.14	4	<10	230	0.8	<2	0.69	<0.5	7	13	841	2.48	<10	<1	0.22
155045	0.18	0.003	0.2	1.03	<2	<10	120	0.5	<2	0.35	<0.5	5	16	63	2.09	<10	<1	0.16
155050	0.13	0.003	<0.2	1.21	5	<10	160	0.6	<2	0.28	0.7	6	17	51	2.13	<10	1	0.19
155055	0.12	0.002	<0.2	1.23	7	<10	280	0.7	<2	0.27	0.6	5	17	23	2	<10	<1	0.18
155060	0.12	0.005	<0.2	1.15	8	<10	340	1.1	<2	0.73	0.6	6	13	19	1.71	<10	<1	0.22
155065	0.2	0.004	<0.2	1.09	<2	<10	120	0.6	<2	0.3	<0.5	7	19	18	2.58	<10	<1	0.16
155070	0.17	0.004	<0.2	0.74	2	<10	90	<0.5	<2	0.19	<0.5	5	19	11	2.12	<10	1	0.11
155075	0.17	0.003	<0.2	1.08	<2	<10	160	0.5	<2	1.19	<0.5	5	16	12	1.82	<10	<1	0.21
155080	0.18	0.003	<0.2	1.32	5	<10	220	0.6	<2	2.17	<0.5	6	16	13	1.84	<10	<1	0.26
155085	0.16	0.003	<0.2	1.28	2	<10	200	0.6	<2	2.58	<0.5	5	15	13	1.79	<10	<1	0.28
155090	0.16	0.004	<0.2	1.07	6	<10	160	0.5	<2	0.28	<0.5	6	17	13	1.83	<10	<1	0.2
155095	0.15	0.003	<0.2	1.11	2	<10	150	0.5	<2	0.31	<0.5	6	18	12	1.96	<10	<1	0.2
155100	0.16	0.003	<0.2	0.99	4	<10	140	0.5	<2	0.2	0.5	5	17	13	1.78	<10	<1	0.19
155105	0.18	0.003	<0.2	1.21	2	<10	160	0.6	<2	0.33	<0.5	6	19	13	1.93	<10	1	0.25
155110	0.17	0.003	<0.2	1.63	5	<10	230	0.9	<2	0.38	0.9	11	18	21	2.12	<10	<1	0.39
155115	0.19	0.003	<0.2	1.22	2	<10	160	0.6	<2	0.38	<0.5	7	20	15	2.16	<10	<1	0.22
155120	0.18	0.004	<0.2	1.33	<2	<10	180	0.6	<2	1.84	<0.5	7	19	16	2.15	<10	<1	0.26
155125	0.18	0.004	<0.2	1.26	<2	<10	180	0.5	<2	2.86	<0.5	6	21	16	2.21	<10	1	0.24
160000	0.09	0.003	<0.2	1.08	<2	<10	140	0.6	<2	1.15	<0.5	5	14	13	1.61	<10	<1	0.17
160005	0.15	0.001	<0.2	1.13	2	<10	130	0.6	<2	1.67	<0.5	5	14	14	1.67	<10	<1	0.2
160010	0.17	0.001	<0.2	1.16	<2	<10	140	0.7	<2	0.36	<0.5	4	17	14	1.87	<10	<1	0.17
160015	0.15	0.003	<0.2	1.32	<2	<10	140	0.7	<2	0.46	<0.5	5	17	12	1.97	<10	<1	0.17
160020	0.12	0.004	<0.2	1.39	6	10	160	0.9	<2	0.77	<0.5	6	17	15	1.83	10	<1	0.24
160025	0.14	0.007	<0.2	1.66	5	10	270	1.6	<2	13.1	<0.5	6	11	28	1.43	10	<1	0.2
160030	0.17	0.003	<0.2	1.82	2	<10	330	0.9	<2	0.32	<0.5	7	18	17	2.11	10	<1	0.25
160035	0.14	0.004	0.9	1.61	11	<10	270	0.8	<2	0.42	<0.5	8	19	347	2.08	10	<1	0.2
160040	0.13	0.004	0.5	1.25	6	<10	180	0.5	<2	0.27	<0.5	6	17	362	2	<10	<1	0.15
160045	0.11	0.01	0.5	1.7	27	<10	1450	2.2	<2	8.22	2.8	19	9	1195	3.19	10	<1	0.2

Sample	Wt	Au	Ag	AI	As	В	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	к
160050	0.13	0.003	<0.2	1.32	6	<10	230	0.7	<2	0.38	<0.5	8	18	75	2.11	<10	<1	0.2
160055	0.1	0.004	<0.2	1.3	8	10	230	0.6	<2	1.72	<0.5	6	14	38	1.6	<10	<1	0.32
160060	0.15	0.006	<0.2	1.74	7	<10	200	0.9	<2	0.32	0.5	8	20	22	2.25	10	<1	0.21
160065	-0.02	0.006	<0.2	1.33	3	<10	160	0.7	<2	0.39	<0.5	7	18	16	2.05	<10	<1	0.21
160070	0.14	0.007	<0.2	0.94	4	<10	100	<0.5	<2	0.18	<0.5	5	17	13	1.94	<10	<1	0.14
160075	0.15	0.003	<0.2	1.13	<2	<10	150	0.5	<2	0.3	<0.5	5	16	14	1.81	<10	<1	0.19
160080	0.13	0.004	<0.2	1.22	3	<10	170	0.5	<2	0.27	<0.5	7	19	13	2.06	<10	<1	0.22
160085	0.15	0.003	<0.2	1.37	<2	<10	180	0.6	<2	0.31	<0.5	8	32	23	2.01	<10	<1	0.24
160090	0.17	0.003	<0.2	1.17	3	<10	160	0.5	<2	0.34	<0.5	7	19	14	2.03	<10	<1	0.23
160095	0.13	0.003	<0.2	1	2	<10	150	0.5	<2	0.23	<0.5	6	18	12	1.98	<10	<1	0.19
160100	0.13	0.003	<0.2	1.07	2	<10	160	0.5	<2	0.25	<0.5	6	18	12	1.9	<10	<1	0.17
160105	0.14	0.004	<0.2	1.24	2	<10	170	0.6	<2	0.26	<0.5	6	20	14	2.06	<10	<1	0.24
160110	0.15	0.004	<0.2	1.29	3	<10	160	0.6	<2	0.39	<0.5	7	20	15	2.03	<10	<1	0.27
160120	0.03	0.003	<0.2	1.05	<2	<10	150	<0.5	<2	0.4	<0.5	7	19	15	2.06	<10	<1	0.2
160125	0.15	0.005	<0.2	1.25	4	<10	180	0.5	2	1.85	<0.5	8	21	18	2.18	10	<1	0.27
165000	0.13	0.003	<0.2	1.25	5	<10	160	0.7	<2	0.29	<0.5	7	18	14	1.96	<10	<1	0.17
165005	0.14	0.002	<0.2	1.47	2	<10	150	0.8	2	0.47	<0.5	8	24	17	2.27	10	1	0.21
165010	0.23	0.004	<0.2	1.41	4	<10	140	0.7	<2	0.5	<0.5	8	23	18	2.19	10	<1	0.21
165015	0.14	0.004	<0.2	0.89	3	<10	100	<0.5	<2	0.18	<0.5	6	17	12	1.75	<10	<1	0.13
165020	0.15	0.003	<0.2	0.82	3	<10	110	<0.5	<2	0.18	<0.5	6	16	9	1.78	<10	<1	0.12
165025	0.13	0.003	<0.2	0.92	2	<10	120	0.5	<2	0.22	<0.5	5	17	13	1.96	<10	<1	0.15
165030	0.16	0.003	<0.2	1.12	6	<10	370	0.7	<2	0.37	<0.5	5	14	101	1.66	<10	<1	0.2
165035	0.16	0.004	0.3	1.55	4	<10	490	0.7	<2	0.52	<0.5	6	18	187	1.97	<10	<1	0.25
165040	0.15	0.005	<0.2	1.39	8	<10	210	0.6	<2	0.33	<0.5	7	19	50	2.03	<10	<1	0.19
165045	0.11	0.005	<0.2	1.48	4	<10	210	0.7	<2	0.43	<0.5	7	18	41	2.01	10	<1	0.23
165050	0.13	0.004	<0.2	1.54	5	10	200	0.9	<2	1.72	<0.5	7	16	38	2.03	<10	<1	0.3
165055	0.14	0.004	<0.2	1.61	5	<10	190	0.8	<2	1.06	<0.5	7	18	23	2.05	<10	<1	0.27
165060	0.17	0.003	<0.2	1.54	4	<10	170	0.7	<2	0.38	<0.5	7	17	24	2.06	10	<1	0.25
165065	0.14	0.004	<0.2	1.27	5	<10	160	0.7	<2	0.25	<0.5	7	19	15	2.18	<10	<1	0.19
165070	0.13	0.002	<0.2	1.17	4	<10	160	0.5	<2	0.21	<0.5	6	19	11	2.12	<10	<1	0.16
165075	0.15	0.003	<0.2	0.97	2	<10	150	0.5	<2	0.26	<0.5	6	15	12	1.71	<10	<1	0.16
165085	0.18	0.002	<0.2	1.19	<2	<10	170	0.5	2	1.57	<0.5	6	16	12	1.75	<10	<1	0.23
165090	0.16	0.004	<0.2	0.9	<2	<10	130	<0.5	2	0.19	<0.5	5	17	12	1.77	<10	<1	0.15
165095	0.15	0.003	<0.2	0.87	<2	<10	140	<0.5	2	0.25	<0.5	6	17	11	1.76	<10	<1	0.15
165100	0.15	0.003	<0.2	0.93	<2	<10	140	0.5	3	0.23	<0.5	6	16	11	1.76	<10	1	0.15
165105	0.16	0.003	<0.2	1.07	<2	<10	160	0.5	2	0.24	<0.5	7	17	14	1.82	<10	<1	0.19
165115	0.17	0.004	<0.2	1.28	<2	<10	170	0.6	<2	0.37	<0.5	8	23	19	2.06	<10	<1	0.23
165120	0.18	0.004	< 0.2	1.19	<2	<10	180	0.5	<2	1.37	< 0.5	7	16	17	1.86	<10	<1	0.23
165125	0.15	0.003	< 0.2	1.19	<2	<10	1/0	0.5	2	0.52	<0.5	8	22	18	2.22	<10	<1	0.22
170000	0.13	0.007	< 0.2	1.36	8	<10	190	0.7	<2	0.32	< 0.5	6	18	10	2.07	<10	<1	0.19
1/0005	0.14	0.003	< 0.2	1.07	/	<10	120	0.5	<2	0.28	< 0.5	6	16	10	1.99	<10	<1	0.14
1/0010	0.13	0.003	< 0.2	1.27	1	<10	150	0.6	<2	0.57	< 0.5	6	16	9	1.9	<10	<1	0.18
170015	0.17	0.003	< 0.2	1.1	4	<10	120	0.6	<2	0.31	< 0.5	5	15	9	1.83	<10	<1	0.15
170020	0.14	0.002	< 0.2	1.07	5	<10	120	0.5	<2	0.23	< 0.5	5	13	10	1.62	<10	<1	0.14
1/0025	0.12	0.004	< 0.2	1.18	(<10	190	0.5	<2	0.37	< 0.5	4	13	8	1./1	<10	<1	0.16
170030	0.14	0.003	< 0.2	1.14	4	<10	400	0.6	<2	0.28	< 0.5	6	14	15	1.87	<10	<1	0.15
170035	0.1	0.003	< 0.2	1.47	3	<10	360	0.7	<2	0.79	< 0.5	6	16	24	1.93	<10	<1	0.21
1/0040	0.08	0.003	0.2	1.5	3	<10	190	0.7	<2	0.43	<0.5	/	18	32	2.13	<10	<1	0.19
1/0045	0.13	0.003	< 0.2	1.26	3	<10	180	0.5	<2	3.04	<0.5	6	14	35	1.68	<10	<1	0.21
1/0050	0.11	0.003	< 0.2	1.47	2	10	250	0.6	<2	5.59	<0.5	6	14	24	1./	<10	<1	0.2
170055	0.11	0.004	0.2	1.31	3	<10	180	0.6	<2	0.6	<0.5	8	1/	27	1.93	<10	<1	0.23
170060	0.1	0.006	< 0.2	1.4	4	<10	220	0.6	<2	0.48	<0.5		18	16	2.04	<10	<1	0.18
1/0065	0.1	0.003	< 0.2	1.32	3	<10	260	0.7	<2	0.28	<0.5	8	20	16	2.36	<10	<1	0.18
170070	0.14	0.003	<0.2	1.1	- 2	<10	140	0.5	<2	0.24	<0.5	6	21	11	2.41	<10	<1	U.15

Sample	Wt	Au	Ag	AI	As	В	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	к
170075	0.13	0.004	<0.2	1.05	<2	<10	150	0.5	<2	0.21	<0.5	6	17	12	1.98	<10	<1	0.19
170080	0.11	0.002	<0.2	1.17	3	<10	160	0.5	<2	0.25	<0.5	7	16	12	1.9	<10	<1	0.2
170085	0.17	0.003	<0.2	1.39	3	<10	190	0.5	<2	3.19	<0.5	6	16	14	1.96	<10	<1	0.21
170090	0.15	0.002	<0.2	1.27	2	<10	180	0.6	<2	0.28	<0.5	8	18	14	2.08	<10	<1	0.22
170095	0.13	0.004	<0.2	1.43	5	<10	210	0.7	<2	0.31	<0.5	8	18	16	2.11	<10	<1	0.26
170100	0.12	0.004	<0.2	1.4	3	<10	200	0.7	<2	0.31	<0.5	8	18	16	2.07	<10	<1	0.25
170105	0.15	0.003	<0.2	1.48	3	<10	200	0.7	<2	0.42	<0.5	8	19	15	2.14	<10	<1	0.28
170110	0.14	0.002	<0.2	1.49	3	<10	190	0.7	<2	0.36	<0.5	7	19	15	2.22	10	<1	0.27
170115	0.11	0.004	<0.2	1.89	2	<10	230	0.8	<2	0.72	<0.5	8	19	21	2.48	<10	<1	0.37
170120	0.15	0.002	<0.2	1.29	2	<10	180	0.5	<2	1.08	<0.5	8	19	17	2.24	<10	<1	0.23
170125	0.14	0.003	<0.2	1.21	5	<10	180	0.5	<2	2.25	<0.5	7	20	16	2.24	<10	<1	0.23
175000	0.1	0.003	<0.2	1.11	3	<10	140	0.5	<2	0.26	<0.5	6	17	11	2.04	<10	<1	0.16
175005	0.13	0.004	<0.2	1.34	2	<10	160	0.6	<2	1.26	<0.5	7	16	12	2.16	<10	<1	0.19
175010	0.11	0.003	< 0.2	1.11	3	<10	150	0.5	<2	0.31	<0.5	6	16	13	2.04	<10	<1	0.17
1/5015	0.13	0.001	< 0.2	1.18	<2	<10	210	0.5	<2	0.43	<0.5	6	16	12	2.01	<10	<1	0.2
175020	0.13	0.003	< 0.2	1.24	3	<10	170	0.5	<2	1.26	< 0.5	6	16	10	1.99	<10	<1	0.16
175025	0.15	0.004	< 0.2	1.3	<2	<10	170	0.5	<2	1.67	<0.5	6	16	10	2.03	<10	<1	0.18
175030	0.15	0.002	< 0.2	1.23	3	<10	150	0.5	<2	0.85	< 0.5	6	15	10	2.15	<10	<1	0.16
1/5035	0.14	0.001	< 0.2	0.96	3	<10	150	< 0.5	<2	0.22	< 0.5	5	15	11	1.87	<10	<1	0.13
175040	0.13	0.004	< 0.2	1.32	3	10	380	0.5	<2	3.97	< 0.5	5	15	27	1.81	<10	<1	0.21
175045	0.1	0.004	0.2	1.5	6	10	320	0.6	<2	1.6	< 0.5	6	16	22	1.91	<10	<1	0.25
1/5050	0.12	0.003	< 0.2	1.34	3	<10	160	0.6	<2	0.38	<0.5	6	1/	16	1.98	<10	<1	0.19
1/5055	0.13	0.004	< 0.2	1.48	2	<10	250	0.7	<2	0.42	< 0.5		17	22	2.24	<10	<1	0.26
1/5060	0.07	0.006	< 0.2	1.2	3	<10	190	0.6	<2	0.34	< 0.5	/	16	19	2.09	<10	<1	0.2
1/5065	0.12	0.003	< 0.2	1.47	6	<10	210	0.7	<2	0.28	< 0.5	8	21	16	2.71	10	<1	0.18
1/50/0	0.15	0.003	< 0.2	1.1	3	<10	150	0.5	<2	0.21	<0.5	6	16	10	2.01	<10	<1	0.12
175075	0.16	0.003	< 0.2	1.13	4	<10	150	0.5	<2	0.22	< 0.5	6	16	11	1.96	<10	<1	0.17
175080	0.13	0.003	< 0.2	1.41	2	<10	190	0.6	<2	0.25	< 0.5	8	18	13	2.14	<10	<1	0.21
175085	0.14	0.003	<0.2	1.37	4	< 10	200	0.0	< <u>2</u>	0.23	<0.5	0	10	10	2.03	< 10	<1	0.21
175090	0.12	0.002	<0.2	1.18	2	<10	160	0.5	~2	0.27	<0.5	0 7	18	12	2.13	<10	<1	0.21
175095	0.17	0.004	<0.2	1.29	ა ი	<10	220	0.0	< <u>2</u>	0.20	<0.5	/	10	13	2.15	<10	<1	0.22
175100	0.14	0.004	<0.2	1.09	2	<10	160	0.7	~2	0.37	<0.5	7	19	11	2.21	<10	~1	0.31
175110	0.15	0.001	<0.2	1.00	4 7	<10	200	0.0	~2	0.20	~0.5	7	17	14	2.02	<10	~1	0.2
175115	0.15	0.003	<0.2	1.37	-2	<10	100	0.7	~2	0.40	<0.5	- /	17	17	2.02	<10	~1	0.20
175120	0.10	0.004	<0.2	1.31	~2	<10	180	0.0	~2	1.67	<0.5	8	18	16	2.14	<10	<1	0.24
175125	0.10	0.000	<0.2	1.20	7	<10	200	0.0	<2	3 71	<0.0	7	17	16	2.17	<10	<1	0.20
180000	0.05	0.002	<0.2	1.10	2	<10	170	0.0	<2	0.52	<0.5	7	14	13	1.82	<10	<1	0.20
180005	0.00	0.004	<0.2	1.20	3	<10	180	0.6	<2	0.69	<0.5	7	14	14	1.02	<10	<1	0.26
180010	0.14	0.004	<0.2	1.21	<2	<10	180	0.6	<2	0.00	<0.5	7	15	14	1.99	<10	<1	0.19
180015	0.15	0.005	<0.2	1.35		<10	260	0.5	<2	4.33	<0.5	6	16	12	1 93	<10	<1	0.23
180020	0.14	0.002	<0.2	1.42	3	<10	190	0.7	<2	0.74	<0.5	8	16	15	2 15	<10	<1	0.26
180025	0.16	0.003	<0.2	1.12	<2	<10	160	0.6	<2	0.91	< 0.5	7	15	14	21	<10	<1	0.21
180030	0.15	0.003	<0.2	1.20	2	<10	160	0.5	<2	1.33	< 0.5	6	13	13	1.96	<10	<1	0.18
180035	0.15	0.003	<0.2	0.96	- 4	<10	120	<0.5	<2	0.37	< 0.5	6	12	10	1.82	<10	<1	0.14
180040	0.16	0.004	<0.2	1.13	3	<10	220	0.5	<2	0.92	< 0.5	6	14	13	1.02	<10	<1	0.21
180045	0.13	0.004	< 0.2	1.31	2	<10	190	0.6	<2	0.48	<0.5	6	15	13	1.82	<10	<1	0.2
180050	0.15	0.002	< 0.2	1.26	2	<10	210	0.6	<2	0.39	< 0.5	6	18	14	2.06	<10	<1	0.19
180055	0.13	0.002	< 0.2	1.27	- 5	<10	180	0.6	<2	0.5	<0.5	7	17	16	2.03	<10	<1	0.2
180060	0.12	0.003	< 0.2	1.28	4	<10	260	0.7	<2	0.41	< 0.5	6	18	16	2.24	<10	<1	0.16
180065	0.11	0.004	< 0.2	1.15	4	<10	290	0.6	<2	0.3	<0.5	7	18	13	2.2	<10	<1	0.17
180070	0.12	0.003	< 0.2	1	<2	<10	190	0.5	<2	0.23	< 0.5	6	16	11	2	<10	<1	0.15
180075	0.15	0.003	< 0.2	1.18	3	<10	210	0.5	<2	2.1	< 0.5	6	15	11	1.81	<10	<1	0.24
180080	0.13	0.002	<0.2	1.04	2	<10	160	0.5	<2	0.29	<0.5	5	15	11	1.78	<10	<1	0.17

Sample	Wt	Au	Ag	AI	As	В	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	ĸ
180085	0.17	0.004	<0.2	1.31	<2	<10	230	0.6	<2	0.31	<0.5	7	16	14	1.86 <	:10	<1	0.22
180090	0.14	0.003	<0.2	1.3	2	<10	200	0.6	<2	2.58	<0.5	6	15	14	1.81 <	:10	<1	0.28
180095	0.14	0.002	<0.2	1.19	2	<10	170	0.6	<2	0.41	<0.5	6	15	12	1.75 <	10	<1	0.22
180100	0.14	0.004	<0.2	1.18	2	<10	180	0.6	<2	0.53	<0.5	6	16	13	1.9 <	:10	<1	0.22
180105	0.13	0.004	<0.2	1.42	2	<10	200	0.7	<2	0.4	<0.5	7	18	15	2.06 <	:10	<1	0.26
180110	0.16	0.003	<0.2	1.23	2	<10	150	0.6	<2	0.47	<0.5	6	18	13	2.08 <	:10	<1	0.22
180115	0.15	0.003	<0.2	1.46	<2	<10	210	0.7	<2	0.55	<0.5	8	18	15	2.29 <	:10	<1	0.28
180120	0.14	0.003	<0.2	1.31	3	<10	200	0.6	<2	2.61	<0.5	8	17	16	2.07 <	:10	<1	0.25
180125	0.17	0.003	<0.2	1.07	3	<10	170	0.5	<2	3.23	<0.5	7	16	13	1.89 <	:10	<1	0.2
185000	-0.02	0.004	<0.2	1.03	4	<10	140	0.5	<2	2.02	<0.5	5	14	10	1.8 <	:10	<1	0.15
185005	0.14	0.003	<0.2	1.1	3	<10	160	0.5	<2	0.3	<0.5	7	15	15	2.16 <	:10	<1	0.15
185010	0.14	0.003	<0.2	1.41	2	<10	180	0.7	<2	0.51	<0.5	8	14	18	2.23 <	:10	<1	0.25
185015	0.15	0.002	<0.2	1.51	3	<10	200	0.7	<2	1.26	<0.5	9	15	18	2.27 <	:10	<1	0.31
185020	0.16	0.003	<0.2	1.26	3	10	150	0.6	<2	0.71	<0.5	7	15	16	2.1 <	:10	<1	0.29
185025	0.13	0.004	<0.2	1.23	3	<10	170	0.5	<2	4.01	<0.5	7	14	17	1.79 <	:10	<1	0.32
185030	0.14	0.005	<0.2	1.3	4	<10	170	0.6	<2	0.45	<0.5	7	16	16	2.14 <	:10	<1	0.24
185035	0.17	0.005	<0.2	1.11	<2	<10	140	0.5	<2	0.33	<0.5	7	15	14	2.18 <	:10	<1	0.18
185040	0.06	0.005	<0.2	1.06	5	<10	160	0.5	<2	0.29	<0.5	6	14	15	1.79 <	:10	<1	0.19
185045	0.15	0.007	<0.2	0.96	<2	<10	260	0.5	<2	2.19	<0.5	4	12	13	1.61 <	:10	<1	0.19
185050	0.17	0.005	<0.2	0.69	<2	<10	110	<0.5	<2	0.18	<0.5	4	14	10	1.7 <	:10	<1	0.12
185055	0.15	0.006	<0.2	0.86	2	<10	130	0.5	<2	0.25	<0.5	5	17	13	2.06 <	:10	<1	0.12
185060	0.14	0.005	<0.2	0.74	3	<10	160	<0.5	2	0.22	<0.5	5	16	12	1.94 <	:10	<1	0.11
185065	0.19	0.005	<0.2	0.85	3	<10	140	0.5	<2	0.23	<0.5	6	21	9	2.73 <	:10	<1	0.09
185070	0.16	0.004	<0.2	0.8	3	<10	130	<0.5	<2	0.18	<0.5	5	15	9	1.79 <	:10	<1	0.12
185075	0.16	0.004	<0.2	0.97	2	<10	160	0.5	<2	0.2	<0.5	5	14	10	1.66 <	:10	<1	0.16
185080	0.15	0.006	<0.2	0.93	3	<10	160	0.5	<2	0.19	<0.5	5	14	10	1.62 <	:10	<1	0.15
185085	0.13	0.003	<0.2	1.23	5	<10	210	0.6	2	1.66	<0.5	6	14	14	1.67 <	:10	<1	0.25
185090	0.17	0.005	<0.2	1.23	3	<10	190	0.6	<2	0.84	<0.5	6	16	13	1.84 <	:10	<1	0.23
185095	0.18	0.006	<0.2	1.06	<2	<10	160	0.5	<2	0.26	<0.5	5	16	13	1.78 <	:10	<1	0.19
185100	0.2	0.004	<0.2	1.14	5	<10	160	0.6	<2	0.84	<0.5	5	15	13	1.75 <	:10	<1	0.24
185105	0.18	0.007	<0.2	1.12	5	<10	150	0.6	<2	0.48	<0.5	6	16	12	1.78 <	:10	<1	0.22
185110	0.2	0.005	<0.2	1.13	<2	<10	160	0.6	<2	0.3	<0.5	7	17	14	1.9 <	:10	<1	0.23
185115	0.16	0.004	<0.2	1.44	<2	<10	190	0.7	<2	0.55	0.5	6	18	15	2.05 <	:10	<1	0.26
185120	0.41	0.006	<0.2	1.19	7	<10	200	0.6	<2	2.85	<0.5	7	18	15	2 <	:10	<1	0.23
185125	0.16	0.005	<0.2	1.2	4	<10	160	0.5	<2	2.39	<0.5	7	18	17	2.03 <	10	<1	0.2
190000	0.13	0.005	<0.2	1.07	<2	<10	120	0.5	<2	0.31	<0.5	5	15	12	1.85 <	10	<1	0.16
190005	0.14	0.003	<0.2	0.94	4	<10	110	0.5	<2	0.31	<0.5	5	12	12	1.67 <	:10	<1	0.14
190010	0.14	800.0	< 0.2	1.4	2	<10	240	0.7	<2	0.51	< 0.5	7	14	17	2.04	10	<1	0.22
190015	0.18	0.007	< 0.2	1.47	6	<10	160	0.7	<2	2.64	<0.5	8	14	18	2.15	10	<1	0.25
190020	0.16	0.007	< 0.2	1.2	<2	<10	150	0.7	<2	0.72	< 0.5	/	14	15	2.13 <	:10	<1	0.24
190025	0.18	0.001	< 0.2	1.18	2	<10	140	0.5	<2	1.79	< 0.5	6	15	15	1.96 <	:10	<1	0.19
190030	0.16	0.006	< 0.2	1.54	5	<10	1/0	0.7	<2	1.54	< 0.5	8	14	53	2.24	10	<1	0.29
190035	0.15	0.006	< 0.2	1.41	3	<10	170	0.7	<2	0.4	< 0.5	8	16	17	2.25 <	:10	<1	0.23
190040	0.13	0.005	<0.2	1.19	<2	<10	140	0.6	<2	0.35	<0.5	7	14	16	2.05 <	:10	<1	0.2
190045	0.08	0.005	< 0.2	1	4	<10	200	0.5	<2	0.48	< 0.5	5	12	12	1.64 <	:10	<1	0.17
190050	0.13	0.003	< 0.2	0.86	<2	<10	110	< 0.5	<2	0.21	< 0.5	5	14	10	1.67 <	:10	<1	0.13
190055	0.17	0.007	< 0.2	1	4	<10	210	0.5	<2	0.29	< 0.5	6	15	15	1.78 <	:10	<1	0.17
190060	0.12	0.007	< 0.2	1.01	5	<10	240	0.5	<2	0.33	<0.5	5	14	12	1.84 <	10	<1	0.16
190065	0.17	0.006	< 0.2	1.22	4	<10	850	0.9	<2	0.31	0.6	8	19	15	2.6	10	<1	0.15
190070	0.17	0.008	< 0.2	0.86	5	<10	200	< 0.5	<2	0.23	<0.5	5	14	9	1./4 <	10	<1	0.15
190075	0.1/	0.006	< 0.2	1.06	2	<10	180	0.5	<2	0.26	<0.5	4	12	8	1.48 <	10	<1	0.14
190080	0.15	0.004	< 0.2		3	<10	1/0	0.5	<2	0.29	<0.5	5	14	9	1.69 <	10	<1	0.17
190085	0.13	<u><0.001</u>	< 0.2	0.95	<2	<10	140	< 0.5	<2	0.27	<0.5	4	11	9	1.30 <	10	<1	0.17
190090	0.16	0.006	<0.2	1.32	4	<10	210	U.6	<2	Z.22	<0.5	5	15	13	1.73 <	10	<1	0.25

Sample	Wt	Au	Ag	AI	As	В	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	ĸ
190095	0.14	0.008	<0.2	1.21	<2	<10	170	0.5	<2	0.56	<0.5	6	15	12	1.67 <	<10	<1	0.19
190100	0.18	0.006	<0.2	1.26	3	<10	170	0.6	<2	1.08	<0.5	5	15	11	1.68 <	<10	<1	0.24
190105	0.19	0.006	<0.2	1.23	2	<10	160	0.6	<2	1.02	<0.5	5	15	14	1.7 <	<10	<1	0.21
190110	0.18	0.003	<0.2	1.2	2	<10	150	0.6	<2	1.05	<0.5	5	16	12	1.79 <	<10	<1	0.23
190115	0.16	0.005	<0.2	1.13	3	<10	150	0.6	<2	0.3	<0.5	6	15	13	1.8 <	<10	<1	0.2
190120	0.17	0.006	<0.2	1.56	<2	<10	220	0.7	<2	5.1	<0.5	7	16	15	1.94 <	<10	<1	0.25
190125	0.18	0.004	<0.2	1.47	4	<10	190	0.6	<2	4.34	<0.5	9	19	22	2.05 <	<10	<1	0.24
195000	0.16	0.008	<0.2	1.23	4	<10	140	0.6	<2	1.3	<0.5	6	14	12	1.74 <	<10	<1	0.2
195005	0.16	0.007	<0.2	1.11	2	<10	120	0.5	<2	0.25	<0.5	6	13	11	1.79 <	<10	<1	0.14
195010	0.14	0.006	<0.2	1.32	3	<10	150	0.6	<2	1.1	<0.5	7	12	16	1.86	10	<1	0.26
195015	0.17	0.006	<0.2	1.54	3	<10	150	0.6	<2	0.89	<0.5	8	19	18	2.38	10	<1	0.26
195020	0.16	0.004	<0.2	1.27	<2	<10	150	0.6	<2	1.4	<0.5	6	15	16	1.84 <	<10	<1	0.24
195025	0.18	0.007	<0.2	1.2	3	<10	130	0.6	<2	0.47	<0.5	5	12	12	1.84 <	<10	<1	0.21
195030	0.16	0.003	<0.2	1.34	4	<10	140	0.6	<2	0.7	<0.5	7	12	15	2.1 <	<10	<1	0.24
195035	0.2	0.005	<0.2	1.05	4	<10	110	0.5	<2	0.63	<0.5	6	12	13	1.94 <	<10	<1	0.19
195040	0.16	0.007	<0.2	1.11	4	<10	120	0.5	<2	0.31	<0.5	7	13	13	2.04 <	<10	<1	0.16
195045	0.15	0.005	<0.2	1.04	4	<10	120	0.5	<2	0.28	<0.5	7	13	13	1.92 <	<10	<1	0.14
195050	0.16	0.006	<0.2	0.87	4	<10	120	<0.5	<2	0.27	<0.5	5	12	12	1.59 <	<10	<1	0.14
195055	0.11	0.006	<0.2	1.2	2	<10	200	0.6	<2	0.5	<0.5	5	14	12	1.67 <	<10	<1	0.2
195060	0.14	0.005	<0.2	1.44	5	<10	340	0.7	<2	0.67	<0.5	5	15	14	1.82 <	<10	<1	0.19
195065	0.15	0.004	< 0.2	0.68	3	<10	110	< 0.5	<2	0.16	< 0.5	4	10	8	1.35 <	<10	<1	0.09
195070	0.14	0.004	< 0.2	0.91	<2	<10	150	< 0.5	<2	0.23	< 0.5	4	12	7	1.52 <	<10	<1	0.13
195075	0.14	0.006	< 0.2	0.95	3	<10	160	< 0.5	<2	0.44	< 0.5	4	12	8	1.48 <	<10	<1	0.14
195080	0.18	0.006	< 0.2	0.8	4	<10	130	< 0.5	<2	0.47	< 0.5	4	9	7	1.22 <	<10	<1	0.17
195085	0.19	0.006	< 0.2	1.02	4	<10	130	< 0.5	<2	0.28	< 0.5	4	12	8	1.52 <	<10	<1	0.15
195090	0.16	0.009	< 0.2	1.18	2	<10	160	0.5	<2	1.29	< 0.5	5	14	11	1.63 <	<10	<1	0.23
195095	0.15	0.005	<0.2	1.36	4	<10	180	0.6	<2	0.51	<0.5	5	15	13	1 74 <	<10	1	0.26
195100	0.14	0.007	< 0.2	1.15	2	<10	150	0.5	<2	0.52	< 0.5	5	13	12	1.54 <	<10	<1	0.21
195105	0.14	0.006	<0.2	121	7	<10	160	0.6	<2	0.4	<0.5	6	15	14	1 74 <	<10	<1	0.21
195110	0.17	0.006	< 0.2	0.85	3	<10	110	< 0.5	<2	0.53	< 0.5	4	11	9	1.39 <	<10	<1	0.16
195115	0.15	0.004	< 0.2	1.16	6	<10	150	0.6	<2	0.32	< 0.5	5	16	12	1.94 <	<10	<1	0.18
195120	0.17	0.007	< 0.2	1.14	2	<10	140	0.6	<2	0.68	< 0.5	6	14	11	1.8 <	<10	<1	0.17
195125	0.18	0.006	0.2	1.22	6	<10	160	0.6	<2	3.08	0.5	13	24	27	2.11 <	<10	<1	0.17
200005	0.13	0.004	< 0.2	1.38	4	<10	220	0.7	<2	1.11	< 0.5	8	15	17	2.1	10	<1	0.25
200010	0.15	0.006	<0.2	1 01	4	<10	110	0.5	<2	0.3	<0.5	6	12	14	1.86 <	<10	<1	0.17
200015	0.15	0.001	< 0.2	1.11	3	<10	110	0.5	<2	0.75	< 0.5	6	14	13	1.81 <	<10	<1	0.17
200020	0.17	0.002	< 0.2	1.01	<2	<10	100	0.5	<2	0.38	< 0.5	5	13	10	1.72 <	<10	<1	0.16
200025	0.12	0.002	< 0.2	1.21	3	<10	130	0.6	<2	0.42	< 0.5	6	15	13	1.89 <	<10	<1	0.18
200030	0.13	0.003	< 0.2	1.08	3	<10	120	0.5	<2	0.35	< 0.5	5	15	14	1.87 <	<10	<1	0.18
200035	0.16	0.001	< 0.2	1.18	5	<10	130	0.6	<2	1.24	< 0.5	7	12	12	1.83 <	<10	<1	0.19
200040	0.12	0.002	<0.2	1 74	5	<10	150	07	<2	0.38	<0.5	7	16	10	2 31	10	<1	0.18
200045	0.16	0.001	<0.2	0.94	<2	<10	100	0.5	<2	0.00	<0.5	5	12	10	1.89 <	<10	<1	0.14
200050	0.13	0.002	<0.2	0.62	- 3	<10	190	<0.5	<2	0.14	<0.5	4	9	8	1.37 <	<10	<1	0.09
200055	0.07	0.004	<0.2	1.3	4	<10	300	0.6	<2	0.66	0.0	6	15	19	1.87	<10	<1	0.23
200060	0.01	0.001	<0.2	1 11	. 3	<10	190	0.6	<2	0.3	<0.5	7	17	13	2 25 <	<10	<1	0.15
200065	0.16	0.001	<0.2	0.84	2	<10	110	<0.5	<2	0.22	<0.5	5	11	9	1.57 <	<10	<1	0.12
200070	0.15	0.002	<0.2	0.65	4	<10	110	<0.5	<2	0.15	<0.5	4	8	8	1.07	<10	<1	0.09
200075	0.18	0.002	<0.2	0.67	<2	<10	100	<0.5	<2	0.25	<0.5	3	7	6	1.22	<10	<1	0.00
200080	0 17	0.001	<0.2	0.83	3	<10	120	<0.5	<2	0.23	<0.5	4	9	8	1 2 9 <	<10	1	0 13
200085	0.13	0.001	<0.2	1 09	2	<10	160	0.5	<2	0.20	<0.5	5	12	10	1.51 <	<10	<1	0.16
200090	0.12	0.001	<0.2	1 0.3	<2	<10	140	0.5	<2	0 41	<0.5	5	12	9	1 4 9 <	<10	<1	0 17
200095	0.14	0.002	<0.2	1 21	<u>۔</u> ۲	<10	170	0.5	<2	2 01	<0.5	5	15	12	17 <	<10	<1	0.23
200100	0.16	0.003	<0.2	1 4	3	<10	200	0.6	<2	24	<0.5	6	15	13	1 77 <	<10	<1	0.24
200105	0.17	0.002	<0.2	1.3	3	<10	170	0.7	<2	0.42	<0.5	6	15	14	1.8 <	<10	<1	0.24

Sample	Wt	Au	Ag	AI	As	В	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe Ga	<u>Hg</u>	<u> </u>
200110	0.15	0.001	<0.2	1.09	2	<10	150	0.5	<2	1.72	<0.5	5	14	11	1.65 <10) <1	0.21
200115	0.15	0.001	<0.2	0.97	<2	<10	130	0.5	<2	0.26	<0.5	5	14	11	1.67 <10) <1	0.17
200120	0.16	0.006	<0.2	1.13	2	<10	150	0.6	<2	0.47	<0.5	6	15	12	1.95 <10) <1	0.2
200125	0.13	0.005	<0.2	1.24	5	<10	190	0.6	<2	2.58	<0.5	7	15	15	1.97 <10) <1	0.2
205000	0.14	0.002	<0.2	1.35	5	<10	190	0.7	<2	0.36	<0.5	8	15	16	2.1 <10) <1	0.19
205005	0.11	0.002	<0.2	1.04	3	<10	140	0.5	<2	0.29	<0.5	7	13	15	1.9 <10) <1	0.17
205010	0.13	0.001	<0.2	1.48	3	<10	170	0.7	<2	2.9	<0.5	7	14	17	2.05 <10) <1	0.31
205025	0.03	0.004	<0.2	1.27	5	<10	130	0.6	<2	1.22	<0.5	5	15	11	1.82 <10) <1	0.18
205030	0.13	0.002	<0.2	1.37	8	<10	160	0.7	<2	1.36	<0.5	6	14	13	1.74 <10) <1	0.23
205035	0.15	0.002	<0.2	0.76	<2	<10	90	<0.5	<2	0.2	<0.5	4	12	9	1.64 <10) <1	0.11
205040	0.15	0.001	<0.2	0.93	<2	<10	90	0.5	<2	0.26	<0.5	5	11	10	1.78 <10) <1	0.13
205045	0.11	0.002	<0.2	1.61	5	<10	120	0.6	<2	0.95	<0.5	8	12	16	2.44 10) <1	0.2
205050	0.14	0.025	<0.2	1.38	6	<10	200	0.7	<2	2.33	<0.5	8	13	19	2.52 10) <1	0.14
205055	0.12	0.002	<0.2	0.93	5	<10	140	0.5	<2	0.24	<0.5	6	13	17	1.79 <10) <1	0.12
205060	0.12	0.001	<0.2	1	<2	<10	140	0.5	<2	0.23	<0.5	5	14	10	1.9 <10) <1	0.12
205065	0.13	0.002	<0.2	0.94	2	<10	120	0.6	<2	0.27	<0.5	5	13	13	1.71 <10) <1	0.15
205070	0.05	0.004	<0.2	0.85	2	<10	130	<0.5	<2	0.51	<0.5	3	10	8	1.28 <10) <1	0.15
205075	0.14	0.001	<0.2	0.76	4	<10	120	<0.5	<2	0.21	<0.5	4	10	7	1.28 <10) <1	0.12
205080	0.13	0.001	<0.2	0.83	3	<10	110	<0.5	<2	0.33	<0.5	3	11	7	1.35 <10) <1	0.13
205085	0.14	0.002	<0.2	0.9	4	<10	150	<0.5	<2	1.89	<0.5	2	10	8	1.26 <10) <1	0.16
205090	0.16	0.002	<0.2	0.98	<2	<10	150	<0.5	<2	2.03	<0.5	4	11	8	1.37 <10) <1	0.18
205095	0.14	0.003	<0.2	0.89	3	<10	140	<0.5	<2	0.3	<0.5	4	12	10	1.49 <10) <1	0.14
205100	0.16	0.002	<0.2	1.08	2	<10	140	0.5	<2	0.43	<0.5	5	13	11	1.69 <10) <1	0.19
205105	0.13	0.003	<0.2	0.96	2	<10	140	0.5	<2	0.28	<0.5	4	13	13	1.66 <10) <1	0.18
205110	0.13	0.001	<0.2	1.17	4	<10	160	0.6	<2	0.92	<0.5	5	14	12	1.85 <10) <1	0.2
205115	0.14	0.001	<0.2	0.9	2	<10	120	0.5	<2	0.24	<0.5	5	16	10	1.92 <10) <1	0.14
205120	0.11	0.003	<0.2	1.6	6	<10	180	0.8	<2	0.38	<0.5	6	19	12	2.38 <10) <1	0.2
205125	0.13	0.003	<0.2	1.35	5	<10	180	0.6	<2	1.29	<0.5	7	17	15	2.14 <10) <1	0.2
210000	0.15	0.001	<0.2	1.3	3	<10	140	0.6	<2	0.35	<0.5	6	14	17	2.24 <10) <1	0.19
210005	0.14	0.002	<0.2	1.68	3	<10	230	0.9	<2	0.43	<0.5	10	16	22	2.27 <10) <1	0.3
210010	0.15	0.002	<0.2	1.39	2	<10	140	0.6	<2	0.83	<0.5	8	14	19	2.18 <10) 1	0.27
210015	0.15	0.002	<0.2	1.04	3	<10	100	0.5	<2	0.36	<0.5	6	14	13	2.11 <10) <1	0.16
210020	0.13	0.002	<0.2	1.02	2	<10	110	0.6	<2	0.34	<0.5	5	13	11	1.82 <10) <1	0.16
210025	0.19	0.002	<0.2	1.38	3	<10	150	0.7	<2	0.46	<0.5	6	15	15	1.95 <10) 1	0.2
210030	0.13	0.003	<0.2	1.35	6	<10	150	0.7	<2	0.96	<0.5	6	24	19	1.97 <10) <1	0.19
210035	0.15	0.003	<0.2	1.18	4	<10	140	0.6	<2	0.82	<0.5	5	15	15	1.82 <10) <1	0.19
210050	0.13	0.002	<0.2	1.52	4	<10	190	1	<2	0.39	<0.5	7	16	19	2.26 <10) <1	0.18
210055	0.12	0.003	<0.2	1.2	5	<10	900	1	<2	0.33	<0.5	6	15	19	2.28 <10) <1	0.14
210060	0.14	0.006	<0.2	1.44	2	<10	220	0.9	<2	0.44	0.6	8	14	21	2.14 10) <1	0.16
210065	0.15	0.003	<0.2	1.4	4	<10	230	0.8	<2	0.52	<0.5	7	14	18	1.91 <1() <1	0.22
210070	0.13	0.002	<0.2	0.96	3	<10	170	0.5	<2	0.32	<0.5	5	10	14	1.43 <10) <1	0.16
210075	0.13	0.002	<0.2	0.69	2	<10	120	<0.5	<2	0.19	<0.5	3	8	7	1.15 <10) <1	0.1
210080	0.13	0.001	<0.2	0.98	5	<10	140	<0.5	<2	0.36	<0.5	4	11	8	1.46 <10) <1	0.16
210085	0.13	0.003	<0.2	0.98	<2	<10	150	<0.5	<2	1.55	<0.5	4	12	10	1.42 <10) <1	0.19
210090	0.12	0.001	<0.2	0.95	2	<10	130	<0.5	<2	0.27	<0.5	3	12	8	1.53 <10) <1	0.13
210095	0.14	0.002	<0.2	1.11	<2	<10	160	0.5	<2	0.92	<0.5	5	13	10	1.63 <10) <1	0.16
210100	0.14	0.001	<0.2	1	3	<10	150	0.5	<2	0.29	<0.5	5	14	11	1.64 <10) <1	0.17
210105	0.1	0.002	<0.2	1.04	3	<10	150	0.5	<2	2.4	0.5	4	11	11	1.52 <10) <1	0.2
210110	0.13	0.002	<0.2	1.23	3	<10	170	0.6	<2	0.45	<0.5	5	14	13	1.81 <10) <1	0.19
210115	0.12	0.001	<0.2	1.22	<2	<10	170	0.6	<2	0.48	<0.5	5	16	12	1.97 <10) <1	0.21
210120	0.11	0.005	<0.2	1.3	2	<10	180	0.7	<2	2.18	0.6	10	21	22	2.23 <10) <1	0.17
210125	0.11	0.002	<0.2	1.14	<2	<10	140	0.6	<2	0.34	<0.5	6	17	15	2 <10) <1	0.21
215000	0.16	0.003	<0.2	1.4	2	<10	170	0.6	<2	4.22	<0.5	7	13	20	2.21 <10) 1	0.18
215005	0.14	0.001	<0.2	1.22	3	<10	160	0.6	<2	0.39	<0.5	7	14	17	2.27 <10) <1	0.19

Sample	Wt	Au	Ag	AI	As	в	Ва	Ве	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	κ
215010	0.14	0.002	<0.2	1.73	3	<10	200	0.8	<2	0.63	<0.5	9	15	24	2.23	10	<1	0.3
215015	0.16	0.002	<0.2	1.31	7	<10	140	0.6	<2	0.48	<0.5	8	13	18	2.07	<10	<1	0.2
215020	0.16	0.002	<0.2	1.29	5	<10	130	0.6	<2	1.17	<0.5	8	13	17	2.07	<10	<1	0.23
215025	0.18	0.003	<0.2	1.25	5	<10	150	0.6	<2	1.63	<0.5	5	14	14	1.87	<10	<1	0.23
215030	0.13	0.002	<0.2	0.93	2	<10	110	0.5	<2	0.26	<0.5	5	14	12	1.82	<10	<1	0.15
215035	0.14	0.002	<0.2	0.8	4	<10	100	<0.5	<2	0.2	<0.5	5	14	10	1.86	<10	<1	0.11
215040	0.18	0.003	<0.2	0.86	<2	<10	90	<0.5	<2	0.27	<0.5	4	14	9	1.84	<10	<1	0.15
215045	0.17	0.002	0.2	0.92	6	<10	110	0.5	<2	0.25	<0.5	4	12	11	1.71	<10	<1	0.14
215050	0.2	0.003	<0.2	1.04	3	<10	140	0.6	<2	0.79	<0.5	5	11	15	1.71	<10	<1	0.18
215055	0.16	0.003	<0.2	1.13	6	<10	410	0.8	<2	0.59	<0.5	5	12	14	1.75	<10	<1	0.17
215060	0.12	0.004	<0.2	1.13	<2	<10	310	0.6	<2	2.22	<0.5	5	11	14	1.7	<10	<1	0.13
215070	0.19	0.004	<0.2	1.62	3	<10	230	0.8	<2	1.61	<0.5	5	16	15	1.93	<10	<1	0.18
215075	0.16	0.003	<0.2	1.29	<2	<10	200	0.6	<2	0.45	<0.5	6	14	16	1.88	<10	<1	0.22
215080	0.15	0.004	<0.2	1.05	2	<10	180	0.5	<2	1.81	<0.5	4	11	11	1.53	<10	<1	0.22
215090	0.17	0.002	<0.2	0.94	<2	<10	130	0.5	<2	0.28	<0.5	4	11	11	1.38	<10	<1	0.16
215095	0.17	0.002	<0.2	0.96	<2	<10	130	0.5	<2	0.29	<0.5	4	12	11	1.56	<10	<1	0.15
215100	0.07	0.005	<0.2	1.13	<2	<10	160	0.6	<2	0.38	0.5	6	12	18	1.53	<10	<1	0.21
215105	0.17	0.003	<0.2	0.97	<2	<10	130	0.5	<2	0.25	<0.5	5	15	12	1.85	<10	<1	0.15
215110	0.2	0.003	<0.2	0.84	<2	<10	120	<0.5	<2	0.26	<0.5	5	16	11	1.88	<10	<1	0.14
215115	0.17	0.003	<0.2	0.96	2	<10	130	0.5	<2	0.29	<0.5	5	15	13	1.87	<10	<1	0.16
215120	0.17	0.004	<0.2	1.52	4	<10	160	0.8	<2	0.43	<0.5	5	18	12	2.23	<10	1	0.22
215125	0.15	0.006	<0.2	1.2	4	<10	140	0.7	<2	0.4	<0.5	6	18	15	2.28	<10	<1	0.18
220000	0.19	0.003	<0.2	1.23	2	<10	140	0.6	<2	0.56	<0.5	7	14	15	2.38	<10	<1	0.14
220005	0.2	0.003	<0.2	1.29	3	<10	190	0.6	<2	1.16	<0.5	7	12	15	2.25	<10	<1	0.19
220010	0.16	0.003	<0.2	1.3	3	<10	130	0.6	<2	0.72	<0.5	6	14	14	2.17	<10	<1	0.18
220015	0.17	0.005	<0.2	1.21	<2	<10	110	0.5	<2	0.66	<0.5	6	12	16	1.98	<10	<1	0.21
220020	0.19	0.003	<0.2	1.41	5	<10	140	0.6	<2	0.92	<0.5	7	13	19	2	<10	<1	0.25
220025	0.14	0.009	<0.2	1.55	5	<10	180	0.7	<2	7.1	<0.5	5	13	14	1.83	<10	<1	0.22
220030	0.14	0.003	<0.2	1.14	<2	<10	110	0.5	<2	0.4	<0.5	4	14	12	1.89	<10	<1	0.16
220035	0.17	0.003	<0.2	1.05	<2	<10	110	0.5	<2	0.36	<0.5	5	14	11	1.86	<10	1	0.18
220040	0.14	0.009	<0.2	1.29	2	10	170	0.6	<2	3.52	<0.5	5	14	12	1.78	<10	1	0.29
220045	0.17	0.003	<0.2	0.7	2	<10	90	<0.5	<2	0.19	<0.5	4	11	8	1.63	<10	<1	0.11
220050	0.15	0.002	<0.2	0.69	<2	<10	100	<0.5	<2	0.23	<0.5	4	10	11	1.46	<10	<1	0.13
220055	0.15	0.003	<0.2	0.72	4	<10	90	<0.5	<2	0.18	<0.5	4	15	9	2.07	<10	<1	0.1
220060	0.14	0.003	<0.2	0.69	3	<10	150	<0.5	<2	0.18	<0.5	4	15	9	2.02	<10	<1	0.1
220065	0.14	0.003	<0.2	0.88	<2	<10	330	0.6	<2	0.25	<0.5	5	11	14	1.57	<10	<1	0.13
220070	0.16	0.002	<0.2	0.62	<2	<10	140	<0.5	<2	0.17	<0.5	4	10	7	1.47	<10	<1	0.09
220075	0.18	0.003	<0.2	0.95	2	<10	190	<0.5	<2	1.29	<0.5	4	12	10	1.5	<10	<1	0.17
220095	0.07	0.002	<0.2	1.02	<2	<10	140	0.5	<2	0.29	<0.5	3	13	10	1.6	<10	<1	0.17
220100	0.13	0.001	<0.2	1.04	4	<10	140	0.5	<2	0.3	<0.5	5	15	11	1.84	<10	<1	0.15
220105	0.15	0.003	<0.2	1.16	<2	<10	150	0.6	<2	0.87	<0.5	5	17	11	2.05	<10	<1	0.17
220110	0.16	0.003	<0.2	1.09	3	<10	140	0.5	<2	0.7	<0.5	4	14	11	1.74	<10	<1	0.16
220115	0.14	0.005	<0.2	2.3	5	<10	260	1	<2	2.08	0.5	6	16	19	1.99	10	<1	0.36
220125	0.05	0.003	<0.2	1.16	5	<10	150	0.6	<2	3.2	<0.5	6	16	13	1.93	<10	<1	0.19
225000	0.14	0.003	<0.2	1.12	4	<10	180	0.5	<2	2.11	<0.5	5	13	12	1.7	<10	<1	0.21
225005	0.15	0.004	<0.2	1.13	5	<10	150	0.6	<2	0.55	<0.5	6	15	12	2.19	<10	<1	0.15
225010	0.15	0.004	<0.2	1.23	3	<10	130	0.5	<2	1.63	<0.5	6	13	12	1.97	<10	<1	0.19
225015	0.15	0.003	<0.2	1.38	5	<10	170	0.6	<2	1.61	<0.5	6	15	13	2.1	<10	<1	0.23
225020	0.17	0.003	<0.2	1.25	6	<10	130	0.7	<2	0.42	<0.5	6	14	13	2	<10	<1	0.2
225025	0.18	0.003	<0.2	1.25	4	<10	130	0.6	<2	0.65	<0.5	5	15	13	2.09	<10	<1	0.26
225030	0.2	0.002	<0.2	1.13	3	<10	110	0.5	<2	0.4	<0.5	5	16	11	2.09	<10	<1	0.2
225035	0.16	0.004	<0.2	1.27	3	10	220	0.6	<2	2.48	<0.5	6	14	14	1.79	<10	<1	0.26
225040	0.16	0.003	<0.2	0.89	2	<10	110	<0.5	<2	0.24	<0.5	6	16	9	2.14	<10	<1	0.15
225045	0.19	0.002	<0.2	0.61	<2	<10	70	<0.5	<2	0.14	<0.5	4	15	7	2.08	<10	<1	0.09

Sample	Wt	Au	Ag	AI	As	в	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	κ
225050	0.14	0.005	<0.2	1.32	2	<10	170	0.7	<2	1.5	<0.5	6	12	11	2.05	<10	<1	0.14
225055	0.15	0.003	<0.2	0.97	<2	<10	120	0.5	<2	0.3	<0.5	5	12	11	1.87	<10	<1	0.13
225060	0.14	0.002	<0.2	0.7	<2	<10	90	0.5	<2	0.21	<0.5	4	9	9	1.53	<10	<1	0.1
225065	0.14	0.003	<0.2	0.66	3	<10	150	0.5	<2	0.2	<0.5	3	11	9	1.67	<10	<1	0.1
225070	0.14	0.002	<0.2	0.68	2	<10	140	<0.5	<2	0.2	<0.5	3	13	8	1.78	<10	<1	0.09
225075	0.14	0.003	<0.2	0.85	2	<10	150	< 0.5	<2	0.35	<0.5	4	11	9	1.46	<10	<1	0.14
225080	0.09	0.003	<0.2	0.83	2	<10	120	<0.5	<2	0.92	<0.5	4	13	8	1.81	<10	<1	0.13
225085	0.17	0.003	<0.2	1.02	<2	<10	150	<0.5	<2	1.51	<0.5	3	13	9	1.71	<10	<1	0.12
225090	0.16	0.003	< 0.2	0.9	3	<10	140	0.5	<2	0.57	< 0.5	4	11	11	1.53	<10	<1	0.18
225095	0.12	0.003	<0.2	1.64	<2	<10	290	0.9	<2	0.7	<0.5	7	20	24	1.95	10	<1	0.26
225100	0.16	0.002	<0.2	0.92	2	<10	130	0.5	<2	0.24	<0.5	4	13	9	1.61	<10	<1	0.14
225105	0.14	0.003	<0.2	0.94	3	<10	140	0.5	<2	0.31	<0.5	4	14	11	1.78	<10	<1	0.16
225110	0.15	0.003	<0.2	1.18	2	<10	160	0.7	<2	0.34	<0.5	7	18	14	2	<10	<1	0.24
225115	0.15	0.003	<0.2	1.29	3	<10	190	0.6	<2	0.68	<0.5	6	18	17	2.06	<10	<1	0.27
225120	0.12	0.004	<0.2	1.72	3	10	190	0.7	<2	7.8	<0.5	9	16	26	1.8	<10	<1	0.37
225125	0.14	0.003	<0.2	1.43	<2	<10	170	0.7	<2	2.59	0.5	5	16	14	1.96	<10	<1	0.25
230000	0.15	0.002	<0.2	0.97	<2	<10	140	0.5	<2	0.27	<0.5	5	17	11	2.21	<10	<1	0.14
230005	0.12	0.003	<0.2	1.42	<2	<10	140	0.7	<2	0.41	<0.5	6	20	11	2.53	<10	<1	0.22
230010	0.15	0.002	<0.2	0.78	<2	<10	100	<0.5	<2	0.2	<0.5	6	17	10	2.4	<10	<1	0.12
230015	0.17	0.003	<0.2	1.2	<2	10	130	0.5	<2	2.3	<0.5	4	14	10	1.85	<10	<1	0.22
230020	0.16	0.003	<0.2	0.92	2	<10	100	0.5	2	0.25	<0.5	5	15	11	2.1	<10	<1	0.14
230025	0.15	0.002	<0.2	1.17	2	<10	130	0.6	<2	0.63	0.5	6	15	13	1.99	<10	<1	0.21
230030	0.1	0.003	<0.2	1.31	<2	<10	130	0.7	<2	0.46	<0.5	6	17	14	2.19	<10	<1	0.2
230035	0.1	0.003	<0.2	1.26	<2	<10	120	0.6	<2	0.37	<0.5	5	17	11	2.19	<10	<1	0.2
230040	0.13	0.003	<0.2	0.77	<2	<10	110	<0.5	<2	0.2	<0.5	5	18	9	2.43	<10	<1	0.11
230045	0.15	0.004	<0.2	0.73	3	<10	100	<0.5	2	0.18	<0.5	4	15	8	2.01	<10	<1	0.12
230050	0.18	0.004	<0.2	0.95	<2	<10	130	0.5	<2	0.45	<0.5	5	12	11	1.83	<10	<1	0.17
230055	0.12	0.002	<0.2	1.25	<2	<10	110	0.5	<2	0.4	<0.5	8	17	15	2.68	<10	<1	0.18
230060	0.12	0.004	<0.2	1.08	2	<10	110	0.5	<2	0.29	<0.5	6	16	12	2.51	<10	<1	0.14
230065	0.17	0.003	<0.2	0.73	3	<10	100	<0.5	<2	0.19	<0.5	4	10	8	1.55	<10	<1	0.13
230070	0.18	0.004	<0.2	0.94	<2	<10	140	0.5	<2	0.27	<0.5	5	13	10	1.94	<10	<1	0.14
230075	0.15	0.004	<0.2	0.7	2	<10	90	<0.5	<2	0.46	<0.5	4	11	7	1.59	<10	<1	0.11
230080	0.11	0.004	<0.2	0.96	2	<10	120	<0.5	<2	1.6	<0.5	4	12	8	1.75	<10	<1	0.14
230085	0.11	0.005	<0.2	0.98	4	<10	120	<0.5	<2	0.56	<0.5	4	12	9	1.7	<10	<1	0.16
230090	0.16	0.003	<0.2	0.83	<2	<10	110	<0.5	<2	0.28	<0.5	4	14	8	1.88	<10	<1	0.12
230095	0.17	0.003	<0.2	0.99	2	<10	170	0.5	<2	1.61	<0.5	5	16	10	2.15	<10	<1	0.12
230100	0.12	0.003	<0.2	0.94	<2	<10	120	0.5	<2	0.48	<0.5	4	15	9	1.9	<10	<1	0.16
230105	0.13	0.003	<0.2	1.09	<2	<10	150	0.5	<2	0.3	<0.5	4	13	11	1.69	<10	<1	0.2
230110	0.12	0.004	<0.2	0.86	<2	<10	130	0.5	<2	0.23	<0.5	4	12	10	1.52	<10	<1	0.17
230115	0.13	0.003	<0.2	0.82	<2	<10	120	<0.5	<2	0.23	<0.5	4	11	9	1.49	<10	<1	0.16
230120	0.14	0.003	<0.2	0.83	<2	<10	100	<0.5	<2	0.34	<0.5	4	10	9	1.52	<10	<1	0.16
230125	0.1	0.004	<0.2	1.46	<2	10	160	0.8	<2	1.23	0.6	7	14	22	1.89	<10	<1	0.3
235000	0.14	0.005	<0.2	1.24	3	10	210	0.6	<2	2.06	<0.5	5	14	15	1.73	<10	<1	0.25
235005	0.14	0.004	<0.2	0.91	3	<10	120	0.5	<2	0.25	<0.5	5	16	15	2.06	<10	<1	0.14
235010	0.12	0.004	<0.2	1.08	<2	<10	150	0.5	<2	1.38	<0.5	5	16	11	2.23	<10	<1	0.21
235015	0.16	0.003	<0.2	1.07	<2	<10	130	0.5	<2	0.54	<0.5	5	16	13	2.22	<10	<1	0.19
235020	0.16	0.004	<0.2	1.71	<2	<10	180	0.8	<2	0.6	<0.5	8	18	18	2.36	10	<1	0.32
235025	0.13	0.002	<0.2	0.94	<2	<10	100	0.5	<2	0.26	<0.5	6	16	13	2.18	<10	<1	0.15
235030	0.12	0.002	<0.2	1.47	<2	<10	150	0.7	<2	0.97	0.5	6	16	17	2.11	<10	<1	0.27
235035	0.13	0.003	<0.2	1.41	3	<10	150	0.7	<2	0.77	<0.5	7	17	14	2.16	<10	<1	0.25
235040	0.11	0.006	<0.2	0.91	3	<10	120	<0.5	<2	0.23	<0.5	5	17	12	2.26	<10	<1	0.14
235045	0.13	0.004	<0.2	0.93	<2	<10	120	0.5	<2	0.24	<0.5	4	15	10	2.02	<10	<1	0.15
235050	0.15	0.004	<0.2	0.81	2	<10	100	<0.5	<2	0.2	<0.5	4	14	9	1.78	<10	<1	0.17
235055	0.13	0.002	<0.2	0.95	3	<10	110	0.5	<2	0.25	<0.5	6	12	10	1.87	<10	<1	0.17

Sample	Wt	Au	Ag	AI	As	в	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	к
235060	0.14	0.002	<0.2	0.86	<2	<10	90	<0.5	<2	0.29	<0.5	5	14	10	2	<10	<1	0.15
235065	0.15	0.01	<0.2	0.54	<2	<10	60	<0.5	<2	0.13	<0.5	4	9	6	1.44	<10	<1	0.08
235070	0.12	0.003	<0.2	0.72	<2	<10	90	<0.5	<2	0.18	<0.5	5	10	10	1.56	<10	<1	0.15
235075	0.14	0.002	<0.2	0.71	<2	<10	100	<0.5	2	0.19	<0.5	4	12	8	1.68	<10	<1	0.12
235080	0.14	0.003	<0.2	0.93	<2	<10	130	<0.5	<2	0.33	<0.5	5	11	9	1.61	<10	<1	0.15
235085	0.12	0.003	<0.2	0.83	<2	<10	100	<0.5	<2	0.27	<0.5	4	14	8	1.79	<10	<1	0.12
235090	0.14	0.004	<0.2	0.91	<2	<10	110	<0.5	<2	0.73	<0.5	4	13	9	1.76	<10	<1	0.17
235091	0.15	0.003	<0.2	0.66	<2	<10	90	<0.5	<2	0.18	<0.5	4	10	7	1.48	<10	<1	0.11
235095	0.15	0.002	<0.2	0.69	<2	<10	90	<0.5	<2	0.21	<0.5	4	13	8	1.88	<10	<1	0.1
235100	0.14	0.004	<0.2	1.02	<2	<10	120	0.5	<2	0.48	<0.5	4	15	9	1.94	<10	<1	0.14
235105	0.17	0.002	<0.2	1.1	2	<10	120	0.5	<2	0.36	<0.5	4	16	9	1.98	<10	<1	0.17
235110	0.13	0.003	<0.2	0.87	<2	<10	120	<0.5	<2	0.83	<0.5	5	13	9	1.69	<10	<1	0.14
235115	0.14	0.004	<0.2	0.71	<2	<10	90	<0.5	<2	0.22	<0.5	4	12	8	1.67	<10	<1	0.16
235120	0.16	0.006	<0.2	0.87	3	<10	100	<0.5	<2	0.41	<0.5	4	13	9	1.81	<10	<1	0.13
235125	0.11	0.005	<0.2	1.01	<2	<10	100	0.5	<2	0.85	<0.5	4	13	14	1.85	<10	<1	0.2
240000	0.23	0.002	<0.2	0.99	<2	<10	130	0.5	<2	0.32	<0.5	5	15	13	1.95	<10	<1	0.23
240005	0.13	0.004	<0.2	0.88	<2	<10	150	<0.5	<2	0.29	<0.5	4	13	10	1.79	<10	<1	0.15
240010	0.17	0.005	<0.2	1.13	2	<10	140	0.5	<2	4.2	<0.5	5	14	12	1.94	<10	<1	0.2
240015	0.16	0.003	<0.2	1.18	2	<10	130	0.5	<2	2.75	<0.5	5	15	11	1.92	<10	<1	0.22
240020	0.16	0.003	<0.2	0.96	<2	<10	130	0.5	<2	0.29	<0.5	6	15	13	2	<10	<1	0.18
240025	0.14	0.003	<0.2	1.23	2	<10	150	0.7	<2	0.36	<0.5	8	15	17	2.11	<10	<1	0.21
240030	0.13	0.004	<0.2	0.98	<2	<10	100	0.5	<2	0.36	<0.5	5	18	10	2.32	<10	<1	0.15
240035	0.15	0.003	<0.2	0.89	<2	<10	90	0.5	<2	0.28	0.5	5	15	11	1.97	<10	<1	0.15
240040	0.15	0.007	<0.2	0.82	<2	<10	100	<0.5	<2	0.25	<0.5	4	15	10	1.88	<10	<1	0.13
240045	0.11	0.012	<0.2	0.71	<2	<10	100	<0.5	<2	0.19	<0.5	6	21	12	2.28	<10	<1	0.12
240050	0.14	0.003	<0.2	0.51	<2	<10	70	<0.5	<2	0.12	<0.5	4	12	7	1.67	<10	<1	0.08
240055	0.13	0.004	<0.2	0.62	<2	<10	90	<0.5	<2	0.15	<0.5	4	10	8	1.41	<10	<1	0.1
240060	0.16	0.002	<0.2	1	<2	<10	120	0.5	<2	0.27	<0.5	5	15	11	2.14	<10	<1	0.16
240065	0.14	0.003	<0.2	0.64	4	<10	80	<0.5	<2	0.16	<0.5	4	12	9	1.67	<10	<1	0.1
240070	0.13	0.003	<0.2	0.95	<2	<10	140	0.5	<2	0.3	<0.5	6	12	12	1.7	<10	<1	0.22
240075	0.14	0.005	<0.2	0.94	<2	<10	140	0.5	<2	0.28	<0.5	6	13	11	1.82	<10	<1	0.18
240080	0.16	0.004	<0.2	0.66	<2	<10	90	<0.5	<2	0.16	<0.5	4	11	8	1.63	<10	<1	0.1
240085	0.15	0.003	<0.2	0.98	<2	<10	120	0.5	<2	0.31	<0.5	7	17	15	1.73	<10	<1	0.16
240090	0.15	0.003	<0.2	0.74	<2	<10	110	<0.5	<2	0.24	<0.5	4	11	10	1.49	<10	<1	0.12
240100	0.11	0.003	<0.2	0.56	3	<10	80	<0.5	<2	0.17	<0.5	4	11	7	1.6	<10	<1	0.08
240105	0.12	0.003	<0.2	0.83	<2	<10	100	<0.5	<2	0.24	<0.5	4	14	6	1.87	<10	<1	0.1
240110	0.15	0.004	<0.2	0.73	<2	<10	90	<0.5	<2	0.25	<0.5	4	13	7	1.82	<10	<1	0.12
240115	0.12	0.002	<0.2	1.12	<2	<10	120	0.6	<2	0.57	<0.5	6	15	12	2.06	<10	<1	0.19
240120	0.16	0.003	<0.2	0.96	2	<10	110	0.5	<2	4.39	<0.5	5	12	13	1.78	<10	<1	0.17
240125	0.15	0.005	<0.2	1.12	<2	<10	120	0.6	<2	5.75	<0.5	5	13	13	1.89	<10	<1	0.15

	Sample	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	<u> </u>	U	v	w	Zn	
$ \begin{array}{c} 50005 \ 20 \ 0.34 \ 430 \ <1 \ 0.01 \ 10 \ 490 \ 18 \ 0.01 \ <2 \ 4 \ 38 \ <20 \ 0.1 \ <101 \ 62 \ <10 \ 56 \ \\50015 \ 20 \ 0.32 \ 409 \ <1 \ 0.01 \ 10 \ 450 \ 19 \ 0.01 \ <2 \ 3 \ 37 \ <20 \ 0.08 \ <10 \ <10 \ 53 \ <10 \ 61 \ \\50025 \ 20 \ 0.35 \ 423 \ <1 \ 0.01 \ 10 \ 450 \ 19 \ 0.01 \ <2 \ 3 \ 37 \ <20 \ 0.08 \ <10 \ <10 \ 56 \ <10 \ 184 \ \\50025 \ 20 \ 0.55 \ 423 \ <1 \ 0.01 \ 10 \ 420 \ 630 \ 75 \ 0.03 \ <2 \ 3 \ 71 \ <20 \ 0.05 \ <10 \ <10 \ 56 \ <10 \ 164 \ \\50035 \ 20 \ 0.55 \ <10 \ <10 \ 56 \ <10 \ 164 \ \\50035 \ 20 \ 0.55 \ <10 \ <10 \ 56 \ <10 \ 164 \ \\50035 \ 20 \ 0.05 \ <10 \ <10 \ 56 \ <10 \ 164 \ \\50035 \ 20 \ 0.05 \ <10 \ <10 \ 56 \ <10 \ 164 \ \\50035 \ 20 \ 0.05 \ <10 \ <10 \ 56 \ <10 \ 164 \ \\50035 \ 20 \ 0.06 \ <10 \ <10 \ 620 \ 56 \ <10 \ 71 \ \\50045 \ 20 \ 0.06 \ <10 \ <10 \ 620 \ <10 \ 630 \ 75 \ 0.03 \ <2 \ 3 \ 70 \ <20 \ 0.06 \ <10 \ <10 \ 610 \ 610 \ \ 610 \ 610 \ \ \ 610 \ \ \ 610 \ \ 610 \ \ 610 \ \ 610 \ \ 610 \ \ 61$	50000	10	0.43	391	<1	0.01	10	370	15	0.01	<2	4	36 -	<20	0.11 <10	<10	76	<10	51	
50010 20 0.03 409 0.01 < 22 3 36 < 20 0.08 < 0.016 < 101 450 90 0.01 < 22 3 37 < 20 0.08 < 0.01 < 101 137 < 220 0.08 < 0.01 < 37 < 220 0.08 < 0.01 < 37 < 220 0.08 < 0.01 < 510 < 510 < 510 < 510 < 510 < 510 < 500 0.03 < 438 < <th>0.01 0.01 0.01 < 22 3 56 < 220 0.06 <<<10</th> < 110 < 500 < 500 < 500 < 510 < 510 < 510 < 510 < 510 < 510 < 510 < 510 < 510 < 510 < 510 < 510 < 510 < 510 < 510 < 510 < 510 < 510 < 510 < 510 < 510 < 510 < 510 < 5100	0.01 0.01 0.01 < 22 3 56 < 220 0.06 <<<10	50005	20	0.35	480	<1	0.01	10	490	18	0.01	<2	4	38 <	<20	0.1 <10	<10	62	<10	56
50015 20 0.23 409 <10 400 <2 3 3 7 20 0.08 100	50010	20	0.44	413	<1	0.01	8	520	19	0.02	<2	3	36 <	<20	0.08 < 10	<10	49	<10	66	
$ \begin{array}{c} 50020 \\ 50020 \\ 50020 \\ 500 \\ 50020 \\ 500 \\ 50005 \\ 20 \\ 5005 \\ 500 \\ $	50015	20	0.32	409	<1	0.01	10	450	19	0.01	<2	3	37 <	<20	0.08 < 10	<10	53	<10	61	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	50020	20	0.64	522	<1	0.01	10	620	54	0.02	<2	3	32 <	<20	0.05 < 10	<10	51	<10	138	
$ 50030 \ 20 \ 0.53 \ 110 \ 0.11 \ 11 \ 870 \ 23 \ 0.22 \ 2 \ 5 \ 45 \ 20 \ 0.8 \ 110 \ 10 \ 63 \ 10 \ 98 \ 50035 \ 20 \ 0.94 \ 10 \ 10 \ 10 \ 480 \ 17 \ 0.01 \ <2 \ 3 \ 50 \ <20 \ 0.94 \ 10 \ 10 \ 60 \ 11 \ 620 \ 11 \ 620 \ 10 \ <2 \ 3 \ 58 \ <20 \ 0.96 \ 10 \ 10 \ 63 \ <10 \ 61 \ 61 \ 63 \ <10 \ 61 $	50025	20	0.56	423	<1	0.02	10	630	75	0.03	<2	3	71 <	<20	0.05 <10	<10	56	<10	164	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	50030	20	0.53	1100	<1	0.01	11	870	23	0.02	<2	5	45 <	<20	0.08 < 10	<10	63	<10	98	
50040 20 0.39 438 <1 0.01 10 430 19 0.01 22 3 50	50035	20	0.65	491	<1	0.01	9	780	16	0.03	<2	3	70 <	<20	0.04 <10	<10	56	<10	74	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50040	20	0.39	438	<1	0.01	10	480	17	0.01	<2	3	50 <	<20	0.07 <10	<10	60	<10	63	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	50045	20	0.41	449	<1	0.01	10	430	19	0.01	<2	3	58 <	<20	0.06 < 10	<10	52	<10	65	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50050	20	0.51	446	<1	0.01	11	620	17	0.02	<2	3	85 <	<20	0.06 < 10	<10	48	<10	67	
50060 20 0.32 730 <1 0.01 11 480 23 0.01 <2 4 54 <20 0.08 <10< <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <td>50055</td> <td>20</td> <td>0.31</td> <td>584</td> <td><1</td> <td>0.01</td> <td>10</td> <td>460</td> <td>20</td> <td>0.01</td> <td><2</td> <td>3</td> <td>48 <</td> <td><20</td> <td>0.06 < 10</td> <td><10</td> <td>43</td> <td><10</td> <td>66</td>	50055	20	0.31	584	<1	0.01	10	460	20	0.01	<2	3	48 <	<20	0.06 < 10	<10	43	<10	66	
50076 20 0.34 649 (4) 0.01 11 500 24 0.01 <24 48 <20 0.08 <10 <10 <10 <10 <10 <10 <11 <100 <12 <10 <10 <21 <10 <10 <10 <10 <10 <11 <100 <12 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <td>50060</td> <td>20</td> <td>0.32</td> <td>730</td> <td><1</td> <td>0.01</td> <td>11</td> <td>480</td> <td>23</td> <td>0.01</td> <td><2</td> <td>4</td> <td>45 <</td> <td><20</td> <td>0.06 < 10</td> <td><10</td> <td>43</td> <td><10</td> <td>67</td>	50060	20	0.32	730	<1	0.01	11	480	23	0.01	<2	4	45 <	<20	0.06 < 10	<10	43	<10	67	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	50065	20	0.34	649	<1	0.01	11	500	24	0.01	<2	4	52 <	<20	0.08 < 10	<10	51	<10	73	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	50070	20	0.33	542	<1	0.01	11	430	20	0.01	<2	4	48 <	<20	0.08 < 10	<10	52	<10	64	
50085 20 0.37 482 <1 0.01 14 480 17 0.01 < 2 4 64 < 20 0.08 < 10 < 10 64 < 10 < 10 < 64 < 20 0.07 < 10 < 10 < 64 < 10 < 10 < 64 < 20 0.07 < 10 < 10 < 64 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 $< $	50080	20	0.43	491	<1	0.01	12	440	18	0.01	<2	3	66 <	<20	0.07 <10	<10	45	<10	55	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	50085	20	0.37	482	<1	0.01	14	450	15	0.01	<2	4	67 <	<20	0.08 < 10	<10	45	<10	51	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	50090	20	0.41	537	<1	0.01	14	480	17	0.01	<2	4	64 <	<20	0.07 <10	<10	46	<10	61	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	50095	20	0.52	477	<1	0.01	16	520	15	0.02	<2	4	65 <	<20	0.07 <10	<10	46	<10	53	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	50100	20	0.54	365	<1	0.01	18	430	9	0.01	<2	4	63 <	<20	0.09 < 10	<10	58	<10	46	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	55000	10	0.54	426	<1	0.01	10	450	18	0.01	<2	4	34 <	<20	0.11 < 10	<10	75	<10	69	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	55005	20	0.55	475	<1	0.01	11	590	17	0.02	<2	4	35 <	<20	0.09 < 10	<10	61	<10	60	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	55010	20	0.31	494	<1	0.01	9	490	17	0.01	<2	3	34 <	<20	0.1 < 10	<10	52	<10	53	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	55015	20	0.38	498	1	0.01	10	470	20	0.02	<2	3	29 <	<20	0.11 < 10	<10	65	<10	54	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	55020	20	0.29	455	1	0.01	8	470	18	0.01	<2	3	34 <	<20	0.08 < 10	<10	51	<10	54	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	55025	20	0.45	736	<1	0.01	11	480	56	0.02	<2	4	30 <	<20	0.07 <10	<10	55	<10	140	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	55030	20	0.61	709	<1	0.02	9	860	34	0.05	<2	3	40 <	<20	0.05 < 10	<10	50	<10	90	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	55035	20	0.63	742	1	0.01	10	850	19	0.03	<2	4	53 <	<20	0.09<10	<10	58	<10	93	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	55040	20	0.34	624	<1	0.01	9	610	23	0.02	3	3	38 <	<20	0.09 < 10	<10	60	<10	/5	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	55045	20	0.28	518	<1	0.01	9	520	19	0.02	<2	3	42 <	<20	0.09 < 10	<10	56	<10	69	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	55050	20	0.28	4/8	1	0.01	9	450	26	0.02	<2	3	42 <	<20	0.08 < 10	<10	49	<10	68	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	55055	20	0.3	610	<1	0.01	10	500	25	0.02	<2	3	41 <	<20	0.08 < 10	<10	48	<10	/3	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	55060	20	0.44	388	<1	0.01	11	500	21	0.03	<2	3	50 <	<20	0.08 < 10	<10	54	<10	68	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	55065	20	0.35	432	<1	0.01	11	490	20	0.03	<2	3	48 4	<20	0.08<10	<10	51	<10	65	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	55070	20	0.38	399	<1	0.01	12	430	17	0.02	<2	3	55 <	<20	0.08 < 10	<10	52	<10	59	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	55060	20	0.53	311	1	0.02	14	440	14	0.03	~2	4	04 <	×20	0.07 < 10	< 10	53	< 10	57	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	55000	20	0.40	493	<1	0.02	10	470	15	0.02	~2	4	166	<20	0.06 < 10	< 10	40	< 10	00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	55090	20	0.07	1115	-1	0.02	10	600	21	0.04	~2	5	50	~20	0.00 10	<10	31	<10	01	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	55100	20	0.40	512	- 1	0.01	20	510	16	0.03	~2	0	59	~20	0.07 10	<10	41	<10 <10	90	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	60000	20	0.55	407	- 1	0.02	20	400	10	0.03	~2	4	04	~20	0.09 10	<10	60	<10	04	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	60000	10	0.56	437	~1	0.01	10	400	14	0.02	~2	4	39	~20	0.1<10	<10	70	<10 <10	54	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60010	20	0.02	442	- 1	0.02	10	600	10	0.02	~2	1	40	~20	0.14 10	<10	79	~10	52	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	60010	20	0.49	442	~1	0.01	9	570	10	0.02	~2	4	30	~20	0.14 10	<10	50	<10 <10	52	
60020 10 0.31 331 <1 0.01 12 53 14 0.01 2 3 31 >20 0.12 10 0.4 04 10 14 60025 20 0.4 822 1 0.01 12 550 43 0.02 <2	60070	20	0.40	251	~1	0.02	0	450	19	0.02	~2	2	21	~20	0.09 10	<10	64	<10 <10	00	
60023 20 0.4 622 0.01 12 500 43 0.02 22 4 43 20 0.06 10 64 12 12 60030 20 0.37 546 <1	60025	20	0.31	922	- 1	0.01	12	400	14	0.01	2	3	45	~20	0.12 10	<10	104	<10	126	
60035 20 0.37 640 610 60035 20 0.48 577 <1 0.01 9 670 24 0.03 <2 3 48 <20 0.06 10 59 <10 10 60035 20 0.48 577 <1 0.01 9 670 24 0.03 <2 3 48 <20 0.07 <10 59 <10 10 60040 20 0.49 660 <1 0.01 11 640 81 0.02 2 4 46 <20 0.09 <10 <10 11 140 81 0.02 2 3 46 <20 0.08 <10 <10 13 143 <10 10 853 28 0.02 2 3 46 <20 0.08< <10 <10 853 <10 10 10 10 21 0.01 23 40 <20 0.09	60020	20	0.4	546	-1	0.01	<u>∠</u> ر	580	40	0.02	~2	4	34	-20	0.00 - 10	<10	-+0	<10	70	
60030 20 0.46 37 <1 0.01 3 0.00 24 0.02 2 3 46 20 0.07 10 10 22 10 100 60040 20 0.49 660 <1	60035	20	0.37	577	- 21	0.01	0	670	24	0.02	~2	3	18	~20	0.00 10	<10	52	~10	108	
60045 20 0.37 458 <1 0.01 8 530 28 0.02 2 3 46 <20 0.03 10 10 73 <10 143 60045 20 0.37 458 <1	60035	20	0.40	660	~1	0.01	11	640	24 Q1	0.03	~2	3	40	~20	0.07 10	<10	75	<10	1/2	
60050 20 0.27 373 <1 0.01 9 430 21 0.01 <2 3 40 <20 0.09 <10 57 <10 67 60050 20 0.27 373 <1	60040	20	0.49	458	~1	0.01	2	520	201	0.02	~2	4	40	~20	0.08 < 10	<10	57	<10	87	
council council <thcouncil< th=""> <th< td=""><td>60050</td><td>20</td><td>0.37</td><td>372</td><td>-1</td><td>0.01</td><td>a</td><td>430</td><td>20</td><td>0.02</td><td>2 ~?</td><td>2</td><td></td><td>-20 <20</td><td>0.00 < 10</td><td><10</td><td>57</td><td><10</td><td>63</td></th<></thcouncil<>	60050	20	0.37	372	-1	0.01	a	430	20	0.02	2 ~?	2		-20 <20	0.00 < 10	<10	57	<10	63	
	60055	20	0.27	<u></u>	~1	0.01	10	520	22	0.01	~2	2	42	- <u>2</u> 0	0.03 10	<10	67	<10	68	
600601 201 0.361 3671 <11 0.011 101 4101 261 0.011 <21 31 431<201 0.11<101<101 601<101 671	60060	20	0.00	367	~1	0.01	10	410	20	0.01	~2	2	42	<20	0 1 < 10	<10	60	<10	67	
	60065	20	0.00	480	<1	0.01	11	540	20	0.01	<2	3	49 <	<20	0.07<10	<10	51	<10	73	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
65070 20 0.64 357 <1 0.02 15 860 18 0.03 <2 3 73 <20 0.09 <10 <10 52 <10 69 65080 20 0.65 441 <1
65080 20 0.65 441 <1 0.02 19 570 18 0.03 <2 4 66 <20 0.1 <10 <10 58 <10 64 65085 20 0.36 432 <1
65085 20 0.36 432 <1 0.02 15 510 17 0.02 <2 3 54 <20 0.14 <10 <63 <10 56 65090 20 0.4 379 <1
65090 20 0.4 379 <1 0.02 18 390 12 0.02 <2 4 55 <20 0.13 <10 <10 63 <10 46
1 650951 201 0.431 3831 <11 0.021 171 4401 171 0.021 <21 31 541<201 0.121<101<101 641<101 551
65100 20 0.58 391 <1 0.02 19 450 16 0.02 <2 4 61 <20 0.1 <10 <10 57 <10 58
70000 20 0.44 377 <1 0.01 10 550 15 0.02 <2 4 43 <20 0.13 <10 <10 76 <10 56
70005 20 0.31 347 <1 0.01 9 410 13 0.01 <2 3 36 <20 0.13 <10 <10 73 <10 46
70010 20 0.34 426 <1 0.01 9 600 15 0.02 <2 3 32 <20 0.17 <10 <10 81 <10 53
70015 20 0.45 501 <1 0.01 8 600 15 0.03 <2 4 32 <20 0.13 <10 <10 69 <10 55
70020 20 047 443 <1 001 10 530 14 001 <2 4 37 <20 016 <10 <10 72 <10 54
70025 20 0.62 1000 <1 0.01 11 680 188 0.05 <2 4 42 <20 0.09 <10 <10 57 <10 298
70030 20 0.99 872 <1 0.02 14 640 43 0.03 2 6 35 <20 0.16 <10 <10 87 <10 132
70040 20 0 71 832 <1 0 01 12 600 43 0 02 <2 5 43 <20 0 14 <10 <10 80 <10 107
70045 20 0.92 1085 <1 0.01 19 1190 124 0.03 <2 7 66 <20 0.15 <10 <10 87 <10 254
70050 20 0.62 817 <1 0.01 14 800 46 0.03 <2 5 54 <20 0.1 <10 <10 53 <10 124
70055 20 0.42 863 <1 0.01 11 620 37 0.02 <2 5 46 <20 0.1 < 10 < 10 48 < 10 107
70060 20 0.37 583 <1 0.01 11 610 31 0.02 <2 4 48 <20 0.1 <10 <10 52 <10 89
70065 20 0.42 427 <1 <0.01 11 560 25 <0.01 3 3 52 <20 0.09 <10 <10 49 <10 78
70070 20 0.58 626 <1 <0.01 13 600 28 <0.01 2 4 66 <20 0.07 <10 <10 45 <10 87
70085 20 0 76 393 <1 <0.01 21 580 13 0.01 <2 4 89 <20 0.11 <10 <10 54 <10 60

Sample	La	Mg	Mn	Мо	Na	Ni	Р	Pb	s	Sb	Sc	Sr Th	τι τι υ	v w	Zn
75040	20	0.72	606	<1	<0.01	14	630	40	0.01	2	4	55 <20	0.07 <10 <10	55 <10	99
75045	20	0.68	564	<1	<0.01	13	580	35	<0.01	2	4	58 <20	0.1 <10 <10	65 <10	85
75050	20	0.38	663	<1	<0.01	10	530	31	<0.01	2	4	40 <20	0.1 <10 <10	48 <10	85
75055	20	0.51	432	<1	<0.01	12	500	30	<0.01	4	4	47 <20	0.1 < 10 < 10	65 < 10	81
75060	20	0.49	414	<1	<0.01	11	600	21	<0.01	<2	3	64 <20	0.09 <10 <10	56 <10	75
75065	20	0.55	418	<1	<0.01	12	720	21	<0.01	5	3	53 <20	0.08 < 10 < 10	52 < 10	76
75070	20	0.47	400	<1	<0.01	13	540	19	<0.01	2	4	61 <20	0.09 < 10 < 10	50 < 10	65
75080	20	0.52	394	<1	<0.01	17	430	14	<0.01	3	4	64 <20	0.08 < 10 < 10	50 < 10	55
75085	20	0.47	453	<1	<0.01	19	500	13	<0.01	3	4	63 <20	0.13 < 10 < 10	58 < 10	56
75090	20	0.54	501	<1	<0.01	18	430	17	<0.01	2	4	71 <20	0.09 < 10 < 10	49 < 10	55
75095	20	0.45	365	<1	<0.01	16	370	12	<0.01	2	4	61 <20	0.1 <10 <10	58 < 10	48
75100	20	0.52	353	<1	<0.01	17	470	13	<0.01	2	4	64 <20	0.09 < 10 < 10	53 < 10	50
80000	20	0.34	382	<1	<0.01	10	450	17	<0.01	3	3	30 <20	0.14 < 10 < 10	82 < 10	57
80005	10	0.3	394	<1	<0.01	8	520	17	<0.01	2	3	29 <20	0.12 <10 <10	63 < 10	52
80010	20	0.37	405	<1	<0.01	10	450	14	<0.01	3	4	34 <20	0.13 <10 <10	79 <10	47
80015	20	0.36	401	<1	<0.01	9	400	14	<0.01	2	3	36 <20	0.11 <10 <10	52 <10	48
80020	20	0.39	471	<1	<0.01	9	470	13	<0.01	2	3	36 <20	0.13 < 10 < 10	56 < 10	47
80025	20	0.67	611	<1	<0.01	9	600	36	<0.01	3	3	29 <20	0.08 < 10 < 10	60 < 10	109
80030	20	1	897	<1	<0.01	14	700	65	0.02	4	6	42 <20	0.1 < 10 < 10	67 < 10	143
80035	20	0.79	773	<1	<0.01	13	540	25	<0.01	3	5	41 <20	0.12 <10 <10	73 < 10	119
80040	20	0.91	673	<1	<0.01	8	840	26	<0.01	3	4	42 <20	0.11 < 10 < 10	88 < 10	121
80045	20	0.36	507	<1	0.01	11	460	23	0.01	<2	3	37 <20	0.08 < 10 < 10	47 < 10	66
80050	20	0.32	532	<1	0.01	12	470	22	0.01	<2	3	33 <20	0.09 < 10 < 10	51 < 10	65
80055	10	0.28	477	1	0.01	8	440	21	0.01	<2	3	28 <20	0.08 < 10 < 10	43 < 10	56
80060	20	0.32	627	1	0.01	9	520	30	0.01	<2	3	37 <20	0.08 < 10 < 10	41 < 10	80
80065	20	0.46	444	1	0.01	11	510	23	0.02	<2	3	60 < 20	0.07 < 10 < 10	50 < 10	69
80070	10	0.72	341	<1	0.02	10	690	21	0.03	2	3	186 <20	0.08 < 10 < 10	51 < 10	62
80080	20	0.55	420	<1	0.01	12	490	22	0.02	<2	4	57 <20	0.07 < 10 < 10	46 < 10	70
80085	20	0.36	627	<1	0.01	13	480	33	0.01	<2	4	45 <20	0.07 < 10 < 10	40 < 10	76
80090	20	0.42	864	1	0.01	15	540	39	0.02	<2	4	50 <20	0.06 < 10 < 10	42 < 10	93
80095	20	0.51	945	1	0.01	15	640	38	0.02	<2	5	56 <20	0.06 < 10 < 10	43 < 10	100
80100	20	0.38	533	1	0.01	15	460	19	0.02	<2	4	57 <20	0.07 <10 <10	42 < 10	60
80105	20	0.68	467	<1	0.02	19	550	17	0.03	<2	3	105 <20	0.07 <10 <10	47 < 10	59
80110	20	0.38	390	1	0.01	17	420	12	0.02	<2	3	53 <20	0.06 < 10 < 10	45 < 10	46
80115	20	0.48	417	<1	0.01	23	490	16	0.02	<2	4	62 <20	0.06 < 10 < 10	48 < 10	50
80120	20	0.82	381	1	0.02	31	720	12	0.04	<2	3	146 <20	0.06 < 10 < 10	51 < 10	52
80125	20	0.83	378	1	0.02	36	810	11	0.04	<2	3	99 <20	0.06 < 10 < 10	55 < 10	52
85000	20	0.65	405	<1	0.02	22	680	16	0.04	<2	3	83 <20	0.05 <10 <10	43 <10	54
85005	10	0.37	347	1	0.01	9	430	20	0.01	<2	3	33 <20	0.1 < 10 < 10	58 < 10	53
85010	10	0.31	330	<1	0.01	9	440	16	0.01	<2	3	29 <20	0.1 < 10 < 10	54 <10	45
85015	20	0.5	355	1	0.01	9	640	16	0.02	<2	3	34 <20	0.1 < 10 < 10	57 <10	52
85020	20	0.42	403	<1	0.01	8	540	15	0.01	<2	3	33 <20	0.1 < 10 < 10	58 < 10	47
85025	20	0.45	443	1	0.01	11	570	17	0.02	<2	4	41 <20	0.1 <10 <10	69 < 10	54
85030	20	0.51	558	1	0.01	8	640	28	0.02	<2	3	31 <20	0.08 < 10 < 10	57 < 10	102
85035	20	0.57	816	1	0.02	9	790	72	0.04	<2	4	41 <20	0.07 < 10 < 10	54 < 10	158
85040	20	0.76	529	1	0.02	9	750	28	0.04	<2	3	74 <20	0.07 < 10 < 10	56 < 10	97
85045	20	0.4	576	<1	0.01	10	470	23	0.01	<2	3	37 <20	0.08 < 10 < 10	49 < 10	65
85050	20	0.34	485	<1	0.01	9	400	22	0.01	<2	3	33 <20	0.08 < 10 < 10	48 < 10	60
85055	20	0.26	447	<1	0.01	11	470	33	0.01	<2	3	34 <20	0.07 < 10 < 10	46 < 10	83
85060	20	0.24	379	1	0.01	9	400	21	0.01	<2	3	36 <20	0.07 <10 <10	43 < 10	63
85065	10	0.35	397	<1	0.01	10	600	21	0.02	<2	3	58 <20	0.06 < 10 < 10	43 < 10	64
85070	10	0.31	315	<1	0.01	8	380	17	0.01	<2	3	45 <20	0.08<10<10	53 < 10	52
85080	10	0.3	343	<1	0.01	10	380	19	0.01	<2	3	45 <20	0.07 <10 <10	46 < 10	52
85085	20	0.38	471	1	0.01	12	430	18	0.01	<2	3	56 <20	0.05<10<10	39 < 10	53

Sample	La	Mg	Mn	Мо	Na	Ni	Р	Pb	s	Sb	Sc	Sr	Th	Ti	ΤΙ	U	v	w	Zn
85090	20	0.35	605	<1	0.01	15	490	18	0.01	<2	3	51	<20	0.07 <	<10	<10	40	<10	54
85095	20	0.49	409	1	0.02	18	890	17	0.03	<2	3	47	<20	0.1 <	<10	<10	58	<10	63
85100	20	0.47	422	1	0.01	19	470	16	0.02	<2	3	63	<20	0.09 <	<10	<10	54	<10	52
85105	20	0.57	366	<1	0.01	23	440	15	0.03	<2	3	70	<20	0.05 <	<10	<10	49	<10	63
85110	20	0.52	386	<1	0.01	26	580	13	0.01	<2	3	60	<20	0.07 <	<10	<10	53	<10	51
85115	20	0.55	364	<1	0.01	27	500	12	0.02	<2	4	61	<20	0.06 <	<10	<10	53	<10	51
85120	20	0.49	327	<1	0.01	23	500	14	0.01	<2	3	55	<20	0.06 <	<10	<10	54	<10	49
85125	20	0.49	300	<1	0.01	20	460	11	0.01	<2	3	59	<20	0.05 <	<10	<10	48	<10	48
90000	20	0.46	519	<1	0.01	9	790	17	0.03	<2	3	44	<20	0.08 <	<10	<10	51	<10	63
90005	20	0.69	412	<1	0.01	9	650	14	0.02	2	3	77	<20	0.1 <	<10	<10	62	<10	57
90010	10	0.31	325	<1	0.01	14	360	13	0.01	<2	3	30	<20	0.12 <	<10	<10	76	<10	45
90015	10	0.27	320	<1	0.01	9	370	13	0.01	<2	3	32	<20	0.1 <	<10	<10	62	<10	42
90020	10	0.23	390	<1	0.01	9	430	13	0.01	<2	3	27	<20	0.08 <	<10	<10	46	<10	45
90025	20	0.55	436	<1	0.01	10	610	51	0.01	<2	3	30	<20	0.06 <	<10	<10	66	<10	148
90030	20	0.57	990	<1	0.01	13	670	137	0.03	<2	3	40	<20	0.05 <	<10	<10	55	<10	339
90035	10	0.05	126	1	0.04	1	120	11	0.01	<2	<1	7	20	<0.01 <	<10	<10	4	<10	6
90040	20	0.84	536	<1	0.01	13	680	23	0.02	<2	4	43	<20	0.08 <	<10	<10	63	<10	114
90045	20	0.35	377	<1	0.01	10	460	21	0.01	<2	3	42	<20	0.09 <	<10	<10	54	<10	69
90050	20	0.24	420	<1	0.01	9	430	25	0.01	<2	3	32	<20	0.07 <	<10	<10	46	<10	68
90055	10	0.25	311	<1	0.01	8	450	17	0.01	<2	2	35	<20	0.08 <	<10	<10	48	<10	54
90060	10	0.27	320	<1	0.01	9	410	16	0.01	<2	2	40	<20	0.07 <	<10	<10	43	<10	51
90065	20	0.29	445	<1	0.01	11	400	17	0.01	<2	3	51	<20	0.08 <	<10	<10	45	<10	55
90070	20	0.33	561	<1	0.01	12	460	19	0.01	<2	4	51	<20	0.07 <	<10	<10	46	<10	60
90075	20	0.33	610	<1	0.01	13	510	22	0.01	<2	3	48	<20	0.05 <	<10	<10	38	<10	63
90080	20	0.38	490	<1	0.01	15	410	13	0.01	<2	4	55	<20	0.06 <	<10	<10	41	<10	53
90085	20	0.49	411	<1	0.01	19	460	13	0.01	<2	4	63	<20	0.07 <	<10	<10	49	<10	50
90090	20	0.49	343	<1	0.02	20	520	12	0.02	<2	4	68	<20	0.1 <	<10	<10	66	<10	52
90095	20	0.39	375	<1	0.01	20	500	14	0.02	2	3	50	<20	0.1 <	<10 <	<10	56	<10	49
90100	20	0.43	341	<1	0.01	20	470	14	0.02	<2	3	51	<20	0.08 <	<10	<10	54	<10	49
90105	20	0.52	352	<1	0.01	24	530	14	0.02	<2	3	59	<20	0.07 <	<10	<10	52	<10	52
90110	20	0.48	386	<1	0.01	26	510	12	0.01	<2	3	58	<20	0.07 <	<10	<10	56	<10	50
90115	20	0.43	420	<1	0.01	23	500	13	0.01	<2	3	60	<20	0.07 <	<10	<10	52	<10	49
90120	20	0.34	398	<1	0.01	20	460	15	0.01	<2	3	53	<20	0.07 <	<10	<10	48	<10	44
90125	20	0.33	476	<1	0.01	20	460	13	0.01	<2	3	47	<20	0.07 <	<10	<10	45	<10	45
95000	10	0.32	387	<1	0.01	9	420	17	0.01	<2	3	25	<20	0.1 <	<10	<10	58	<10	56
95005	10	<0.01	27	2	0.03	1	20	3	<0.01	<2	<1	2	20	< 0.01 <	<10	<10	4	<10	<2
95010	10	0.27	334	<1	0.01	9	390	12	0.01	<2	3	27	<20	0.09 <	<10	<10	58	<10	47
95015	10	0.38	320	<1	0.01	8	520	12	0.01	<2	3	35	<20	0.09 <	<10	<10	60	<10	44
95020	20	0.27	395	<1	0.01	9	510	30	0.01	<2	3	34	<20	0.08 <	<10	<10	55	<10	81
95025	20	0.62	465	2	0.01	14	640	54	0.02	4	3	45	<20	0.08 <	<10	<10	59	<10	150
95030	20	0.46	1340	1	0.01	13	610	233	0.05	2	3	- 38	<20	0.05 <	<10	<10	52	<10	374
95035	20	0.36	645	1	<0.01	13	450	59	0.01	2	4	32	<20	0.09 <	<10	<10	66	<10	181
95040	20	0.74	476	<1	<0.01	13	600	27	0.01	2	4	47	<20	0.1 <	<10	<10	76	<10	90
95045	20	0.28	494	<1	<0.01	12	500	34	0.02	2	3	32	<20	0.08 <	<10	<10	60	<10	85
95050	20	0.31	1030	1	0.01	11	560	29	0.03	3	3	50	<20	0.06 <	<10	<10	46	<10	104
95055	10	0.23	350	<1	<0.01	9	400	15	0.01	2	2	37	<20	0.07 <	<10	<10	50	<10	51
95060	20	0.26	309	<1	<0.01	9	400	14	0.01	3	2	47	<20	0.07 <	<10	<10	42	<10	50
95065	20	0.25	419	<1	<0.01	10	420	14	0.01	3	3	47	<20	0.07 <	<10	<10	41	<10	52
95070	20	0.26	675	<1	0.01	12	480	21	0.01	3	3	40	<20	0.07 <	<10	<10	40	<10	65
95075	20	0.42	521	<1	0.01	16	500	16	0.01	3	3	54	<20	0.07 <	<10	<10	44	<10	60
95080	20	0.47	454	<1	0.01	18	420	14	0.01	2	4	61	<20	0.06 <	<10	<10	46	<10	55
95085	20	0.56	444	<1	<0.01	19	540	14	0.02	3	3	62	<20	0.06 <	<10	<10	47	<10	54
95090	20	0.37	384	<1	0.01	17	530	14	0.02	2	3	56	<20	0.11 <	<10	<10	61	<10	50
95095	20	0.43	442	<1	0.01	22	490	14	0.02	2	4	45	<20	0.12 <	<10	<10	58	<10	53

Sample	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti TI	U	V	w	Zn
95100	20	0.5	430	<1	0.01	22	580	14	0.03	2	3	62	<20	0.09 < 10	<10	55	<10	54
95105	20	0.51	398	<1	0.01	25	480	14	0.02	2	4	65	<20	0.07 <10	<10	55	<10	51
95110	20	0.5	368	<1	<0.01	23	440	13	0.02	3	3	71	<20	0.07 <10	<10	57	<10	50
95115	20	0.38	358	<1	0.01	21	420	12	0.02	2	3	60	<20	0.08 < 10	<10	57	<10	46
95120	20	0.41	434	<1	0.01	19	480	14	0.02	3	3	61	<20	0.08 < 10	<10	51	<10	48
95125	20	0.34	438	<1	0.01	17	520	14	0.02	2	3	38	<20	0.07 <10	<10	45	<10	51
100000	20	0.49	418	<1	0.01	10	620	17	0.04	2	2	59	<20	0.06 < 10	<10	46	<10	61
100005	10	0.25	332	<1	<0.01	9	390	15	0.01	3	2	28	<20	0.11 < 10	<10	73	<10	48
100010	10	0.22	337	<1	<0.01	8	350	12	0.01	2	2	29	<20	0.09 < 10	<10	56	<10	42
100015	10	0.2	343	<1	<0.01	9	360	15	0.01	2	2	27	<20	0.07 <10	<10	47	<10	48
100020	20	0.33	522	1	<0.01	10	500	37	0.02	3	3	25	<20	0.07 <10	<10	58	<10	124
100025	20	0.32	574	<1	<0.01	11	410	62	0.03	3	3	29	<20	0.07 <10	<10	53	<10	111
100030	20	0.23	802	<1	<0.01	12	520	117	0.03	3	3	30	<20	0.07 <10	<10	44	<10	189
100035	20	0.55	970	<1	0.01	12	540	97	0.03	2	4	32	<20	0.09 < 10	<10	55	<10	259
100040	20	0.39	495	<1	<0.01	12	450	33	0.02	3	4	32	<20	0.11 <10	<10	75	<10	127
100045	30	0.37	729	<1	0.01	11	530	31	0.03	3	3	36	<20	0.05 < 10	<10	36	<10	132
100050	20	0.39	578	<1	<0.01	10	590	23	0.03	3	3	50	<20	0.06 < 10	<10	41	<10	76
100055	20	0.19	355	<1	<0.01	7	440	14	0.01	3	2	28	<20	0.08 < 10	<10	52	<10	48
100060	20	0.21	348	<1	<0.01	8	410	12	0.01	3	2	37	<20	0.07 <10	<10	40	<10	44
100065	20	0.25	401	<1	<0.01	9	420	16	0.01	<2	3	41	<20	0.07 <10	<10	39	<10	52
100070	20	0.26	527	<1	<0.01	10	400	17	0.02	2	3	41	<20	0.06 < 10	<10	34	<10	57
100075	20	0.42	491	<1	0.01	13	620	17	0.01	<2	3	51	<20	0.05 < 10	<10	36	<10	60
100080	20	0.46	334	<1	0.01	16	540	13	0.01	<2	3	52	<20	0.05 < 10	<10	41	<10	54
100085	20	0.51	387	1	0.01	18	640	15	0.02	<2	3	68	<20	0.04 <10	<10	39	<10	50
100090	20	0.47	426	1	0.01	19	540	13	0.01	<2	3	62	<20	0.05 < 10	<10	41	<10	50
100095	20	0.67	364	1	0.01	28	640	11	0.02	<2	3	96	<20	0.06 < 10	<10	50	<10	52
100100	20	0.58	372	<1	0.02	24	660	9	0.02	<2	3	73	<20	0.09 < 10	<10	51	<10	50
100105	20	0.55	371	1	0.01	23	590	15	0.01	<2	3	65	<20	0.07 <10	<10	55	<10	50
100110	20	0.37	342	<1	0.01	19	410	13	0.01	<2	3	58	<20	0.07 <10	<10	53	<10	43
100115	20	0.35	333	1	0.01	19	400	9	0.01	<2	3	59	<20	0.06 < 10	<10	46	<10	42
100120	20	0.47	661	<1	0.01	17	650	51	0.02	<2	5	59	<20	0.06 < 10	<10	42	<10	77
100125	20	0.52	434	<1	0.02	18	650	17	0.04	<2	2	67	<20	0.05 < 10	<10	42	<10	51
105000	20	0.4	316	<1	0.01	12	440	17	0.01	<2	3	39	<20	0.06 < 10	<10	48	<10	57
105005	10	0.23	326	<1	0.01	8	410	15	0.01	<2	2	34	<20	0.07 < 10	<10	47	<10	44
105010	20	0.19	327	<1	0.01	8	330	12	0.01	<2	2	32	<20	0.06 < 10	<10	43	<10	41
105015	20	0.2	365	<1	0.01	10	410	21	0.01	<2	3	33	<20	0.06 < 10	<10	46	<10	54
105020	20	0.29	404	<1	0.01	12	340	25	0.02	<2	2	26	<20	0.04 < 10	<10	40	<10	63
105025	20	0.35	504	<1	0.01	13	370	50	0.03	<2	2	30	<20	0.04 < 10	<10	39	<10	92
105030	20	0.26	/59	1	0.01	11	380	113	0.02	<2	2	30	<20	0.05<10	<10	38	<10	126
105035	20	0.28	632	<1	0.01	/	620	50	0.03	<2	3	31	<20	0.05<10	<10	41	< 10	102
105040	30	0.29	660	1	0.01	9	880	25	0.03	<2	3	41	<20	0.06<10	<10	38	<10	90
105045	20	0.35	597	<'	0.01	9	480	28	0.03	<2	3	35	<20	0.04 < 10	<10	34	<10	68
105050	20	0.47	521	<1	0.01	11	830	19	0.05	<2	2	51	<20	0.04 < 10	<10	34	<10	65
105055	20	0.33	384	<1	0.01	9	430	15	0.02	<2	3	49	<20	0.05<10	<10	49	<10	53
105060	20	0.21	324	1	0.01	/	420	16	0.02	<2	2	35	<20	0.06 < 10	<10	43	<10	43
105065	20	0.23	321	1 >	0.01	9	3/0	17	0.02	<2	3	31	~20	0.00<10	× 10	43	<u> 10</u>	48
105070	20	0.20	344	<1	0.01	9	410	17	0.02	<2	3	44	<20	0.05<10	<10	30	<10	49
105075	20	0.43	380	1>	0.01	12	020	CI	0.03	2	2	10	~20	0.04 < 10	> 10	33	> 10	23
105080	20	0.03	41/	<	0.01	10	720	14	0.03	< <u>2</u>	3	29	~20	0.05<10	< 10 <10	30 20	>10	20 57
105005	20	0.04	404	1	0.02	10	120	14	0.03	~2	3	92	~20	0.05<10	~ 10	39	~10	57
105090	20	0.57	390	1	0.01	10	590	14	0.02	~2	3	72	~20	0.05<10	> 10	42		52
105095	20	0.01	207		0.01	10	520	14	0.03	-2	2	52	~20	0.07 > 10	~10	4/		47
105100	20	0.42	357		0.01	22	460	12	0.02	~2	2	66	~20		~10	40		47
	20	0.02	JUZ	~1	0.01	20	400	13	0.02	~2	J	00	~ ∠ ∪	0.001 101	1 V I V	201	1210	50

Sample	La	Mg	Mn	Мо	Na	Ni	Р	Pb	s	Sb	Sc	Sr	Th	Ti TI	U	v	W	Zn
105110	20	0.57	324	1	0.01	20	600	13	0.02	<2	3	102	<20	0.07 <10	<10	55	<10	48
105115	20	0.31	363	<1	0.01	16	400	11	0.01	<2	3	50	<20	0.07 <10	<10	46	<10	41
105120	20	0.39	383	<1	0.01	19	500	15	0.02	<2	3	56	<20	0.08 < 10	<10	54	<10	49
105125	20	0.5	326	2	0.01	22	520	16	0.02	<2	3	68	<20	0.05 < 10	<10	47	<10	50
110000	10	0.38	330	<1	0.01	13	560	20	0.03	<2	2	51	<20	0.04 <10	<10	40	<10	57
110005	20	0.23	395	<1	<0.01	11	430	20	0.01	<2	2	28	<20	0.06 < 10	<10	48	<10	57
110010	20	0.33	491	<1	<0.01	11	350	86	0.03	2	2	29	<20	0.04 < 10	<10	41	<10	93
110015	20	0.28	575	<1	<0.01	10	510	34	0.01	2	3	28	<20	0.05 <10	<10	40	<10	83
110020	20	0.23	343	<1	<0.01	10	290	21	0.01	<2	2	24	<20	0.05 < 10	<10	40	<10	52
110025	20	0.34	564	<1	0.01	12	580	95	0.02	2	2	34	<20	0.04 <10	<10	42	<10	88
110030	20	0.37	465	<1	0.01	12	570	48	0.03	2	2	34	<20	0.04 <10	<10	40	<10	114
110035	20	0.29	685	<1	<0.01	9	830	105	0.05	<2	3	43	<20	0.05 <10	<10	36	<10	159
110040	20	0.35	576	<1	<0.01	12	510	31	0.02	<2	3	29	<20	0.05 < 10	<10	38	<10	80
110045	20	0.46	564	<1	0.01	11	860	20	0.05	3	2	64	<20	0.03 <10	<10	31	<10	65
110050	20	0.29	599	<1	<0.01	11	430	24	0.02	2	2	27	<20	0.05 <10	<10	36	<10	58
110055	20	0.24	452	<1	<0.01	9	470	17	0.01	<2	2	27	<20	0.07 <10	<10	46	<10	48
110060	20	0.2	337	<1	<0.01	8	410	18	0.01	<2	2	29	<20	0.06 < 10	<10	43	<10	50
110065	10	0.19	342	<1	<0.01	7	390	15	0.01	<2	2	30	<20	0.06 < 10	<10	42	<10	47
110070	20	0.44	388	<1	0.01	11	640	16	0.02	<2	2	123	<20	0.05 < 10	<10	39	<10	55
110075	20	0.38	446	<1	<0.01	12	530	19	0.01	<2	3	47	<20	0.05 < 10	<10	37	<10	60
110080	20	0.57	464	<1	0.01	13	670	19	0.02	<2	3	79	<20	0.05 < 10	<10	36	<10	61
110085	20	0.45	431	<1	0.01	12	540	18	0.02	2	3	45	<20	0.05 < 10	<10	38	<10	56
110095	20	0.34	404	<1	<0.01	14	460	16	0.01	<2	3	46	<20	0.06 < 10	<10	44	<10	49
110100	20	0.43	344	<1	<0.01	18	500	14	0.01	2	3	53	<20	0.06 < 10	<10	54	<10	50
110105	20	0.39	415	<1	<0.01	21	450	13	0.01	<2	3	55	<20	0.06 <10	<10	49	<10	46
110110	20	0.35	647	<1	0.01	18	460	16	0.01	2	4	60	<20	0.06 < 10	<10	42	<10	49
110115	20	0.35	441	<1	<0.01	14	520	33	0.01	<2	3	48	<20	0.06 < 10	<10	44	<10	59
110120	20	0.74	488	<1	0.01	30	830	17	0.03	<2	4	84	<20	0.05<10	<10	51	<10	62
110125	20	0.48	581	<1	0.01	22	620	20	0.02	<2	4	55	<20	0.06 < 10	<10	50	<10	59
115000	10	0.25	323	<1	0.01	9	390	19	0.01	<2	2	38	<20	0.06 < 10	<10	46	<10	49
115005	10	0.17	343	<1	<0.01	9	350	12	0.01	<2	2	27	<20	0.07 <10	<10	44	<10	38
115010	10	0.23	329	<1	<0.01	9	370	17	0.01	<2	2	30	<20	0.06 < 10	<10	44	<10	49
115015	20	0.28	378	<1	0.01	11	480	16	0.02	2	2	35	<20	0.05 < 10	<10	45	<10	51
115020	20	0.22	365	<1	<0.01	10	410	22	0.01	<2	3	29	<20	0.06 < 10	<10	41	<10	49
115025	10	0.37	329	<1	0.01	11	610	44	0.05	<2	2	144	<20	0.04 < 10	<10	34	<10	69
115030	20	0.26	441	<1	< 0.01	11	260	45	0.01	<2	3	26	<20	0.05 < 10	<10	46	<10	72
115035	20	0.27	420	<1	< 0.01	11	450	36	0.01	<2	3	27	<20	0.06 < 10	<10	44	<10	/4
115040	20	0.37	401	<1	0.01	12	440	26	0.02	<2	2	36	<20	0.04 < 10	<10	38	<10	67
115045	20	0.46	514	<1	0.01	13	1030	24	0.06	<2	2	/6	<20	0.03 < 10	<10	32	<10	72
115050	20	0.38	/13	<1	0.01	12	600	19	0.01	<2	3	38	<20	0.05 < 10	<10	43	<10	92
115055	20	0.3	6/2	1	0.01	11	560	54	0.01	<2	3	30	<20	0.06 < 10	<10	48	<10	121
115060	20	0.24	438	1	0.01	10	380	19	< 0.01	<2	3	33	<20	0.07 < 10	<10	50	<10	61
115065	20	0.19	420	<1	0.01	8	370	15	< 0.01	<2	2	29	<20	0.06 < 10	<10	38	<10	51
115070	20	0.36	367	<1	0.01	10	450	14	0.01	<2	3	51	<20	0.05 < 10	<10	35	<10	56
115075	20	0.41	383	<1	0.01	11	510	15	0.02	<2	2	97	<20	0.05 < 10	<10	36	<10	58
115080	20	0.23	357	<1	0.01	9	330	13	< 0.01	<2	2	38	<20	0.07 < 10	<10	42	<10	46
115085	10	0.36	313	<1	0.01	11	420	12	0.01	<2	2	52	<20	0.05 < 10	<10	37	<10	51
115090	10	0.26	333	<1	0.01	10	350	12	0.01	<2	2	41	<20	0.07 < 10	<10	43	<10	47
115095	20	0.33	360	<1	0.01	12	4/0	13	0.01	<2	3	55	<20	0.06<10	<10	43	<10	4/
115100	20	0.34	353	<1	0.01	14	410	13	0.01	<2	3	51	<20	0.06<10	<10	41	<10	48
115105	20	0.25	422	1	0.01	12	390	16	0.01	<2	3	46	<20	0.07 < 10	<10	39	<10	46
115110	20	0.45	547	1	0.02	15	580	49	0.03	<2	4	58	<20	0.06<10	<10	46	<10	/8
115115	20	0.4	461	1	< 0.01	19	530	17	0.01	<2	4	49	<20	0.06 <10	<10	38	<10	59
115120	20	0.64	409	<1	0.01	27	5/0	12	0.03	<2	3	66	<20	0.05 <10	<10	49	<10	55

Sample	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti TI	U	v	w	Zn
115125	20	0.46	338	<1	0.01	21	420	11	0.03	<2	3	64	<20	0.06 <10	<10	52	<10	50
120000	10	0.2	317	1	0.01	9	350	12	0.01	<2	2	27	<20	0.07 <10	<10	43	<10	43
120005	10	0.24	314	<1	0.01	10	290	12	0.01	<2	2	27	<20	0.06 <10	<10	37	<10	44
120010	20	0.21	367	<1	0.01	9	370	13	0.01	<2	3	30	<20	0.07 <10	<10	41	<10	44
120015	20	0.21	391	<1	0.01	9	370	12	0.01	<2	3	34	<20	0.07 <10	<10	41	<10	42
120020	20	0.27	500	<1	0.01	11	440	20	0.01	2	3	36	<20	0.07 <10	<10	39	<10	57
120025	10	0.32	321	<1	0.02	12	510	25	0.03	<2	2	73	<20	0.05 <10	<10	35	<10	53
120030	20	0.39	322	<1	0.02	12	490	27	0.03	<2	2	79	<20	0.05 <10	<10	42	<10	64
120035	20	0.22	386	1	0.01	9	370	25	0.02	<2	2	26	<20	0.07 <10	<10	46	<10	64
120040	20	0.3	380	<1	0.01	12	330	22	0.01	<2	3	35	<20	0.06 <10	<10	52	<10	61
120045	20	0.37	503	<1	0.01	10	480	20	0.03	<2	2	37	<20	0.05 <10	<10	38	<10	68
120050	20	0.47	574	<1	0.01	10	680	20	0.05	<2	2	70	<20	0.05 <10	<10	39	<10	99
120055	20	0.28	509	<1	0.01	11	350	17	<0.01	<2	3	36	<20	0.07 <10	<10	48	<10	62
120060	20	0.21	377	<1	0.01	8	360	15	0.01	<2	2	31	<20	0.07 <10	<10	44	<10	62
120065	20	0.26	349	<1	0.01	9	420	18	0.01	<2	2	40	<20	0.06 <10	<10	37	<10	53
120070	20	0.25	395	<1	0.01	9	390	15	0.01	2	2	43	<20	0.06 <10	<10	40	<10	53
120075	20	0.22	398	<1	0.01	9	380	14	0.01	<2	2	40	<20	0.07 <10	<10	40	<10	50
120080	20	0.29	359	<1	0.01	11	400	13	0.01	<2	3	44	<20	0.06 <10	<10	44	<10	52
120085	10	0.22	329	1	0.01	9	340	13	0.01	<2	2	41	<20	0.07 <10	<10	42	<10	43
120090	10	0.24	340	<1	0.01	10	350	14	0.01	<2	2	40	<20	0.07 <10	<10	44	<10	45
120095	20	0.25	404	<1	0.01	12	390	12	0.01	<2	3	45	<20	0.08 <10	<10	46	<10	46
120100	20	0.48	527	1	0.01	19	490	48	0.01	3	4	70	<20	0.06 <10	<10	44	<10	72
120105	20	0.36	427	<1	<0.01	13	510	47	0.01	3	3	43	<20	0.06 <10	<10	41	<10	59
120110	20	0.4	493	<1	<0.01	14	510	45	0.01	2	3	45	<20	0.06 <10	<10	40	<10	64
120115	20	0.43	344	<1	<0.01	22	550	13	0.01	2	3	56	<20	0.06 <10	<10	49	<10	47
120120	20	0.45	394	<1	<0.01	25	470	14	0.01	<2	3	65	<20	0.06 <10	<10	53	<10	48
120125	20	0.47	402	<1	<0.01	21	490	13	0.02	<2	3	59	<20	0.06 <10	<10	48	<10	52
125000	10	0.28	299	<1	<0.01	10	470	12	0.01	3	2	33	<20	0.05 <10	<10	36	<10	41
125005	10	0.17	286	<1	<0.01	8	430	13	0.01	3	2	22	<20	0.06 <10	<10	39	<10	40
125010	10	0.21	365	<1	<0.01	9	410	12	0.01	2	2	32	<20	0.07 <10	<10	39	<10	41
125015	10	0.28	291	<1	<0.01	9	450	11	0.01	3	2	35	<20	0.06 <10	<10	39	<10	43
125020	10	0.34	313	<1	<0.01	10	500	10	0.01	2	2	50	<20	0.06 <10	<10	38	<10	44
125025	10	0.22	281	<1	<0.01	9	310	15	0.01	3	2	30	<20	0.06 <10	<10	39	<10	43
125030	20	0.33	364	<1	0.01	12	400	35	0.02	2	2	40	<20	0.04 <10	<10	37	<10	66
125035	20	0.32	578	<1	<0.01	11	450	24	0.03	2	2	41	<20	0.04 <10	<10	37	<10	70
125040	20	0.35	561	1	<0.01	10	630	20	0.06	3	2	73	<20	0.04 <10	<10	35	<10	67
125045	20	0.38	549	<1	<0.01	12	480	19	0.02	2	3	34	<20	0.04 <10	<10	38	<10	68
125050	20	0.43	606	<1	<0.01	11	590	26	0.04	2	2	38	<20	0.04 <10	<10	33	<10	89
125055	20	0.57	456	<1	<0.01	11	530	21	0.02	3	3	40	<20	0.04 <10	<10	42	<10	102
125060	20	0.32	375	<1	<0.01	11	370	18	0.01	2	3	40	<20	0.06 <10	<10	52	<10	61
125065	10	0.21	331	<1	<0.01	9	370	13	0.01	2	2	32	<20	0.06 <10	<10	38	<10	49
125070	20	0.22	385	<1	<0.01	9	350	13	0.01	2	2	44	<20	0.06 <10	<10	38	<10	47
125075	20	0.32	398	<1	<0.01	11	440	14	0.01	3	3	48	<20	0.06 <10	<10	46	<10	54
125080	20	0.24	388	<1	<0.01	10	320	14	0.01	2	2	41	<20	0.07 <10	<10	43	<10	45
125085	10	0.26	354	<1	<0.01	11	420	12	0.01	<2	2	38	<20	0.07 <10	<10	45	<10	47
125090	20	0.24	398	<1	<0.01	11	360	12	<0.01	2	3	39	<20	0.06 <10	<10	41	<10	45
125095	20	0.32	553	<1	<0.01	13	390	17	0.01	2	3	54	<20	0.07 <10	<10	44	<10	53
125105	10	0.31	422	<1	<0.01	12	440	36	<0.01	3	3	31	<20	0.08 <10	<10	51	<10	52
125110	20	0.44	485	<1	<0.01	15	590	38	0.01	2	4	50	<20	0.06 < 10	<10	39	<10	64
125115	20	0.46	309	<1	<0.01	23	500	12	0.01	3	3	67	<20	0.06 <10	<10	53	<10	48
125120	20	0.4	350	<1	0.01	22	510	11	0.01	2	3	55	<20	0.07 <10	<10	53	<10	46
125125	20	0.53	344	<1	0.01	19	580	10	0.02	3	3	126	<20	0.06 <10	<10	43	<10	46
130000	20	0.28	368	<1	<0.01	11	470	18	0.01	2	3	33	<20	0.06 <10	<10	39	<10	49
130005	20	0.18	353	<1	<0.01	9	360	12	<0.01	3	3	29	<20	0.07 <10	<10	41	<10	38

Sample	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr Th	TI TI U	v w	Zn
130010	10	0.26	291	<1	<0.01	10	470	11	0.01	<2	2	38 <20	0.06 <10 <10	43 < 10	45
130015	10	0.21	332	<1	<0.01	9	400	14	0.01	3	2	32 <20	0.06 < 10 < 10	35 < 10	41
130020	20	0.24	487	<1	<0.01	9	460	16	0.01	2	3	37 <20	0.06 <10 <10	35 < 10	47
130025	20	0.21	343	<1	<0.01	10	330	13	<0.01	<2	2	32 <20	0.05 <10 <10	33 < 10	38
130030	10	0.23	338	<1	0.01	10	410	24	0.02	<2	2	27 <20	0.04 <10 <10	34 <10	52
130035	20	0.27	344	1	<0.01	10	330	19	0.01	<2	2	28 <20	0.04 <10 <10	35 < 10	48
130040	20	0.36	384	<1	<0.01	11	500	16	0.02	<2	2	40 <20	0.03 <10 <10	34 <10	53
130045	20	0.31	421	<1	0.01	9	440	17	0.02	<2	2	29 <20	0.03 <10 <10	33 < 10	54
130050	20	0.22	485	<1	<0.01	7	370	17	<0.01	<2	2	29 <20	0.05 <10 <10	41 < 10	48
130055	20	0.22	406	<1	<0.01	8	450	14	<0.01	<2	2	31 <20	0.06 <10 <10	42 <10	57
130060	10	0.16	345	<1	<0.01	6	330	13	<0.01	<2	2	28 <20	0.05 <10 <10	35 < 10	37
130065	10	0.16	369	<1	<0.01	7	350	14	<0.01	<2	2	28 <20	0.06 < 10 < 10	36 < 10	40
130070	10	0.16	337	<1	0.01	7	380	13	0.01	2	2	25 <20	0.06 < 10 < 10	37 <10	41
130075	20	0.17	364	<1	0.01	8	380	12	0.01	<2	2	28 <20	0.06 < 10 < 10	37 <10	43
130080	20	0.2	383	<1	0.01	9	390	14	0.01	2	2	32 <20	0.06 <10 <10	41 < 10	43
130085	20	0.28	560	<1	0.01	13	490	17	0.02	<2	3	40 <20	0.06 < 10 < 10	38 < 10	55
130090	20	0.33	751	<1	0.01	14	560	40	0.02	<2	4	41 <20	0.06 <10 <10	38 < 10	72
130095	20	0.39	499	<1	0.01	16	500	79	0.01	2	3	30 <20	0.1 <10 <10	76 < 10	73
130100	20	0.53	347	<1	0.02	24	630	19	0.02	<2	3	79 <20	0.06 <10 <10	50 < 10	53
130105	20	0.46	314	<1	0.02	22	460	14	0.02	<2	3	58 <20	0.05 < 10 < 10	50 < 10	48
130110	20	0.36	621	<1	0.01	17	520	23	0.02	<2	4	46 <20	0.05 <10 <10	37 <10	57
130115	20	0.49	342	1	0.02	25	600	13	0.02	<2	3	67 <20	0.06 <10 <10	51 < 10	49
130120	20	0.5	338	<1	0.03	24	830	12	0.02	2	3	95 <20	0.07 <10 <10	61 < 10	48
130125	20	0.46	397	<1	0.04	27	1070	9	0.04	<2	2	75 <20	0.17 <10 <10	94 < 10	62
135000	10	0.18	308	<1	0.01	9	380	12	0.01	<2	2	28 <20	0.06 <10 <10	40 < 10	39
135005	10	0.3	269	<1	0.02	10	450	11	0.02	<2	2	70 <20	0.05 < 10 < 10	36 < 10	41
135010	10	0.2	304	<1	0.01	9	380	11	0.02	<2	2	33 <20	0.06 <10 <10	37 <10	38
135015	20	0.2	335	<1	0.01	10	330	12	0.01	<2	3	34 <20	0.06 <10 <10	40 < 10	37
135020	20	0.24	372	<1	0.01	10	400	11	0.02	2	3	36 <20	0.05 <10 <10	38 < 10	43
135025	20	0.25	426	<1	0.01	10	460	14	0.02	<2	3	32 <20	0.06 <10 <10	37 <10	48
135030	20	0.23	380	<1	0.01	9	400	16	0.01	<2	3	36 <20	0.06 < 10 < 10	38 < 10	46
135035	10	0.2	302	<1	0.01	10	300	20	0.01	<2	2	33 <20	0.07 <10 <10	51 < 10	44
135040	10	0.18	327	<1	0.01	10	350	12	0.01	<2	2	28 <20	0.07 <10 <10	50 < 10	41
135045	10	0.18	318	<1	0.01	9	340	12	0.01	<2	2	30 <20	0.07 <10 <10	49 < 10	40
135050	20	0.28	615	<1	0.01	9	540	16	0.02	<2	2	30 <20	0.06 < 10 < 10	44 < 10	66
135055	20	0.4	561	<1	0.02	11	570	17	0.03	2	2	36 <20	0.04 <10 <10	41 < 10	74
135060	30	0.47	557	<1	0.02	10	780	18	0.03	<2	2	60 <20	0.04 <10 <10	37 <10	83
135065	20	0.26	329	<1	0.01	11	400	13	0.01	<2	3	38 <20	0.06<10<10	51 < 10	52
135070	20	0.22	384	<1	0.01	9	410	15	0.01	2	2	31 <20	0.06<10<10	36 < 10	52
135075	20	0.28	440	<1	0.02	10	540	14	0.02	2	3	41 <20	0.06<10<10	38 < 10	56
135080	10	0.24	390	<1	0.01	10	440	37	0.01	2	2	29 <20	0.06<10<10	38 < 10	52
135085	10	0.27	418	<1	0.02	11	460	42	0.01	<2	2	28 <20	0.07 < 10 < 10	48 < 10	55
135090	20	0.36	474	<1	0.02	13	480	73	0.01	<2	3	45 <20	0.05<10<10	40 < 10	69
135095	20	0.38	360	<1	0.02	20	510	16	0.02	<2	3	51 <20	0.08<10<10	52 < 10	54
135100	20	0.39	404	<1	0.02	19	520	18	0.02	<2	3	50 <20	0.06<10<10	45 < 10	55
135105	20	0.38	368	<1	0.02	17	410	15	0.01	2	3	56 <20	0.06<10<10	50 < 10	49
135110	20	0.41	858	<1	0.02	19	630	20	0.02	<2	5	53 < 20	0.06<10<10	39 < 10	71
135115	20	0.44	415	<1	0.02	22	840	12	0.02	3	3	61 <20	0.09<10<10	62 < 10	56
135120	20	0.45	401	1	< 0.01	23	880	21	0.02	<2	3	70 <20	0.09<10<10	61 < 10	57
135125	20	0.44	360	<1	0.01	22	820	12	0.02	<2	2	76 <20	0.12 < 10 < 10	62 < 10	51
140000	10	0.33	386	<1	< 0.01	13	560	19	0.01	<2	3	35 < 20	0.07 < 10 < 10	41 < 10	54
140005	10	0.31	311	<1	< 0.01	10	530	11	0.02	<2	2	75 <20	0.05<10<10	36 < 10	43
140010	20	0.26	352	<1	< 0.01	10	390	13	< 0.01	<2	2	36 < 20	0.06<10<10	38 < 10	45
140015	10	0.33	284	<1	<0.01	10	500	12	0.02	<2	2	50 < 20	0.05 <10 <10	35 <10	44

Sample	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti TI	U	V	<u>w</u>	Zn
140020	10	0.35	336	<1	<0.01	10	550	15	0.02	<2	2	49	<20	0.05 <10	<10	37	<10	48
140025	20	0.26	438	<1	<0.01	10	500	15	0.01	<2	3	31	<20	0.06 <10	<10	39	<10	50
140030	20	0.29	339	<1	<0.01	10	420	15	0.01	<2	2	37	<20	0.05 <10	<10	37	<10	50
140035	20	0.31	474	<1	0.01	12	450	52	0.02	<2	2	30	<20	0.05 <10	<10	44	<10	88
140040	20	0.34	412	<1	0.01	11	640	26	0.05	2	2	104	<20	0.04 <10	<10	37	<10	67
140045	20	0.36	450	<1	0.01	11	500	20	0.03	<2	2	35	<20	0.04 <10	<10	38	<10	72
140050	20	0.33	506	<1	0.01	10	480	20	0.02	<2	2	32	<20	0.05 <10	<10	36	<10	69
140055	20	0.37	491	1	0.01	10	610	22	0.03	3	2	39	<20	0.04 <10	<10	35	<10	76
140060	20	0.31	476	<1	0.01	10	440	24	0.02	3	3	34	<20	0.05 <10	<10	42	<10	84
140065	20	0.35	433	<1	0.01	14	460	22	0.01	<2	3	32	<20	0.07 <10	<10	56	<10	80
140070	10	0.22	309	<1	0.01	11	360	13	0.01	3	2	35	<20	0.07 <10	<10	49	<10	48
140075	20	0.24	444	<1	0.01	11	400	40	0.01	2	3	32	<20	0.08 <10	<10	54	<10	56
140080	20	0.33	526	<1	0.01	13	520	48	0.01	2	3	- 38	<20	0.07 <10	<10	45	<10	65
140085	20	0.38	450	1	0.01	14	510	43	0.01	<2	3	43	<20	0.08 <10	<10	50	<10	64
140090	20	0.43	569	1	0.01	16	590	30	0.02	<2	4	44	<20	0.06 <10	<10	42	<10	71
140095	20	0.53	463	1	0.01	20	770	21	0.02	<2	3	57	<20	0.07 <10	<10	49	<10	71
140100	20	0.44	313	<1	0.01	19	450	17	0.01	<2	3	62	<20	0.06 <10	<10	55	<10	56
140105	20	0.35	360	1	0.01	16	370	15	0.01	<2	3	53	<20	0.06 <10	<10	49	<10	46
140110	20	0.39	886	1	0.01	18	630	24	0.02	3	4	50	<20	0.07 <10	<10	40	<10	77
140115	20	0.53	357	1	0.01	25	660	15	0.02	<2	3	71	<20	0.08 <10	<10	59	<10	51
140120	20	0.43	338	<1	0.02	20	890	10	0.02	<2	3	78	<20	0.12 <10	<10	64	<10	48
140125	20	0.45	352	<1	0.03	20	940	9	0.02	<2	3	95	<20	0.11 <10	<10	65	<10	50
145000	20	0.42	445	1	0.01	20	430	15	0.01	4	4	37	<20	0.08 <10	<10	50	<10	55
145005	20	0.48	406	<1	0.01	18	570	16	0.02	2	3	38	<20	0.08 <10	<10	49	<10	52
145010	20	0.24	324	<1	0.01	9	360	14	0.01	<2	2	31	<20	0.06 <10	<10	43	<10	40
145015	20	0.25	344	1	0.01	10	420	15	0.01	<2	3	32	<20	0.06 <10	<10	46	<10	45
145020	10	0.23	322	<1	0.01	10	350	12	0.01	2	2	28	<20	0.08 <10	<10	54	<10	43
145025	10	0.18	344	<1	0.01	8	350	14	0.01	2	2	29	<20	0.07 <10	<10	42	<10	39
145030	20	0.25	431	1	0.01	10	340	35	0.02	<2	2	25	<20	0.06 <10	<10	44	<10	85
145035	20	0.22	506	<1	0.01	11	310	46	0.01	2	3	26	<20	0.06 <10	<10	44	<10	85
145040	20	0.32	430	<1	0.01	13	660	51	0.04	2	2	57	<20	0.04 <10	<10	38	<10	81
145045	20	0.25	553	<1	0.01	9	440	32	0.03	<2	2	29	<20	0.05 <10	<10	37	<10	73
145050	20	0.38	698	<1	0.01	11	770	26	0.05	2	2	46	<20	0.04 <10	<10	36	<10	117
145055	20	0.31	530	<1	0.01	10	450	18	0.02	<2	3	38	<20	0.06 <10	<10	46	<10	76
145060	20	0.41	621	<1	0.01	10	560	37	0.02	2	3	36	<20	0.03 < 10	<10	41	<10	149
145065	20	0.24	401	1	0.01	10	370	21	0.01	2	2	31	<20	0.06 <10	<10	55	<10	74
145070	20	0.36	521	<1	0.01	12	580	42	0.01	2	4	54	<20	0.06 < 10	<10	47	<10	70
145075	20	0.31	395	1	0.01	13	490	41	0.01	<2	3	30	<20	0.08 < 10	<10	48	<10	58
145080	20	0.29	400	<1	0.01	12	420	26	0.01	2	3	44	<20	0.06 < 10	<10	43	<10	47
145085	20	0.54	409	<1	0.01	18	620	23	0.02	2	3	71	<20	0.06 < 10	<10	46	<10	57
145090	20	0.37	454	<1	0.01	14	560	22	0.02	<2	3	41	<20	0.05 < 10	<10	41	<10	57
145095	20	0.42	356	1	0.01	16	560	16	0.02	2	3	49	<20	0.05 < 10	<10	45	<10	54
145100	20	0.33	353	<1	0.01	16	370	12	0.01	4	3	50	<20	0.06 < 10	<10	47	<10	45
145110	20	0.4	816	1	0.01	18	640	19	0.02	<2	4	55	<20	0.06 < 10	<10	38	<10	67
145115	20	0.36	332	<1	0.02	17	760	11	0.01	5	2	54	<20	0.09 < 10	<10	56	<10	43
145120	20	0.41	335	<1	0.02	20	820	11	0.02	4	2	76	<20	0.1 < 10	<10	59	<10	45
145125	20	0.47	375	<1	0.02	21	950	16	0.04	<2	2	80	<20	0.09 < 10	<10	59	<10	54
150000	20	0.43	393	<1	0.01	13	430	15	0.02	4	3	44	<20	0.05 < 10	<10	41	<10	51
150005	20	0.45	373	<1	0.01	17	510	14	0.01	<2	3	38	<20	0.06 < 10	<10	45	<10	46
150010	20	0.32	357	<1	0.01	12	340	11	0.01	<2	3	47	<20	0.07 <10	<10	48	<10	41
150015	10	0.25	302	<1	0.01	11	340	12	0.01	2	3	38	<20	0.06 < 10	<10	46	<10	38
150020	10	0.18	291	<1	0.01	9	320	11	0.01	3	2	33	<20	0.06 < 10	<10	41	<10	34
150025	20	0.2	365	<1	0.01	8	420	20	0.01	<2	2	28	<20	0.06 < 10	<10	35	<10	48
150030	20	0.23	539	<1	0.01	10	610	- 38	0.02	2	2	31	<20	0.05 <10	<10	41	<10	90

Sample	La	Mg	Mn	Мо	Na	Ni	Р	Pb	s	Sb	Sc	Sr	Th	Ti TI	U	V W	Zn
150035	20	0.42	685	<1	0.01	13	680	75	0.08	3	2	69 ·	<20	0.04 < 10 <	10	35 < 10	149
150040	20	0.29	666	1	0.01	11	530	107	0.02	<2	3	35 ·	<20	0.06 < 10 <	10	51 < 10	156
150045	20	0.22	389	<1	0.01	9	430	24	0.01	<2	2	35	<20	0.08 < 10 <	10	53 < 10	64
150050	10	0.21	326	1	0.01	9	370	16	0.01	<2	2	31	<20	0.07 < 10 <	10	49 < 10	51
150055	20	0.28	562	<1	0.01	11	430	50	0.01	5	3	40 ·	<20	0.06 < 10 <	10	42 < 10	63
150060	20	0.35	666	<1	0.01	13	460	57	0.01	<2	4	48 ·	<20	0.05 < 10 <	10	43 < 10	82
150065	20	0.26	407	<1	0.01	10	470	44	0.01	3	2	26 ·	<20	0.06 < 10 <	10	44 < 10	73
150070	20	0.35	413	1	0.01	13	460	40	0.01	2	3	34 ·	<20	0.07 <10 <	10	52 < 10	63
150075	20	0.28	307	<1	0.01	10	380	20	0.01	2	3	43 ·	<20	0.06<10<	10	44 < 10	46
150080	20	0.38	317	<1	0.01	13	530	25	0.02	2	2	88	<20	0.05 < 10 <	10	38 < 10	45
150085	20	0.37	392	<1	0.01	12	540	23	0.02	<2	3	43 ·	<20	0.06 < 10 <	10	40 < 10	55
150090	20	0.44	423	<1	0.01	13	560	22	0.02	2	3	56 ·	<20	0.05 < 10 <	10	42 < 10	56
150095	10	0.27	369	2	<0.01	19	310	31	<0.01	<2	3	42 ·	<20	0.05 < 10 <	10	42 < 10	52
150100	10	0.24	325	<1	<0.01	12	340	14	<0.01	<2	2	40	<20	0.06 < 10 <	10	44 < 10	41
150110	20	0.35	732	1	<0.01	16	570	20	0.01	<2	4	46 ·	<20	0.05 < 10 <	10	36 < 10	66
150115	20	0.4	429	<1	<0.01	15	680	12	0.01	<2	3	55 ·	<20	0.06 < 10 <	10	44 < 10	51
150120	20	0.38	304	<1	<0.01	16	710	9	0.01	<2	2	76 ·	<20	0.08 < 10 <	10	53 < 10	43
150125	20	0.4	329	<1	<0.01	18	730	10	0.02	<2	2	63 ·	<20	0.09 < 10 <	10	54 < 10	48
155000	10	0.31	335	<1	<0.01	13	340	11	<0.01	<2	3	38 ·	<20	0.05 < 10 <	10	40 < 10	42
155005	10	0.4	312	<1	<0.01	18	360	11	<0.01	<2	3	34	<20	0.09<10<	10	57 < 10	43
155010	20	0.25	625	<1	<0.01	11	440	21	0.01	<2	3	32 ·	<20	0.06 < 10 <	10	41 < 10	57
155015	20	0.43	394	<1	0.01	18	440	14	0.01	2	4	42	<20	0.08 < 10 <	10	68 < 10	51
155020	20	0.32	396	1	0.01	15	390	15	0.01	<2	3	37 ·	<20	0.09<10<	10	60 < 10	44
155025	10	0.33	365	<1	0.01	14	410	13	0.01	2	3	30 ·	<20	0.07 <10 <	10	42 < 10	38
155030	20	0.36	744	1	0.01	17	440	17	0.01	2	4	44 ·	<20	0.07 <10 <	10	40 < 10	55
155035	20	0.58	578	<1	0.01	16	580	81	0.01	<2	4	64 ·	<20	0.05 < 10 <	10	60 < 10	143
155040	20	0.29	437	1	0.01	9	870	363	0.03	2	3	40 ·	<20	0.05 < 10 <	10	66 < 10	124
155045	10	0.27	364	1	0.01	10	510	163	0.01	2	2	22 -	<20	0.06<10<	10	56 < 10	56
155050	20	0.23	531	<1	0.01	10	510	255	0.02	4	3	30 ·	<20	0.06 < 10 <	10	66 < 10	84
155055	20	0.23	669	1	0.01	10	510	71	0.01	<2	3	32 ·	<20	0.06 < 10 <	10	44 < 10	65
155060	20	0.22	654	1	0.01	10	510	65	0.03	4	2	58 -	<20	0.04 < 10 <	10	36 < 10	77
155065	20	0.32	437	<1	0.01	12	530	32	0.01	<2	3	34	<20	0.08 < 10 <	10	58 < 10	60
155070	10	0.19	271	<1	0.01	10	370	21	0.01	2	2	24	<20	0.07 < 10 <	10	54 < 10	47
155075	10	0.35	313	<1	0.01	10	520	17	0.01	2	2	58	<20	0.05 < 10 <	10	41 < 10	46
155080	20	0.46	337	<1	0.01	12	460	18	0.01	<2	3	110	<20	0.05 < 10 <	10	44 < 10	45
155085	20	0.4	338	<1	0.01	11	490	18	0.01	<2	2	97	<20	0.05 < 10 <	10	40 < 10	45
155090	20	0.24	414	1	0.01	10	420	18	0.01	<2	2	36	<20	0.06<10<	10	39 < 10	46
155095	10	0.27	337	<1	0.01	10	400	17	0.01	3	2	42	<20	0.05<10<	10	43 < 10	45
155100	20	0.21	392	<1	0.01	11	370	16	0.01	<2	2	36	<20	0.06<10<	10	40 < 10	44
155105	20	0.31	382	<1	0.01	13	460	16	0.01	4	3	48	<20	0.06<10<	10	43 < 10	41
155110	20	0.36	796	<1	0.01	16	640	20	0.01	2	4	48	<20	0.06<10<	10	3/ <10	1 /1
155115	20	0.35	356	1	0.01	14	650	14	0.01	<2	3	4/	<20	0.07 < 10 <	10	4/ <10	46
155120	20	0.45	330	<1	0.02	16	860	13	0.02	<2	3	61	<20	0.08 < 10 <	10	4/<10	48
155125	20	0.41	324	<1	0.02	18	870	12	0.02	2	3	69	<20	0.09 < 10 <	10	54 < 10	46
160000	10	0.29	307	<1	0.01	11	400	1/	0.02	3	2	34	<20	0.04 < 10 <	10	33 < 10	46
160005	10	0.31	296	1	0.01	10	520	18	0.04	2	2	56	<20	0.04 < 10 <	10	36 < 10	46
160010	20	0.23	413	1	0.01	10	2/0	18	0.01	4	3	38	<20	0.06<10<	10	40 < 10	
160015	20	0.32	365	1	0.01	12	250	15	0.02	<2	2	32	<20	0.04 < 10 <	10	42 < 10	4/
160020	20	0.35	520	<1	0.01	13	340	20	0.02	2	2	38	<20	0.05<10<	10	38 < 10	1 54
160025	40	0.48	668	1	0.02	19	540	18	0.04	2	2	183	<20	0.04 < 10 <	10	28 < 10	86
160030	20	0.36	544	<1	< 0.01	12	540	51	0.01	2	4	4/	<20	0.07 <10 <	10	40 < 10	115
160035	20	0.25	534	1	0.01	11	550	898	0.04	4	3	43	<20	0.07<10<		135<10	02
160040	20	0.21	428	1	<0.01	9	630	249	0.03	5	2	31	<20		10	05 <10	59
1 160045	20	U./4	1785	-2	0.01	10	970	1800	0.06	10	5	197	<20	0.02 <10 <	10	354 < 10	1 596

Sample	La	Mg	Mn	Мо	Na	Ni	Р	Pb	s	Sb	Sc	Sr Th	ΤΙ ΤΙ U	v w	Zn
160050	20	0.23	746	<1	<0.01	10	530	312	0.02	2	3	36 <20	0.07 <10 <10	77 <10	76
160055	20	0.31	420	1	0.01	11	2210	113	0.1	2	2	100 <20	0.04 < 10 < 10	39 < 10	73
160060	30	0.24	660	1	<0.01	13	570	45	0.04	3	4	40 <20	0.07 <10 <10	49 < 10	65
160065	20	0.23	610	<1	0.01	10	480	37	0.03	<2	3	40 <20	0.07 <10 <10	44 <10	62
160070	10	0.16	304	<1	0.01	9	380	21	0.03	2	2	27 <20	0.08 <10 <10	49 <10	44
160075	10	0.25	326	<1	0.01	10	420	22	0.03	3	2	35 <20	0.06 < 10 < 10	42 <10	48
160080	20	0.24	380	<1	<0.01	11	440	19	0.02	3	3	43 <20	0.08 < 10 < 10	48 < 10	48
160085	20	0.28	356	<1	<0.01	15	400	16	0.02	<2	3	48 <20	0.07 <10 <10	46 < 10	48
160090	10	0.26	400	<1	0.01	11	430	17	0.02	<2	3	65 <20	0.07 < 10 < 10	46 < 10	51
160095	10	0.22	376	<1	<0.01	10	340	16	0.01	<2	2	36 <20	0.07 <10 <10	48 < 10	45
160100	10	0.22	364	<1	<0.01	10	360	16	0.01	2	3	40 <20	0.07 <10 <10	44 < 10	46
160105	20	0.27	403	<1	0.01	11	400	17	0.02	2	3	46 <20	0.07 < 10 < 10	47 <10	50
160110	20	0.32	389	<1	0.01	12	530	13	0.02	3	3	48 <20	0.08 < 10 < 10	45 < 10	58
160120	20	0.28	319	<1	0.01	13	880	10	0.01	<2	2	38 <20	0.09 < 10 < 10	52 < 10	44
160125	20	0.4	319	<1	0.01	16	910	11	0.03	3	2	51 <20	0.09 < 10 < 10	53 < 10	50
165000	20	0.23	409	<1	<0.01	11	350	19	0.01	<2	3	30 <20	0.07 < 10 < 10	45 < 10	55
165005	20	0.54	386	<1	0.01	19	450	13	0.02	3	4	36 <20	0.09 < 10 < 10	51 < 10	56
165010	10	0.48	348	<1	0.01	16	500	22	0.02	3	3	35 <20	0.09<10<10	53 < 10	52
165015	10	0.2	311	<1	0.01	10	330	10	0.01	<2	2	28 < 20	0.08 < 10 < 10	43 < 10	37
165020	10	0.19	314	<1	0.01	9	290	9	<0.01	2	2	26 < 20	0.08 < 10 < 10	45 < 10	34
165025	10	0.21	344	<1	<0.01	8	330	13	0.01	2	2	27 <20	0.08 < 10 < 10	50 < 10	42
165030	20	0.21	409	<1	0.01	9	670	174	0.02	3	2	33 <20	0.06 < 10 < 10	49 < 10	106
165035	20	0.27	464	1	<0.01	11	580	694	0.04	2	3	42 <20	0.06 < 10 < 10	74 < 10	62
165040	20	0.22	414	<1	< 0.01	11	370	62	0.01	3	3	35 <20	0.07 < 10 < 10	49 < 10	54
165045	20	0.27	450	<1	0.01	11	550	68	0.03	3	3	36 <20	0.07 < 10 < 10	44 < 10	62
165050	20	0.37	513	<1	0.01	11	660	94	0.04	4	3	45 <20	0.04 < 10 < 10	47 < 10	111
165055	20	0.38	391	<1	0.01	13	410	52	0.03	2	3	37 <20	0.05 < 10 < 10	42 < 10	64
165060	20	0.24	506	<1	<0.01	9	900	35	0.03	<2	3	36 <20	0.06 < 10 < 10	44 < 10	60
165065	20	0.2	545	<1	0.01	10	470	31	0.02	2	3	31 < 20	0.08 < 10 < 10	50 < 10	59
165070	10	0.2	335	<1	0.01	9	320	21	0.01	2	3	34 <20	0.08 < 10 < 10	55 < 10	43
165075	10	0.2	334	<1	<0.01	9	420	21	0.01	<2	2	37 <20	0.05<10<10	39<10	40
165085	10	0.33	309	1	0.01	11	510	17	0.02	<2	2	64 <20	0.05 < 10 < 10	39 < 10	44
165090	10	0.18	336	<1	0.01	8	320	16	0.01	<2	2	34 <20	0.06<10<10	42 < 10	39
165095	10	0.2	323	<1	0.01	10	330	17	0.01	<2	2	32 <20	0.05 < 10 < 10	42 < 10	44
165100	10	0.21	323	1	< 0.01	9	360	18	0.01	<2	2	38 < 20	0.05 < 10 < 10	41 < 10	43
165105	10	0.24	396	<1	0.01	10	410	19	0.01	<2	2	36 < 20	0.06 < 10 < 10	41 < 10	49
165115	20	0.32	369	<1	0.01	13	690	15	0.02	<2	3	44 <20	0.07 < 10 < 10	45 < 10	51
165120	20	0.37	340	1	0.02	13	910	13	0.02	<2	2	49 <20	0.07 < 10 < 10	41 < 10	49
165125	20	0.34	342	1	0.02	18	980	13	0.02	<2	3	38 < 20	0.09<10<10	56 < 10	50
170000	20	0.25	357	<1	0.01	12	350	13	0.01	<2	3	38 < 20	0.06 < 10 < 10	47 < 10	46
170005	10	0.33	311	<1	0.01	13	340	9	< 0.01	<2	3	27 <20	0.08<10<10	46 < 10	39
170010	20	0.27	355	<1	0.01	12	310	9	0.01	<2	3	30 < 20	0.06<10<10	41 < 10	38
170015	10	0.23	278	<1	0.01	9	280	11	0.01	<2	2	28 < 20	0.06<10<10	41 < 10	39
170020	20	0.19	335	<1	0.01	8	280	12	< 0.01	<2	2	24 < 20	0.06<10<10	36<10	35
170025	10	0.31	295	<1	0.01	8	350	10	0.01	<2	2	41 < 20	0.05<10<10	40 < 10	39
170030	10	0.24	358	<1	< 0.01	8	400	52	0.02	<2	2	30 < 20	0.06<10<10	41 < 10	110
170035	20	0.3	321	<1	0.01	11	320	43	0.02	<2	2	28 < 20	0.05<10<10	40 < 10	75
170040	20	0.24	498	<1	0.01	11	290	50	0.02	<2	- 3	31 < 20	0.07 < 10 < 10	46 < 10	48
170045	10	0.32	290	<1	0.01	10	500	71	0.03	<2	2	51 < 20	0.05<10<10	36<10	46
170050	10	0.34	306	<1	0.01	11	590	26	0.04	<2	2	62 < 20	0.05<10<10	37 < 10	54
170055	10	0.27	484	2	< 0.01	13	550	66	0.01	<2	-3	34 < 20	0.06<10<10	39<10	63
170060	20	0.27	390	1	< 0.01	11	290	38	0.01	<2	3	33 < 20	0.06<10<10	42 < 10	50
170065	20	0.21	503	<1	< 0.01	11	380	54	< 0.01	<2	3	31 < 20	0.08<10<10	54 < 10	65
170070	10	0.2	342	<1	< 0.01	10	360	22	< 0.01	<2	2	28 < 20	0.09<10<10	61 < 10	47

Sample	La	Mg	Mn	Мо	Na	Ni	Р	Pb	s	Sb	Sc	Sr Th	Ti TI U	v w	Zn
170075	10	0.2	354	<1	<0.01	9	360	20	<0.01	<2	2	32 <20	0.08 <10 <10	46 <10	44
170080	10	0.22	392	<1	<0.01	10	340	17	<0.01	<2	3	40 <20	0.07 <10 <10	41 < 10	45
170085	10	0.32	272	<1	0.01	10	480	17	0.01	<2	2	80 <20	0.06 <10 <10	47 <10	46
170090	20	0.25	484	<1	<0.01	10	410	19	<0.01	<2	3	41 <20	0.07 <10 <10	44 < 10	52
170095	20	0.27	583	<1	<0.01	12	470	22	<0.01	<2	3	39 <20	0.07 <10 <10	41 < 10	60
170100	20	0.27	527	<1	<0.01	11	440	19	<0.01	<2	3	39 <20	0.07 <10 <10	41 < 10	60
170105	20	0.33	487	<1	0.01	12	480	16	<0.01	<2	3	45 <20	0.07 <10 <10	41 < 10	66
170110	20	0.34	424	<1	0.01	13	560	13	<0.01	<2	3	56 <20	0.08 < 10 < 10	45 < 10	76
170115	20	0.48	459	1	0.01	16	840	15	0.01	<2	4	63 <20	0.09 < 10 < 10	47 <10	63
170120	20	0.36	337	<1	0.01	15	860	11	0.01	<2	3	46 <20	0.1 < 10 < 10	52 < 10	49
170125	20	0.38	299	<1	0.02	16	880	9	0.01	<2	2	55 <20	0.1 <10 <10	55 < 10	49
175000	20	0.22	317	<1	0.01	10	300	14	<0.01	<2	2	30 <20	0.07 <10 <10	45 < 10	47
175005	10	0.37	343	<1	0.01	10	470	12	<0.01	<2	2	38 <20	0.07 <10 <10	45 < 10	48
175010	10	0.25	352	<1	<0.01	10	440	15	0.01	<2	2	30 <20	0.07 <10 <10	45 < 10	47
175015	10	0.3	340	<1	<0.01	9	380	17	<0.01	<2	2	28 <20	0.07 <10 <10	43 < 10	52
175020	10	0.38	290	<1	0.01	9	440	10	<0.01	<2	2	40 <20	0.07 <10 <10	44 <10	43
175025	10	0.39	318	<1	0.01	9	480	11	0.01	<2	2	53 <20	0.07 <10 <10	46 < 10	44
175030	10	0.36	356	<1	0.01	8	420	10	<0.01	<2	2	31 <20	0.07 <10 <10	50 < 10	43
175035	10	0.19	279	<1	<0.01	8	300	17	<0.01	<2	2	25 <20	0.07 <10 <10	41 < 10	46
175040	10	0.35	294	<1	0.01	12	550	30	0.02	<2	2	54 <20	0.05 < 10 < 10	38 < 10	56
175045	10	0.37	337	<1	0.01	11	490	34	0.02	<2	2	32 <20	0.05 <10 <10	37 <10	57
175050	10	0.24	350	<1	<0.01	10	340	22	0.01	<2	3	28 <20	0.06 < 10 < 10	42 <10	49
175055	10	0.35	462	<1	0.01	11	460	39	0.01	<2	3	37 <20	0.06 < 10 < 10	45 <10	80
175060	10	0.25	441	<1	<0.01	9	420	38	0.01	<2	3	29 <20	0.06 < 10 < 10	42 <10	67
175065	20	0.23	452	<1	<0.01	12	360	42	0.01	<2	3	34 <20	0.08 <10 <10	64 <10	74
175070	10	0.18	297	<1	<0.01	9	260	19	<0.01	<2	2	32 <20	0.07 <10 <10	48 < 10	44
175075	10	0.22	302	<1	<0.01	9	320	16	<0.01	<2	2	39 <20	0.07 <10 <10	45 < 10	44
175080	20	0.25	430	<1	0.01	11	370	19	<0.01	<2	3	49 <20	0.07 <10 <10	45 <10	50
175085	20	0.23	483	<1	<0.01	10	420	20	<0.01	<2	3	41 <20	0.07 <10 <10	41 < 10	54
175090	10	0.25	379	<1	<0.01	10	400	18	<0.01	<2	3	34 <20	0.07 <10 <10	46 <10	52
175095	20	0.26	405	<1	0.01	11	390	16	<0.01	<2	3	39 <20	0.08 <10 <10	45 < 10	50
175100	20	0.36	501	<1	0.01	13	550	20	0.01	<2	3	48 <20	0.07 <10 <10	42 <10	64
175105	20	0.24	419	<1	0.01	10	480	14	0.02	<2	2	39 <20	0.06 <10 <10	41 < 10	61
175110	20	0.36	424	<1	0.01	11	520	12	0.02	<2	3	57 <20	0.06 <10 <10	39 <10	72
175115	20	0.35	408	<1	0.01	13	740	13	0.02	<2	3	48 <20	0.08 <10 <10	44 < 10	55
175120	20	0.41	330	<1	0.02	15	920	9	0.02	<2	3	61 <20	0.09 <10 <10	48 < 10	53
175125	20	0.41	295	<1	0.02	16	920	7	0.03	<2	2	76 <20	0.09 <10 <10	46 < 10	48
180000	20	0.31	438	<1	0.01	11	500	18	0.02	<2	2	30 <20	0.04 <10 <10	35 < 10	49
180005	20	0.36	494	<1	0.01	11	580	17	0.02	<2	2	33 <20	0.05 <10 <10	36 < 10	52
180010	20	0.34	384	<1	0.01	10	400	16	0.01	<2	3	31 <20	0.06 <10 <10	41 < 10	54
180015	10	0.53	360	<1	0.02	10	590	12	0.02	<2	3	90 <20	0.06 < 10 < 10	45 < 10	48
180020	20	0.47	433	<1	0.01	11	500	13	0.02	<2	3	35 <20	0.05 <10 <10	41 < 10	52
180025	10	0.42	398	<1	0.01	9	610	13	0.02	<2	2	34 <20	0.06 <10 <10	42 < 10	50
180030	10	0.45	338	<1	0.01	9	560	9	0.02	<2	2	35 <20	0.06 <10 <10	39 < 10	48
180035	10	0.29	281	<1	0.01	8	340	11	0.01	<2	2	25 <20	0.06 < 10 < 10	40 < 10	42
180040	10	0.33	321	<1	0.01	9	550	19	0.02	<2	2	34 <20	0.05 <10 <10	37 <10	51
180045	10	0.29	273	<1	0.01	10	310	17	0.02	<2	2	29 <20	0.04 <10 <10	36 < 10	43
180050	10	0.24	311	<1	0.01	11	340	23	0.02	<2	2	28 <20	0.06 <10 <10	46 < 10	47
180055	10	0.26	385	<1	0.01	10	340	25	0.02	<2	2	31 <20	0.05 <10 <10	43 < 10	50
180060	10	0.24	356	<1	0.01	10	380	38	0.02	<2	2	34 <20	0.06 <10 <10	51 < 10	72
180065	10	0.25	371	<1	0.01	9	380	37	0.01	<2	2	38 <20	0.06 < 10 < 10	52 < 10	76
180070	10	0.2	346	<1	0.01	8	330	24	0.01	<2	2	31 <20	0.06 <10 <10	46 < 10	56
180075	10	0.37	302	<1	0.01	9	450	15	0.02	<2	2	84 <20	0.05 <10 <10	40 < 10	48
180080	10	0.23	315	<1	0.01	8	350	16	0.01	<2	2	36 < 20	0.05 < 10 < 10	37 < 10	44

Sample	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr Th	TI TI U	v w	Zn
180085	20	0.25	514	<1	0.01	11	410	22	0.01	<2	3	44 <20	0.05 <10 <10	36 <10	55
180090	10	0.38	337	<1	0.01	10	520	15	0.03	<2	2	75 <20	0.04 <10 <10	38 <10	48
180095	10	0.28	311	<1	0.01	10	380	13	0.01	<2	2	38 <20	0.04 <10 <10	36 <10	44
180100	20	0.28	360	<1	0.01	10	400	14	0.01	<2	2	48 <20	0.05 <10 <10	38 <10	49
180105	20	0.33	379	<1	0.01	12	510	13	0.02	<2	3	46 <20	0.06 < 10 < 10	42 <10	60
180110	20	0.3	321	<1	0.01	10	500	12	0.02	<2	3	47 <20	0.07 <10 <10	46 < 10	65
180115	20	0.38	483	<1	0.02	14	700	12	0.02	<2	3	48 <20	0.09 <10 <10	47 <10	66
180120	20	0.42	348	<1	0.02	15	860	9	0.02	<2	2	64 <20	0.09<10<10	46 < 10	54
180125	10	0.38	279	<1	0.02	14	740	8	0.03	<2	2	70 <20	0.09 <10 <10	43 <10	45
185000	10	0.3	267	<1	0.01	9	400	12	0.02	<2	2	52 <20	0.05 <10 <10	41 <10	41
185005	10	0.3	405	<1	0.01	9	460	15	0.01	<2	2	31 <20	0.07 <10 <10	46 <10	50
185010	20	0.5	456	<1	0.01	10	730	17	0.02	<2	3	30 <20	0.06 < 10 < 10	43 < 10	62
185015	20	0.48	577	<1	0.01	11	830	18	0.02	<2	3	35 <20	0.07 <10 <10	43 < 10	60
185020	10	0.38	417	<1	0.01	9	750	18	0.03	<2	2	43 <20	0.06 <10 <10	41 < 10	62
185025	10	0.48	357	1	0.01	12	820	18	0.01	<2	2	65 <20	0.06 <10 <10	39 <10	51
185030	20	0.43	463	1	<0.01	10	680	15	<0.01	<2	3	32 <20	0.06 < 10 < 10	44 <10	54
185035	20	0.34	376	1	<0.01	10	510	13	<0.01	<2	3	28 <20	0.08 <10 <10	48 <10	47
185040	10	0.27	336	1	<0.01	9	390	18	<0.01	<2	2	30 <20	0.06 < 10 < 10	38 <10	47
185045	10	0.3	243	<1	0.01	9	510	22	0.01	2	2	45 <20	0.05 <10 <10	37 <10	42
185050	10	0.16	251	<1	<0.01	7	230	16	<0.01	<2	2	18 <20	0.06 < 10 < 10	43 < 10	35
185055	10	0.19	298	<1	<0.01	8	270	23	<0.01	<2	2	20 <20	0.07 <10 <10	51 < 10	50
185060	10	0.15	316	1	<0.01	7	280	32	<0.01	<2	2	18 <20	0.07 <10 <10	50 < 10	55
185065	10	0.18	349	<1	<0.01	9	270	30	<0.01	2	2	27 <20	0.09<10<10	74 <10	57
185070	10	0.15	296	<1	<0.01	7	270	15	<0.01	2	2	25 <20	0.07 <10 <10	45 <10	38
185075	10	0.19	304	<1	<0.01	8	310	18	<0.01	<2	2	30 <20	0.06 <10 <10	40 <10	41
185080	10	0.19	299	<1	<0.01	7	310	17	<0.01	2	2	30 <20	0.06 < 10 < 10	39 <10	39
185085	20	0.35	351	<1	0.01	10	630	20	0.02	<2	2	59 <20	0.05 <10 <10	36 < 10	54
185090	20	0.31	361	<1	<0.01	10	490	18	<0.01	<2	2	44 <20	0.05 <10 <10	40 < 10	54
185095	20	0.24	349	<1	<0.01	9	390	17	<0.01	2	2	37 <20	0.06 < 10 < 10	39 <10	48
185100	20	0.31	346	<1	<0.01	9	500	19	0.01	<2	2	39 <20	0.05 <10 <10	38 <10	54
185105	10	0.31	305	<1	<0.01	9	500	13	<0.01	2	2	39 <20	0.05 <10 <10	39 <10	53
185110	20	0.27	397	<1	<0.01	10	460	14	<0.01	<2	3	45 <20	0.06 <10 <10	42 <10	61
185115	20	0.43	393	1	<0.01	12	640	16	<0.01	<2	3	51 <20	0.06 <10 <10	43 < 10	72
185120	20	0.42	341	<1	0.02	15	890	12	0.02	<2	2	107 <20	0.09 <10 <10	48 <10	62
185125	20	0.39	328	1	0.01	15	820	12	0.02	<2	2	69 <20	0.08 < 10 < 10	48 < 10	56
190000	20	0.23	336	<1	<0.01	9	310	17	<0.01	<2	2	28 <20	0.06 <10 <10	41 < 10	45
190005	10	0.27	321	<1	<0.01	7	430	11	<0.01	<2	2	23 <20	0.07 <10 <10	38 < 10	42
190010	20	0.45	461	<1	<0.01	9	700	29	<0.01	<2	3	31 <20	0.07 <10 <10	42 < 10	75
190015	20	0.59	427	<1	0.01	11	770	12	0.01	<2	3	53 <20	0.07 <10 <10	47 <10	54
190020	20	0.37	414	<1	<0.01	9	840	18	0.01	2	2	33 <20	0.06<10<10	45 < 10	52
190025	10	0.42	326	<1	0.01	9	560	30	0.01	<2	2	42 <20	0.07 <10 <10	44 <10	48
190030	20	0.63	527	<1	0.01	12	820	16	0.01	<2	3	40 <20	0.08<10<10	47 <10	96
190035	20	0.38	485	<1	0.01	9	580	12	<0.01	<2	3	36 <20	0.07 <10 <10	45 <10	51
190040	20	0.35	429	<1	<0.01	9	550	18	<0.01	<2	3	31 <20	0.07 <10 <10	43 < 10	53
190045	10	0.27	307	<1	0.01	8	370	26	0.01	<2	2	22 <20	0.05 <10 <10	36 < 10	53
190050	10	0.18	251	<1	<0.01	7	210	14	<0.01	2	2	23 <20	0.06 <10 <10	39 < 10	37
190055	20	0.2	383	1	<0.01	7	340	35	0.01	<2	2	24 <20	0.06 <10 <10	40 < 10	53
190060	10	0.21	305	<1	<0.01	8	320	37	0.01	2	2	27 <20	0.06 < 10 < 10	43 < 10	58
190065	20	0.33	1165	1	<0.01	9	470	559	0.02	<2	3	34 <20	0.08 < 10 < 10	78 < 10	331
190070	10	0.2	315	<1	<0.01	7	400	38	<0.01	<2	2	27 <20	0.06 < 10 < 10	43 < 10	53
190075	10	0.22	251	<1	<0.01	7	220	19	0.01	<2	2	28 < 20	0.05<10<10	33 < 10	45
190080	10	0.24	281	<1	<0.01	8	300	17	0.02	<2	2	33 <20	0.06 < 10 < 10	37 <10	44
190085	10	0.22	297	<1	<0.01	6	330	19	0.01	<2	2	29 <20	0.05<10<10	30 < 10	42
190090	20	0.37	344	<1	0.01	10	520	20	0.02	<2	2	70 <20	0.06 < 10 < 10	38 < 10	53

Sample	La	Mg	Mn	Мо	Na	Ni	Р	Pb	s	Sb	Sc	Sr Th	TI TI U	v w	Zn
190095	10	0.29	325	<1	<0.01	9	410	22	0.02	<2	2	35 <20	0.06 <10 <10	36 <10	54
190100	20	0.34	331	<1	0.01	9	450	18	0.02	<2	2	48 <20	0.06 < 10 < 10	37 <10	52
190105	20	0.31	327	<1	0.01	9	480	18	0.02	<2	2	43 <20	0.05 <10 <10	38 < 10	53
190110	20	0.32	314	<1	<0.01	9	480	12	0.02	<2	2	47 <20	0.06 < 10 < 10	40 < 10	57
190115	20	0.29	330	<1	0.01	8	460	13	0.02	<2	3	47 <20	0.07 < 10 < 10	40 < 10	57
190120	20	0.6	318	<1	0.02	14	820	11	0.03	3	3	158 <20	0.08 < 10 < 10	47 <10	67
190125	20	0.48	390	<1	0.02	19	1010	13	0.04	2	3	104 <20	0.09<10<10	48 < 10	61
195000	20	0.34	337	<1	<0.01	10	470	13	0.02	<2	2	38 <20	0.05 < 10 < 10	37 <10	50
195005	10	0.3	327	<1	<0.01	8	290	12	0.01	2	3	25 < 20	0.07 <10 <10	40 < 10	41
195010	20	0.53	410	1	<0.01	9	1210	19	0.06	2	2	55 <20	0.05 < 10 < 10	38 < 10	80
195015	20	0.62	471	<1	<0.01	12	580	15	0.02	<2	3	36 < 20	0.09<10<10	54 < 10	55
195020	20	0.39	377	<1	<0.01	9	670	20	0.04	<2	2	48 <20	0.06 < 10 < 10	41 < 10	54
195025	10	0.35	320	<1	<0.01	8	470	14	0.02	<2	2	31 < 20	0.06<10<10	38 < 10	47
195030	10	0.48	387	<1	<0.01	9	590	19	0.02	<2	3	33 <20	0.07 <10 <10	45 < 10	51
195035	10	0.37	359	<1	<0.01	7	510	23	0.02	<2	2	33 <20	0.08<10<10	45 < 10	52
195040	10	0.3	368	<1	<0.01	8	460	11	0.01	<2	3	30 < 20	0.08<10<10	44 < 10	41
195045	10	0.27	380	<1	<0.01	7	420	15	0.01	<2	2	28 < 20	0.07 <10 <10	42 < 10	44
195050	10	0.18	318	<1	<0.01	7	290	20	0.01	<2	2	20 < 20	0.06 < 10 < 10	35 < 10	44
195055	10	0.3	312	1	<0.01	10	250	26	0.02	2	2	23 < 20	0.05<10<10	34 < 10	51
195060	20	0.38	407	<1	<0.01	10	290	63	0.02	<2	3	28 < 20	0.05<10<10	42 < 10	136
195065	10	0.18	268	<1	<0.01	6	220	19	0.01	<2	2	23 < 20	0.05<10<10	33 < 10	51
195070	10	0.2	270	<1	<0.01	6	270	16	0.01	<2	2	22 < 20	0.06 < 10 < 10	36 < 10	43
195075	10	0.23	270	<1	<0.01	7	320	15	0.01	<2	2	31 < 20	0.05<10<10	34 < 10	42
195080	10	0.21	233	<1	<0.01	5	340	14	0.02	<2	2	53 <20	0.04 <10 <10	27 <10	36
195085	10	0.2	243	<1	<0.01	6	250	13	0.01	<2	2	26 < 20	0.05 < 10 < 10	33 < 10	38
195090	10	0.36	277	<1	0.01	9	520	12	0.02	<2	2	50 < 20	0.05<10<10	35 < 10	46
195095	20	0.38	378	<1	<0.01	10	520	16	0.02	<2	3	42 <20	0.05<10<10	35 < 10	55
195100	10	0.34	295	<1	<0.01	8	430	15	0.02	<2	2	39 <20	0.05<10<10	32 < 10	50
195105	20	0.28	364	1	<0.01	9	400	14	0.02	<2	3	44 <20	0.05<10<10	37 < 10	55
195110	10	0.24	241	<1	<0.01	7	400	12	0.01	<2	2	34 <20	0.05<10<10	32 < 10	42
195115	20	0.27	299	<1	0.01	10	350	11	0.01	<2	3	49 < 20	0.07 < 10 < 10	45 < 10	49
195120	20	0.35	292	1	0.01	9	480	12	0.01	<2	2	43 <20	0.07 < 10 < 10	42 < 10	52
195125	20	0.4	353	3	0.02	26	920	40	0.03	<2	2	88 < 20	0.09<10<10	53 < 10	71
200005	20	0.45	412	<1	< 0.01	11	620	23	0.03	<2	3	37 <20	0.06 < 10 < 10	45 < 10	64
200010	10	0.33	356	1	<0.01	8	490	14	0.01	<2	2	22 < 20	0.07 < 10 < 10	40 < 10	45
200015	10	0.41	344	<1	< 0.01	9	430	12	0.02	<2	2	40 <20	0.07 < 10 < 10	42 < 10	42
200020	10	0.22	316	<1	< 0.01	(300	14	0.02	<2	2	19 <20	0.06<10<10	38 < 10	38
200025	20	0.27	380	<1	<0.01	9	320	18	0.02	<2	2	25 < 20	0.06<10<10	40 < 10	47
200030	10	0.24	341	1	< 0.01	8	340	18	0.02	2	2	24 <20	0.06<10<10	43 < 10	44
200035	10	0.41	326	1	< 0.01	9	490	14	0.02	<2	2	35 <20	0.05<10<10	41<10	44
200040	20	0.38	330	<1	0.01	10	290	11	0.01	<2	3	36 <20	0.06<10<10	53 < 10	45
200045	10	0.27	329	<1	< 0.01	6	400	9	0.01	<2	2	25 < 20	0.08<10<10	43 < 10	36
200050	10	0.15	237	<1	< 0.01	5	220	24	0.01	<2	1	19 <20	0.05<10<10	32 < 10	53
200055	20	0.28	507	1	0.01	9	520	62	0.04	<2	2	33 <20	0.05 < 10 < 10	3/<10	79
200060	10	0.3	366	<1	< 0.01	9	420	35	0.02	<2	2	31 <20	0.07 < 10 < 10	55 < 10	87
200065	10	0.21	286	<1	< 0.01	6	300	14	0.01	<2	2	26 < 20	0.06<10<10	3/ <10	45
200070	10	0.16	266	<1	< 0.01	6	230	16	0.01	<2	2	21 < 20	0.05<10<10	29 < 10	37
200075	10	0.16	195	<1	<0.01	4	270	12	0.02	<2	1	24 <20	0.04<10<10	23<10	31
200080	10	0.2	239	<1	<0.01	5	230	14	0.01	<2	2	25 < 20	0.04 < 10 < 10	28<10	35
200085	10	0.29	258	<1	<0.01	8	330	13	0.01	<2	2	30 <20	0.04<10<10	31<10	43
200090	10	0.24	253	< 1	< 0.01	/	280	12	0.02	<2	2	41 <20		31<10	38
200095	10	0.39	290	< 1	0.01	9	040	13	0.02	<2	2	100 <20	0.05<10<10	3/ <10	50
200100	20	0.48	296	<1		10	430	12	0.02	<2	2	45 < 20	0.05<10<10	40<10	00
I 200105	20	0.35	304	<1	≤0.01	10	400	15	0.02	< Z	3	45 <20	0.05<00<0	3/ [< 10]	60

Sample	La	Mg	Mn	Мо	Na	Ni	Р	Pb	s	Sb	Sc	Sr	Th	Ti TI	U	v	w	Zn
200110	20	0.33	286	<1	0.01	9	440	10	0.02	<2	2	67	<20	0.05 <10	<10	39	<10	50
200115	10	0.25	275	<1	<0.01	7	360	12	0.01	<2	2	40	<20	0.05 < 10	<10	38	<10	47
200120	20	0.33	346	1	0.01	9	510	12	0.01	<2	3	48	<20	0.07 <10	<10	45	<10	54
200125	20	0.4	350	<1	0.01	15	860	11	0.03	<2	2	84	<20	0.09 < 10	<10	47	<10	56
205000	20	0.34	508	<1	<0.01	10	460	23	0.02	<2	3	28	<20	0.06 < 10	<10	44	<10	62
205005	20	0.3	450	1	<0.01	10	490	19	0.01	<2	2	23	<20	0.07 <10	<10	42	<10	51
205010	20	0.49	387	<1	0.01	11	700	16	0.03	<2	3	55	<20	0.07 <10	<10	45	<10	52
205025	20	0.3	314	<1	<0.01	9	270	19	0.02	<2	2	37	<20	0.06 <10	<10	41	<10	42
205030	20	0.36	335	<1	0.01	11	440	19	0.03	<2	2	40	<20	0.05 < 10	<10	37	<10	48
205035	10	0.18	276	<1	<0.01	5	280	11	0.01	<2	2	20	<20	0.06 <10	<10	39	<10	35
205040	10	0.29	308	<1	<0.01	6	410	10	0.01	<2	2	23	<20	0.06 < 10	<10	41	<10	36
205045	20	0.61	431	<1	0.01	8	640	12	0.02	<2	3	32	<20	0.08 < 10	<10	50	<10	55
205050	20	0.46	515	<1	0.01	9	650	26	0.02	<2	2	47	<20	0.06 < 10	<10	60	<10	76
205055	10	0.33	381	<1	<0.01	7	330	19	0.01	2	2	25	<20	0.07 <10	<10	42	<10	86
205060	10	0.24	308	<1	0.01	9	260	20	0.01	2	2	30	<20	0.07 <10	<10	45	<10	56
205065	20	0.18	423	<1	0.01	8	360	22	0.02	<2	2	24	<20	0.06 < 10	<10	37	<10	48
205070	10	0.21	242	<1	0.01	6	250	11	0.01	<2	2	39	<20	0.04 <10	<10	27	<10	31
205075	10	0.18	266	<1	<0.01	6	220	12	0.01	<2	2	22	<20	0.05 < 10	<10	27	<10	33
205080	10	0.2	222	<1	<0.01	6	210	11	0.01	<2	2	28	<20	0.04 <10	<10	29	<10	33
205085	10	0.29	210	<1	0.01	7	340	10	0.02	<2	2	41	<20	0.04 <10	<10	25	<10	33
205090	10	0.35	220	<1	0.01	8	370	10	0.02	2	2	56	<20	0.05 < 10	<10	30	<10	35
205095	10	0.22	279	<1	<0.01	6	320	12	0.01	<2	2	35	<20	0.05 < 10	<10	32	<10	39
205100	10	0.3	279	<1	<0.01	8	330	13	0.01	<2	2	46	<20	0.05 < 10	<10	36	<10	47
205105	10	0.25	334	<1	<0.01	8	340	15	0.01	<2	2	42	<20	0.06 < 10	<10	36	<10	57
205110	20	0.31	349	<1	0.01	10	370	13	0.01	<2	3	65	<20	0.05 <10	<10	41	<10	54
205115	20	0.21	320	<1	<0.01	8	320	11	0.01	<2	2	38	<20	0.07 <10	<10	46	<10	43
205120	20	0.36	356	<1	0.01	12	370	12	0.01	<2	4	52	<20	0.06 < 10	<10	53	<10	55
205125	20	0.41	360	<1	0.01	16	850	12	0.02	2	3	71	<20	0.08 < 10	<10	48	<10	54
210000	20	0.43	409	<1	<0.01	10	500	14	0.01	2	3	27	<20	0.07 <10	<10	47	<10	54
210005	20	0.41	744	<1	<0.01	14	590	19	0.01	<2	4	37	<20	0.07 <10	<10	40	<10	68
210010	20	0.48	472	<1	0.01	12	590	12	0.02	2	3	31	<20	0.07 <10	<10	44	<10	53
210015	10	0.38	351	<1	<0.01	9	430	13	0.01	<2	3	27	<20	0.09 < 10	<10	48	<10	43
210020	20	0.26	340	<1	<0.01	7	260	12	0.01	<2	2	27	<20	0.06 < 10	<10	40	<10	39
210025	20	0.29	424	<1	<0.01	11	300	20	0.02	2	3	29	<20	0.05 < 10	<10	39	<10	48
210030	20	0.31	389	<1	0.01	14	330	16	0.02	3	3	32	<20	0.05 < 10	<10	40	<10	45
210035	20	0.26	377	<1	0.01	10	390	25	0.03	<2	2	35	<20	0.05 < 10	<10	39	<10	46
210050	20	0.45	501	<1	0.01	9	500	18	0.02	<2	3	31	<20	0.05 < 10	<10	48	<10	73
210055	20	0.37	564	<1	< 0.01	10	460	164	0.02	2	3	39	<20	0.06<10	<10	53	<10	316
210060	20	0.54	470	<1	< 0.01	10	460	48	0.01	2	3	44	<20	0.06 < 10	<10	49	<10	108
210065	20	0.39	521	<1	< 0.01	10	510	30	0.02	<2	3	44	<20	0.06 < 10	<10	40	<10	81
210070	10	0.24	424	<1	< 0.01	(370	23	0.01	<2	2	32	<20	0.05 < 10	<10	29	<10	60
210075	10	0.16	247	<1	< 0.01	6	190	11	< 0.01	<2	2	21	<20	0.04 < 10	<10	25	<10	29
210080	10	0.24	261	<1	< 0.01	8	230	11	< 0.01	<2	2	27	<20	0.04 < 10	<10	31	<10	36
210085	10	0.35	252	<1	0.01	/	440	12	0.01	3	2	52	<20	0.05 < 10	<10	30	<10	38
210090	10	0.22	258	<1	< 0.01	(250	12	0.01	<2	2	35	<20	0.05 < 10	<10	33	<10	35
210095	10	0.3	300	<1	0.01	8	340	11	0.01	2	2	44	<20	0.05 < 10	<10	35	<10	46
210100	20	0.23	351	<1	< 0.01	8	330	14	0.01	2	2	39	<20	0.06 < 10	<10	34	<10	4/
210105	10	0.34	2/1	<1	0.01	9	480	11	0.01	2	2	/2	<20	0.04 < 10	<10	34	<10	49
	20	0.31	343	<1	< 0.01	9	390	15	0.01	<2	3	52	<20	0.05<10	<10	38	<10	5/
210115	20	0.32	340	<1	<0.01	10	420	- 12	0.02	<2	3	20	<20	0.00<10	<10	44	< 10	58
210120	20	0.41	382	2	0.01	19	510	28	0.02	<2	3	/6	<20	0.07 < 10	<10	23	< 10	09
210125	20	0.3	330	1	0.01		510	14	0.02	2	3	51	<20	0.07 < 10	< 10 < 10	45	< 10 <10	45
215000	20	0.06	403	<1	0.01	11	030	15	0.03	<2	3	70	<20	0.06 < 10	<10	49	< 10	58
I 215005	20	0.41	421	<1	≤ 0.01	10	480	15	0.02	2	3	20	<20	0.00 <10	< 10	48	<10	53

Sample	La	Mg	Mn	Мо	Na	Ni	Ρ	Pb	s	Sb	Sc	Sr	Th	Ti TI U	v w	Zn
215010	20	0.49	668	1	0.01	13	730	21	0.03	<2	4	42 <	<20	0.07 <10 <10	41 < 10	69
215015	20	0.45	489	<1	0.01	11	570	16	0.02	<2	3	32 <	20	0.08 <10 <10	43 < 10	51
215020	20	0.58	459	<1	0.01	11	660	16	0.03	2	3	42 <	20	0.07 <10 <10	43 < 10	55
215025	20	0.32	391	<1	0.01	10	440	17	0.03	2	2	44 <	20	0.05 <10 <10	39 < 10	49
215030	20	0.19	375	<1	0.01	7	360	17	0.02	3	2	28 <	20	0.06 <10 <10	41<10	43
215035	10	0.17	295	<1	0.01	7	200	13	0.01	2	2	23 <	20	0.07 <10 <10	45 < 10	33
215040	10	0.18	303	<1	0.01	7	300	13	0.01	<2	2	24 <	20	0.06 <10 <10	44 < 10	37
215045	10	0.2	314	<1	<0.01	6	270	14	0.01	<2	2	24 <	20	0.06 <10 <10	38 < 10	38
215050	10	0.27	364	<1	0.01	6	420	24	0.03	<2	2	56 <	20	0.05 <10 <10	36 < 10	53
215055	10	0.31	392	<1	0.01	8	350	57	0.02	<2	2	35 <	20	0.04 <10 <10	39 < 10	118
215060	20	0.38	354	<1	0.01	8	440	30	0.02	<2	2	46 <	20	0.04 <10 <10	40 < 10	84
215070	20	0.49	326	<1	0.02	11	340	21	0.01	3	3	68 <	20	0.05 <10 <10	41 < 10	59
215075	20	0.34	450	<1	0.01	10	490	24	0.02	<2	3	39 <	20	0.06 <10 <10	40 < 10	67
215080	10	0.39	307	<1	0.01	7	490	13	0.02	<2	2	55 <	20	0.05 <10 <10	34 < 10	54
215090	10	0.22	287	<1	0.01	7	320	11	0.01	<2	2	37 <	20	0.04 <10 <10	28 < 10	35
215095	10	0.21	310	<1	0.01	7	330	14	0.02	<2	2	43 <	20	0.05 <10 <10	34 < 10	42
215100	20	0.25	441	<1	0.01	8	540	18	0.03	<2	2	41 <	20	0.05 <10 <10	30 < 10	66
215105	20	0.22	326	<1	0.01	8	350	12	0.01	2	2	43 <	20	0.07 <10 <10	43 < 10	47
215110	10	0.2	296	<1	0.01	7	330	11	0.01	<2	2	37 <	20	0.06 <10 <10	45 < 10	47
215115	10	0.23	320	<1	<0.01	8	400	13	0.01	2	2	43 <	20	0.07 <10 <10	42 < 10	49
215120	20	0.37	330	<1	0.01	11	440	14	0.02	<2	3	59 <	20	0.06 <10 <10	50 < 10	52
215125	20	0.36	390	<1	0.01	11	480	13	0.02	<2	3	45 <	20	0.08 <10 <10	50 < 10	50
220000	20	0.45	423	<1	<0.01	10	430	21	0.01	<2	2	26 <	20	0.06 < 10 < 10	53 < 10	67
220005	20	0.54	392	<1	0.01	10	580	16	0.02	<2	2	40 <	20	0.05 <10 <10	48 < 10	57
220010	20	0.45	346	<1	0.01	10	500	14	0.02	<2	3	27 <	20	0.06 < 10 < 10	45 < 10	51
220015	10	0.44	362	<1	0.01	10	650	11	0.02	2	2	26 <	20	0.06 < 10 < 10	41 < 10	48
220020	20	0.51	483	<1	0.01	10	580	19	0.04	2	3	48 <	20	0.06 < 10 < 10	41 < 10	55
220025	20	0.52	466	<1	0.02	13	500	13	0.03	<2	2	110 <	:20	0.06 <10 <10	42 < 10	44
220030	20	0.28	298	<1	0.01	9	240	14	0.02	<2	2	25 <	20	0.05 <10 <10	40 < 10	41
220035	10	0.23	310	<1	0.01	7	270	14	0.02	<2	2	23 <	20	0.06 <10 <10	40 < 10	39
220040	20	0.32	307	<1	0.01	11	600	14	0.03	<2	2	83 <	20	0.05 <10 <10	42 < 10	46
220045	10	0.15	256	<1	0.01	7	210	10	0.01	<2	2	22 <	20	0.06 <10 <10	39 < 10	29
220050	10	0.18	331	<1	0.01	6	340	14	0.02	<2	2	21 <	20	0.05 <10 <10	33 < 10	40
220055	10	0.17	321	<1	0.01	6	240	15	0.01	<2	2	20 <	20	0.08 <10 <10	50 < 10	43
220060	10	0.18	333	<1	<0.01	7	260	21	0.02	<2	2	23 <	20	0.08 <10 <10	50 < 10	63
220065	20	0.22	421	<1	0.01	9	290	35	0.02	<2	2	35 <	20	0.05 <10 <10	35 < 10	85
220070	10	0.17	263	<1	<0.01	5	230	18	0.01	<2	2	19 <	20	0.05 <10 <10	35 < 10	45
220075	10	0.29	313	<1	0.01	7	390	19	0.02	2	2	49 <	20	0.05 <10 <10	33 < 10	49
220095	10	0.26	270	<1	<0.01	7	290	15	0.01	<2	2	42 <	20	0.05 <10 <10	36 < 10	41
220100	20	0.26	299	<1	0.01	6	330	15	0.02	<2	2	46 <	20	0.07 <10 <10	42 < 10	44
220105	20	0.3	332	<1	0.01	9	370	11	0.02	2	3	60 <	20	0.07 <10 <10	48 < 10	47
220110	20	0.29	285	<1	0.01	8	350	12	0.02	<2	2	50 <	20	0.06 <10 <10	40 < 10	45
220115	20	0.56	400	1	0.01	14	630	16	0.03	4	4	95 <	20	0.04 <10 <10	35 < 10	79
220125	20	0.43	309	<1	0.01	9	590	13	0.03	2	2	81 <	20	0.06 <10 <10	44 < 10	46
225000	20	0.3	356	<1	0.01	10	490	18	0.04	2	2	41 <	20	0.05 <10 <10	37 <10	48
225005	20	0.34	374	<1	0.01	9	330	15	0.02	3	2	27 <	20	0.06 <10 <10	49 < 10	47
225010	20	0.46	343	<1	0.01	11	500	11	0.02	2	2	40 <	20	0.05 <10 <10	42 < 10	46
225015	20	0.39	349	<1	0.01	11	490	14	0.03	2	2	35 <	20	0.05 <10 <10	45 < 10	54
225020	20	0.37	421	<1	0.01	11	340	13	0.02	3	3	27 <	20	0.06<10<10	41 < 10	47
225025	20	0.35	389	<1	0.01	12	410	17	0.03	<2	2	38 <	20	0.06 <10 <10	44 < 10	47
225030	10	0.27	321	<1	0.01	9	370	15	0.02	3	2	26 <	20	0.07 <10 <10	47<10	45
225035	20	0.38	352	<1	0.01	12	500	17	0.04	3	2	64 <	20	0.05<10<10	38 < 10	46
225040	10	0.18	298	<1	<0.01	8	270	15	0.02	<2	2	27 <	20	0.08<10<10	53 < 10	37
225045	10	0.13	249	<1	< 0.01	7	170	11	0.01	2	2	19 <	20	0.08<10<10	55 < 10	31

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sample	La	Mg	Mn	Мо	Na	Ni	Р	Pb	s	Sb	Sc	Sr	Th	ΤΙ ΤΙ U	v w	Zn
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	225050	20	0.5	458	<1	0.01	8	450	9	0.02	<2	3	43 <	<20	0.06 <10 <10	49 <10	59
$\begin{array}{c} 225006 & 10 & 0.19 & 330 & < < 1 & 0.01 & 6 & 280 & 15 & 0.01 & < 2 & 2 & 21 & < < 20 & 0.06 < < < >10 & 0.17 & 34 & < < 1 & 0.01 & < < \\ 225005 & 10 & 0.18 & 333 & < 1 & < 0.01 & 7 & 770 & 21 & 0.01 & < 2 & 2 & 33 & < 20 & 0.06 < < < >10 & 0.14 & 33 & < < 1 & < < 1 & < & < \\ 225005 & 10 & 0.23 & 257 & < 1 & 0.01 & 8 & 230 & 15 & 0.02 & < 2 & 23 & < 20 & 0.06 < < < >10 & < 10 & 34 < < 1 & 42 & < \\ 225085 & 10 & 0.23 & 257 & < 1 & 0.01 & 7 & 320 & 14 & 0.01 & 2 & 2 & 35 & < 20 & 0.06 < < < >10 & < 10 & 43 & < < 10 & 42 & \\ 225080 & 10 & 0.27 & 301 & < & 0.01 & 7 & 320 & 14 & 0.01 & 2 & 2 & 35 & < 20 & 0.06 < < < >10 & < 10 & 43 & < < 10 & 42 & \\ 225090 & 10 & 0.27 & 301 & < & 0.01 & 7 & 370 & 22 & 0.02 & 2 & 24 & < < 20 & 0.05 & < < >10 & < & < & < & < & < & \\ 325100 & 10 & 22 & 274 & < < 0.01 & 6 & 290 & 12 & 0.01 & < & 2 & 34 & < < 20 & 0.05 & < < >10 & < & < & & & \\ 325100 & 10 & 22 & 274 & < < & 0.01 & 6 & 290 & 12 & 0.01 & < & 2 & 34 & < < 20 & 0.06 & < < >10 & < & & & & \\ 125110 & 20 & 0.3 & 499 & < 1 & 0.01 & 12 & 550 & 14 & 0.02 & 2 & 3 & 552 & 20 & 0.07 & < < 10 & 40 & < < & \\ 1225110 & 0 & 34 & 495 & < 1 & 0.01 & 42 & 750 & 14 & 0.02 & 2 & 3 & 552 & 20 & 0.07 & < < 10 & 44 & < < & \\ 22512 & 20 & 0.48 & 445 & 1 & 0.02 & 11 & 580 & 16 & 0.02 & < 2 & 3 & 552 & 20 & 0.07 & < < < 10 & < & & & \\ 144 & < 10 & 52 & 225 & 520 & 0.07 & < < & < & & & & & \\ 145 & 230000 & 10 & 0.21 & 350 & < & 0.01 & 19 & 280 & 18 & 0.05 & 3 & 381 & < 20 & 0.06 & < < 10 & < & & & & \\ 146 & 10 & 330 & 1 & 0.01 & < 2 & 23 & 220 & 0.06 & < < 10 & < & & & & \\ 146 & 10 & 330 & 1 & 0.01 & < 2 & 23 & 220 & 0.06 & < < 10 & < & & & & \\ 146 & 10 & 330 & 1 & 0.01 & < 2 & 23 & 220 & 0.06 & < < 10 & < & & & & \\ 146 & 10 & 530 & < & 0.01 & 10 & 300 & 10 & 0.01 & < 2 & 23 & 220 & 0.06 & < < & < & & & & & \\ 146 & 10 & 0.31 & 370 & 16 & 0.02 & < 2 & 3 & 220 & 0.06 & < & & & & & \\ 140 & 10 & 10 & 370 & 16 & 0.01 & < 2 & 23 & 220 & 0.06 & < & & & & & \\ 140 & 10 & 370 & 16 & 0.01 & < 2 & 23 & 220 & 0.06 & < & & & & & \\ 140 & 10 & 370 & 16 & 0.$	225055	10	0.31	406	<1	0.01	8	330	10	0.01	<2	2	29 <	<20	0.06 <10 <10	41 < 10	42
$\begin{array}{c} 225006 \\ 10 \\ 225007 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$	225060	10	0.19	330	<1	<0.01	6	280	15	0.01	<2	2	21 <	<20	0.05 <10 <10	34 <10	45
$\begin{array}{c} 225070 & 10 & 0.17 & 264 & <1 & 0.01 & 6 & 210 & 17 & 0.01 & 2 & 2 & 23 & <20 & 0.07 < <10 < 10 & 43 < <10 & 45 \\ 225080 & 10 & 0.23 & 257 & <1 & 0.01 & 8 & 230 & 15 & 0.02 & <2 & 230 < <20 & 0.06 < <10 < <10 & 43 < <10 & 40 \\ 225080 & 10 & 0.27 & 301 & <1 & 0.01 & 7 & 370 & 22 & 0.02 & 2 & 249 < <20 & 0.05 < <10 < <10 & 40 < <10 & 41 \\ 225900 & 10 & 0.27 & 301 & <1 & 0.01 & 7 & 370 & 22 & 0.02 & 2 & 249 < <20 & 0.05 < <10 < <10 & 41 & 40 < <10 & 41 \\ 225900 & 10 & 0.22 & 74 < <1 & <0.01 & 7 & 370 & 22 & 0.02 & 2 & 244 < <20 & 0.05 < <10 < <10 & 31 < <10 & 50 \\ 225005 & 10 & 0.22 & 74 < <1 & <0.01 & 12 & 520 & 38 & 0.03 & 2 & 44 & 49 < <20 & 0.05 < <10 < <10 & 41 & 51 & 51 \\ 225100 & 10 & 0.22 & 74 < <1 & <0.01 & 12 & 530 & 14 & 0.02 & 2 & 34 & <20 & 0.06 < <10 < <10 & 41 & 51 & 51 \\ 225110 & 0 & 0.3 & 490 < <1 & 0.01 & 12 & 530 & 14 & 0.02 & 2 & 3 & 55 & <20 & 0.07 < <10 < <10 & 41 < <10 & 52 \\ 225120 & 20 & 1.47 & 377 & 1 & 0.03 & 19 & 1090 & 18 & 0.05 & 3 & 338 < <20 & 0.07 < <10 < <10 & 41 < <10 & 52 \\ 230000 & 10 & 0.21 & 350 & <1 & 0.01 & 12 & 750 & 14 & 0.02 & <2 & 3 & 55 & <20 & 0.07 < <10 < <10 & 48 < <10 & 52 \\ 230000 & 10 & 0.21 & 350 & <1 & 0.01 & 9 & 280 & 24 & 0.01 & <2 & 25 & $22 & 20 & 0.07 < <10 < <10 & 48 < <10 & 52 \\ 230000 & 10 & 0.21 & 350 & <1 & 0.01 & 9 & 280 & 24 & 0.01 & <2 & 23 & $22 & 0 & 0.07 < <10 < <10 & 48 < <10 & 51 \\ 230000 & 10 & 0.21 & 350 & <1 & 0.01 & 9 & 280 & 16 & 0.01 & <2 & 23 & $22 & 0 & 0.07 < <10 < <10 & 48 < <10 & 51 \\ 230000 & 10 & 0.17 & 329 & <1 & 0.01 & 9 & 280 & 16 & 0.01 & <2 & 23 & $22 & 0 & 0.07 < <10 < <10 & 48 < <10 & 30 \\ 230002 & 10 & 0.23 & 344 & <1 & 0.01 & 7 & 280 & 12 & 0.01 & <2 & 23 & $22 & 0 & 0.07 < <10 < <10 & 48 < <10 & 48 \\ 2300302 & 10 & 0.23 & 344 & <1 & 0.01 & 7 & 280 & 12 & 0.01 & <2 & 23 & $22 & 0 & 0.06 < <10 < <10 & 48 < <10 & 48 \\ 2300305 & 10 & 0.37 & $28 & $37 & <1 & 0.01 & 7 & $20 & 13 & 0.01 & <2 & 23 & $22 & 0 & 0.06 < <10 & <10 & 48 < <10 & 38 \\ 230005 & 10 & 0.31 & $28 & <1 & 0.01 & 7 & $20 & 13 & 0.01 & <2 & $23 & $22 & 0$	225065	10	0.18	333	<1	<0.01	7	270	21	0.01	<2	2	24 <	<20	0.06 <10 <10	39 < 10	61
$\begin{array}{c} 225080 \\ 225080 \\ 10 \\ 0.22 \\ 0.25080 \\ 10 \\ 0.22 \\ 0.25080 \\ 10 \\ 0.22 \\ 0.25080 \\ 10 \\ 0.27 \\ 0.26 \\ 0.25 \\ 0.25095 \\ 20 \\ 0.24 \\ 0.44 \\ 571 \\ -1 \\ 0.27 \\ 0.25 \\$	225070	10	0.17	264	<1	0.01	6	210	17	0.01	2	2	23 •	<20	0.07 <10 <10	43 < 10	45
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	225075	10	0.23	257	<1	0.01	8	230	15	0.02	<2	2	30 •	<20	0.04 < 10 < 10	32 < 10	40
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	225080	10	0.26	225	<1	0.01	7	320	14	0.01	2	2	35 <	<20	0.06 < 10 < 10	43 < 10	42
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	225085	10	0.3	248	<1	0.01	9	280	25	0.02	<2	2	42 <	<20	0.05 <10 <10	40 < 10	41
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	225090	10	0.27	301	<1	0.01	7	370	22	0.02	2	2	49 •	<20	0.05 < 10 < 10	33 < 10	50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	225095	20	0.44	571	<1	0.01	12	520	38	0.03	2	4	49 <	<20	0.05 < 10 < 10	37 <10	88
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	225100	10	0.22	274	<1	<0.01	6	290	12	0.01	<2	2	34 <	<20	0.05 < 10 < 10	36 < 10	37
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	225105	20	0.24	344	<1	0.01	8	400	14	0.02	3	2	44 <	<20	0.06 < 10 < 10	40 < 10	42
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	225110	20	0.3	409	<1	0.01	12	530	14	0.02	2	3	49 <	<20	0.06 < 10 < 10	42 < 10	67
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	225115	20	0.38	419	<1	0.01	12	750	14	0.02	<2	3	55 <	<20	0.07 < 10 < 10	44 < 10	52
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	225120	20	1.47	377	1	0.03	19	1090	18	0.05	3	3	381 •	<20	0.07 <10 <10	48 < 10	58
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	225125	20	0.46	345	1	0.02	11	580	15	0.02	<2	3	81 •	<20	0.06 < 10 < 10	44 < 10	52
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	230000	10	0.21	350	<1	0.01	9	280	24	0.01	<2	2	25 <	<20	0.07 < 10 < 10	53 < 10	50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	230005	20	0.25	362	<1	0.01	10	330	17	0.01	<2	3	32 •	<20	0.07 < 10 < 10	59 < 10	47
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	230010	10	0.17	329	<1	0.01	9	280	16	0.01	<2	2	23 •	<20	0.09<10<10	61 < 10	37
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	230015	10	0.37	283	<1	0.01	11	440	11	0.03	<2	2	73 <	<20	0.05 < 10 < 10	40 < 10	39
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	230020	10	0.23	314	<1	0.01	7	280	12	0.01	<2	2	27 <	<20	0.07 < 10 < 10	49 < 10	38
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	230025	20	0.28	395	<1	0.01	9	440	15	0.02	<2	2	38 •	<20	0.05 < 10 < 10	43 < 10	44
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	230030	20	0.29	376	<1	0.01	10	370	16	0.02	<2	3	29 <	<20	0.06 < 10 < 10	48 < 10	48
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	230035	20	0.25	337	<1	0.01	10	290	16	0.01	<2	3	30 <	<20	0.06 < 10 < 10	49 < 10	41
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	230040	10	0.16	304	<1	0.01	8	260	14	0.01	<2	2	20 •	<20	0.08 < 10 < 10	63 < 10	39
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	230045	10	0.15	299	<1	0.01	7	220	13	0.01	<2	2	23 <	<20	0.07 <10 <10	52 < 10	33
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	230050	10	0.27	407	<1	0.01	6	350	11	0.02	<2	2	35 <	<20	0.06 < 10 < 10	43 < 10	39
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	230055	10	0.49	445	<1	0.01	/	520	13	0.02	<2	3	29 <	<20	0.09<10<10	62 < 10	55
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	230060	10	0.32	342	<1	0.01	6	430	11	0.01	<2	2	27 •	<20	0.08 < 10 < 10	59 < 10	45
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	230065	10	0.2	365	<1	0.01	/	300	9	0.01	<2	2	22 -	<20	0.06 < 10 < 10	35 < 10	34
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	230070	10	0.24	376	<1	0.01	× v	300	10	0.01	<2	2	34 <	<20	0.07 < 10 < 10	45 < 10	42
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	230075	10	0.21	263	1	0.01	5	270	9	0.01	<2	2	27 1	<20	0.06 < 10 < 10	38 < 10	33
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	230080	10	0.32	227	<]	0.01	9	280	11	0.01	<2	2	45 <	<20	0.05<10<10	41<10	35
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	230085	10	0.28	251	<1	0.01	8	290	14	0.01	<2	2	31 4	<20	0.05<10<10	39 < 10	37
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	230090	10	0.22	200	<1	0.01	0	250	13	0.01	<2	2	2/ *	<20 <20	0.06<10<10	40 < 10	30
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	230095	10	0.31	290	1	0.01	9	300	20	0.01	< <u>2</u>	2	40	<20 <20	0.07 < 10 < 10	01 > 00	20
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	230100	10	0.25	270	/1	0.01	7	300	10	0.01	<2	2	20	~20	0.06<10<10	40 < 10	30
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	230105	10	0.24	324	<1	0.01	6	320	0	0.01	~2	2	39	~20	0.05<10<10	30 < 10	40
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	230110	10	0.2	270	<1	0.01	7	370	11	0.01	~2	2	38	~20	0.00 < 10 < 10	34 < 10	30
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	230113	10	0.2	219	~1	0.01	- /	270	10	0.01	~2	2	26	~20	0.05 < 10 < 10	24 < 10	22
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	230120	201	0.20	209	1	0.01	4	370	20	0.01	~2	2	20	~20	0.05 10 10	34 \ 10	33
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	230125	20	0.01	240	-1	0.01	11	600	21	0.04	~2	2	56	~20	0.03 < 10 < 10	27 < 10	56
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	235000	20	0.30	328	<1	0.02	- 11	310	21	0.04	~2	2	27	~20	0.04 < 10 < 10	37 \ 10	13
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	235003	10	0.19	200	~1	0.01	11	400	20	0.01	~2	2	21	~20	0.07 < 10 < 10	52 < 10	43
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	235010	10	0.29	290	~1	0.01	7	400	10	0.01	~2	2	45	~20	0.00 < 10 < 10	52 < 10	43
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	235020	20	0.20	400	<1	0.01	12	620	17	0.02	~2	2	32	~20	0.00 < 10 < 10	46 < 10	62
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	235020	20	0.3	374	1	0.01	7	300	11	0.01	~2	2	27	~20	0.03 < 10 < 10	51 < 10	11
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	235020	20	0.23	374	1	0.01	10	530	10	0.01	~2 ~2	2	37	-20	0.05<10<10	14 - 10	51
235040 10 0.18 332 <1 0.01 8 290 17 0.02 <2 2 5 7 20 0.05 10 47 40 40 235040 10 0.18 332 <1	235030	20	0.41	436	1	0.01	11	380	19	0.03	<2	2	37	~20	0.05<10<10	47<10	46
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	235040	10	0.27	330	ا 1 ح	0.01	2	200	17	0.02	~2	2	25	-20		57<10	40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	235040	201	0.10	326	~1	0.01	0 8	310	17	0.01	~2	2	27	~20 <20	0.07<10<10	48 < 10	30
	235050	10	0.17	323	1	<0.01	8	200	11	0.02	~2	2	22	<20	0.06<10<10	44 < 10	32
	235055	10	0.17	<u>414</u>	<1	<0.01	7	340	<u>،</u>	0.03	~2	2	24	<20	0.06<10<10	42 < 10	38

Sample	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr Th	τι τι υ	v w	Zn
235060	10	0.26	310	<1	0.01	6	350	10	0.05	<2	2	24 <20	0.07 <10 <10	48 < 10	36
235065	10	0.16	237	<1	<0.01	5	220	7	0.03	<2	1	16 <20	0.06 <10 <10	36 < 10	24
235070	10	0.19	343	1	<0.01	4	340	10	0.04	<2	2	23 <20	0.06 <10 <10	37 <10	33
235075	10	0.18	306	<1	0.01	5	280	9	0.04	<2	2	24 <20	0.06 < 10 < 10	41 < 10	33
235080	10	0.26	287	<1	0.01	7	270	12	0.02	<2	2	26 <20	0.05 <10 <10	35 < 10	37
235085	10	0.23	242	<1	0.01	7	270	14	0.02	<2	2	24 <20	0.06 <10 <10	42 < 10	34
235090	10	0.25	258	<1	0.01	6	320	9	0.03	<2	2	36 <20	0.06 <10 <10	43 < 10	34
235091	10	0.17	267	<1	0.01	5	240	9	0.02	<2	2	23 <20	0.06 <10 <10	35 < 10	27
235095	10	0.18	277	<1	0.01	6	260	12	0.02	<2	2	26 <20	0.07 <10 <10	47 <10	33
235100	10	0.25	281	<1	0.01	6	290	13	0.04	<2	2	39 <20	0.06 <10 <10	47 <10	34
235105	10	0.27	261	<1	0.01	7	330	10	0.05	<2	2	46 <20	0.06 <10 <10	47 <10	38
235110	10	0.29	251	<1	0.01	8	350	20	0.04	<2	2	38 <20	0.06 <10 <10	42 <10	40
235115	10	0.21	242	<1	0.01	6	360	12	0.03	<2	2	23 <20	0.06 < 10 < 10	41 < 10	31
235120	10	0.28	269	<1	0.01	7	310	13	0.04	<2	2	28 <20	0.06 < 10 < 10	42 < 10	36
235125	20	0.38	333	<1	0.01	8	450	17	0.04	<2	2	41 <20	0.05 <10 <10	42 <10	42
240000	20	0.22	378	<1	0.01	9	410	15	0.03	<2	2	27 <20	0.06 <10 <10	45 < 10	46
240005	10	0.21	294	1	0.01	6	280	14	0.02	<2	2	26 <20	0.06 < 10 < 10	41 < 10	43
240010	10	0.39	266	<1	0.02	11	540	11	0.03	2	2	79 <20	0.06 < 10 < 10	46 < 10	41
240015	10	0.37	273	<1	0.01	9	490	10	0.03	<2	2	65 <20	0.05 <10 <10	45 <10	39
240020	20	0.21	415	1	0.01	7	380	18	0.02	<2	2	28 <20	0.06 < 10 < 10	46 < 10	44
240025	20	0.34	532	<1	0.01	11	520	19	0.02	<2	3	32 <20	0.07 <10 <10	45 < 10	51
240030	10	0.24	324	<1	0.01	9	330	13	0.02	<2	2	31 <20	0.07 <10 <10	58 < 10	40
240035	10	0.2	345	<1	0.01	6	310	16	0.02	<2	2	26 <20	0.06 <10 <10	48 < 10	39
240040	10	0.18	316	<1	0.01	8	290	15	0.02	<2	2	21 <20	0.06 < 10 < 10	45 < 10	36
240045	10	0.15	325	<1	0.01	8	300	15	0.01	<2	2	22 <20	0.08 < 10 < 10	59 < 10	39
240050	10	0.12	243	<1	<0.01	2	220	9	0.01	2	1	15 <20	0.06 < 10 < 10	44 < 10	28
240055	10	0.14	287	<1	<0.01	3	240	11	0.01	<2	2	19 <20	0.06 < 10 < 10	34 < 10	29
240060	20	0.25	366	<1	0.01	6	360	9	0.01	<2	2	32 <20	0.07 <10 <10	49 <10	37
240065	10	0.17	298	<1	<0.01	4	270	10	0.01	<2	2	21 <20	0.07 <10 <10	41 < 10	30
240070	20	0.23	453	<1	0.01	9	400	12	0.01	<2	2	30 <20	0.06 <10 <10	36 < 10	37
240075	10	0.22	467	<1	0.01	7	350	11	0.01	<2	2	28 <20	0.06 <10 <10	40 < 10	39
240080	10	0.17	290	<1	0.01	5	230	8	0.01	<2	2	22 <20	0.06 <10 <10	40 < 10	28
240085	10	0.27	290	1	0.01	15	320	17	<0.01	<2	2	34 <20	0.05 <10 <10	38 < 10	46
240090	10	0.21	279	1	<0.01	5	280	11	<0.01	<2	2	27 <20	0.05 <10 <10	34 <10	31
240100	10	0.15	220	<1	0.01	6	220	9	<0.01	<2	1	22 <20	0.06 <10 <10	41 < 10	26
240105	10	0.22	220	<1	0.01	7	280	9	<0.01	<2	2	31 <20	0.06 <10 <10	47 <10	29
240110	10	0.21	236	<1	0.01	7	300	8	< 0.01	<2	2	26 < 20	0.06 < 10 < 10	46 < 10	29
240115	20	0.38	338	<1	0.01	9	430	11	0.01	<2	2	35 <20	0.05 < 10 < 10	48 < 10	39
240120	20	0.42	329	<1	0.01	7	700	10	0.02	<2	2	97 <20	0.05<10<10	43 < 10	39
240125	20	0.47	310	<1	0.01	8	480	9	0.02	<2	2	102 <20	0.06 < 10 < 10	47 < 10	39

Appendix B – Soil Sample Assay Statistics

STATISTICS

CORRELATION MATRIX

DISTRIBUTION FREQUENCY HISTOGRAMS

				Sta	atistics				
		Ag	Ва	Cd	Cu	Pb	Sb	V	Zn
N	Valid	958	958	958	958	958	958	958	958
	Missing	0	0	0	0	0	0	0	0
Mean		.1053	192.0720	.3235	17.8695	26.8612	1.4165	46.5699	60.0084
Std. Error o	f Mean	.00158	3.88644	.00727	1.60690	2.40642	.02568	.46822	1.15658
Median		.1000	170.0000	.2500	14.0000	16.0000	1.0000	44.0000	52.0000
Mode		.10	160.00	.25	13.00	13.00	1.00	41.00	48.00
Std. Deviation	on	.04884	120.29141	.22515	49.73622	74.48257	.79498	14.49213	35.79788
Variance		.00239	14470.02302	.05069	2473.69142	5547.65364	.63200	210.02175	1281.48791
Range		1.00	1775.00	3.15	1193.00	1797.00	9.00	350.00	595.00
Minimum		.10	5.00	.25	2.00	3.00	1.00	4.00	1.00
Maximum		1.10	1780.00	3.40	1195.00	1800.00	10.00	354.00	596.00
Percentiles	90	.1000	261.0000	.5000	20.1000	38.0000	3.0000	59.0000	85.0000
	95	.1000	340.0000	.7000	24.0000	56.0500	3.0000	66.0000	110.0500

Note: shaded values reflect result of adjusted minimum value used in statistics.

			Co	rrelatio	ons				
		Ag	Ва	Cd	Cu	Pb	Sb	V	Zn
۸a	Pearson Correlation	1	.186(**)	.121(**)	.748(**)	.584(**)	.212(**)	.332(**)	.225(**)
лy	Sig. (2-tailed)	-	.000	.000	.000	.000	.000	.000	.000
	N	958	958	958	958	958	958	958	958
Ra	Pearson Correlation	.186(**)	1	.637(**)	.313(**)	.500(**)	.234(**)	.303(**)	.787(**)
Da	Sig. (2-tailed)	.000	-	.000	.000	.000	.000	.000	.000
	N	958	958	958	958	958	958	958	958
Cd	Pearson Correlation	.121(**)	.637(**)	1	.286(**)	.423(**)	.259(**)	.319(**)	.742(**)
	Sig. (2-tailed)	.000	.000		.000	.000	.000	.000	.000
	N	958	958	958	958	958	958	958	958
Cu	Pearson Correlation	.748(**)	.313(**)	.286(**)	1	.829(**)	.359(**)	.629(**)	.443(**)
Ju	Sig. (2-tailed)	.000	.000	.000		.000	.000	.000	.000
	N	958	958	958	958	958	958	958	958
Ph	Pearson Correlation	.584(**)	.500(**)	.423(**)	.829(**)	1	.377(**)	.686(**)	.617(**)
	Sig. (2-tailed)	.000	.000	.000	.000		.000	.000	.000
	Ν	958	958	958	958	958	958	958	958
Sb	Pearson Correlation	.212(**)	.234(**)	.259(**)	.359(**)	.377(**)	1	.329(**)	.269(**)
	Sig. (2-tailed)	.000	.000	.000	.000	.000	-	.000	.000
	Ν	958	958	958	958	958	958	958	958
v	Pearson Correlation	.332(**)	.303(**)	.319(**)	.629(**)	.686(**)	.329(**)	1	.513(**)
	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000		.000
	Ν	958	958	958	958	958	958	958	958
Zn	Pearson Correlation	.225(**)	.787(**)	.742(**)	.443(**)	.617(**)	.269(**)	.513(**)	1
	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.000	
	N	958	958	958	958	958	958	958	958
** C	correlation is significant	at the 0.0)1 level (2	2-tailed).					

Correlation is significant at the 0.01 level (2-tailed).

Soil Geochemistry — Copper Hills , New Mexico Coyote Copper Inc.

Histograms

Appendix C – Factor Analysis (Component Matrix)

			Com	nponent	Matrix(a	1)		
				Comp	onent			
	1	2	3	4	5	6	7	8
Au	.304	.107	5.534E-02	162	.359	7.419E-02	148	.151
Ag	.229	.537	.112	.422	247	5.492E-02	.158	150
AI	.840	283	1.351E-03	199	166	-8.636E-02	4.839E-03	-5.176E-02
As	.471	.278	.103	.131	133	196	381	9.366E-02
в	.302	217	.555	4.283E-02	.193	-2.753E-02	-7.379E-03	.143
Ва	.587	.433	.173	340	.116	-5.657E-02	-6.796E-02	4.736E-02
Ве	.851	3.021E-02	8.728E-03	253	195	-5.823E-03	-4.324E-02	-3.469E-02
Bi	5.623E-02	-6.028E-02	-2.663E-03	-5.515E-02	.144	.479	.566	-7.473E-02
Ca	.378	-9.151E-02	.702	.202	.273	177	1.445E-02	6.891E-02
Cd	.544	.441	-3.464E-02	399	.135	.117	-1.375E-02	.101
Co	.821	159	326	3.815E-02	-8.692E-03	.124	2.694E-02	108
Cr	.481	481	223	.304	292	2.290E-02	-5.923E-02	.118
Cu	.401	.677	8.950E-02	.445	181	-8.301E-04	.140	-9.031E-02
Fe	.653	171	573	.218	.254	-2.790E-02	-2.060E-02	2.076E-02
Ga	.587	-4.350E-02	200	206	7.406E-02	.102	-4.337E-02	.218
Hg	.115	-9.411E-02	4.165E-02	-8.206E-02	-9.041E-02	5.115E-02	.463	.719
κ	.625	331	.270	234	292	-6.529E-02	4.946E-02	178
La	.616	204	-1.065E-02	160	268	1.236E-02	-1.492E-02	-6.489E-02
Mg	.778	352	8.716E-02	4.290E-02	.163	-7.347E-02	1.946E-02	4.963E-02

				Comp	onent			
	1	2	3	4	5	6	7	8
Mn	.749	.279	171	388	1.336E-02	8.500E-02	7.264E-05	137
Мо	.231	.150	.119	.124	217	.606	7.031E-02	-9.339E-03
Na	.264	299	.371	.322	.220	.395	221	-7.825E-02
Ni	.602	518	1.996E-02	.242	341	3.247E-02	-3.238E-02	6.193E-02
Р	.681	193	.282	6.224E-02	.154	-3.672E-02	.107	166
Pb	.447	.761	5.411E-02	.270	-9.113E-02	2.347E-03	6.477E-02	-2.132E-02
S	.403	6.306E-02	.594	-5.163E-02	.200	5.808E-03	.121	155
Sb	.311	.338	4.861E-03	.141	197	277	-5.045E-02	.357
Sc	.725	204	449	-7.599E-02	-6.609E-02	3.778E-02	-2.880E-04	-5.858E-02
Sr	.539	287	.520	.256	3.738E-02	142	4.778E-02	4.536E-02
Th	133	6.056E-02	.194	4.751E-02	-8.790E-02	.610	519	.247
Ti	.291	250	605	.346	.436	1.418E-03	-2.206E-02	-4.606E-03
V	.590	.368	346	.500	.231	-4.394E-02	1.981E-02	6.622E-02
Zn	.682	.521	-5.175E-02	265	.151	2.806E-02	-5.958E-02	2.504E-03
Extr	action Met	hod: Princi	pal Compo	nent Analy	sis.			
a 8	componen	ts extracted	d.					

Γ					:	278000									2	78500										279000			
	13.0	10.0	.12.0	11.0	13.0	_17.0	10.0	11.0	10.0	12.0	7.0	8.0	11.0	9.0	.12.0	11.0	8.0	15.0	10.0		7.0	6.0	7.0	12.0	13.0	13.0			
	15.0	.15.0	.11.0	.13.0	.18.0	.13.0	<u>.</u> 17.0	.14.0	<u>.</u> 12.0	.10.0	.9.0	.10.0	.10.0	. <mark>6.0</mark>	.10.0	.8.0	. <mark>9.0</mark>	.8.0	9. 0 7.0	.8.0	.9.0	.9.0	. <mark>9.0</mark>	.8.0	. <mark>9.0</mark>	14.0			
			10.0			40.0			• •			15.0	40.0		40.0	7.0	• •			40.0			40.0	• •		22.0			-
	11.0	.11.0	.10.0	.10.0	.11.0	.13.0	.14.0	.11.0	<u>.</u> 9.0	.8.0	.11.0	.15.0	.12.0	.8.0	<u>10.0</u>	.7.0	. ^{8.0}	.9.0	.8.0	.10.0	.9.0	.11.0	.10.0	<u>.</u> 9.0	<u>.</u> 9.0	22.0	Λ	\sim	
	12.0	12.0	.12.0	.13.0	13.0	.13.0	<u>.</u> 11.0	.14.0	<u>9</u> .0	.7.0	.11.0	.11.0	<u>.</u> 9.0	<u>9</u> .0	.8.0	<u>.</u> 9.0	.8.0	<u>.</u> 9.0	.11.0	24.0	.9.0	.11.0	.14.0	17.0	26.0	14.0			
	15.0	.15.0	.14.0	.16.0	19.0	.14.0	.12.0	. <mark>11.0</mark>	.12.0	. <mark>8.0</mark>	. <mark>11.0</mark>	. 9.0	.9.0	.14.0	.7.0	.10.0				.10.0	.11.0	.11.0	.11.0	19.0		13.0			
	20.0	.17.0	24.0	.18.0	.17.0	.14.0	.12.0	10.0	.9.0	.11.0	.15.0	.14.0	.14.0		15.0	.16.0	.11.0		.11.0	.11.0	.18.0	.12.0	.11.0	.13.0	.12.0	15.0			
3773500			10.0				10.0																						3773500
	17.0		19.0	.13.0	.11.0	.15.0	19.0	.15.0	Ĵ}		19.0	19.0	21.0	.18.0	<u>.</u> 14.0	.7.0	. ^{8.0}	.10.0	.8.0	.10.0	.11.0	.11.0	.13.0	.12.0	22.0	15.0			_
	16.0	.15.0	.17.0			.11.0	.13.0	<u>.</u> 9.0	.10.0	<u>.</u> 16.0	19:0	.17.0	.10.0	13.0	.8.0	.7.0	7.0	.8.0	.8.0	.10.0	<u>.</u> 11.0	<u>13.0</u>	.12.0	.10.0	.12.0	15.0			
		.17.0	.14.0	.13.0	.10.0	. <mark>1</mark> 3.0	.14.0	<u>.</u> 12.0	.10.0	.10.0	<u>.</u> 8.0	1 9.0	<u>.</u> 13.0	.9.0	.8.0	<u>.</u> 6.0	<u>.</u> 8.0	.10.0	.9.0	.12.0	. <mark>13.0</mark>	.14.0	.11.0	<u>.</u> 11.0	.12.0	15.0			
-	12.0	. <mark>11.0</mark>	.16.0	.18.0	.16.0	.12.0	.15.0	.13.0	.13.0	.13.0	.12.0	.12.0	.14.0	.8.0	.7.0	.8.0	.7.0	.8.0	.11.0	.13.0	.12.0	.14.0	.9.0	12.0	.11.0	27.0			
	12.0	12.0	17.0	18.0	15.0	15.0	53.0	17.0	16.0	12.0	10.0	15.0	12.0	15.0	9.0	8.0	9.0	9.0	13.0	12.0	11.0	14.0	12.0	13.0	15.0	22.0			
							•).	·	•	·	•	•		·	•		·	·	•	·								
	10.0	.15.0	.18.0	.18.0	.16.0	.17.0	.16.0	.14.0	<u>15</u> .0	.13.0	<u>.</u> 10.0	.13.0	.12.0	.9.0	<u>9</u> .0	.10.0	.10.0	.14.0	.13.0	.13.0	.13.0	.12.0	.14.0	<u>15</u> .0	<u>.</u> 15.0	17.0			
	13.0	.14.0	.14.0	.12.0	.15.0	.14.0	.13.0	.10.0	.13.0	.13.0	.14.0	.16.0	. <mark>16.0</mark>	.13.0	.11.0	.11.0	.11.0	.14.0	.14.0	12.0	.13.0	<u>15.0</u>	<u>1</u> 3.0	<u>15.0</u>	.16.0	13.0			
	11.0	.12.0	.13.0	.12.0	.10.0	.10.0	.10.0	<u>.</u> 11.0	27.0	22.0	.16.0	22.0	19.0	.16.0	.10.0	<u>.</u> 11.0	<u>.</u> 13.0	.15.0	12.0	.13.0	.17.0	<u>.</u> 14.0	<u>.</u> 15.0	. <mark>17.0</mark>	<u>.</u> 16.0	16.0			
-	10.0	.10.0	9.0	9.0	.10.0	.8.0	15.0	24.0	32.0	35.0	24.0	27.0	.16.0	.16.0	11.0	.12.0	12.0	.14.0	.14.0	.16.0	16.0	15.0	15.0	21.0	.17.0	16.0			
								107.0		•	·	•																	
3773000	14.0	.17.0	.18.0	.12.0	<u>.</u> 9.0	.13.0	101.0	187.0	50.0	41.0	38.0	23.0	_24.0	<u>15.0</u>	.11.0	.12.0		.12.0	.12.0	.11.0	.11.0	.14.0		19.0	<u>17.0</u>	18.0			3773000
	13.0	.14.0	.14.0	.12.0	.15.0	28.0	.17.0	347.0	0 ^{362.0}	1195.0	75.0	38.0	. 22.0	.16.0	.13.0	.14,0	.13.0	23.0	.14.0	.12.0	.12.0	.14.0	<u>.</u> 15.0		<u>.</u> 15.0	18.0			
	12.0	.13.0	.16.0	.13.0	.11.0	.15.0	19.0	25.0	841.0	63.0	51.0	23.0	19.0	.18.0	.11.0	.12.0	.13.0	.13.0	.13.0	.12.0	.13.0	.13.0	21.0	.15.0	.16.0	16.0			
	13.0	. <mark>14.0</mark>	10.0	9.0	.9.0	.17.0	20.0	30.0	.18.0	.12.0	.10.0	23.0	29.0	19.0	22.0	.13.0	<u>14.0</u>	.16.0	.16.0	.18.0	.11.0		20.0	.16.0	.15.0	18.0			
	15.0	110	10.0		10.0		10.0	45.0		17.0	21.0		24.0		22.0	21.0	45.0	17.0	40.0	45.0	40.0		21.0	10.0		22.0			
	15.0	.14.0	.10.0	.11.0	.10.0	.11.0	.16.0	.15.0		.17.0	•	.13.0	•24.0	.15.0	23.0	21.0	15.0	.17.0	16.0	.15.0	.13.0		21.0	.13.0	.15.0				
	15.0	.12.0	. <mark>11.0</mark>	.12.0	.14.0	.13.0	.12.0	.18.0	.16.0	.14.0	16.0	<u>.</u> 16.0	13.0	.11.0	.9.0	19.0	24.0	21.0	20.0	19.0	15.0	.13.0	22.0	.18.0	.16.0	18.0			
-	11.0	.11.0	.11.0	.11.0	.12.0	.13.0	.13.0	.11.0	.9.0	.10.0	.15.0	.17.0	.15.0	.10.0	.13.0	.14.0	.18.0	22.0	47.0	.17.0	.17.0	.15.0	22.0	21.0	22.0	20.0			
	11.0	.11.0	.11.0	.12.0	13.0	.10.0	.14.0	.12.0	13.0	.15.0	.11.0	.13.0	<u>.</u> 9.0	.9.0	10.0	.11.0	.12.0	.15.0	26.0	35.0	.18.0	.15.0	19.0	.17.0	.18.0	25.0			
	11.0	10.0	11.0	11.0	12.0	10.0	13.0	15.0	20.0	14.0	19.0	15.0	12.0	11.0	11.0	12.0	12.0	11.0	12.0	14.0		19.0	25.0	16.0	15.0	15.0			
				•	•		•	••••	•		•	•		•	•	•	•	·	•			•	•		• •				
	10.0	.10.0	.11.0	.12.0	.15.0	.14.0	.14.0	.13.0	<u>11.0</u>	.17.0	2 0.0	.11.0	<u>10.0</u>	.11.0	12.0	.12.0	.12.0	.11.0	.12.0	.12.0	40.0	32.0	27.0	.16.0	.16.0	17.0			
72500	11.0	.10.0	.13.0	.12.0	.14.0	.12.0	.11.0	.15.0	.13.0	21.0	21.0	20.0	. ^{11.0}	.12.0	.13.0	.13.0	.12.0	.11.0	.11.0	12.0	.13.0	.16.0	38.0	19.0	18.0	16.0			72500
37	16.0	.13.0	.14.0	.17.0	.12.0	. <mark>1</mark> 3.0	.17.0	.18.0	.17.0	19.0	.15.0	.13.0	.11.0	.10.0	.13.0	.14.0	.16.0	.15.0		.14.0	.14.0	15.026.0	.16.0		22.0		21.0		37
	13.0	10.0	9.0	<u>.</u> 11.0	15.0	.15.0	.17.0	<u>.</u> 14.0	19.0		<u>.</u> 17.0	<u>.</u> 11.0	<u>.</u> 11.0	.11.0	<u>12.0</u>	.13.0	<u>16.0</u>	<u>.</u> 17.0	.16.0	<u>.</u> 16.0	.14.0	15.0	<u>14.0</u>	.13.0	.16.0	17.0			
		11.0															/												
	14.0	.11.0	.11.0	.10.0	.15.0	.15.0	20.0	.18.0	12.0	19.0	<u>.</u> 15.0	<u>.</u> 10.0	.11.0	.12.0	<u>1</u> 3.0	.16.0	15.0	.16.0	.16.0	<u>1</u> 7.0	.17.0	.15.0	<u>1</u> 3.0	.13.0	35.0	20.0			
	14.0	2.0	.11.0	.14.0	.13.0	20.0	•22.0	.15.0	20.0	.13.0	20.0	.11.0	.11.0	.13.0	.17.0	.15.0	.15.0	.16.0	_15.0	.17.0	. <mark>17.0</mark>	.16.0	. ^{15.0}	.14.0	.15.0	15.0			
	17.0	.17.0	20.0	.11.0	.12.0	.16.0	19.0	<u>.</u> 6.0	2 1.0	. <mark>13.0</mark>	.12.0	12.0	.12.0	.14.0	.15.0	.17.0	.15.0	.16.0	.16.0	.17.0	.16.0	.17.0	. <mark>16.0</mark>	.17.0	.15.0	16.0			
	19.0	.12.0	.12.0	.14.0	13.0	15.0	.15.0	25.0	32.0	.14.0	. <mark>13.0</mark>	13.0	.12.0	.14.0	.12.0		.12.0	.14.0	<u>.</u> 16.0	21.0	16.0	19.0	<u>18.0</u>	.17.0	.17.0	16.0			
	0.0	10.0	10.0	11.0	12.0	12.0	22.0	22.0	34.0	15.0	14.0	12.0	16.0	16.0	14.0		15.0	17.0	21.0	23.0	15.0	16.0	15.0	18.0	19.0	22.0			
	.च. च	.10.0	. ^{10.0}	.11.0	,1Z.U	.18.0	•	•	•		.14.0		.10.0	.10.0	. ^{(4.U}		.'	.11.0	• • • • •		13.0	<u>, ט.ט</u>	,13.0	.10.0	10.0		Cu contoure		
	14.0	.12.0	<u>10.0</u>	<u>.</u> 10.0	.16.0	.11.0	15.0	.18.0	.16.0	.13.0	.15.0	.13.0	<u>1</u> 3.0	.13.0	<u>.</u> 14.0		<u>.</u> 14.0	.14.0	.15.0	.12.0	14.0				/		18 50		
	13.0	.12.0	.14.0	.15.0	.16.0	24.0	35.0	29.0	23.0	29.0	27.0	22.0	,18.0	.15.0	.16.0		18.0	.17.0	16.0	.15.0	14.0						100 200		
Q	15.0	16.0	22.0	_15.0 (20.0	.17.0	20.0	19.0	.17.0	.18.0	.17.0	.13.0	25.0	.17.0	<u>17.0</u>		<u>18.0</u>	.17.0	.16.0	<u>.</u> 16.0	17.0						CU · >2.0 − 18.0		0
377200																							1				 >18.0 - 75.0 >75.0 - 187.0 		377200

[27	78000									2	78500									27	79000		
	15.0	14.	.0	11.0	10.0	18.0	19.0	13.0	16.0	15.0	15.0	9.0	11.0	9.0	10.0	12.0	11.0	8.0	17.0	<u>11.0</u>		9.0	9.0	8.0	11.0	10.0	9.0		
	21.0	.20.	.0	.15.0	16.0	.17.0	.14.0	.19.0	.19.0	.17.0	.17.0	.11.0	.9.0	.10.0	.7.0	.10.0	.9.0	.12.0	.14.0	9. <u>0</u> 9.0	12.0	.13.0	.10.0	20.0	.12.0	.13.0	17.0		
	24.0	17	0	16.0	14.0	12.0	15.0	16.0	16.0	14.0	13.0	11.0	13.0	11.0	9.0	10.0	9.0	11.0	14.0	13.0	26.0	18.0	11.0	9.0	11.0	10.0	38.0		
	24.0		.0	.10.0	.11.0	.12.0	.10.0	.10.0	.10.0	.14.0	.10.0	.11.0	.10.0	.11.0	.9.0	.10.0	.0.0	.11.0	.'ייי	.13.0	.20.0	.10.0		.9.0	.11.0	.10.0	50.0	Λ	,
	18.0	<u>.</u> 15.	0	.11.0	.14.0	.13.0	.17.0	.15.0	.17.0	.15.0	.11.0	.9.0	<u>.</u> 10.0	.15.0	.21.0	.17.0	<u>.</u> 15.0	.14.0	.25.0	.22.0	.38.0	.12.0	.14.0	.14.0	14.0	.18.0	15.0	l L	
	21.0	<u>.</u> 16.	.0	.14.0	.11.0	.19.0	.13.0	.14.0	.14.0	<u>14.0</u>	.10.0	.14.0	. <mark>15.0</mark>	<u>.</u> 21.0	.35.0	.18.0	.19.0				.15.0	. <mark>15.0</mark>	.11.0	.12.0	.16.0		13.0	Ì	5
	15.0	.15.	.0	.21.0	.16.0	.16.0	.17.0	.17.0	.13.0	13.0	.14.0	.24.0	<u>.</u> 57.0	.30.0		.21.0	.24.0	.13.0		.11.0	.14.0	.18.0	.12.0	<u>11.0</u>	.13.0	.14.0	13.0		
3773500																													3773500
	14.0	.19	.0	.12.0	.13.0	.12.0	.20.0	<u>.</u> 16.0	.25.0	2		.18.0	0 ^{164.0}	. 48.0	.30.0	.23.0	.11.0	<u>.</u> 11.0	.12.0	.12.0	<u>.</u> 11.0	.14.0	.11.0	.15.0	.12.0	.28.0	14.0		
	23.0	19	0	16.0			190	19.0	11.0	10.0	12 0	26.0	19.0	20.0	22.0	11 0	12.0	11 0	10.0	10.0	12.0	13.0	15.0	13.0	11 0	12.0	12.0		
	20.0	.10.	.0	.10.0			.13.0	.19.0	.11.0	.10.0	.12.0	20.0		.20.0	.22.0	.11.0	.12.0	.11.0	.10.0	.10.0	.12.0	.10.0	.10.0	.13.0		.12.0	,12.0		
		.23	.0	.14.0	12.0	.14.0	.18.0	.18.0	.14.0	.11.0	.9.0	.24.0	.62.0	.35.0	.14.0	. <mark>16.0</mark>	.12.0	.14.0	.13.0	.12.0	.13.0	.12.0	.15.0	.10.0	.12.0	.12.0	11.0		
												Ň																	
	13.0	.12.	0	.19.0	15.0	.20.0	.14.0	.19.0	.23.0	.11.0	.15.0	.20.0	26.0	•63.0	.19.0	.16.0	<u>15.0</u>	.14.0	.13.0	.12.0	.16.0	15.0	.14.0	.12.0	11.0	.12.0	40.0		
	17.0	.11.4	0	.29.0	.12.0	.18.0	.30.0	.16.0	.12.0	.18.0	.26.0	.14.0	.35.0	,37.0	559.0	.38.0	.19.0	.17.0	.19.0	.20.0	.22.0	.18.0	.18.0	.12.0	13.0	.11.0	13.0		
																						/							
	12.0	. 15.	.0	.17.0	18.0	.18.0	.18.0	.15.0	.13.0	18.0	.22.0	.16.0	23.0	.32.0	.30.0	.15.0	.18.0	.17.0	.20.0	.18.0	.17.0	.19.0	.13.0	.14.0	.16.0	.12.0	12.0		
	18.0	17	0	16.0	12 0	13.0	13.0	9.0	11.0	19.0	17.0	23.0	25.0	38.0	37.0	24.0	15.0	16.0	22.0	15.0	13.0	14.0	13.0	12.0	12 0	9.0	8.0		
	.10.0			.10.0		.10.0		.0.0		.10.0	.17.0	.20.0				24.0	.10.0	.10.0	·	.10.0	0.0	.17.0		.12.0	.12.0	.0.0	0.0		
	14.0	.12.0	0	.15.0	.17.0	<u>.</u> 10.0	.11.0	.10.0	.17.0	.30.0	.34.0	.22.0	.39.0	.38.0	42.0	. <mark>19.0</mark>	.16.0	. <mark>19.0</mark>	.20.0	18.0	.16.0	.20.0	.14.0	.12.0	.13.0	.9.0	7.0		
	13.0	.9.0)	9.0	.11.0	.12.0	.10.0	• 5 2.0	.43.0	5 0.0	. 71.0	.26.0	•66.0	.38.0	• 5 4.0	.22.0	20.0	<u>1</u> 7.0	<u>17.0</u>	. <mark>19.0</mark>	.22.0	<u>.</u> 19.0	16.0	.13.0	.15.0	.11.0	9.0		
	19.0	<u>.</u> 13.	0	.22.0	.10.0	<u>.</u> 9.0	.13 0	•174.0	694.0	62.0	68.0	.94.0	.52.0	.35.0	.31.0	.21.0	.21.0		<u>.</u> 17.0	.16.0	17.0	.18.0	.19.0		15.0	.13.0	13.0		
3773000																													000 2273 3773
	17.0	.18.	0	.18.0	.15.0	20.0	.18.0	.51.0	898.0	249.0	1800.0	312.0 7	. 113.0	45.0	.37.0	.21.0	.22.0	19.0	.16.0	.17.0	16.0	.16.0	.17.0	.13.0		.10.0	11.0		
	11.0	11.	0	21.0	14.0	15.0	13.0	17.0	81.0	363.0	163.0	255.0	71.0	65.0	32.0	21.0	17.0	18.0	18.0	18.0	17.0	16.0	16.0	20.0	14.0	13.0	12.0		
		·		•	•		·						•	•	·	·	•	•	·	·	·	·		•	·	·			
	15.0	.14.	.0	.11.0	12.0	.11.0	.20.0	,38.0	75.0	.107.0	.24.0	.16.0	• 5 0.0	• 5 7.0	44.0	.40.0	20.0	25.0	.23.0	.22.0	. 31.0	.14.0		20.0	.12.0	.9.0	10.0		
				-													>												
	15.0	.16.0	0	.14.0	15.0	.12.0	.14.0	.35.0	_46.0	5 1.0	.32.0	.26.0	.18.0	37.0	.21.0	42.0	41.0 •	26.0	.23.0	.22.0	.16.0	12.0		.19.0	.11.0	.11.0	16.0		
	19.0	<u>.</u> 11.	0	.13.0	.12.0	<u>15.0</u>	.15.0	.15.0	• 5 2.0	.26.0	.20.0	.20.0	.22.0	.24.0	.22.0	.13.0	.40.0	48.0	43.0	.30.0	.21.0	.17.0	.15.0	.24.0	15.0	.10.0	9.0		
	12.0	.11.	0	.11.0	.12.0	.11.0	.14.0	.16.0	20.0	.12.0	.12.0	.16.0	.17.0	.18.0	.13.0	.15.0	.14.0	.37.0	42.0	.73.0	.16.0	.18.0	.15.0	20.0	.12.0	<u>,</u> 21.0	12.0		
	18.0	.12.	0	.11.0	.14.0	.16.0	.13.0	.24.0	.19.0	.16.0	.17.0	<u>.</u> 17.0	.14.0	13.0	.14.0	.13.0	.12.0	.14.0	.17.0	.40.0	.79.0	19.0	.14.0	.23.0	13.0	12.0	9.0		
	12.0	.13.	0	.12.0	.11.0	.10.0	.15.0	.35.0	.24.0	.20.0	<u>.</u> 19.0	.26.0	<u>.</u> 21.0	.18.0	.13.0	.13.0	.14.0	.14.0	.12.0	.12.0	.17.0		.36.0	.38.0	.12.0	<u>.</u> 11.0	10.0		
	12.0	10	0	12.0	12.0	20.0	25.0	27.0	05.0	22.0	20.0	20.0	17.0	15.0	19.0	15.0	14.0	12.0	12.0	14.0	12.0	48.0	47.0	45.0	13.0	14.0	13.0		
	12.0	.12.	.0	.13.0	.12.0	.20.0	.23.0	.27.0	.25.0	.22.0	20.0	20.0	.17.0	15.0	.18.0	.15.0	.14.0	.13.0	.13.0	.14.0	.12.0	••••	•""	• • •	.10.0	.14.0	13.0		
0	19.0	.12.	.0	.17.0	16.0	.22.0	.44.0	45.0	.36.0	.26.0	.24.0	.19.0	54.0 •	.19.0	.15.0	.14.0	.15.0	. <mark>13.0</mark>	.12.0	.12.0	.13.0	.13.0	.16.0	. 49.0	.17.0	.12.0	11.0		
37725							'					, , , , , , , , , , , , , , , , , , ,																	377256
	20.0	.20.	0	.86.0	.34.0	.21.0	9 5.0	_48.0	•105.0	.31.0	.20.0	.24.0	.17.0	.18.0	.15.0	.16.0	<u>19.0</u>	.19.0	.18.0		.16.0	.14.0 13.	033.0	.16.0		.17.0		20.0	
	17.0	<u>.</u> 15.	0	.12.0	.21.0	.25.0	• 5 0.0	1 13.0	5 0.0	25.0	28.0	.19.0	.15.0	<u>.</u> 16.0	.17.0	<u>.</u> 17.0	.15.0	<u>.</u> 14.0	.14.0	_ <u>14.0</u>	.14.0	<u>.</u> 11.0	.13.0	. <mark>13.0</mark>	11.0	<u>.</u> 15.0	16.0		
	17.0	.15	.0	.12.0	15.0	.37.0	.62.0	1 17.0	.97.0	.33.0	.31.0	.23.0	.14.0	.12.0	.16.0	<u>.</u> 17.0	.17.0	<u>.</u> 13.0	_15.0	.13.0	. <mark>11.0</mark>	<u>.</u> 9.0	.15.0	. <mark>13.0</mark>	.9.0	5 1.0	17.0		
	17.0	3.0	1	12.0	12 0	30.0	54.0	233.0	59.0	27.0	34.0	29.0	15.0	14.0	14 0	21.0	16.0	14.0	14 0	14 0	14.0	14.0	14.0	13.0	12 0	14.0	14.0		
		·					•		•••••	•	.01.0			•	•			/	•		•				•	•			
	17.0	.14	ŀ.0	.13.0	13.0	.13.0	5 1.0	137.0	.11.0	23.0	. <mark>21.0</mark>	.25.0	.17.0	.16.0	.17.0	. <mark>19.0</mark>	.22.0	.13.0	.13.0	.12.0	.14.0	14.0	14.0	.12.0	.13.0	. <mark>15.0</mark>	13.0		
	16.0	<u>.</u> 20.	.0	.16.0	.16.0	.15.0	.17.0	.28.0	•72.0	.28.0	.23.0	.22.0	.33.0	21.0	21.0	.17.0		<u>19.0</u>	. <mark>18.0</mark>	.18.0	.17.0	.16.0	. ^{15.0}	.13.0	.12.0	.14.0	11.0		
	17.0	.17.0	0	.14.0	14.0	.13.0	.36.0	. ^{65.0}	.25.0	.26.0	.23.0	.22.0	.21.0	.30.0	23.0	.21.0		.22.0	.33.0	.39.0	.38.0	19.0	17.0	12.0	16.0	.12.0	11.0		
										<																			
	18.0	.13.	.0	.14.0	. <mark>13.0</mark>	.20.0	1 07.0	.29.0	5 5.0	.40.0	.35.0	.31.0	.30.0	.21.0	.21.0	. <mark>19.0</mark>		.14.0	.13.0	.17.0	.12.0	13.0						40	
	15.0		0	15.0	15.0	14.0	188.0	43 0	.30.0	43.0	1 24.0	46.0	37.0	31 0	25 0	28.0		19.0	13.0	16.0	13.0	15.0						137 363	
	10.0	.13.	U	•	•			• • •		•		• • • •			0.0						•							898 PB	
8	14.0	.13.	0	.20.0	.15.0	.17.0	5 8.0	.67.0	.23.0	.30.0	.30.0	.27.0	<u>.</u> 26.0	.25.0	.23.0	_18.0		. <mark>18.0</mark>	.17.0	.12.0	. <mark>17.0</mark>	16.0						· >3.0 - 40.0	
37720																												• >40.0 - 137.0	377200

ſ	 					278000									27	78500										279000		٦
	45.0	41.0	46.0	45.0	46.0	45.0	58.0	48.0	45.0	5 9.0	44.0	34.0	49.0	41.0	36.0	40.0	40.0	38.0	34.0		41.0	47.0	46.0	48.0	43.0	47.0		
	37.0	4 8.0	5 3.0	5 3.0	4 6.0	5 1.0	.44.0	4 7.0	5 7.0	4 8.0	.44.0	4 2.0	48.0	<u>.</u> 36.0	.37.0	4 1.0	.35.0	4 2.0	43.0 3 5.0	4 7.0	.47.0	4 7.0	.42.0	4 1.0	4 2.0	4 2.0		
	53.0	5 9.0	6 1.0	.40.0	4 9.0	4 3.0	4 8.0	4 9.0	63.0	• ^{52.0}	4 3.0	6 2.0	5 9.0	.35.0	4 5.0	.38.0	4 1.0	.39.0	4 6.0	5 6.0	4 6.0	.36.0	.34.0	.34.0	.34.0	4 3.0		
	37.0	4 9.0	42.0	4 5.0	4 1.0	44.0	4 7.0	.38.0	5 3.0	5 5.0	4 9.0	4 1.0	.34.0	<u>.</u> 39.0	4 3.0	.32.0	43.0	.40.0	.33.0	.37.0	.36.0	40.0	42.0	44.0	48.0	44.0	Ň	
	53.0	48.0	45.0	41.0	41.0	42.0	40.0	10.0	42.0	20.0	22.0	50.0	50.0	25.0	35.0	33.0				26.0	12.0	48.0	10.0	35.0		44.0		
	53.0	4 8.0	45.0 •	4 1.0	4 1.0	42.0 •	.40.0	.40.0	.42.0	.39.0	.33.0	, 50.0	• 5 0.0	.35.0	.35.0	.33.0				36.0	42.0 •	4 8.0	.40.0	.35.0		44.0	ŭ	
3773500	4 9.0	4 8.0	4 1.0	4 3.0	43.0 •	.39.0	4 1.0	4 5.0	. 44.0	.38.0	.36.0	<u>.</u> 39.0	.40.0		41.0	.40.0	.34.0		.28.0	.34.0	.30.0	4 3.0	45.0 •	4 2.0	, 50.0	5 0.0		3773500
	4 7.0	.40.0	4 4.0	4 8.0	.40.0	.39.0	.40.0	.39.0	}		48.0	• ^{53.0}	4 9.0	.40.0	29.0	.25.0	.31.0	.30.0	.33.0	.35.0	.34.0	.34.0	.38.0	4 4.0	5 3.0	, 45.0		
	44.0	4 2.0	4 5.0			4 1.0	.37.0	.39.0	4 1.0	• 5 0.0	60.0	4 2.0	4 5.0	.37.0	27.0	.27.0	29.0	25.0	.30.0	.32.0	.36.0	.36.0	4 1.0	4 6.0	5 3.0	4 8.0		
		4 5.0	.40.0	4 2.0	.38.0	.40.0	4 3.0	4 1.0	•53.0	.43.0	.32.0	.37.0	5 5.0	.37.0	. <mark>29.0</mark>	.23.0	.28.0	.31.0	.31.0	.37.0	40.0	.37.0	.39.0	.38.0	4 5.0	47.0		
-	37.0	40.0	.38.0	5 4.0	4 1.0	.38.0	4 5.0	. 45.0	. 44.0	4 2.0	.35.0	.34.0	42.0	.33.0	.36.0	.34.0	27.0	.33.0	.35.0	.35.0	.32.0	.37.0	.32.0	45.0	4 2.0	5 3.0		
	41.0	38.0	42.0	47.0	45.0	44.0	47.0	45.0	43.0	36.0	39.0	40.0	43.0	78.0	43.0	33.0	37.0	30.0	38.0	36.0	37.0	38.0	40.0	40.0	47.0	48.0		
	Ŷ	·	•	•	•	•	•	٠	•	·	·		•		•	•		·	·	·	•				•			
	, 41.0	. 46.0	• ^{43.0}	43.0	4 1.0	.39.0	_44.0	4 8.0	.38.0	.37.0	4 3.0	5 1.0	• 5 0.0	• 14.0	4 5.0	.40.0	.39.0	.36.0	.40.0	.39.0	.38.0	<u>.</u> 39.0	_42.0	43.0 •	4 8.0	4 8.0		
	35.0	.36.0	4 1.0	4 5.0	4 1.0	4 2.0	.39.0	.40.0	<u>.</u> 37.0	.36.0	4 6.0	. 43.0	5 1.0	5 2.0	4 6.0	.40.0	.37.0	.36.0	.38.0	,36.0	.38.0	4 2.0	. 46.0	4 7.0	4 6.0	, 43.0		
	4 5.0	4 5.0	4 5.0	4 3.0	4 4.0	. 46.0	5 0.0	4 1.0	.38.0	.37.0	.42.0	4 5.0	4 2.0	64.0	4 8.0	4 5.0	4 5.0	4 1.0	46.0	4 5.0	42.0	4 1.0	.39.0	4 4.0	48.0	4 6.0		
	4 7.0	4 6.0	4 1.0	4 1.0	.36.0	.40.0	4 1.0	.40.0	4 6.0	.36.0	.37.0	.39.0	4 2.0	5 4.0	6 1.0	4 6.0	4 1.0	4 7.0	_44.0	4 1.0	4 1.0	4 1.0	_45.0	4 7.0	52.0	, 55.0		
00	45.0	5 1.0	5 3.0	4 3.0	4 5.0	5 0.0	.49.0	74.0	49.0	44.0	4 7.0	4 2.0	4 4.0	5 0.0	5 5.0	.39.0		.39.0	42.0	4 2.0	41.0	4 1.0		4 5.0	4 1.0	5 6.0		Ę
37730	33.0	.36.0	.40.0	4 2.0	.38.0	.28.0	.46.0	135.0	e5.0	354,0	77.0	. <u>39.0</u>	4 9.0	. ^{44.0}	.49.0	.42.0	48.0	4 6.0	4 6.0	4 8.0	44.0	. 47.0	_45.0		5 2.0	5 3.0		37730
	40.0	57.0	41.0	68.0	60.0	42.0	40.0	60.0	66.0	56.0	66.0	44.0	36.0	58.0	54.0	41.0	44.0	40.0	39.0	43.0	40.0	43.0	37.0	47.0	47.0	54.0		
		¢	•		•	•		•			•	•		•	•	•	•			•		•		•	•	¢		
	4 1.0	.45.0	<u>48.0</u>	46.0 •	4 1.0	.35.0	4 1.0	.35.0	5 1.0	5 3.0	4 9.0	42.0 •	43.0 •	_44.0	• 5 2.0	. 44.0	.38.0	40.0	.42.0	.42.0	.44.0		.36.0	<u>44.0</u>	•53.0	5 4.0		
	50.0	4 9.0	4 3.0	4 6.0	5 4.0	4 2.0	4 4.0	. 44.0	.38.0	.37.0	.36.0	. 46.0	4 1.0	5 5.0	4 7.0	4 8.0	4 3.0	_46.0	4 1.0	4 5.0	4 7.0		.38.0	5 6.0	5 9.0	5 9.0		
	4 1.0	.36.0	.38.0	.35.0	.37.0	.39.0	.37.0	4 4.0	. <mark>37.0</mark>	.38.0	.36.0	.35.0	4 2.0	5 6.0	.49.0	5 4.0	4 5.0	5 0.0	4 2.0	4 9.0	•55.0	4 9.0	.40.0	5 9.0	6 4.0	6 5.0		
	40.0	.36.0	.37.0	.40.0	.38.0	.37.0	.38.0	5 1.0	, 50.0	49.0	.44.0	4 1.0	37.0	5 1.0	.36.0	.38.0	.38.0	48.0	.40.0	5 2.0	. 45.0	. 50.0	.39.0	6 2.0	6 1.0	62.0		
	39.0	4 1.0	4 3.0	<u>.</u> 35.0	.35.0	.33.0	.34.0	.35.0	.34.0	.33.0	4 1.0	4 2.0	.35.0	<u>.</u> 36.0	.37.0	.37.0	4 1.0	.38.0	.38.0	7 6.0	• ^{50.0}	5 0.0	.37.0	5 1.0	6 1.0	94.0		
	36.0	.39.0	.39.0	.39.0	.38.0	.39.0	.37.0	.37.0	35.0	.38.0	.33.0	4 2.0	5 2.0	.38.0	.38.0	. 46.0	4 3.0	4 5.0	4 1.0	.44.0		5 1.0	.39.0	•53.0	53.0	43.0		
	43.0	37.0	41.0	41.0	39.0	35.0	42 0	46.0	52.0	38.0	39.0	48.0	44.0	37.0	40.0	40.0	44 0	42.0	44.0	46.0	44.0	41.0	40.0	49.0	53.0	48.0		
	Ŷ		•	•			•	•	0			•	•				•	•	•	•	•	•	·	•	•	•		
3772500	46.0	4 4.0	. 44.0	4 5.0	4 1.0	.34.0	4 6.0	4 4.0	.38.0	.32.0	_43.0	4 8.0	5 0.0	.38.0	.35.0	.36.0	4 2.0	.37.0	.43.0	43.0	4 1.0	.39.0	_46.0	.38.0	. 49.0	52.0		3772500
	.40.0	4 8.0	4 1.0	.40.0	.40.0	4 2.0	.40.0	.36.0	.38.0	<u>.</u> 31.0	.36.0	46.0	4 3.0	4 2.0	.39.0	.37.0	.36.0	.38.0		44.0 •	54.0 A	49.0 <mark>4</mark> 4.0	4 2.0		5 1.0		50.0	
	48.0	. 47.0	43.0 •	4 6.0	.40.0	.39.0	.38.0	4 1.0	.38.0	.34.0	.34.0	4 9.0	43.0	.43.0	.36.0	.33.0	38.0	.39.0	42.0 •	47.0 •	4 5.0	5 6.0	5 5.0	4 6.0	5 4.0	47.0		
	46.0	7 3.0	5 6.0	4 7.0	5 8.0	5 3.0	4 4.0	5 5.0	75.0	.36.0	4 1.0	5 2.0	40.0	.39.0	.34.0	.36.0	. 41.0	.39.0	4 1.0	5 0.0	5 1.0	5 5.0	5 3.0	4 6.0	4 2.0	4 2.0		
	58.0	4.0	5 8.0	6 0.0	5 5.0	5 9.0	• ^{52.0}	66.0	76.0	6 0.0	4 6.0	5 0.0	4 2.0	4 1.0	.40.0	4 4.0	4 6.0	4 7.0	61.0	•58.0	55.0	5 5.0	5 7.0	57.0 •	51.0	4 5.0		
	51.0	€62.0	76.0	6 2.0	4 6.0	66.0	5 5.0	.4.0	6 3.0	5 4.0	4 6.0	4 8.0	4 3.0	4 5.0	4 6.0	.38.0	4 1.0	4 9.0	66.0	5 6.0	5 4.0	5 2.0	5 6.0	• ^{52.0}	4 8.0	45.0		
	43.0	58.0	54.0	57.0	58.0	60 0	57.0	54.0	56.0	49.0	48.0	46.0	43.0	43.0	53.0		46.0	39.0	40.0	58.0	54.0	49.0	53.0	53.0	54.0	48.0		
			0	0		69.0	0	•	•••••	•	•	•	•	ू न उ.U	0		•		.70.0	0	0	•	0	•	o v			
	● ^{82.0}	6 3.0	7 9,0	• 5 2.0	• ^{56.0}	6 0.0	67.0	013.0	088.0	• ^{47.0}	5 1.0	4 3.0	4 1.0	•50.0	5 1.0		4 6.0	.40.0	4 2.0	4 3.0	42.0	47.0	45.0	48.0	5 1.0	55.0	Verteurs	
	51.0	5 8.0	78.0	73.0	• 5 7.0	6 4.0	71.0	67.0	• 5 5.0	6 5.0	4 8.0	65 .0	5 6.0	5 2.0	, 50.0		• 5 0.0	5 8.0	4 9.0	5 8.0	53.0						v contours 60 70	
	7 6.0	73.0	•81.0	69.0	72.0	5 7.0	87.0	70.0	8 0.0	87.0	•53.0	4 8.0	52.0	4 9.0	4 5.0		4 8.0	•54.0	4 9.0	5 0.0	50.0						135 200	
000	60.0	•74.0	6 2.0	74.0	8 4.0	76.0	•56.0	5 3.0	71.0	• 5 2.0	6 4.0	6 9.0	5 1.0	5 1.0	5 2.0		5 8.0	6 3.0	6 3.0	• ^{64.0}	57.0						V · >4.0 - 40.0	UUU
3772																											· >40.0 - 50.0	3772

						278000									2	78500									2790	000		
	46.0	43.0	41.0	39.0	44.0	51.0	40.0	39.0	36.0	39.0	28.0	29.0	37.0	_30.0	37.0	39.0	28.0	46.0	31.0		26.0	29.0	29.0	39.0	.39.0	39.0		
	56.0	43.0	43.0	46.0	62.0	41.0	54.0	46.0	43.0	39.0	32.0	38.0	36.0	24.0	33.0	33.0	37.0	34.0	34. <u>0</u> 27.0	33.0	34.0	38.0	40.0	31.0	36.0	42.0		
		·		·	•		•	• • • •										·	.			•		•				
	5 0.0	.47.0	.37.0	.39.0	.38.0	.44.0	.48.0	.41.0	.39.0	.33.0	.39.0	• 55.0	45.0	.34.0	.42.0	.33.0	.35.0	.37.0	.35.0	•50.0	.38.0	.40.0	.36.0	.32.0	.33.0	74.0		
	48.0	47.0	.46.0	5 4.0	.47.0	.47.0	.45.0	46.0	.37.0	.31.0	5 9.0	42.0	.45.0	6 1.0	45.0	.40.0	.42.0	.41.0	5 0.0	88.0	.37.0	.42.0	6 7.0	52.0	58.0	52.0		
	6 7.0	5 7.0	5 1.0	.48.0	5 5.0	.44.0	.41.0	.39.0	.46.0	29.0	.40.0	.43.0	. ^{63.0}	85.0	45.0	.49.0				.41.0	.44.0	.47.0	.45.0	79.0 •		46.0	Ŭ	
0	5 8.0	5 3.0	. 69.0	5 1.0	• 5 5.0	.49.0	.43.0	.33.0	.37.0	.38.0	• 5 3.0	118.0	.84.0 •		5 9.0	67.0	54.0		.35.0	.42.0	. 66.0	.47.0	.47.0	.49.0	• ^{52.0}	50.0		0
377350												246.0																377350
	5 4.0	.68.0	• 5 3.0	.43.0	.39.0	48.0	.45.0	.46.0	0}		•73.0	316.0	108.0	81.0	• ^{60.0}	.29.0	. <mark>.</mark> 36.0	.38.0	.35.0	.46.0	.47.0	.49.0	• 57.0	•58.0	• ^{69.0}	45.0		
	6 2.0	5 1.0	• 5 2.0			.42.0	.48.0	.35.0	.36.0	5 5.0	76.0	86.0	. 56.0	48.0	.31.0	.33.0	.33.0	.33.0	.35.0	.39.0	.47.0	5 7.0	• 5 4.0	.43.0	5 5.0	54.0		
		61.0	45.0	10.0	20.0	47.0	44.0	44.0	45.0	26.0	52.0	79.0	87.0	45.0	27.0	21.0	25.0	43.0	20.0	50.0	56.0	65.0	50.0	47.0	54.0	56.0		
		• ^{64.0}	.45.0	.42.0	.38.0	.47.0	.44.0	.44.0	.45.0	.30.0	• •	•	0. yo	.45.0	.37.0	.31.0	.35.0	.43.0	.38.0	•	 •	.05.0	•50.0	.47.0	.54.0	,50.0		
	5 0.0	41.0	80.0	• 55.0	5 4.0	.47.0	• 51 .0	• 5 2.0	.41.0	.44.0	.44.0	. 51.0	136.0	• 5 1.0	43.0	.42.0	.36.0	.38.0	.46.0	• 55 .0	• 5 0.0	5 5.0	.42.0	49.0	• 5 2.0	71.0		
	45.0	42.0	75.0	54.0	52.0	48.0	96.0	51.0	53.0	53.0	.37.0	53.0	58.0	331.0	53.0	.45.0	44.0	42.0	5 3.0	54.0	52.0	53.0	57.0	57.0	67.0	61.0		
		·	·					·	·	·		·								·	·			·	•			
	41.0	50.0 •	• ^{62.0}	6 0.0	6 2.0	• 5 1.0	5 4.0	47.0	.47.0	42.0	.35.0	• 5 0.0	55.0	<u>57.0</u>	.38.0	.41.0	.39.0	• 5 4.0	. 54.0	48.0	•54.0	5 3.0	6 1.0	•72.0	. <mark>6</mark> 2.0	56.0		
	49.0	<u>5</u> 2.0	5 4.0	.48.0	5 2.0	5 0.0	48.0	.42.0	5 1.0	.43.0	.47.0	5 0.0	72.0	7 6.0	5 6.0	48.0	.44.0	• 55 .0	48.0	44.0	49.0	6 0.0	6 5.0	66.0	5 4.0	45.0		
	47.0	.48.0	.47.0	• 52 .0	.43.0	.44.0	.43.0	.46.0	5 6.0	• 57 .0	.49.0	.80.0 •	.67.0 •	• ^{74.0}	.44.0	.44.0	5 0.0	5 4.0	52.0	• 5 0.0	64.0 •	.61.0	_72.0	• 55.0	• 5 3.0	48.0		
	46.0	.39.0	.38.0	.39.0	.35.0	.39.0	_110.0	•75.0	48.0	.46.0	5 4.0	6 3.0	5 0.0	65.0	47.0	.44.0	45.0	46.0	•52.0	6 0.0	60.0	6 6.0	76.0	6 3.0	.49.0	49.0		
																	/											
000	5 5.0	56.0 •	• 5 2.0	.37.0	.34.0	.42.0	• ^{106.0}	.62.0	54.0	62.0	_111.0	•64.0	60.0 •	•59.0	43.0	.40.0		.44.0	.39.0	.44.0	.43.0	.49.0		•51.0 •	.49.0	50.0		77 773000
ς,	<u>,</u> 46.0	.46.0	.44.0	.47.0	5 4.0	86.0	15.0	62.0	.59.0	596,0	76.0	73.0	6 5.0	6 2.0	.44.0	.48.0	48.0	.48.0	5 1.0	.45.0	.46.0	• 5 0.0	5 8.0		.44.0	50.0		m m
		10.0	57.0	54.0				143.0	124.0			05.0	77.0	22.2									74.0	10.0				
	42.0	.43.0	57.0 •	51.0 •	.44.0	.38.0	.55:0			56.0	•84.0	•65.0 •	•77.0	. ^{60.0}	.47.0	.46.0	.45.0	.45.0	<u>46.0</u>	45.0	.44.0	.47.0	• ^{71.0}	.46.0	48.0	46.0		
	5 1.0	.46.0	.41.0	.38.0	.34.0	.48.0	•90.0	149.0	156.0	. 64.0	• ^{51.0}	.63.0	.82.0	7 3.0	•63.0	.46.0	45.0	• ^{55.0}	5 6.0	5 2.0	.41.0		_66.0	5 1.0	.43.0	48.0		
	55.0	52.0	40.0	45.0	43.0	30.0	85.0	85.0	81.0	73.0	117.0	76.0	149.0	74.0	70.0	58.0	47.0	57 0	57.0	54.0	45.0		67.0	43.0	45.0	54.0		
	,00.0	•			. 0.0	.00.0	•	••••	•	•	•			•	• • • •	•		•	•	••••••			•	.10.0		04.0		
	5 4.0	.43.0	.45.0	.44.0	.48.0	5 0.0	5 0.0	88.0 •	6 7.0	72.0	69.0	•76.0	• ^{84.0}	80.0	.48.0	5 6.0	6 5.0	. ^{64.0}	71.0	71.0 •	5 6.0	.46.0	77.0	51.0 •	.48.0	50.0		
	39.0	41.0	.38.0	.37.0	.43.0	.48.0	.46.0	.44.0	41.0	40.0	66.0	74.0	8 3.0	5 2.0	5 2.0	5 6.0	5 2.0	5 5.0	6 9.0	5 4.0	5 5.0	.49.0	71.0	5 6.0	. 57.0	51.0		
	49.0	.38.0	.45.0	.41.0	.47.0	.38.0	• 5 2.0	.48.0	• 5 3.0	• 5 4.0	48.0	• 5 7.0	<u>.</u> 37.0	.40.0	41.0	.43.0	43.0	• 55.0	72.0 •	7 3.0	•53.0	.48.0	• 57 .0	.49.0	.48.0	62.0		
	41.0	.40.0	.41.0	.43.0	.44.0	.43.0	66.0	. 70.0	6 7.0	6 8.0		102.0	6 1.0	.49.0	.47.0	. 54.0	.45.0	.47.0	45.0	5 3.0		5 2.0	6 4.0	.48.0	.46.0	46.0		
																				/								
	43.0	.44.0	.44.0	.42.0	• 57 .0	• ^{53.0}	.64.0	6 4.0	6 1.0	68.0	•99.0	<u>62.0</u>	.62.0 •	• ^{53.0}	• ^{53.0}	• 5 0.0	•52.0	.43.0	.45.0	.46.0	•72.0	59.0 •	.64.0	.47.0	.48.0	52.0		
8	49.0	.38.0	.49.0	5 1.0	.49.0	. 69.0	•72.0	74.0 •	6 7.0	72.0	•92.0	121.0	.61.0	5 1.0	5 6.0	. 58.0	46.0	5 1.0	.47.0	47.0	.48.0	.46.0		5 9.0	5 5.0	50.0		8
37725	57.0	57.0	93.0	83.0	52.0	88.0	114.0	159.0	80.0	65.0	58.0	48.0	50.0	47.0	55.0	60.0	61.0	56.0		49.0	50.0	46.059.0	49.0		62.0		59.0	37725
		•	•••••	•	•	••••••			•	•	•		•••••		•	•	•	•••••		.+0.0	•	40.0000	.+0.0		•			
	5 7.0	. <mark>.</mark> 44.0	.41.0	•54.0	• ^{63.0}	• ^{92.0}	126.0	102.0	90.0	<u>68.0</u>	. 65.0	• ^{53.0}	.43.0	48.0	.49.0	5 3.0	5 8.0	• 5 7.0	5 2.0	• 5 0.0	47.0	5 0.0	.48.0	.41.0	.49.0	50.0		
	61.0	.48.0	42.0	48.0	124.0	111.0	189.0	259.0	127.0	132.0	76.0	48.0	44.0	52.0	57.0	60.0	54.0	50.0	50.0	52.0	50.0	50.0	43.0	42.0	77.0	51.0		
											•			•	•	•		•	•	•	•	•			•			
	56.0	2.0	. <mark>47.0</mark>	.44.0	8 1.0	● ^{150.0}	374.0	● ^{181.0}	90.0	• ^{85.0}	• ^{104.0}	5 1.0	.50.0 •	•52.0	65.0	• ^{60.0}	5 5.0	• 5 4.0	•50.0	•53.0	54.0 •	51.0 •	•50.0	.46.0	.48.0	5 1.0		
	63.0	5 7.0	45.0	.42.0	.45.0	148.0	339.0	<u>.</u> 6.0	114.0	<u>69.0</u>	<u>68.0</u>	5 4.0	5 1.0	5 5.0	6 0.0	•63.0	5 3.0	5 0.0	5 2.0	49.0	49.0	5 2.0	5 0.0	49.0	<u>44.0</u>	45.0		
									Δ																			
	5 4.0	•53.0	.45.0	•52.0	.47.0	.54.0	102.0	158.0	97.0	. <mark>6</mark> 5.0	• ^{60.0}	•83.0	.63.0	. 64.0	• 52 .0		•52.0	• 5 3.0	•54.0	. <mark>63.0</mark>	•52.0	•63.0	•51.0	• 5 1.0	.49.0	48.0		
	57.0	• 5 2.0	.47.0	.48.0	.47.0	109.0	143.0	119.0	121.0	. 66.0	6 5.0	5 6.0	_80.0	. 69.0	62.0		7 0.0	76.0	93.0 •	•100.0	60.0	59.0	46.0	50.0	<u>52.0</u>	52.0		
																											Zn contours	
	5 7.0	.44.0	.46.0	.44.0	• 5 9.0	202.0	1 04.0	154.0	99.0	• ^{85.0}	85.0	•81.0	•75.0	• ^{76.0}	• ^{65.0}		• 5 5.0	.56.0 •	• ^{55.0}	.48.0	5 0.0						80	
	5 6.0	.46.0	5 3.0	5 5.0	. 54.0	298.0	132.0	•	107.0	254.0	124.0	• ^{107.0}	89.0	•78.0	•		_68.0	6 0.0	•60.0	5 3.0	53.0						202	
	55 0	51 0	67 0	FF 2	64.0	130.0	186.0	96.0	110.0	88.0	06.0	78 0	Q1 0	78 0	60.0		64.0		16.0		E0 0						ZN 10.0 10.0	
3772000		•	۰ <i>۲</i> .0	ວວ.U •	• • • •			••••	• 112.0	•	•00.0	0	01.0	•	• •		्र न .U	U •	<u>.</u> +0.U	•00.0							>-2.0 - 49.0 • >49.0- 70.0	3772000

ſ						278000									:	278500									2790	000			
	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2		-0.2	-0.2	-0.2	-0.2	-0.2	-0.2			
	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2			
									·		·						·		·	·					-				_
	-0.2	-0.2	-0.2	0.2	-0.2	0.2	0.2	-0.2	-0.2	-0.2	-0.2	0.2	-0.2	-0.2	-0.2	0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	0.2	-0.2	-0.2			
	-0.2	-0.2	-0.2	-0.2	-0.2	0.2	-0.2	-0.2	0.2	-0.2	-0.2	0.2	0.2	-0.2	0.2	0.2	0.2	-0.2	-0.2	-0.2	-0.2	-0.2	0.2	-0.2	0.2	-0.2			
	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2				-0.2	-0.2	-0.2	-0.2	-0.2		-0.2		No. 10	
	-0.2	-0.2	.0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2				-0.2	-0.2	-0.2	-0.2	0.2		-0.2	Ľ		
73500	-0.2	-0.2	0.2	-0.2	-0.2	0.2	0.2	0.2	-0.2	0.2	-0.2	-0.2	0.2		0.2	0.2	-0.2		0.2	-0.2	0.2	-0.2	0.2	0.2	0.2	-0.2			73500
37	-0.2	-0.2	-0.2	-0.2	-0.2	0.2	0.2	0.2			-0.2	0.2	-0.2	0.2	-0.2	0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2			37
								60	<u>)</u>			0.2																	
	-0.2	-0.2	-0.2			.0.2	0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	. ^{-0.2}	0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	0.2	0.2	-0.2	-0.2			
		-0.2	-0.2	0.2	0.2	0.2	0.2	0.2	0.2	-0.2	-0.2	-0.2	0.2	0.2	0.2	-0.2	0.2	0.2	0.2	-0.2	-0.2	0.2	0.2	-0.2	0.2	-0.2			
	-0.2	-0.2	-0.2	-0.2	0.2	. ^{-0.2}	0.2	-0.2	0.2	0.2	0.2	-0.2	-0.2	-0.2	0.2	0.2	0.2	-0.2	-0.2	0.2	-0.2	-0.2	0.2	-0.2	-0.2	0.2			
																								, 					
	-0.2	-0.2	-0.2	-0.2	0.2	0.2	-0.2	-0.2	0.2	-0.2	-0.2	0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	0.2	-0.2	-0.2	-0.2	-0.2			
	-0.2	0.2	0.2	-0.2	0.2	0.2	0.2	-0.2	0.2	-0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	-0.2	0.2	-0.2	0.2	-0.2	0.2	0.2	-0.2	-0.2			
	-0.2	-0.2	0.2	-0.2	0.2	0.2	0.2	-0.2	-0.2	0.2	0.2	-0.2	-0.2	-0.2	0.2	0.2	-0.2	-0.2	-0.2	-0.2	0.2	0.2	-0.2	0.2	0.2	-0.2			
	-0.2	0.2	0.2	0.2	0.2	0.2	0.2	-0.2	0.2	0.2	-0.2	0.2	0.2	. ^{-0.2}	0.2	0.2	-0.2	-0.2	-0.2	-0.2	0.2	-0.2	-0.2	-0.2	-0.2	-0.2			
	-0.2	0.2	-0.2	0.2	0.2	0.2	0.2	0.2	0 .2	-0.2	-0.2	•0.2	-0.2	0.2	0.2	0.2	-0.2	0.2	0.2	0.2	-0.2	0.2	-0.2	0.2	0.2	-0.2			
	-0.2	0.2	-0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.2	-0.2	0.2		0.2	0.2	0.2	-0.2	0.2		0.2	-0.2	-0.2			
3773000																													3773000
	-0.2	0.2	-0.2	0.2	0.2	0.2	Ø.2	0.9	0.5	0.5	0.2 7	0.2	0.2	0.2	. ^{-0.2}	0,2	0.2	-0.2	-0.2	0.2	-0.2	0.2	-0.2		0.2	-0.2			
	-0.2	0.2	-0.2	0.2	0.2	. ^{-0.2}	-0.2	0.2		0.2	0.2	0.2	0.2	0.2	-0.2	0.2	0.2	-0.2	-0.2	-0.2	-0.2	0.2	-0.2	0.2	0.2	-0.2			
	-0.2	0.2	-0.2	-0.2	-0.2	0.2	-0.2	0.2	-0.2	0.2	-0.2	-0.2	-0.2	0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2		-0.2	-0.2	-0.2	-0.2			
												·																	
	-0.2	-0.2	-0.2	0.2	-0.2	0.2	-0.2	-0.2	0 .3	-0.2	0.2	-0.2	-0.2	-0.2	-0.2	0.2	0.2	0.2	-0.2	-0.2	0.2		-0.2	-0.2	0.2	-0.2			
	-0.2	0.2	-0.2	0.2	-0.2	0.2	-0.2	-0.2	0.2	-0.2	-0.2	0.2	-0.2	0.2	-0.2	0.2	-0.2	0.2	-0.2	0.2	-0.2	0.2	-0.2	-0.2	-0.2	-0.2			
	-0.2	0.2	-0.2	0.2	0.2	0.2	0.2	-0.2	0.2	-0.2	0.2	0.2	0.2	0.2	0.2	0.2	-0.2	-0.2	-0.2	0.2	-0.2	-0.2	-0.2	0.2	-0.2	-0.2			
-																													
	-0.2	0.2	0.2	0.2	0.2	-0.2	0.2	0.2	-0.2	0.2	0.2	0.2	0.2	0.2	-0.2	0.2	0.2	-0.2	0.2	0.2	-0.2	0.2	0.2	0.2	0.2	-0.2			
	-0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	-0.2	0.2	0.2	-0.2	0.2	0.2		0.2	0.2	0.2	0.2	-0.2			
	-0.2	0.2	-0.2	-0.2	-0.2	0.2	-0.2	-0.2	0.2	0.2	0.2	-0.2	0.2	0.2	0.2	0.2	-0.2	0.2	0.2	-0.2	0.2	-0.2	0.2	0.2	-0.2	-0.2			
3772500	-0.2	0.2	-0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	-0.2	-0.2	-0.2	0.2	-0.2	0.2	0.2	-0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	-0.2			3772500
	-0.2	-0.2	-0.2	-0.2	0.2	0.3	0.2	0.2	0.2	-0.2	-0.2	0.2	-0.2	-0.2	-0.2	0.2	-0.2	-0.2		-0.2	-0.2	-0.2-0.2	-0.2		0.2	-0.2			
	-0.2	0.2	-0.2	-0.2	0.2	0.2	-0.2	-0.2	0.2	-0.2	0.2	-0.2	-0.2	0.2	0.2	0.2	-0.2	0.2	0.2	0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2			
	-0.2	-0.2	-0.2	0.2	-0.2	0.2	0.2	-0.2	0.2	0.2	0.2	0.2	-0.2	0.2	-0.2	-0.2	0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	0.2	0.2	-0.2			
	-0.2	0.2	-0.2	0.2	-0.2	0.2	0.2	-0.2	0.2	-0.2	-0.2	-0.2	-0.2	0.2	0.2	0.2	-0.2	-0.2	0.2	0.2	-0.2	-0.2	-0.2	0.2	0.2	-0.2			
	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	0.3	0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2			
	-0.2	0.2	0.2	-0.2	-0.2	0.2	-0.2	0.2	-0.2	-0.2	-0.2	-0.2	-0.2	0.2	-0.2		0.2	0.2	0.2	0.2	0.2	0.2	-0.2	0.2	-0.2	-0.2			
	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2		-0.2	0.2	-0.2	0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2			
	-0.2	0.2	0.2	-0.2	-0.2	-0.2	0.2	-0.2	-0.2	-0.2	0.2	-0.2	-0.2	<u>-</u> 0.2	-0.2		-0.2	0.2	-0.2	-0.2	-0.2					Ag co	ontours		
						_		<u> </u>		-																	0.25		
	-0.2	0.2	. ^{-0.2}	-0.2	-0.2	-0.2	0.2 •	-0.2	-0.2	-0.2	. ^{-0.2}	0.2	-0.2	0.2	-0.2		-0.2	-0.2	-0.2	-0.2	-0.2						0.35 0.5		
3772000	-0.2	0.2	-0.2	-0.2	-0.2	0.2	0.2	0.2	-0.2	0.2	0.2	-0.2	-0.2	0.2	-0.2		0.2	0.2	0.2	-0.2	-0.2					AG	>-0.20000 >-0.2 - 0.2		3772000

