TECHNICAL REPORT OF MERIT FOR THE POISSONS BLANC PROJECT, NORTHERN QUEBEC, CANADA

Latitude 49°19'48''N, Longitude 72°10'17''W

For

Royal Coal Corp.

NI-43-101 & 43-101F1

Prepared By:

Mr. Peter Karelse, P.Geo.

PK Geologic Services Ltd. 269 Shuswap Road Monetville, Ontario P0M 2K0

Effective Date: November 28, 2022 Signing Date: November 28, 2022

TABLE OF CONTENTS

1.0	SUMMARY	1
2.0	INTRODUCTION	2
	2.1 TERMS OF REFERENCE	2
	2.2 SITE VISITS	3
	2.3 UNITS AND CURRENCY	3
	2.4 SOURCES OF INFORMATION	3
	2.5 GLOSSARY OF TERMS	3
3.0	RELIANCE ON OTHER EXPERTS	5
4.0	PROPERTY DESCRIPTION AND LOCATION	6
	4.1 LOCATION	6
	4.2 PROPERTY DESCRIPTION	7
	4.3 SURFACE RIGHTS & PERMITS	10
	4.4 ENVIRONMENTAL LIABILITY	10
5.0	ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND	
	PHYSIOGRAPHY	7
	5.1 ACCESSIBILITY	10
	5.2 CLIMATE	. 11
	5.3 LOCAL RESOURCES	12
	5.4 INFRASTRUCTURE	12
	5.5 PHYSIOGRAPHY	12
6.0	HISTORY	13
	6.1 PREVIOUS WORK	14
	6.2 HISTORICAL PRODUCTION	16
	6.3 HISTORICAL RESOURCE AND RESERVE ESTIMATES	17
7.0	GEOLOGICAL SETTING AND MINERALIZATION	18
	7.1 REGIONAL GEOLOGY	18
	7.2 PROPERTY GEOLOGY	21
	7.3 PROPERTY LITHOLOGY	22
	7.4 PROPERTY MINERALOGY	24
8.0	DEPOSIT TYPES	25
9.0	EXPLORATION	25
10.0	DRILLING	25
11.0	SAMPLE PREPARATION, ANALYSIS AND SECURITY	25
12.0	DATA VERIFICATION	26
	12.1 SITE VISIT	26
13.0	MINERAL PROCESSING AND METALLURGICAL TESTING	27
14.0	MINERAL RESOURCE ESTIMATES	27
15.0	MINERAL RESERVE ESTIMATES	28
16.0	MINING METHODS	28
17.0	RECOVERY METHODS	28
18.0	PROJECT INFRASTRUCTURE	
19.0	MARKET STUDIES AND CONTRACTS	28
20.0	ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY	
	IMPACT	28

21.0	CAPITAL AND OPERATING COSTS	
	ECONOMIC ANALYSIS	
23.0	ADJACENT PROPERTIES	
24.0	OTHER RELEVANT DATA AND INFORMATION	
25.0	INTERPRETATION AND CONCLUSIONS	
26.0	RECOMMENDATIONS AND PROPOSED 2022 BUDGET	
	26.1 PROPOSED 2022 BUDGET	
	REFERENCES	
28.0	CERTIFICATES	

APPENDIX I	POISSONS BLANC SURFACE DRILLHOLE PLAN	. 33
APPENDIX II	POISSONS BLANC DRILL HOLE SECTIONS	. 35
APPENDIX III	POISSONS BLANC DRILL HOLE LOCATION TABLE	. 42
APPENDIX IV	HISTORIC DRILL HOLE ASSAYS	. 47
ALLENDIATV	THIS FORICE DRIELE HOLE ASSA IS	. 4/

LIST OF TABLES

Table 4.1	Poissons Blanc Property Option Agreement Details	8
Table 4.2	Poissons Blanc Property Mining Claims	9
Table 6.1	Historical Exploration on the Poissons Blanc Property	
Table 6.2	Stirred Tank Residue Assay and Extraction Summary	
Table 6.3	McNickel North Zone Historic Ni-Cu-Co Resource Estimate	. 17

LIST OF FIGURES

Figure 4.1	Location Map of the Poissons Blanc Property	6
Figure 4.2	Claims and Mining Leases of the Poissons Blanc Property	7
Figure 5.1	Poissons Blanc Property Access	. 10
Figure 5.2	Climate Charts of the Poissons Blanc Property	11
Figure 6.1	Bio-Leach Sample Locations	16
Figure 7.1	Regional Geology Map	. 19
Figure 7.2	Mineral trends and Deposits of the Lac St. Jean Anorthosite Complex	20
Figure 7.3	General Geology and Mineralization of the Poissons Blanc Main Zone Area	23
Figure 12.1	Possible 89-MCN-21/24 Drill Site	. 26
Figure 12.2	Possible 89-MCN-27 Drill Site	. 26
Figure 12.3	Possible 89-MCN-34/35 Drill Site	. 26
Figure 12.4	Main Zone Outcrop	. 27
	r	,

1.0 SUMMARY

This Technical Report was prepared by PK Geologic Services Ltd. (PK) at the request of Mr. Nicholas Konkin, Director and CEO of Royal Coal (RC) an unlisted company. The purpose of this report is to provide an independent, NI 43-101 compliant, Technical Report (the Report) on the Poissons Blanc Property (the Property) 35 kilometres (km) north of the village of Saint Stanilas, Quebec, Canada. The compliant NI 43-101 report is a review of the available historic data, identify its merits, propose an appropriate exploration program which is suitable for inclusion in a prospectus document for the purposes of financing or listing by Royal Coal Corp.

The Property location is in northern Quebec, 294 km northwest of Quebec's capital city, Quebec City. Access to the Property is via all-weather paved roads, gravel roads and upgraded forest access roads north from the town of Dolbeau-Mistassini, the nearest town of significant population, which is approximately 80 kilometres to the south. The area has been the subject to various exploration programs since 1890 and is a testament to the mineral potential of this area. Currently Margris Resources is operating the Niobec mining operation 118 kilometres to the southeast. The availability of equipment and human resources is enhanced by this operation to support any potential mining operation.

The property comprises of 32 contiguous claims, covering an area of 1796.76 ha. The claims are subject to an option agreement between 9157-222 Quebec Inc. and Griffis Capital Inc. as the optionors and Royal Coal Corp. as the optionee.

The Poissons Blanc Property, with a surface area totaling 1796.76 ha., has an annual maintenance cost of \$46,800, plus a filing fee of \$2,200 covering the thirty-two contiguous claims. All claims are in good standing as of the effective date of this Report. The claims have a work credit of \$107,143.39 as of the date of this report.

Geologically, the Poissons Blanc property is located on the western lobe of the lac St. Jean Proterozoic Anorthosite Complex and is part of the Precambrian Grenville province. Mapping and drill program defined a mafic to gabbroic rich lithologic unit approximately 200-500 metres in thickness. This unit contained numerous discontinuous bands of fine to pegmatoidal anorthosite to pyroxenite with the most prevalent lithology being medium pegmatoidal anorthositic gabbro to gabbro.

Structurally the mafic to gabbro rich lithology dips shallowly at 25 degrees to the east and has an approximate strike of north to south. Early ductile shearing as well as later ductile-brittle shearing has been observed.

The strata-bound magmatic sulphide mineralization occurs throughout the mafic to gabbroic rich lithology and consists of two types: 1) disseminated pyrrhotite and pyrite with a trace of chalcopyrite and 2) disseminated to massive lenses of pyrrhotite and pyrite.

In 1989 McNickel advanced a reported 160 (157 documented) diamond drill holes (15492 m.) on the Poissons Blanc property. Samples (6700) were taken from selected intersections, and these were assayed by Chemex labs Ltd. The core was not available for examination and with only a limited number of historic assay results from Chemex Labs. The sampling methods and QA/QC are unknown to the author.

Based in part on this drilling a **historic non NI43-101 compliant mineral resource for the North Zone** was reported to be 1,482,425 Tonnes @0.46% Ni, 0.18% Cu and 0.05% Co. This has not been verified by the author of this report.

The Poissons Blanc property is centered on the historic McNickel deposit which reported a **historic non NI43-101 compliant mineral resource,** at a 0.1% cutoff of 5.855 million tons grading 0.209% Ni, 0.106% Cu and 0.029% Co in the **Main Zone and North Zone** and were calculated based on the 15924 m of drilling.

It is recommended that an initial program of 1600 metres of drilling with a total budget for 2022 of \$369,160, which includes a 10% contingency in 8 drill holes at strategic locations be undertaken as the Phase 1 of a multi-phase program. This initial phase will serve to verify the historic drilling results and to test the possible extensions to the currently defined mineralization envelope.

2.0 INTRODUCTION

2.1 TERMS OF REFERENCE

The following Technical Report (the "Report") prepared by PK Geologic Services Ltd. ("PK") describes the existing gold mineralization on the Poissons Blanc property in the Saint Stanilas area, Quebec, Canada (the "Property"). This technical report has been prepared in compliance with the requirements of Canadian National Instrument ("NI") 43-101, in force as of the effective date of this report.

This Report was prepared at the request of Mr. Nicholas Konkin, CEO and Director of Royal Coal Corp. ("RC" or the "Company"). Royal Coal Corp. is an unlisted Canadian-based company with its corporate office at:

100 King Street West Suite 5600, P.O. Box 270 Toronto, Ontario M5X 1C9

Tel: +1 (416) 278 8406 Fax: +1 (416) 703-3695

This Report is considered current as of November 28, 2022.

The Property is located in northern Quebec, 294 km northwest of Quebec's capital city, Quebec City. Access to the Property is via an all-weather paved road, gravel roads and upgraded forest access roads from the town of Dolbeau-Mistassini, the nearest town of significant population, approximately 80 kilometres to the south. The property is comprised of 32 contiguous claims that are is good standing.

The purpose of the current Report is to provide an independent, NI 43-101 compliant, Technical Report indicating that the Poissons Blanc property is a property of merit. PK understands that this Technical Report will be used to support the public disclosure requirements of Royal Coal Corp. and will be filed on SEDAR as required under NI 43-101 disclosure regulations.

Royal Coal Corp. has accepted that the qualifications, expertise, experience, competence, and professional reputation of PK Geologic Services Ltd. are appropriate and relevant for the preparation of this Report. Royal Coal Corp. has also accepted that PK's Principals are members of professional bodies that are appropriate and relevant for the preparation of this Report.

2.2 SITE VISITS

A site visit to the Property on Oct 18, 2022, was carried out by Mr. Peter Karelse, P.Geo., of PK, a qualified person under the terms of the NI 43-101, who has provided specific input to this Report.

2.3 UNITS AND CURRENCY

Metal values are reported in percentage ("%"), per metric tonne or ton as indicated. Costs are reported in Canadian dollars ("CDN\$") or US dollars ("US") unless otherwise stated. Grid coordinates are given in the UTM NAD 83 (Zone 18).

2.4 SOURCES OF INFORMATION

This Report is based, in part, on internal company technical reports, and maps, published government reports, company letters and memoranda, and public information as listed in Section 27.0 at the conclusion of this Report. Several sections from reports authored by other consultants have been directly quoted or summarized in this Report and are so indicated where appropriate.

2.5 GLOSSARY OF TERMS

\$Dollars±Plus, or minus+Plus-Minus%Percent°Degree(s)°CDegree Celsius<Less than>Greater thanCIMCanadian Institute of Mining, Metallurgy and PetroleumcmCanadian Institute of Mining, Metallurgy and PetroleumCNDCanadianColuCobaltCuCoperCND\$Canadian dollarCuCoperDDHDiamond drill holeEEastEMElectromagnetichaHectaresHLEMHorizontal Loop Electromagnetic (geophysics)IPInduced Polarization (geophysics)	ABBREVIATION	DESCRIPTION
+Plus-Minus%Percent%Degree(s)°CDegree Celsius<	\$	Dollars
-Minus%Percent%Degree(s)°CDegrees Celsius<	±	Plus, or minus
%Percent°Degree(s)°CDegrees Celsius<	+	Plus
°Degree(s)°CDegrees Celsius<	-	Minus
°CDegrees Celsius<	%	Percent
<Less than>Greater thanCIMCanadian Institute of Mining, Metallurgy and PetroleumcmCentimetreCNDCanadianCoCobaltCuCopperCND\$Canadian dollarThe CompanyRoyal Coal Corp.DDHDiamond drill holeEEastEMElectromagnetichaHectaresHLEMHorizontal Loop Electromagnetic (geophysics)	0	Degree(s)
>Greater thanCIMCanadian Institute of Mining, Metallurgy and PetroleumcmCentimetreCNDCanadianCoCobaltCuCoperCND\$Canadian dollarCND\$Canadian dollarDDHDiamond drill holeEMEastEMElectromagnetichaHectaresHLEMHorizontal Loop Electromagnetic (geophysics)	°C	Degrees Celsius
CIMCanadian Institute of Mining, Metallurgy and PetroleumcmCentimetreCNDCanadianCoCobaltCuCopperCND\$Canadian dollarThe CompanyRoyal Coal Corp.DDHDiamond drill holeEEastEMElectromagnetichaHectaresHLEMHorizontal Loop Electromagnetic (geophysics)	<	Less than
cmCentimetreCNDCanadianCoCobaltCuCopperCND\$Canadian dollarThe CompanyRoyal Coal Corp.DDHDiamond drill holeEEastEMElectromagnetichaHectaresHLEMHorizontal Loop Electromagnetic (geophysics)	>	Greater than
CNDCanadianCoCobaltCuCopperCND\$Canadian dollarThe CompanyRoyal Coap.DDHDiamond drill holeEEastEMAElectromagnetichaHectaresHLEMHorizontal Loop Electromagnetic (geophysics)	CIM	Canadian Institute of Mining, Metallurgy and Petroleum
CoCobaltCuCoperCND\$Canadian dollarThe CompanyRoyal Corp.DDHDiamond drill holeEEastEMElectromagnetichaHectaresHLEMHorizontal Loop Electromagnetic (geophysics)	cm	Centimetre
CuCoperCND\$Canadian dollarThe CompanyRoyal Coap.DDHDiamond drill holeEEastEMElectromagnetichaHectaresHLEMHorizontal Loop Electromagnetic (geophysics)	CND	Canadian
CND\$Canadian dollarThe CompanyRoyal Coal Corp.DDHDiamond drill holeEEastEMElectromagnetichaHectaresHLEMHorizontal Loop Electromagnetic (geophysics)	Co	Cobalt
The CompanyRoyal Coal Corp.DDHDiamond drill holeEEastEMElectromagnetichaHectaresHLEMHorizontal Loop Electromagnetic (geophysics)	Cu	Copper
DDHDiamond drill holeEEastEMElectromagnetichaHectaresHLEMHorizontal Loop Electromagnetic (geophysics)	CND\$	Canadian dollar
EEastEMElectromagnetichaHectaresHLEMHorizontal Loop Electromagnetic (geophysics)	The Company	Royal Coal Corp.
EMElectromagnetichaHectaresHLEMHorizontal Loop Electromagnetic (geophysics)	DDH	Diamond drill hole
haHectaresHLEMHorizontal Loop Electromagnetic (geophysics)	E	East
HLEM Horizontal Loop Electromagnetic (geophysics)	EM	Electromagnetic
	ha	Hectares
IP Induced Polarization (geophysics)	HLEM	Horizontal Loop Electromagnetic (geophysics)
	IP	Induced Polarization (geophysics)

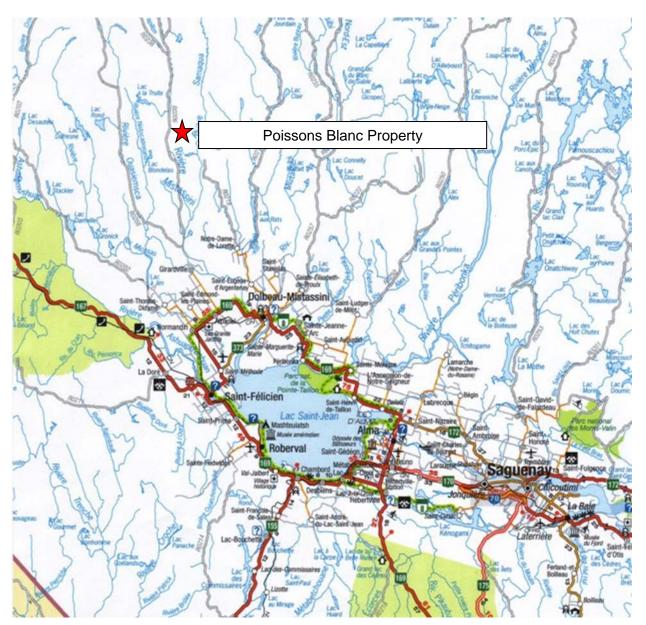
PK Geologic Services Ltd. Royal Coal Corp. Poissons Blanc Project

ABBREVIATION	DESCRIPTION
km	Kilometres
km2	Squared kilometres
m3	Cubic metres
Mg	Magnesium
mL	km2
μm	Micrometres
mm	Millimetres
Mt	Million tonnes
Ν	North
NE	Northeast
Ni	Nickel
NI	National Instrument (43-101)
NSR	Net Smelter Return
NSZ	North Shear Zone
NW	Northwest
PGE	Platinum Group Elements
RC	Reverse Circulation Drilling
S	South
SE	Southeast
t	Tonnes (metric)
t/m3	Tonnes per cubic metre
tpd	Tonnes per day
US\$	United States dollars
W	West

3.0 RELIANCE ON OTHER EXPERTS

PK has assumed, and relied on the fact, that all the information and existing technical documents listed in the References section of this Report are accurate and complete in all material aspects. While we carefully reviewed all the available information presented to us, we cannot guarantee its accuracy and completeness. We reserve the right but will not be obligated to revise our Report and conclusions if additional information becomes known to us after the date of this Report.

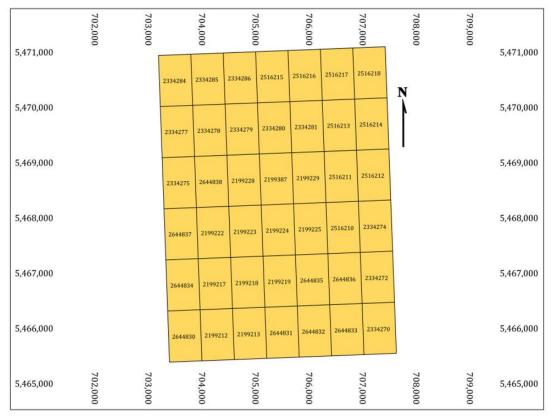
Although copies of the tenure documents, operating licenses, permits, and work contracts were reviewed, an independent verification of land title and tenure was not performed. PK has not verified the legality of any underlying agreement(s) that may exist concerning the licenses or other agreement(s) between third parties but has relied on the client's solicitor to have conducted the proper legal due diligence. Information on tenure was obtained from Royal Coal and confirmed on the Quebec government website at:<u>https://sigeom.mines.gouv.qc.ca/</u>


A draft copy of this Report has been reviewed for factual errors by Royal Coal and PK has relied on RC's historical and current knowledge of the Property in this regard. Any statements and opinions expressed in this document are given in good faith and in the belief that such statements and opinions are not false and misleading at the date of this Report.

4.0 PROPERTY DESCRIPTION AND LOCATION

4.1 LOCATION

The Property is in northern Quebec, 294 km northwest of Quebec's capital city, Quebec City. Access to the Property is via a combination of an all-weather paved road, gravel roads and upgraded forest access roads from the town of Dolbeau-Mistassini, the nearest town of significant population, approximately 80 kilometres to the south (figure 4.1).



⁽Source: Royal Coal Corp.)

4.2 PROPERTY DESCRIPTION

The Poissons Blanc Property comprises of 32 contiguous claims covering an area of 1796.76 ha (Figure 4.2). The claims are subject to an option agreement between 9157-222 Quebec Inc. and Griffis Capital Inc. as the optionors and Royal Coal Corp. as the optionee. All claims are in good standing as of the effective date of this Report (Table 4.1).

POISSONS BLANC PROPERTY CLAIM GROUP

On September 26, 2022, the Company was granted an option (Table 4.1) to acquire a 100% interest in Poissons Blanc, a nickel-copper- cobalt property comprised of 32 mineral claims covering approximately 1,792 hectares in the Saguenay Mining district in the Province of Quebec.

Table 4.1 Poissons Blanc Property Option Agreement Details

			Common shares		Exploration	
Option Due date	Option payments		Number	Fair value	expenditures	
	US\$	C\$		C\$	US\$	
July 29, 2022 (paid and issued)	12,600	58,000	1,250,000	62,500	_	
April 15, 2023	25,000	50,000	1,250,000	_	400,000	
April 15, 2024	25,000	50,000	1,250,000	_	400,000	
April 15, 2025	500,000	500,000*	1,250,000	_	400,000	
	562,600	658,000	5,000,000	62,500	1,200,000	

*Note: The Company has the option to pay the C\$500,000 by issuing common shares based on the 20-day weighted average trading price per common share.

Upon completion of the Option, the Company will grant a 5% NSR. The Company will have the option to reduce the NSR to 2.5% by making a payment of \$2,000,000 within 3 years from the date of issuance of the NSR.

Title No	Expiry Date	Area (Ha)	Excess Work	Required Work	Required Fees	Titleholder(s)
2199212	1/12/2023	56.17	0	1800	68.75	9157-2222 Quebec inc. (21207) 100 %
2199213	1/12/2023	56.17	0	1800	68.75	9157-2222 Quebec inc. (21207) 100 %
2199217	1/12/2023	56.16	0	1800	68.75	9157-2222 Quebec inc. (21207) 100 %
2199218	1/12/2023	56.16	0	1800	68.75	9157-2222 Quebec inc. (21207) 100 %
2199219	1/12/2023	56.16	0	1800	68.75	9157-2222 Quebec inc. (21207) 100 %
2199222	1/12/2023	56.15	0	1800	68.75	9157-2222 Quebec inc. (21207) 100 %
2199223	1/12/2023	56.15	107143.39	1800	68.75	9157-2222 Quebec inc. (21207) 100 %
2199224	1/12/2023	56.15	0	1800	68.75	9157-2222 Quebec inc. (21207) 100 %
2199225	1/12/2023	56.15	0	1800	68.75	9157-2222 Quebec inc. (21207) 100 %
2199228	1/12/2023	56.14	0	1800	68.75	9157-2222 Quebec inc. (21207) 100 %
2199229	1/12/2023	56.14	0	1800	68.75	9157-2222 Quebec inc. (21207) 100 %
2199387	1/13/2023	56.14	0	1800	68.75	9157-2222 Quebec inc. (21207) 100 %
2334280	3/4/2023	56.13	0	1800	68.75	9157-2222 Quebec inc. (21207) 100 %
2334281	3/4/2023	56.13	0	1800	68.75	9157-2222 Quebec inc. (21207) 100 %
2516210	4/9/2023	56.15	0	1200	68.75	9157-2222 Quebec inc. (21207) 100 %
2516211	4/9/2023	56.14	0	1200	68.75	9157-2222 Quebec inc. (21207) 100 %
2516212	4/9/2023	56.14	0	1200	68.75	9157-2222 Quebec inc. (21207) 100 %
2516213	4/9/2023	56.13	0	1200	68.75	9157-2222 Quebec inc. (21207) 100 %
2516214	4/9/2023	56.14	0	1200	68.75	9157-2222 Quebec inc. (21207) 100 %
2516215	4/9/2023	56.12	0	1200	68.75	9157-2222 Quebec inc. (21207) 100 %
2516216	4/9/2023	56.13	0	1200	68.75	9157-2222 Quebec inc. (21207) 100 %
2516217	4/9/2023	56.13	0	1200	68.75	9157-2222 Quebec inc. (21207) 100 %
2516218	4/9/2023	56.13	0	1200	68.75	9157-2222 Quebec inc. (21207) 100 %
2644830	4/10/2025	56.17	0	1200	68.75	9157-2222 Quebec inc. (21207) 100 %
2644831	4/10/2025	56,17	0	1200	68.75	9157-2222 Quebec inc. (21207) 100 %
2644832	4/10/2025	56,17	0	1200	68.75	9157-2222 Quebec inc. (21207) 100 %
2644833	4/10/2025	56,17	0	1200	68.75	9157-2222 Quebec inc. (21207) 100 %
2644834	4/10/2025	56.16	0	1200	68.75	9157-2222 Quebec inc. (21207) 100 %
2644835	4/10/2025	56.16	0	1200	68.75	9157-2222 Quebec inc. (21207) 100 %
2644836	4/10/2025	56.16	0	1200	68.75	9157-2222 Quebec inc. (21207) 100 %
2644837	4/10/2025	56.15	0	1200	68.75	9157-2222 Quebec inc. (21207) 100 %
2644838	4/10/2025	56.14	0	1200	68.75	9157-2222 Quebec inc. (21207) 100 %
Total	32 claims	1796.76		46,800	2200	

Table 4.2Poissons Blanc Property Mining Claims

4.3 SURFACE RIGHTS & PERMITS

The 32 contiguous claims (1628.25 ha) subject to the Royal Coal Corp. option agreement are in good standing and have sufficient work credits to satisfy claim work requirements into the near future. No work permits have been applied for at this time.

4.4 ENVIRONMENTAL LIABILITY

Royal Coal has not assumed any environmental liability regarding any of the previous operations conducted by prior owners of the Property.

5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

5.1 ACCESSIBILITY

The Property is in northern Quebec, 294 km northwest of Quebec's capital city, Quebec City. Access to the Property is via an all-weather paved road, gravel roads and upgraded forest access roads from the town of Dolbeau-Mistassini, the nearest town of significant population (12,000), approximately 80 kilometres to the south. Saguenay a town with a population of approximately 145,000 has the nearest airport. There is regular Air Canada flight service into Saguenay from Montreal daily. Saguenay is approximately 150 kilometres or 3.5 hours driving south of the project area via paved roads, gravel roads and forest access roads. During the property examination, it was noted that the final 200 metres of access road into the Main Zone area of the property is flooded due to beaver activity (Figure - 5.1).

Figure 5.1 Poissons Blanc Property Access

(Source: PK Geologic Services Ltd.)

5.2 CLIMATE

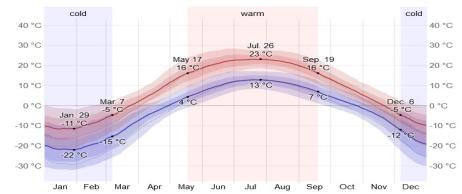
In Dolbeau-Mistassini, the nearest centre to the Poissons Blanc property for which records exist, the summers are long, comfortable, and partly cloudy and the winters are frigid, snowy, and mostly cloudy. Over the course of the year, the temperature typically varies from -22 °C to 23 °C and is rarely below -32 °C or above 28 °C.

The warm season lasts for 4.0 months, from May 17 to September 19, with an average daily high temperature above 16 °C. The hottest month of the year in Dolbeau-Mistassini is July, with an average high of 23 °C and low of 13 °C.

The cold season lasts for 3.0 months, from December 6 to March 7, with an average daily high temperature below -5 °C. The coldest month of the year in Dolbeau-Mistassini is January, with an average low of -21 °C and high of -11 °C.

A wet day is one with at least 1 millimetre of liquid or liquid-equivalent precipitation. The chance of wet days in Dolbeau-Mistassini varies throughout the year.

The wetter season lasts 5.9 months, from May 5 to November 1, with a greater than 30% chance of a given day being a wet day. The month with the most wet days in Dolbeau-Mistassini is July, with an average of 12.4 days with at least 1 millimetre of precipitation.


The drier season lasts 6.1 months, from November 1 to May 5. The month with the fewest wet days in Dolbeau-Mistassini is February, with an average of 5.3 days with at least 1 millimetre of precipitation.

Among wet days, we distinguish between those that experience rain alone, snow alone, or a mixture of the two. Based on this categorization, the most common form of precipitation in Dolbeau-Mistassini changes throughout the year.

Rain alone is the most common for 7.7 months, from March 30 to November 20. The month with the most days of rain alone in Dolbeau-Mistassini is July, with an average of 12.4 days.

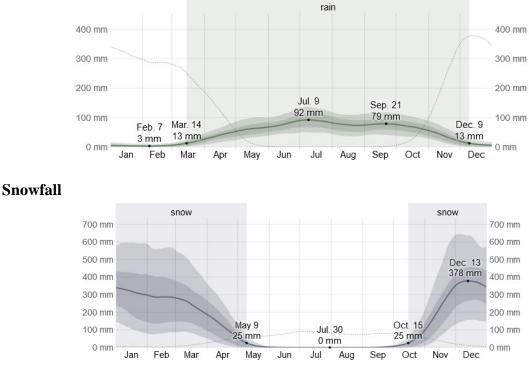

Snow alone is the most common for 4.3 months, from November 20 to March 30. The month with the most days of snow alone in Dolbeau-Mistassini is December, with an average of 5.9 days. (Figure 5.2).

Figure 5.2 Climate Charts of the Poissons Blanc Property

Temperature

Rainfall

(Source: <u>www.weatherspark.com</u>)

5.3 LOCAL RESOURCES

Currently Margris Resources is operating the Niobec mining operation 118 kilometres to the southeast making equipment and human resources available in the region to support a possible future mining operation. A well-developed road system including highways, local roads and power infrastructure exists regionally. High voltage power lines during the site visit local to the property were not observed. Adequate water supply to support a drill program of any size is located within reasonable distance to the mineralized areas.

5.4 INFRASTRUCTURE

There is no infrastructure present on the Property

5.6 PHYSIOGRAPHY

This ecoregion is classified as having a high to mid-boreal ecoclimate. It forms part of the larger boreal coniferous forest that occurs in the Laurentians of south-central Quebec. Closed stands of black spruce and balsam fir are dominant along lower slopes, whereas upper slopes are dominated by more open stands of black spruce with some white spruce and paper birch, usually associated with lichens and feathermosses. The warmer Lac Saint-Jean valley is dominated by mixed woods composed of tall to intermediate, closed stands of sugar maple, beech, and yellow birch on upland sites, whereas eastern hemlock, balsam fir, eastern white pine, and white spruce prevail in valleys. In the drier, northern parts of the region, white, red, and jack pine, along with spruce and balsam fir are more common. Eastern white cedar and black spruce are associated with wetlands. Much of the region has been deforested. Permafrost is found in isolated patches with low ice content, in the northern reaches of the ecoregion.

6.0 HISTORY

A history of exploration on the Property is summarized in Table 6.1 below.

	TABLE 6.1 Historical Exploration of the Poissons Blanc Property						
Year	Year Company Exploration						
1890	A.P. Low	Geological mapping					
1958/59	Ministry of Natural Resources	Mapping if the Riviere aux Rats area, encompassing the Possions Blanc area					
1989	McNickel Inc.	Airborne mag/EM survey by Aerodat for 100 m line spacing					
1989	McNickel Inc.	Ground based geophysics; Mag, VLF-EM and Max Min Min1; survey totaled 170-line km.					
1989	McNickel Inc.	160 diamond drill holes advanced totaling 15924 m. Testing a strike length of 2.45 km to a maximum depth of 300 m. non-compliant historical resource calculated 5.855 million tons grading 0.209% Ni, 0.106% Cu and 0.029% Co.					
1998	Quebec Ministry of Natural Resources.	Detailed geological study defining the relationship between the mafic host rocks and sulphide mineralization (<i>Clark</i> <i>and Hebert</i> , 1998)					
2011	9157-2222 QUEBEC Inc.	Geological mapping, bulk sampling, and location of historic drilling. Undertaken on behalf of 9157-2222 QUEBEC Inc.by IOS Services Geoscientifiques					
2012	9157-2222 QUEBEC Inc.	Initial scoping metallurgical study, inclusive of mineralogy, bulk flotation, acid leaching and magnetic separation tests on their magmatic sulphide nickel deposit. Undertaken on behalf of 9157-2222 QUEBEC Inc.by RPC science and engineering.					
2021	9157-2222 QUEBEC Inc	Company engaged IOS Geoscientifique to collect approximately 150Kg. of samples representative of the differing mineralization styles on the Poissons Blanc Property. A proposal was submitted by RPC for future bio- leach metallurgical work.					

6.1 **PREVIOUS WORK**

Regional mapping of the paragneiss to the south of the property was performed by the ministry of natural resources in 1958 – 1959 (Berranage, 1960) and the mapping of the Riviere aux rats area, encompassing the Poissons Blanc property area, by the ministry (Rondot, 1963).

An airborne magnetometer and electromagnetic survey with 100m spacing has been performed by Aerodat Limited in the spring of 1989. This survey outlined a series of north to north-northeast trending coincident magnetic and electromagnetic anomalies (de Carle, 1989), A reconnaissance geological mapping of the property has been done for McNickel inc. (Mandziuk, 1989)

Then, McNickel Inc. (Mountain and McAdam, 1989) covered the property with ground geophysics surveys including magnetometer, VLF-EM and MaxMin1 on a cut grid totaling 170 km. They performed a geological mapping and sampling at 1:1250 scale on 25m spaced cut lines for a total distance of 53-line km.

Starting in July 1989, 156 diamond drill were advanced, totaling 15942m which tested a strike length of 2.45 km and maximum depth of 300 m. In total 6700 samples were taken and analyzed for Ni, Cu, Co, Fe, Mn, Pb, Zn, Mo, Pt, Pd and Au. None of the core, processed core or complete assay results were available to the author for this program. Mineral resource estimates were calculated base don this data. The results for these calculations can be found in Section 6.3 Historical Resource and Reserve Estimates of this report.

A detailed study of the Poissons Blanc deposit was carried out by the Quebec Ministry of Natural Resources in 1998 which defined the relationship between the mafic lithologic units and the sulphide mineralization (Clark and Hebert, 1998).

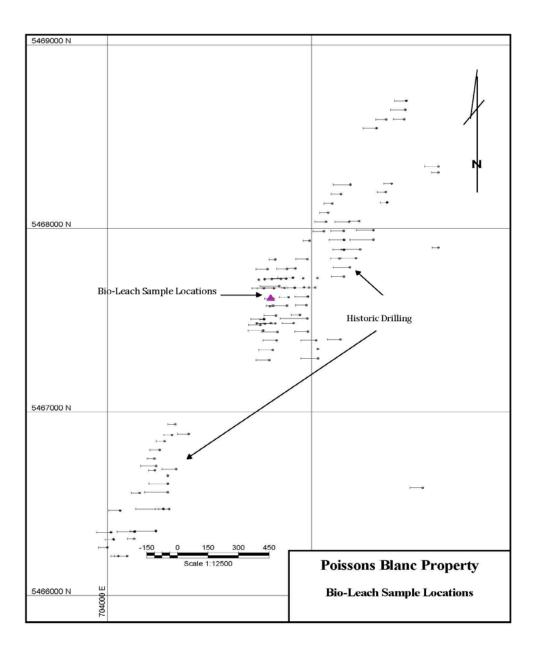
A 2011 campaign initiated by 9157-2222 Quebec Inc. focused on the geological mapping of the Main zone, locating of the historical drill holes on the McNickel deposit and obtaining samples from the discovery site for a preliminary analysis which would ultimately determine the viability for the nickel bearing material to be extracted using the bio-leach methodology.

Extraction of three fresh bulk samples of about 75 kg each for massive sulphides, 30% to 50% stringer type sulphides, and 10% to 20% disseminated sulphides were requested for metallurgical testing. A summary for the results for the metallurgical testing is presented below.

In 2012 9157-2222 Quebec Inc requested RPC to carry out initial scoping metallurgical testing inclusive of mineralogy, bulk flotation, acid leaching and magnetic separation tests on their magnatic sulphide nickel deposit just north of Lac St Jean in southern Quebec. Pyrrhotite contains minor Ni in solid solution. The Ni content of 10 randomly selected pyrrhotite grains averaged 0.53 wt.%. Although pentlandite is significantly enriched in Ni compared to pyrrhotite (i.e., approximately 30 wt. % Ni), the low modal abundance of pentlandite indicates that pyrrhotite is the principal source of Ni in this sample. The bulk floats carried out on the various size ranges did not show significant concentration of Ni, which ranged from 0.83% to 0.94% (50-55% mass loss) from the original 0.4% in the blended head sample. The 30min grind size (D80 = 157.2 microns) rougher concentrate was used to complete the rest of the test program

Bench scale magnetic separation and acid leach tests were carried out on the bulk flotation rougher concentrate. Most of the mass being pyrrhotite was susceptible to magnetic separation with only 27% non-magnetic. Only 1.0% Ni grade was realized in the 72.6% by mass in the magnetic fraction. An oxidizing dead roast followed by hot acid leaching (HAL) of the roasted calcine product was carried out. The results of the HAL were not very encouraging with only 14.9% of the Ni solubilizing. The low grade of the bulk sulphide float due to the Ni-pyrrhotite association would not be viable in any regard and would not be a recommended approach for the McNickel (Poissons Blanc) ore.

The Ni mineralization in the McNickel (Poissons Blanc) ore is highly refractory, occurring mainly as solid solution in pyrrhotite and almost complete dissolution of the host sulphide will be required to attain acceptable metals recovery. One recommended approach worth investigating in amenability testing is bacterial leaching where the host pyrrhotite sulphide as well as non-refractory pentlandite should readily solubilize and release the Ni mineralization.


In 2013 RPC carried out bioleach amenability test work on McNickel ore. The inoculum was bulked up and leached in a 3-liter agitated tank at 50°C and pH ~ 1.8, for a period of 37 days. After 37 days a leach slurry sample was taken and filtered to provide solid residue to determine the extraction of Ni, Cu and Co. Ni extraction for the McNickel (Poissons Blanc) ore sample received was 89.6%. Generally, extractions exceeding 80% in bacterial leach testing are considered amenable through this technology. Column testing was conducted following the agitated leach test.

The result of the bacterial leach column after 109 days of leaching was acceptable for nickel at 72% Ni extraction based on residue assays; however, extraction of copper (16.2%) and cobalt (31.5%) was less than expected.

In 2022 a Deposit Bacterial Leaching and Downstream Processing Scoping Study as a follow up study to the previous metallurgical studies was planned by 9157-2222 Quebec Inc. Therefore in 2022 a series of 6 samples were collected by IOS Geoscientifique totaling approximately 150kg. A plan map (Figure 6.1) indicates the location of the samples collected. No further metallurgical work has been undertaken on the property.

The samples collected in 2022 were representative of the differing styles of sulphide mineralization found on the Poissons Blanc property. Fifty-six kg of massive sulphide mineralization, fifty kg of disseminated sulphide mineralization and fifty-one kg of stringer sulphide mineralization were collected by IOS Geoscientifique for the study.

Figure 6.1 2022 Bio-Leach Sample Locations

Source: (IOS Geoscientifique.)

6.2 HISTORICAL PRODUCTION

No historic production is reported for the property.

6.4 HISTORICAL RESOURCE AND RESERVE ESTIMATES

The following mineral resource estimates including Table 6.3 in this section are historical in nature, and as such, are based on prior data and reports prepared by previous operators. The mineral resource estimates and supporting data have not been verified by PK and the mineral resource estimate, therefore, cannot be treated as a NI 43-101 defined resource verified by a qualified person. The historical mineral resource estimate should not be relied upon, and there can be no assurance that any of the mineral resource estimates, in whole or in part, will ever become economically viable.

The Poissons Blanc property is centered on the historic McNickel deposit which reported a CIM guideline at a 0.1% cutoff of 5.855 million tons grading 0.209% Ni, 0.106% Cu and 0.029% Co in the Main Zone and North Zone and were calculated based on the 15924 m of drilling. After this calculation an additional North Zone only calculation of 1,482,425 Tonnes (1,633,632 Tons) @ 0.46% Ni – 0.18% Cu – 0.05% Co was determined. No cut-off value for this calculation was indicated. Table 6.3 indicates the results of this calculation.

Table 6.3Poissons Blanc North Zone

Historic Ni – Cu – Co Resource Estimate

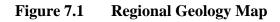
A and B Zones

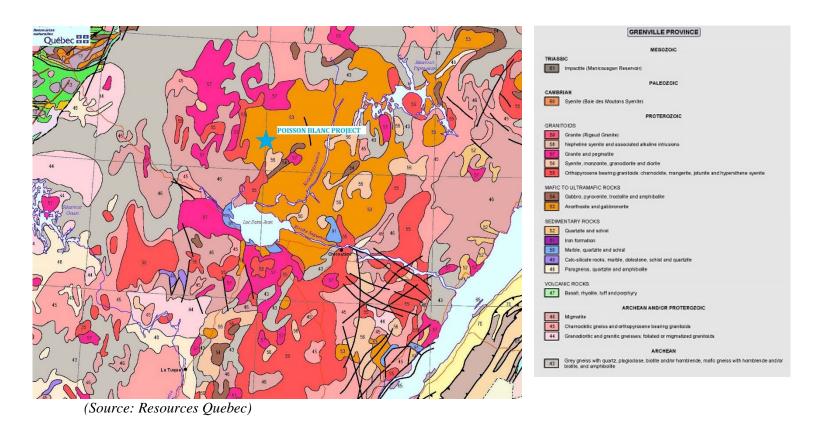
	DDH	Block #	Vol (m3)	Tonnes (SG 3.5)	Grade % Ni – Cu – Co
Upper	132	A 1	30,250	105,875	0.52-0.20-0.05
Zone A	133	A 2	26,000	91,000	0.40-0.11-0.03
	134	A 3	27,900	97,650	0.22-0.24-0.03
	135	A 4	48,750	170,625	0.48-0.13-0.04
	135	A 5	26,250	91,875	0.48-0.13-0.04
	137	A 6	52,000	182,000	0.75-0.20-0.03
	137	A7	30,000	105,000	0.75-0.20-0.03
			Total	844,025 A	vg 0.54-0.17-0.04
Lower	133	B 1	16,900	59,150	0.46-0.24-0.11
Zone B	132	B 2	33,000	115,500	0.35-0.19-0.05
	134	B 3	30,000	105,000	0.35-0.19-0.05
	est 10+50N	B4	70,000	245,000	0.35-0.19-0.05
	est 11+00N	B 5	62,500	218,750	0.35-0.19-0.05
			Total	638,400 Av	vg 0.37-0.20-0.06

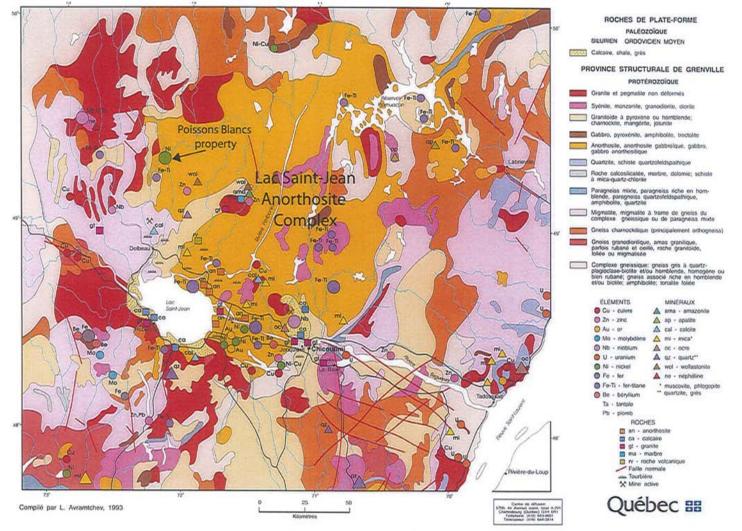
(Assume 50 meters Between Sections, Scale Variation +/- 15%

Total Estimated Resource:

1,482,425 Tonnes @ 0.46% Ni – 0.18% Cu – 0.05% Co 1,633,632 Tons


7.0 GEOLOGICAL SETTING AND MINERALIZATION


7.1 REGIONAL GEOLOGY


The Poissons Blancs property location is within the Lac St.-Jean Anorthosite Complex (Figures 7.1 and 7.2). The Lac St.-Jean Anorthosite was previously recognized as one of the biggest anorthositic masses in the world (20,000 km2). Recent field and geochronological work have demonstrated that this anorthositic mass is, in fact, an assemblage resulting from four temporally distinct magmatic episodes, which took place between 1327 and 1012 Ma. This discovery has required the redefinition of the Lac-St.-Jean Anorthosite in terms of its component units. The 1327 ± 16 Ma De La Blache Mafic Plutonic Suite occupies the northeastern limb of the former Lac-St.-Jean Anorthosite. This suite is characterized by labradorite-type anorthosite, a large volume of olivine-bearing anorthositic rocks, a wide gabbronoritic fringe, and Fe-Ti and Ni-Cu occurrences. This magmatic body is constrained by a paired, dextral, and sinistral strike-slip fault system. The Lac-St.-Jean Anorthositic Suite represents that part of the former Lac St.-Jean Anorthosite that was emplaced between 1160 and 1140 Ma. The suite still occupies the largest area of any anorthositic mass in the Central Grenville Province. It is characterized by labradorite and andesine-type anorthositic rocks and is bordered by gabbro-noritic fringes along its northern and southeastern margins and contains sizeable Ti-Fe-P and Ni-Cu occurrences. The western part of this huge anorthositic mass is undeformed, whereas the eastern part was pervasively affected by a system of thrust and strike-slip faults, which resulted in a high degree of recrystallization of the anorthositic rocks. The 1180-1160 Ma Vanel Anorthosite occupies a large part of the eastern margin of the former Lac-St.-Jean-Anorthosite.

This unit is characterized by labradorite- and andesine-type anorthositic rocks containing typically pinkcolored and almost ubiquitously recrystallized plagioclase. It includes abundant coronitic leuco-norite, orthopyroxene-bearing leuco-troctolite, and norite, and contains a few Ti-Fe-P occurrences. The 1012 +6/-4 Ma Mattawa Anorthosite is an almost circular pluton that intrudes the former Lac-St.-Jean Anorthosite. This pluton is located along the contact between the Vanel Anorthosite and Lac-St.-Jean Anorthositic Suite rocks. The Mattawa Anorthosite is part of the 1020-1010 Ma Labrieville Anorthositic Suite, which also includes the Labrieville alkalic anorthositic massif, the Gouin Charnockite, and the La Hache Monzonite: all these outcrops in the vicinity of the Mattawa Anorthosite. The Labrieville alkalic anorthositic massif is the only member of the Labrieville Anorthositic Suite that is not included within the limits of the former Lac-St-Jean Anorthosite. The Mattawa Anorthosite and the Labrieville alkalic anorthositic massif are undeformed anorthositic plutons characterized by pinkish andesine plagioclase. Fe-Ti-P-bearing rocks are present within all the plutons of the Labrieville Anorthositic Suite.

(Hebert, C.; van Breemen, O.)

Figure 7.2 Mineral Trends and Deposits of the Lac Saint-Jean Anorthosite Complex

(modified from Avrantchev 1993)

7.2 **PROPERTY GEOLOGY**

Within the anorthositic suite, the units are generally coarse grained but considerable textural and compositional variation was observed on the outcrop scale in many localities. Cataclastic fabrics including intense brecciation are common and widespread. They occur as a uniform shattering and possible re-orientation of individual component crystals. Later, more discrete, and narrow ductile shears are evidenced by gneissic hornblende-biotite bearing rocks, mineral foliations and penetrative cleavages.

Primary igneous banding and flow layering are well developed indicating the broader facies of the anorthosite complex. The layering generally dips to the east at shallow to steep angles but has been re-oriented in areas of faulting or shearing.

Xenoblastic patches of rheomorphically injected (viscous flow) pegmatitic phases, generally with greater than 10% mafics, occur as irregular shaped bodies with diffuse margins. These have been metamorphically rejuvenated and remobilized and represent endogenous mineral segregates. They frequently contain magnetite or sulphide bearing pyroxenitic bands. More hydrous felsic phases, of limited volumes, also display a rheomorphic mode of emplacement but are typically more dyke-like.

Other complex textures, fabrics and structures are suggestive of derivation by crystal setting of differentiated components, exsolution (graphic texture), disequilibrium reactions due to mixing, and filter pressing of residual fluids.

Porphyritic and augen textures are variably developed and of wide distribution. Silicified and quartz bearing anorthosites occur proximal to shearing, faulting and hybridized rocks.

The genetic relationship of the felsic rocks to the anorthosite suite is uncertain. In most cases small discrete dykes of leucogranite, granite, monzonite or tonalite cut through the anorthosite masses but in some cases a more diffuse and hybridized rheomorphic type of emplacement is apparent, with possible hydrothermal alterations.

The southwest portion of the claim group, migmatitic injection gneisses are recognized and appear to have intruded bands of weak sulphide mineralization in a lit-par-lit fashion. Graphic textured pegmatitic granite and syenite also occurs in this area.

Weak to moderate sulphide mineralization is observed in areas leached gossanous outcrop. Scattered crumbly gossanous boulders (up to 1 metre) were also associated with adjacent sulphide outcrop in some localities. Typically, lensoid sulphide concentrations of a few metres in thickness are associated with coarse to fine pyroxenitic bands in proximity to anorthosite and gabbroic anorthosite. Cataclastic textures are well developed and staring of coarse pyroxene crystals is common. Evidence of conjugate shearing was also observed, and the sulphides appear to be strained and remobilized

Long parallel conductors trending south-southwest off the claim group lie in an area of poor bedrock exposure.

Northeast of the main Poissons Blanc showing an extensive gabbro-pyroxenitic gossanous zone occurs on the east slope of a steep, high hill capped by anorthosite. Magnetite along with disseminated and stringer sulphides appear to occur along this conducive zone for at least 200 metres.

Weakly mineralized gossan occurs in an area of felsic intrusion, shearing and complex deformation to the east of the claim group and is coincident with airborne conductors.

A discontinuous zone of lensoid, disseminated to stringer type of mineralization (magnetite and up to 30% pyrite and pyrrhotite) occurs along a magnetic, non-conductive zone along the east side of the road leading to the Poissons Blanc camp on Lac Poissons Blanc.

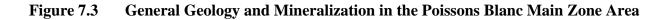
The following is description of the lithologic units which underly the Poisson Blanc property within the claim area. The lithologic descriptions and property geology map (Figure 7.4) are the result of a mapping campaign in 2011 performed by IOS Services Geoscientifique on behalf of 9157-2222 Quebec Inc.

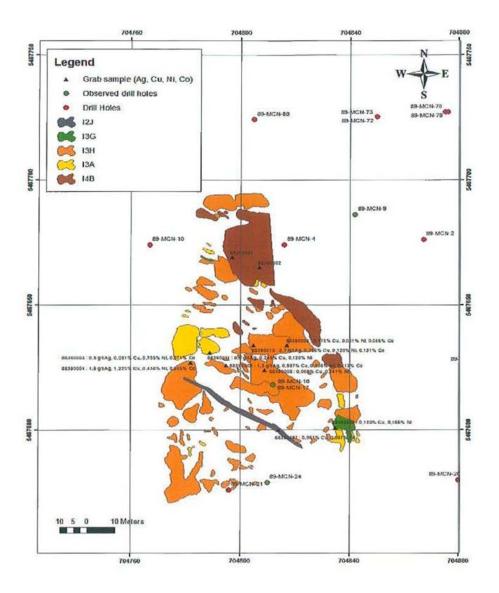
7.3 **PROPERTY LITHOLOGY**

Anorthosite Suite (I3H-I3A)

The anorthosite suite (gabbroic anorthosite to gabbro) is the dominant lithology in the area stripped. The gabbro is generally massive, homogenous and phaneritic. It is medium grey in colour, with an oxidized surface within the outcrop area of the Main Zone. These rocks contain 30% to 65% feldspars (plagioclase) with 45% to 60% pyroxenes and trace of up to 5-10% sulphides (pyrrhotite, pyrite, chalcopyrite) An igneous bedding oriented generally north to south was observed.

Pyroxenites (I4B)


Pyroxenites are massive, homogenous and phaneritic with a dark greenish colour. These units contain over 80%-90% pyroxenes, with 105 to 20% feldspars (plagioclase) and traces of interstitial sulphides (pyrrhotite, pyrite). They formed randomly oriented dykes one metre to several metres in thickness and located in the north-eastern portion of the Main Zone outcrop area.


Pegmatites (11G)

Irregular clusters of pegmatitic anorthositic gabbro locally inject discordantly in the lithologic sequence. Pegmatite is composed of phaneritic plagioclase with interstitial pyroxenes.

Granite Dykes (I2J)

Aphanitic granitic dykes overlap the anorthositic suite of lithologic units. The dykes are 1 to 10 centimetres thick and are non-mineralized.

Map of the mapped area, location of the drilled holes and grab samples.

Source: (IOS Services Geoscientifique Inc, 2011)

7.4 PROPERTY MINERALOGY

A polished grain mount of the submitted McNickel (Poissons Blanc) blended sample was produced for SEM-EDS mineralogical examination. The examination was intended to provide a list of minerals present, microphotographs showing minerals present and mineral associations, mineral size measurements and liberation size estimates.

The polished sample consists of irregular fragments (1-1000 μ m). Silicate and oxide mineral grains comprise approximately 40 percent of the sample, and sulphide mineral grains comprise 60 percent of the sample. Sulphides predominantly occur as discrete grain fragments. Silicate and oxide grains also occur as discrete grain fragments, but polymineralic fragments are more common. Plagioclase is the most common silicate mineral present, but phlogopite, orthopyroxene chlorite, epidote, and clinopyroxene are also present. Ilmenite, magnetite, spinel, corundum also occurs in this sample, and monazite is present in trace amounts.

The predominant sulphide mineral is pyrrhotite, but pyrite, chalcopyrite, pentlandite, and galena are also present. Pentlandite (<1 %) occurs as fine flame-like exsolution lamellae in pyrrhotite but does not occur as discrete grains. Galena (trace) occurs as fine-grained (2-5 μ m) inclusions in pyrrhotite as well as in magnetite. Chalcopyrite (5 %) occurs in rare polygranular fragments together with pyrrhotite, and also as fine-grained inclusions in pyrite, pyrrhotite, and in silicate rock fragments. Pyrite (15 %) predominantly consists of discrete, irregular grains. Pyrrhotite (80 %) predominantly consists of discrete, irregular grains, but rarely also occurs in polygranular fragments together with chalcopyrite. Some large pyrrhotite fragments (500-1000 μ m) are partially oxidized along their margins. Pentlandite lamellae in pyrrhotite are rare, and such occurrences represent only a minor phase within the host pyrrhotite.

Most sulphide grains are completely liberated. Sulphide grains do occur within polygranular silicate fragments, but such fragments are uncommon. Sulphide grains in such fragments consist predominantly of pyrrhotite and chalcopyrite, and typically range from 5-40 µm in size.

Pyrrhotite contains minor Ni in solid solution. Analyses were obtained by Energy- Dispersive Spectrometry with an EDAX Genesis X-ray Microanalyser. The Ni content of 10 randomly selected pyrrhotite grains averaged 0.53 wt.%. Although pentlandite is significantly enriched in Ni compared to pyrrhotite (i.e., approximately 30 wt % Ni), the low modal abundance of pentlandite indicates that pyrrhotite is the principal source of Ni in this sample. Pentlandite lamellae contain minor Co in solid solution. The Co content of 5 pentlandite lamellae averaged 3.4 wt. %.

8.0 DEPOSIT TYPES AND EXPLORATION MODELS

The Poisson Blanc property contain disseminated sulphides and massive sulphides associated with magmatic intrusive rocks of gabbroic composition. The sulphides consist of pyrite, pyrrhotite, chalcopyrite and pentlandite. One such occurrence contains nickel, copper, and Platinum Group Elements (or PGE's) mineralization associated with mafic to ultramafic rocks.

Several nickel-copper-PGE occurrences have been uncovered over the last few years in the Grenville Province, including copper-nickel mineralization associated with mafic sills or dykes of the Lac Volant Occurrence in the Matamec Complex located 35 kilometers north of the Lac Méchant Property. The known copper-nickel mineralization (i.e. Renzy, Edouard and Poisson Blanc occurrences are largely lower grade (<1% nickel and <1% copper). The most significant PGE's mineralization known is associated with several 2.49 to 2.44 Ga mafic intrusions that extend from the southern Quebec right into Ontario (Wilson, 1993; Clark, 2000; Theriault et al., 2003).

The magmatic mineralization originates in the upper mantle, as the immiscible sulphide phase separates from the magma during emplacement into the crust. The sulphide phase generally partitions and concentrates nickel, copper and PGE's from the surrounding magma. The heavy sulphide droplets once concentrated and separated from the magma tend to sink towards the base of the magma, and form concentrated pockets or layers of sulphides which crystallize upon cooling.

According to the synthesis work on the Grenville Province by Corriveau et al. (2007), the Grenville Province may contain significant magmatic nickel, copper and PGE's deposits, but these would have been strongly metamorphosed and structurally deformed and be less recognizable, but perhaps they would have undergone mineral beneficiation providing a means to further increase the attractiveness of the mineralization, which would ultimately add to the potential of the Poissons Blanc property.

9.0 **EXPLORATION**

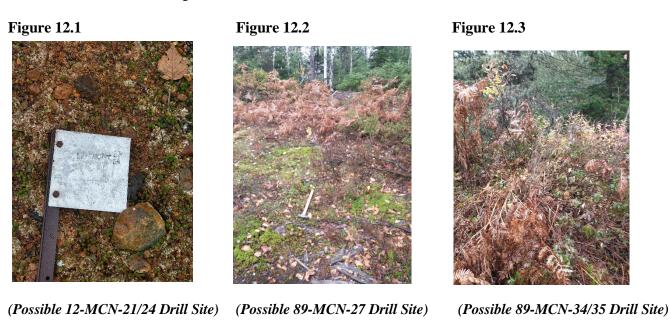
Royal Coal Corp. has not yet performed any exploration to date.

10.0 DRILLING

Royal Coal Corp. has not completed any drilling to date. For a summary of previous drilling on the property, refer to 6.0 History.

11.0 SAMPLE PREPARATION, ANALYSIS and SECURITY

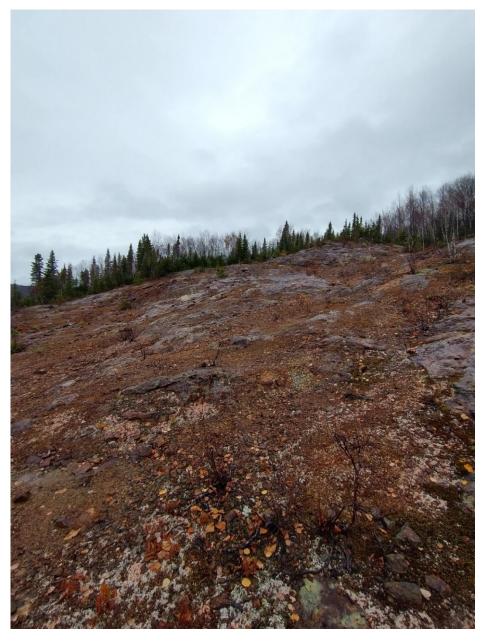
Royal Coal Corp. has not yet performed any work on their own and therefore has no sample prep, analysis, and security protocols to report on.


12.0 DATA VERIFICATION

The data presented in this report has come primarily from assessment files available at Ministère de l'Énergie et des Ressources Naturelles and internal reports from previous operators. The author can verify that the information presented in the technical report has been accurately reported in those files and reports.

There were no limitations placed on the authors in conducting the verification or the property visit. All the data relied upon predates National Instrument 43-101 and was therefore not completed by qualified persons. The author is of the opinion that these data are adequate for the completion of this technical report.

12.1 SITE VISIT


P. Karelse P.Geo. visited the property on October 18, 2022, on behalf of Royal Coal Inc. During the site visit it was not possible to locate any of the drilling or trenching performed historically due to the total absence of any verifiable remnants of this work. Photographs of selected assumed drill sites, located by GPS using the documented historic drill collar locations (NAD83 Zone 18) were taken. Figures 12.1 through 12.3 inclusive indicate the field conditions at each of the selected drill sites. Only one location, Figure 12.1, had an identifying feature, however there was no physical indication of a drill hole or casing left in the ground. Therefore, this location could not be reliably verified. Locally there was some evidence of heavy equipment trails, however this was overgrown.

Source:(PK Geologic Services Ltd.)

Figure 12.4 illustrates the Main zone outcrop. It should be noted that the entire zone was heavily oxidized due to the direct exposure to the weather. The level of oxidation precluded taking any samples as the results would have not been reflective of the mineralization tenors in fresh rock samples. It was not possible to obtain fresh samples with the tools on hand during the site visit.

Figure 12.4 Main Zone Outcrop

Source:(PK Geologic Services Ltd.)

13.0 MINERAL PROCESSING AND METALLURGICAL TESTING

No mineral processing or metallurgical studies have been carried out by Royal Coal Corp. with respect to the Poisson Blanc Property.

14.0 MINERAL RESOURCE ESTIMATES

Royal Coal Corp. has not determined a NI 43-101 compliant resource or reserve.

15.0 MINERAL RESERVE ESTIMATES

No Mineral Reserve estimate was produced by Royal Coal Corp.

16.0 MINING METHODS

There is no current mining activity on the Property.

17.0 RECOVERY METHODS

As there is no current mining activity on the Property, this section is not applicable.

.18.0 PROJECT INFRASTRUCTURE

This section is not applicable to the Report

19.0 MARKET STUDIES AND CONTRACTS

This section is not applicable to the Report.

20.0 ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY IMPACT

This section is not applicable to the Report

21.0 CAPITAL AND OPERATING COSTS

This section is not applicable to the Report.

22.0 ECONOMIC ANALYSIS

This section is not applicable to the Report.

23.0 ADJACENT PROPERTIES

There are no properties of significance adjacent to the Property

24.0 OTHER RELEVANT DATA AND INFORMATION

There are no other data considered relevant to the Poisson Blanc project that have not been included in the report.

25.0 INTERPRETATION AND CONCLUSIONS

The author offers the following conclusions:

- Field work, literature research and drilling on site has confirmed the presence of strata bound magmatic sulphide occurrences which contains elevated tenors of nickel, cobalt, and copper.
- The Poissons Blanc deposit is a shallowly dipping (35 to 40 degrees) and strikes generally in a north to south direction. The deposit has been detected over a strike length of 2.5 kilometres
- The deposit is in the gabbroic sequences of the Lac St. Jean Anorthosite complex which are locally faulted and intruded by felsic dykes.
- There is potential for expanding known mineralized areas on the Property. Identified mineralized zones which remain open to the southern, northern, and down-dip extents of the current historic mineralized area.
- The overall geometry of the mineralization as it currently is interpreted suggests that the deposit would be amenable to open pit method extraction.

26.0 RECOMMENDATIONS AND PROPOSED 2022 BUDGET

The Poissons Blanc Property has an excellent potential to define NI43-101 compliant resource on the existing deposit limits and to expand these resources along strike and down dip.

The following items are specifically recommended as a Phase 1 of a multi-stage exploration program to test this potential are presented in order of suggested execution:

- Compilation of existing data into plans, sections, and three-dimensional wire frames.
- Conduct a 1600 metre drill program, in the Main zone area to confirm the historic drilling and associated assays and to do a preliminary follow-up drilling to provide an indication of grade and continuity outside of the historic drilling.
- 4 drill holes, spaced at 120 m centres should be advanced to a depth of 200 metres north and south along the apparent strike of DDH158 for a total of 800 metres.
- 4 drill holes, spaced at 120 m centres should be advanced to a depth of 200 metres north and south along the apparent strike of the existing drilling in the North Zone for a total of 800 metres.

26.1 PROPOSED 2022 BUDGET PHASE 1 PROGRAM

To carry out the above recommendations the following budget is proposed:

Drilling 1600 metres (direct costs)	\$249,900
Program Supervision	\$14,000
Program Geologist	\$9500
Program Technician	\$6800
Lodging	\$12,700
Transportation	\$7200
Assaying of 800 samples at \$25 / sample	\$20,000
Sample Processing (trays, shipping, etc.)	\$3500
Standards	\$2000
Data Compilation (historic and recent)	\$10,000
Subtotal	\$335,600
Contingency (10 %)	\$33,560
Total 2022 Proposed Budget	\$369,160

27.0 REFERENCES

Avramtchev, L.	1981 Region de Laurentie-Saguenay Carte de Gites Mineraux du Quebec D.P.V. 809
Berrange, J.P.	1977 Antoine – La Trappe Area Ministere des Richesses Naturelles, Quebec D.P. 462
Botha, N Cheung, L	2013 McNickel Deposit – Scoping Metallurgical Tests – Bacterial Leaching Amenability Testing – Stirred Tank & Column Leaching Report, MIS – J1881, RPC Science and Engineering
Cheung, L. Gilders, R.	2012 McNickel Deposit – Grind Curve, Scoping Bulk Flotation Tests, SEM – EDS Mineralogy, MIS – J1851, RPC Science and Engineering
Firth, R.A. Currie, K.L.	1975 A model for the Origin of the Lac St. Jean Anorthosite Massive, Canadian Journal of Earth Science, Vol 13, p. 389-399
Girard, R. Tremblay P.	2012 Poissons Blanc Project, Exploration lac St. Jean Anorthosite Complex, GM 66150, IOS Services Geoscientifiques
Jensen, K.J.	1989 Magnetic and Electromagnetic Surveys for Birch Lake Resources Inc. Birch Lake Property, Lac St. Jean Quebec
Kehlenbeck, M.M.	1974 Some chemical characteristics and variations of Gneisses, Intermediate Intrusive rocks and Anorthosite in the lac Rouvray Map Area, Quebec, Canadian Journal of Earth Science, Vl. 11, p.1689 – 1704
Low, A.P.	1890 The Mistassini Region, Ottawa Naturalist, Vol. 4
McPhee, D.	1989 Report on the McNickel Property, Lac St. Jean Area, Quebec for McNickel Inc. D.S.M. Consultants Ltd.
Mountain, B.W.	1989 Summary report on Geological mapping and Trenching on the Whitefish Lake Property, Flanagan McAdam & Company
Naldrett, A.J.	2004 Magmatic Sulphide Deposits, Geology, Geochemistry and Exploration, Springer-Verlag Berlin Heidelberg New York

28.0 CERTIFICATES

CERTIFICATE OF QUALIFIED PERSON

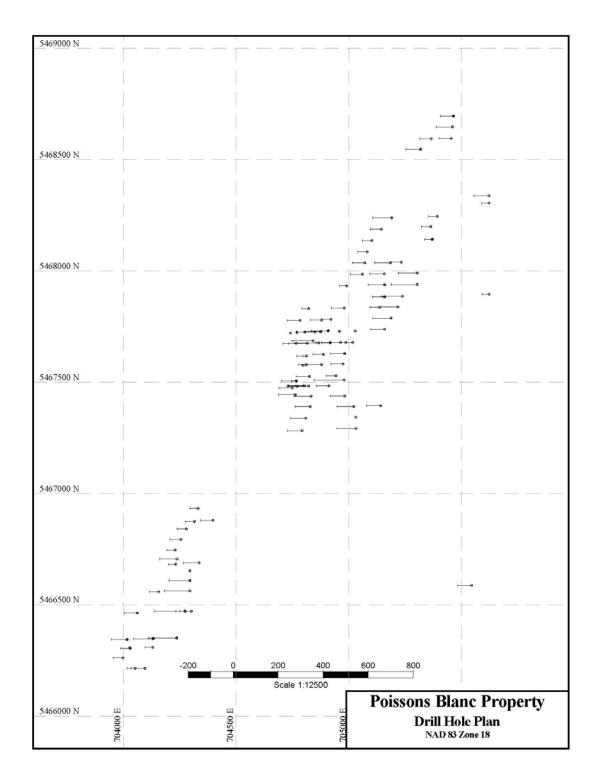
Peter Karelse P.Geo.

I, Peter Karelse P.Geo., residing at 269 Shuswap Road, Monetville, Ontario, P0M2K0 do hereby certify that:

- 1. I am an independent geological consultant and President of PK Geologic Services Inc.
- 2. This certificate applies to the technical report titled "Technical Report of Merit, Poissons Blanc Property, Northern Quebec, Canada" (the "Technical Report"), with an effective date of November 28, 2022.
- 3. I am a graduate of Cambrian College, with an Engineering Technologist Diploma in Geology. In addition, I have also met the Professional Geologists of Ontario education and experience requirements and am a geology consultant licensed since 2004. I am currently in good standing with the Association of Professional Geologists (License No. 1148).

I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that, by reason of a combination of education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.

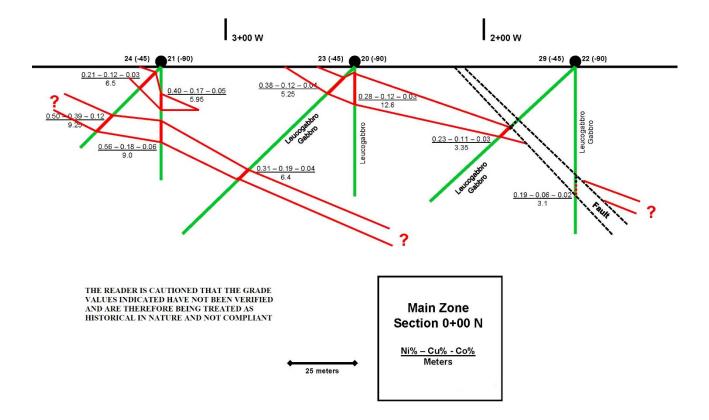
I have practiced my profession continuously since 1975. My summarized career experience is as follows:

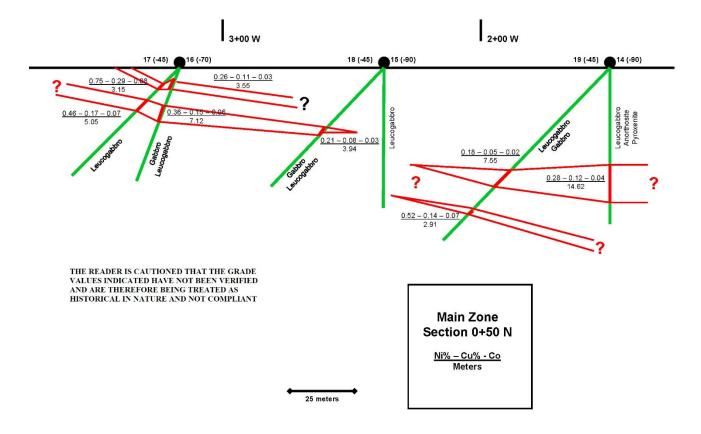

- 4. I have visited the Property that is the subject of this report on October 18, 2022.
- 5. I am responsible for authoring the Technical Report.
- 6. I am independent of the Issuer applying the test in Section 1.5 of NI 43-101.
- 7. I have not had prior involvement with the project that is the subject of this Technical Report.
- 8. I have read NI 43-101 and Form 43-101F1. This Technical Report has been prepared in compliance therewith.
- 9. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

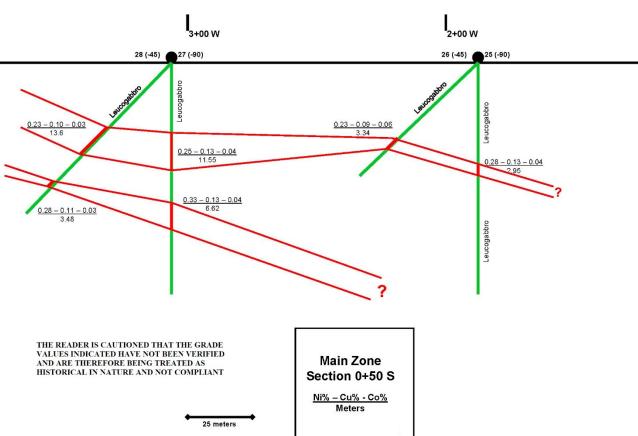
Effective Date: November 28, 2022 Signed Date: November 28, 2022

{SIGNED AND SEALED} [Peter Karelse]

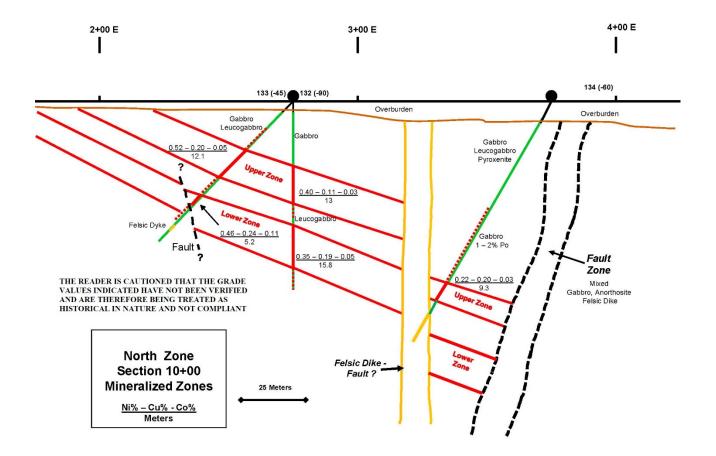
Peter Karelse P.Geo.

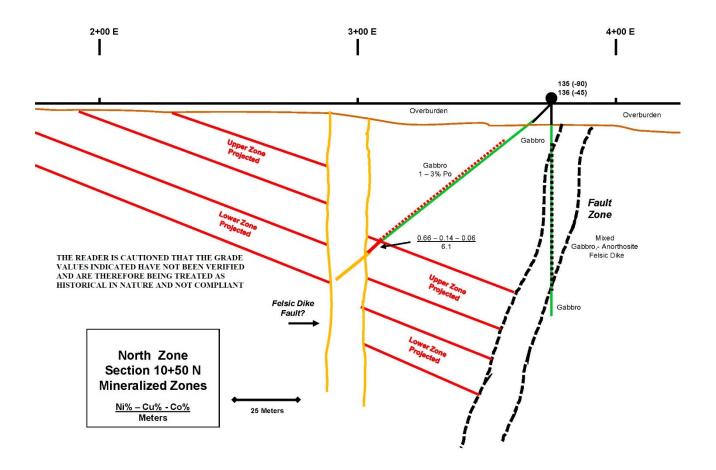

APPENDIX I POISSONS BLANC SURFACE DRILLHOLE PLAN

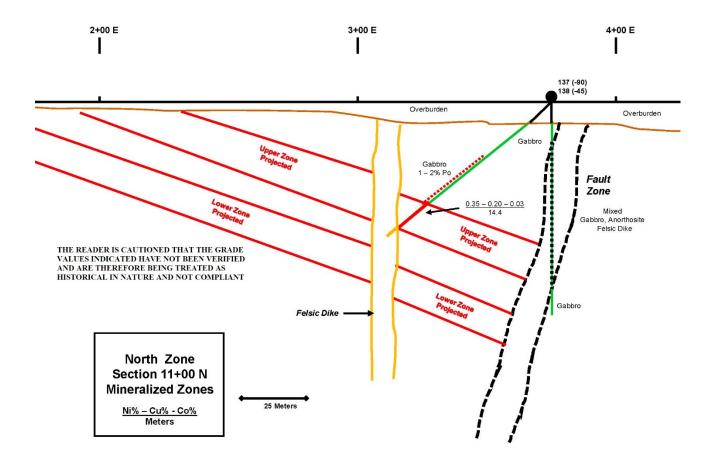

Source:(IOS Geoscientifique.)


APPENDIX II POISSONS BLANC DRILLHOLE SECTIONS

POISSONS BLANC DRILLHOLE SECTION 0+00N




POISSONS BLANC DRILLHOLE SECTION 0+50N



POISSONS BLANC DRILLHOLE SECTION 10+00N

APPENDIX III DRILL HOLE LOCATION TABLE

HOLE-ID	EAST	NORTH	ELEV	LENGTH	AZIMUTH	DIP
89-MCN-1	705018	5467678	5000	262.74	270	-51
89-MCN-2	704867	5467676	5000	170.08	270	-50
89-MCN-3	704979	5467510	5000	205.7	270	-50
89-MCN-4	704816	5467674	5000	117.65	270	-45
89-MCN-6	704767	5467507	5000	91.93	270	-45
89-MCN-8	704768	5467505	5000	50.9	270	-65
89-MCN-9	704842	5467686	5000	133.2	270	-45
89-MCN-10	704767	5467674	5000	84.2	270	-45
89-MCN-13	704918	5467677	5000	54.47	270	-45
89-MCN-16	704812	5467618	5000	44.5	270	-70
89-MCN-17	704812	5467618	5000	59.74	270	-45
89-MCN-18	704888	5467626	5000	66.5	270	-45
89-MCN-19	704982	5467629	5000	90.83	270	-45
89-MCN-23	704880	5467580	5000	90.87	270	-45
89-MCN-24	704810	5467579	5000	45.72	270	-45
89-MCN-26	704943	5467529	5000	60.96	270	-45
89-MCN-28	704826	5467526	5000	84.12	270	-45
89-MCN-29	704975	5467582	5000	75.59	270	-45
89-MCN-31	704749	5467475	5000	83.52	270	-45
89-MCN-33	704822	5467483	5000	83.59	270	-45
89-MCN-35	704912	5467484	5000	80.16	270	-45
89-MCN-37	704274	5466471	5000	49.99	270	-62
89-MCN-37B	704274	5466471	5000	212.14	270	-50
89-MCN-39	704061	5466464	5000	80.16	270	-45
89-MCN-41	705142	5467395	5000	90.83	270	-45
89-MCN-43	704833	5467437	5000	108.42	270	-45
89-MCN-45	704763	5467444	5000	105.46	270	-45
89-MCN-46	704800	5467484	5000	105.86	270	-50
89-MCN-47	704731	5467483	5000	120.7	90	-50
89-MCN-49	704982	5467438	5000	90.93	270	-45
89-MCN-51	705022	5467391	5000	104.94	270	-45
89-MCN-53	704829	5467391	5000	94.05	270	-45
89-MCN-55	704810	5467338	5000	97.23	270	-45
89-MCN-61	704793	5467283	5000	92.05	270	-45
89-MCN-63	704908	5467731	5000	105.77	270	-45
89-MCN-65	704237	5466351	5000	221.89	270	-55
89-MCN-67	704018	5466344	5000	98.3	270	-45
89-MCN-69	704302	5466471	5000	96.32	270	-45
89-MCN-71	705032	5467292	5000	118.57	270	-45
89-MCN-73	704850	5467725	5000	118.11	270	-45
89-MCN-75	704295	5466563	5000	162.15	270	-45
89-MCN-77	704157	5466559	5000	71.9	270	-55
89-MCN-79	704876	5467727	5000	123.83	270	-55
89-MCN-83	704132	5466348	5000	121.6	270	-45

Coordinates are NAD83 Zone 18, Elevation Grid Azimuth is True (Geographic) North

HOLE-ID	EAST	NORTH	ELEV	LENGTH	AZIMUTH	DIP
89-MCN-85	703999	5466262	5000	62.18	270	-45
89-MCN-87	704295	5466609	5000	129.85	270	-45
89-MCN-89	704238	5466706	5000	108.11	270	-45
89-MCN-91	704230	5466746	5000	51.7	270	-45
89-MCN-92	705029	5467730	5000	111.82	270	-90
89-MCN-95	704784	5467778	5000	80.95	270	-45
89-MCN-97	704880	5467779	5000	73.28	270	-45
89-MCN-99	704921	5467782	5000	58.65	270	-45
89-MCN-100	705622	5467895	5000	63.09	270	-60
89-MCN-101	704232	5466682	5000	71.75	270	-65
89-MCN-103	704031	5466305	5000	59.75	270	-45
89-MCN-104	704053	5466215	5000	74.37	270	-60
89-MCN-106	705158	5467884	5000	73.93	270	-45
89-MCN-107	704256	5466794	5000	100.25	270	-60
89-MCN-108	704279	5466841	5000	80.25	270	-60
89-MCN-109	704316	5466875	5000	79.3	270	-60
89-MCN-110	704332	5466933	5000	72.95	270	-60
89-MCN-111	704980	5467833	5000	116.43	270	-60
89-MCN-112	704822	5467831	5000	61	270	-60
89-MCN-113	705061	5467985	5000	107.75	270	-60
89-MCN-115	705158	5467987	5000	90.58	270	-45
89-MCN-116	705233	5468040	5000	91.98	270	-60
89-MCN-117	705071	5468037	5000	77.1	270	-45
89-MCN-120	705082	5468086	5000	58.7	270	-45
89-MCN-121	705102	5468136	5000	82.6	270	-60
89-MCN-123	705370	5468141	5000	47.75	270	-45
89-MCN-124	705145	5468187	5000	97.54	270	-60
89-MCN-126	705364	5468198	5000	57.91	270	-45
89-MCN-128	705191	5468239	5000	120	270	-45
89-MCN-129	705393	5468245	5000	76.81	270	-60
89-MCN-130	705319	5468547	5000	96	270	-88
89-MCN-131	705319	5468547	5000	93.9	270	-45
89-MCN-133	705366	5468594	5000	71.7	270	-45
89-MCN-134	705454	5468595	5000	106.1	270	-60
89-MCN-136	705460	5468647	5000	103.35	270	-45
89-MCN-138	705464	5468696	5000	81.2	270	-45
89-MCN-140	704991	5467934	5000	46.33	270	-45
89-MCN-142	705160	5467938	5000	105.15	270	-45
89-MCN-143	704336	5466689	5000	136.95	270	-60
89-MCN-145	704131	5466309	5000	67	270	-60
89-MCN-146	704096	5466215	5000	123.1	270	-60
89-MCN-147	704398	5466880	5000	110.75	270	-60
89-MCN-149	705545	5466587	5000	87	270	-45
89-MCN-150	705239	5467886	5000	134.1	270	-45

HOLE-ID	EAST	NORTH	ELEV	LENGTH	AZIMUTH	DIP
89-MCN-151	705303	5467939	5000	229.4	270	-60
89-MCN-152	705303	5467991	5000	166.25	270	-60
89-MCN-153	705184	5468037	5000	138.15	270	-60
89-MCN-154	705136	5467837	5000	84.4	270	-60
89-MCN-155	705218	5467838	5000	147.2	270	-60
89-MCN-156	705188	5467788	5000	114.3	270	-45
89-MCN-157	705159	5467738	5000	122.5	270	-60
89-MCN-158	705622	5468338	5000	136.95	270	-60
89-MCN-159	705622	5468305	5000	65.53	270	-60
89-MCN-5	704963	5467679	5000	110.54	0	-90
89-MCN-7	704767	5467507	5000	47.5	0	-90
89-MCN-11	704917	5467677	5000	81.08	0	-90
89-MCN-12	704987	5467678	5000	87.78	0	-90
89-MCN-14	704981	5467629	5000	60.6	0	-90
89-MCN-15	704888	5467626	5000	57.69	0	-90
89-MCN-20	704880	5467580	5000	49.72	0	-90
89-MCN-21	704796	5467576	5000	44.56	0	-90
89-MCN-22	704975	5467582	5000	65.23	0	-90
89-MCN-25	704943	5467529	5000	90.3	0	-90
89-MCN-27	704826	5467526	5000	90.22	0	-90
89-MCN-30	704772	5467481	5000	79.86	0	-90
89-MCN-32	704822	5467483	5000	90.04	0	-90
89-MCN-34	704912	5467484	5000	93.95	0	-90
89-MCN-36	704273	5466472	5000	267	0	-90
89-MCN-38	704062	5466463	5000	114.61	0	-90
89-MCN-40	705142	5467395	5000	85.95	0	-90
89-MCN-42	704833	5467437	5000	129.32	0	-90
89-MCN-44	704763	5467445	5000	91.44	0	-90
89-MCN-48	704982	5467438	5000	134.42	0	-90
89-MCN-50	705022	5467391	5000	108.1	0	-90
89-MCN-52	704829	5467391	5000	115.5	0	-90
89-MCN-54	704810	5467338	5000	124.36	0	-90
89-MCN-56	704742	5467721	5000	74.98	0	-90
89-MCN-57	704770	5467723	5000	80.43	0	-90
89-MCN-58	705031	5467343	5000	113.38	0	-90
89-MCN-60	704793	5467283	5000	100.07	0	-90
89-MCN-62	704909	5467732	5000	156.67	0	-90
89-MCN-64	704237	5466352	5000	221	0	-90
89-MCN-66	704016	5466344	5000	95.4	0	-90
89-MCN-68	704301	5466471	5000	288.39	0	-90
89-MCN-70	705032	5467292	5000	160.93	0	-90

HOLE-ID	EAST	NORTH	ELEV	LENGTH	AZIMUTH	DIP
89-MCN-72	704850	5467725	5000	65.5	0	-90
89-MCN-74	704295	5466563	5000	151.79	0	-90
89-MCN-76	704157	5466559	5000	86.75	0	-90
89-MCN-78	704875	5467727	5000	97.05	0	-90
89-MCN-80	704805	5467724	5000	80.8	0	-90
89-MCN-81	704959	5467729	5000	151.3	0	-90
89-MCN-82	704134	5466349	5000	119.5	0	-90
89-MCN-84	703999	5466262	5000	76.5	0	-90
89-MCN-86	704295	5466610	5000	126.9	0	-90
89-MCN-88	704295	5466653	5000	119.79	0	-90
89-MCN-90	704230	5466746	5000	59.35	0	-90
89-MCN-94	704784	5467778	5000	94.45	0	-90
89-MCN-96	704880	5467779	5000	51.35	0	-90
89-MCN-98	704921	5467782	5000	80.59	0	-90
89-MCN-102	704029	5466307	5000	62.93	0	-90
89-MCN-105	705160	5467884	5000	62.79	0	-90
89-MCN-114	705158	5467987	5000	88.6	0	-90
89-MCN-118	705071	5468037	5000	75.2	0	-90
89-MCN-119	705082	5468086	5000	70.65	0	-90
89-MCN-122	705371	5468143	5000	51.8	0	-90
89-MCN-125	705364	5468198	5000	50.61	0	-90
89-MCN-127	705191	5468239	5000	102.1	0	-90
89-MCN-135	705460	5468647	5000	90.5	0	-90
89-MCN-137	705465	5468696	5000	79.3	0	-90
89-MCN-139	704991	5467934	5000	63.4	0	-90
89-MCN-141	705159	5467938	5000	118.07	0	-90
89-MCN-148	705544	5466587	5000	66.85	0	-90

APPENDIX IV HISTORIC DRILL HOLE ASSAYS

0	Any	alytical C	ESON BLVD ONTARIO,	Chemists · I .E., UNI CANADA L 416) 890-	Registered As T 54, MIS 4Z-1R5	sayers	Pro	ATTN: 1 950 - 2 TORONIC MSC IC: Ject : MC	MORDAN 6 TORON 9, ON NICKEL			B. MOUNTA		Tot. Date	ce # : I-89	
								CE	RTIFI	CATE	OF	ANAL	YSIS	A892	4197	
SAMPLE DESCRIPTION		PREP		End Footage	Interva Footage		Co %	Cu %	Fe %	Mh %	Mb %	Ni %	РЪ %	Zn %	Sample Number	
89-MCN-24-01 89-MCN-24-02 89-MCN-24-03 89-MCN-24-04 89-MCN-24-04 89-MCN-24-05	205 205 205 205 205 205		1.70 3.00 4.00 5.00 6.00	3.00 4.00 5.00 6.00 6.71	1.30 1.00 1.00 1.00 0.71	< 22222	0.016 0.035 0.028	0.003 0.073 0.103 0.081 0.153	3.75 10.40 22.2 12.10 23.0	0.043 0.093 0.026	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.012 0.126 0.272 0.190 0.403	< 0.002 0.002 0.004 < 0.002 0.002	0.007	26477 26477 26478 26478 26478 26478	
89-MDN-24-06 89-MDN-24-07 89-MDN-24-08 89-MDN-24-09 89-MDN-24-09 89-MDN-24-10	205 205 205 205 205 205		6.71 8.00 9.14 10.00 10.50	8.00 9.14 10.00 10.50 12.19	1.29 1.14 0.86 0.50 1.69	< 22	0.011	0.137 0.033 0.127 0.328 0.022	14.85 13.10 19.05 21.0 4.72	0.048 0.044 0.033	<pre>< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001</pre>	0.173 0.084 0.197 0.263 0.030	0.004 0.004 0.002 0.002 < 0.002	0.007 0.007 0.007 0.007 0.007 0.003	26478 26478 26478 26478 26478 26478	
89-MDN-24-11 89-MDN-24-12 89-MDN-24-13 89-MDN-24-13 89-MDN-24-14 89-MDN-24-15	205 205 205 205 205 205	HIH	12.19 13.30 14.00 15.00 15.45	13.30 14.00 15.00 15.45 16.75	1.11 0.70 1.00 0.45 1.30	< 222222 < VVV	0.012 0.014 0.021 0.008 0.003	0.077 0.064 0.084 0.084 0.084	8.55 8.10 10.35 5.89 2.91	0.033 0.039 0.036	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.107 0.112 0.147 0.063 0.016	<pre>< 0.002 < 0.002</pre>	0.003 0.003 0.004 0.003 0.003	26478 26478 26479 26479 26479 26479	
89-MON-24-16 89-MON-24-17 89-MON-24-18 89-MON-24-19 89-MON-24-19 89-MON-24-20	205 205 205 205 205 205		16.75 18.29 19.22 20.00 21.00	18.29 19.22 20.00 21.00 22.27	1.54 0.93 0.78 1.00 1.27	< 2 2 2 4 2 2 4 2 2 2	0.003 0.004 0.027 0.012 0.014	0.008 0.013 0.232 0.034 0.034	2.75 4.67 20.0 6.67 10.85		< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001		<pre>< 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002</pre>	0.002 0.003 0.006 0.002 0.003	26479 26479 26479 26479 26479 26479	
89-MON-24-21 89-MON-24-22 89-MON-24-23 89-MON-24-24 89-MON-24-24 89-MON-24-25	205 205 205 205 205 205	1111	22.27 23.50 24.38 24.95 25.22	23.50 24.38 24.95 25.22 25.70	1.23 0.88 0.57 0.27 0.48	< 2 2 2 6 2 C	0.010 0.008 0.012 0.079 0.036	0.039 0.040 0.132 0.068 0.117	6.55 5.20 9.97 >50.0 18.55	0.020 0.025 0.028 0.008	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.088 0.062 0.136 1.030 0.310	<pre>< 0.002 < 0.002 0.002 0.002 0.006 0.002</pre>	0.002 0.003 0.004 0.011 0.004	26579 26479 26480 26480 26480 26480	
39-MON-24-26 39-MON-24-27 89-MON-24-28 39-MON-24-29 39-MON-24-30	205 205 205 205 205 205	1111	25.70 25.92 27.43 28.00 28.50	25.92 27.43 28.00 28.50 29.00	0.22 1.51 0.57 0.50 0.50	4 2 4 8 4	0.056 0.008 0.037 0.022 0.036	0.052 0.216 0.116 1.150 0.286	40.1 6.02 23.9 21.0 17.25	0.017 0.034 0.027	0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.706 0.080 0.323 0.298 0.226	< 0.002 < 0.002 0.002 0.002 0.002 0.002	0.008 0.003 0.007 0.015 0.009	26480 26480 26480 26480 26480 26480	
39-MON-24-31 39-MON-24-32 39-MON-24-33 39-MON-24-34 39-MON-24-35	205 205 205 205 205 205	ШП	29.00 29.75 30.48 31.00 32.05	29.75 30.48 31.00 32.05 32.70	0.75 0.73 0.52 1.05 0.65	4 10 8 6 8	0.026 0.657 0.304 0.095 0.312	0.096 1.595 0.971 0.253 0.670	18.65 49.5 >50.0 49.9 48.3	0.019 0.017 0.015	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.274 0.467 0.715 0.826 0.683	< 0.002 0.004 < 0.002 0.002 < 0.002	0.008 0.016 0.015 0.012 0.012	26480 26480 26481 26481 26481 26481	
9-MON-24-36 9-MON-24-37 9-MON-24-38	205 205 205	Ξ	32.70 33.65 34.20	33.65 34.20 35.00	0.95 0.55 0.80	< ⁶ / ₄	0.086 0.066 0.004	0.192 0.428 0.013	>50.0 30.2 3.01	0.016 0.026 0.027	< 0.001 < 0.001 < 0.001	0.988 0.537 0.023	< 0.002 0.004 < 0.002	0.012 0.011 0.006	26481 26481 26481	

9				T 54. MIS 4Z-1R5		· Pro		MORDAT	INT TO ST.		B MOUNTA	AIN	Tot. I Date	ce # :1-89	
						C	CEI	RTIFI	CATE	OF .	ANAL	YSIS	A892	24177	
SAMPLE DESCRIPTION	PREP CODE		End Footage	Interva Footage		Co %	Cu %	Fc %	Mh %	Mb %	Ni %	РЪ %	Zn %	Sample Number	
89-MON-30-01 89-MON-30-02 89-MON-30-03 89-MON-30-04 89-MON-30-05	205 — 205 — 205 — 205 — 205 —	5.91 6.41 6.71 22.04 23.04	7.21 23.04	0.30 0.50 1.00	4 12 4 8 6	0.076 0.005 0.028	0.043 0.081 0.006 0.075 0.047	4.29 43.0 3.89 17.10 9.82	0.023 0.012 0.019 0.044 0.030	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.018 0.704 0.027 0.120 0.109	<pre> 0.002 0.002 0.002 0.002 0.004 0.004 0.006</pre>	0.008	26565.3 26565.4 26565.5 26565.6 26565.7	
89-MON-30-06 89-MON-30-07 89-MON-30-08 89-MON-30-09 89-MON-30-10	205 - 205 - 205 - 205 - 205 -	24.04 25.00 26.19 26.20 28.04	26.19 26.20 28.04	0.01	46668	0.018	0.033 0.037 0.052 0.108 0.116	7.27 6.64 12.25 12.30 15.20	0.033 0.033 0.022	<pre>< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001</pre>	0.129	0.004 0.006 0.002 0.002 0.002	0.006 0.005 0.008	26565.8 26565.9 26566.0 26566.1 26566.2	
89-MON-30-11 89-MON-30-12 89-MON-30-13 89-MON-30-14 89-MON-30-15	205 — 205 — 205 — 205 — 205 —	29.04 29.84 30.47 31.43 32.28	30.47 31.43 32.28	0.80 0.63 0.96 0.85 0.30	4 4 6 16 24	0.117	0.044 0.049 0.372 0.074 >3.00	7.05 5.02 11.45 >50.0 34.0	0.031 0.026 0.010	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.068	<pre>< 0.002 < 0.002 < 0.002 < 0.002 < 0.002 0.002</pre>	0.002 0.004 0.010	26566.3 26566.4 26566.5 26566.6 26566.7	
89-MON-30-16 89-MON-30-17 89-MON-30-18 89-MON-30-19 89-MON-30-20	205	32.58 33.28 33.91 34.91 35.91	33.28 33.91 34.91 35.91 37.19	0.70 0.63 1.00 1.00 1.28	6 8 10 8 10	0.011 0.053 0.044	0.169 0.559 0.379 0.158 0.141	5.94 6.41 17.10 17.65 21.7	0.030 0.033 0.032 0.030 0.028	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.070 0.084 0.236 0.129 0.266	0.002 0.002 0.002 0.002 0.002	0.004	26566.8 26566.9 26567.0 26567.1 26567.2	
89-MON-30-21 89-MON-30-22 89-MON-30-23 89-MON-30-24 89-MON-30-25	205 - 205 - 205 - 205 - 205 -	37.19 38.19 38.80 39.40 40.23	39.40 40.23	1.00 0.61 0.60 0.83 1.00	8 10 8 12 8	0.044 0.026 0.107	0.076 0.116 0.055 0.228 0:090	21.6 20.4 19.70 27.2 13.45	0.029	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.177	<pre></pre>	0.004	26567.3 26567.4 26567.5 26567.6 26567.7	
89-MON-30-26 89-MON-30-27 89-MON-30-28 89-MON-30-29 89-MON-30-30	205 — 205 — 205 — 205 — 205 —	41.23 42.23 42.91 43.53 44.20	43.53 44.20	1.00 0.68 0.62 0.67 0.67	10 10 12 8 14	0.032 0.082 0.026	0.134 0.150 0.098 0.206 0.118	20.0 18.40 35.7 14.80 45.2	0.029 0.027 0.020 0.041 0.014	<pre>< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001</pre>	0.329 0.323 0.649 0.247 0.829	0.002 0.002 < 0.002 < 0.002 0.002 0.002	0.008 0.010 0.005	26567.8 26567.9 26568.0 26568.1 26568.2	
89-MON-30-31 89-MON-30-32 89-MON-30-33 89-MON-30-34 89-MON-30-35	205 — 205 — 205 — 205 — 205 —	44.87 45.85 48.17 49.38 50.38	45.95 47.06 49.38 50.38 51.18	1.08 1.21 1.21 1.00 0.80	4 14 8 4 4		0.022 0.251 0.113 0.080 0.060	2.70 >50.0 22.8 9.65 8.95		< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001		<pre>< 0.002 < 0.002</pre>	0.009 0.004 0.003	26568.3 26568.4 26568.5 26568.6 26568.7	
89-MDN-30-36 89-MDN-30-37	205 <u></u>	51.18 52.06	52.06 53.25	0.88	84	0.045	0.154 0.025	19.05	0.020	< 0.001 < 0.001	0.279	< 0.002 < 0.002	0.008	26568.8 26568.9	

1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Chemex Labs Ltd. Analytical Chemiats * Geochemiats * Registered Assayers 450 MATHESON BLVD. E. UNIT 54, MISSISSAUGA. ONTARIO, CANADA L42-185 PHONE (416) \$90-0310

To: FLANAGAN MCADAM & COMPANY ATTN: P. MORDAUNT 950 - 36 TORONTO ST. TORONTO, ON MSC ICS Project: MCNICKEL Comments: ATT'N: P. MORDAUNT C.C:

Page No. : 1 Tot. Pages: 1 Date : 7-SEP-89 Invoice # : I-8924862 P.O. #. :

1

C.C: S.MEDD C.C: B MOUNTAIN

Sample Number	Zn %	РЬ %	Ni %	Мь %	Ma %	Fe %	Cu %	Co %		Interva Footage	End Foot age	Start Footage	PREP CODE	SAMPLE DESCRIPTION
43051.0 43052.0 43053.0 43054.0 43055.0	0.002 0.005 0.004	< 0.002 < 0.002 0.002 0.002 0.002 0.002	0.007 0.007 0.283 0.187 0.281	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.009 0.016 0.011	2.51 1.84 14.80 11.40 15.00	0.004 0.003 0.100 0.087 0.102	0.001 0.029 0.025	<< < < 222222 222222222222222222222222	1.03 1.00 1.02 0.97 1.51	21.15 22.15 23.17 24.14 25.65	20.12 21.15 22.15 23.17 24.14	205 — 205 — 205 — 205 — 205 —	89-MON-45-01 89-MON-45-02 89-MON-45-03 89-MON-45-04 89-MON-45-05
43056.0 43057.0 43058.0 43059.0 43060.0	0.011 0.012 0.014	0.002 0.002 0.002 0.006 0.006	0.104 0.048 0.092 0.402 0.116	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.083 0.058 0.074	13.00 21.0 20.8 27.9 18.10	0.073 0.037 0.072 0.329 0.037		2 4 2 4 2	1.00 0.85 0.50 0.49 0.71	26.65 27.50 28.20 28.69 29.40	25.65 26.65 27.50 28.20 28.69	205 — 205 — 205 — 205 — 205 —	89-MON-45-06 89-MON-45-07 89-MON-45-08 89-MON-45-09 89-MON-45-10
43061.0 43062.0 43063.0 43064.0 43065.0	0.004 0.009 0.002	0.004 0.004 0.002 < 0.002 0.002	0.058 0.018 0.074 0.003 0.006	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.047	7.62 4.47 15.10 1.29 2.77	0.027 0.011 0.036 0.002 0.004	0.009	< 22 < 22 < 22 < 22 < 22 < 22 < 22 < 22	0.70 0.70 0.56 1.00 1.00		29.40 30.10 30.80 31.36 32.36	205 205 205 205 205 205	89-MCN-45-11 89-MCN-45-12 89-MCN-45-13 89-MCN-45-13 89-MCN-45-14 89-MCN-45-15
43066.0 43067.0 43068.0 43069.0 43070.0	0.007 0.006 0.008	0.002 0.002 0.004 0.004 0.004	0.009 0.017 0.438 0.457 0.172	<pre>< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001</pre>	0.051 0.024 0.018	4.89 9.84 24.7 29.4 13.00	0.006 0.013 0.042 0.357 0.053	0.004 0.003 0.027 0.078 0.019	< 22242	1.33 0.92 0.79 1.00 0.75	34.69 35.61 36.40 37.40 38.15	33.36 34.69 35.61 36.40 37.40	205 205 205 205 205 205 205	89-MCN-45-16 89-MCN-45-17 89-MCN-45-18 89-MCN-45-19 89-MCN-45-19 89-MCN-45-20
43071.0 43072.0 43073.0 43074.0 43075.0	0.012 0.003 0.010	0.004 0.006 0.004 0.006 0.002	0.347 0.939 0.065 0.770 0.061	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.013 0.023 0.017	27.0 >50.0 6.69 >50.0 7.06	0.218 0.320 0.015 0.175 0.046	0.109 0.139 0.007 0.227 0.012	2 6 2 6 2 6 2 6 2	0.93 0.96 0.36 1.14 1.20	39.08 40.04 40.40 41.54 42.74	38.15 39.08 40.04 40.40 41.54	205 205 205 205 205 205	89-MCN-45-21 89-MCN-45-22 89-MCN-45-23 89-MCN-45-23 89-MCN-45-24 89-MCN-45-25
43076.0 43077.0 43078.0 43079.0 43080.0	0.004 0.003 0.004	0.002 0.002 < 0.002 0.002 < 0.002 < 0.002	0.253 0.038 0.009 0.016 0.005	<pre>< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001</pre>	0.031 0.023 0.034	18.10 5.94 3.39 3.73 2.66	0.216 0.086 0.004 0.012 0.003	0.036 0.020 0.002 0.004 0.002	×××××	1.46 1.00 1.00 0.80 0.86	44.20 45.20 46.20 47.00 47.86	42.74 44.20 45.20 46.20 47.00	205 205 205 205 205 205	89 MCN-45-26 89 MCN-45-27 89 MCN-45-28 89 MCN-45-28 89 MCN-45-29 89 MCN-45-30
43081.0 43082.0 43083.0 43084.0 43085.0	0.007 0.005 0.008	0.002 0.004 0.002 < 0.002 < 0.002 < 0.002	0.003 0.082 0.007 0.009 0.004	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.052 0.037 0.040	1.54 9.18 4.36 6.76 3.03	0.001 0.035 0.005 0.006 0.001		< < < < < < < < < < < < < < < < < < <	1.13 0.61 0.52 1.14 1.20	51.73 52.34 52.86 54.00 55.20	47.86 51.73 52.34 52.86 54.00	205 205 205 205 205 205	89-MON-45-31 89-MON-45-32 89-MON-45-33 89-MON-45-34 89-MON-45-35

							Ē	CE	RTIFIC	CATE	OF /	ANAL	YSIS	A892	5250
SAMPLE DESCRIPTION		PREP	Start Footage	End Footage	Interva Footage		Co %	Cu %	Fe %	Mh %	Мь %	Ni %	Ръ %	Zn %	Sample Number
9-MCN-57-01 9-MCN-57-02 9-MCN-57-03 9-MCN-57-04 9-MCN-57-05	205 205 205 205 205		13.00 14.00 15.00 16.00 17.00	14.00 15.00 16.00 17.00 18.00	1.00 1.00 1.00 1.00 1.00	< 22 < 22 < 22 < 22 < 22 < 22	0.006 0.012 0.030	0.006 0.030 0.037 0.081 0.005	2.71 4.53 7.20 12.30 3.02	0.026	V 0.001 V 0.001 V 0.001 V 0.001 V 0.001 V 0.001	0.109	0.002 0.002 0.002 < 0.002 < 0.002 0.002	0.003 0.003 0.004	26167.1 26167.2 26167.3 26167.4 26167.5
9-MDN-57-06 9-MDN-57-07 9-MDN-57-08 9-MDN-57-09 9-MDN-57-10	205 205 205 205 205 205		18.00 19.00 19.90 20.49 21.00	19.00 19.90 20.49 21.00 21.50	1.00 0.90 0.59 0.51 0.50	< 2 2 4 2 2	0.025 0.065 0.008	0.002 0.234 0.392 0.413 0.281	1.77 7.82 34.0 7.92 22.0	0.018 0.023 0.018 0.033 0.019	<pre>< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001</pre>	0.005 0.095 0.625 0.084 0.315	<pre>< 0.002 < 0.002</pre>	0.004 0.008 0.005	26167.6 26167.7 26167.8 26167.9 26168.0
9-MDN-57-11 9-MDN-57-12 9-MDN-57-13 9-MDN-57-14 9-MDN-57-15	205 205 205 205 205 205	IIIII	21.50 21.95 22.50 23.05 24.00	21.95 22.50 23.05 24.00 24.50	0.45 0.60 0.55 0.95 0.50	< < < 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.022	0.744 0.070 0.066 0.005 0.066	27.4 16.90 10.30 2.19 5.27	0.022 0.020 0.033 0.014 0.021	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.249 0.301 0.131 0.011 0.054	<pre>< 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002</pre>	0.004 0.025 0.002	26168.1 26168.2 26168.3 26168.4 26168.5
9-MON-57-16 9-MON-57-17 9-MON-57-18 9-MON-57-19 9-MON-57-20	205 205 205 205 205 205	ШП	24.50 25.00 25.60 26.00 26.75	25.00 25.60 26.00 26.75 27.62	0.50 0.60 0.40 0.75 0.87	6 6 6 6 4 2 < 2	0.071 0.089 0.089 0.073 0.016	0.142 0.126 0.098 0.126 0.099	>50.0 >50.0 >50.0 >50.0 9.68	0.008	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.916 1.130 1.125 0.935 0.152	<pre>< 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002</pre>	0.012 0.012 0.010	26168.6 26168.7 26168.8 26168.9 26169.0
9-MDN-57-21 9-MDN-57-22 9-MDN-57-23 9-MDN-57-24 9-MDN-57-25	205 205 205 205 205 205		27.62 28.65 29.65 31.00 32.00	28.65 29.65 31.00 32.00 32.50	1.03 1.00 1.35 1.00 0.50	< 22 < 22 < 22 < 22 2		0.080 0.200 0.017 0.023 0.081	7.87 19.15 4.79 5.27 16.60	0.040 0.033 0.037	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.097 0.305 0.041 0.046 0.217	< 0.002 < 0.002 0.002 0.002 < 0.002	0.007 0.004 0.005	26169.1 26169.2 26169.3 26169.4 26169.5
9-MON-57-26 9-MON-57-27 9-MON-57-28 9-MON-57-29 9-MON-57-30	205 205 205 205 205 205		32.50 33.00 38.23 39.08 40.24	33.00 33.53 39.08 40.24 40.50	0.50 0.53 0.85 1.16 0.26	< < < < 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.002	0.075 0.214 0.002 0.005 0.102	15.80 24.8 2.32 2.60 24.6	0.034 0.017 0.022	< 0.001 < 0.001 0.001 < 0.001 < 0.001 < 0.001	0.136 0.351 0.005 0.009 0.401	< 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002	0.009 0.004 0.005	26169.6 26169.7 26169.8 26169.9 26170.0
9-MON-57-31	205	-	40.50	40.74	0.24	< 2	0.005	0.002	8.89	0.097	< 0.001	0.008	0.016	0.027	26170.1

SAMPLE PREP Start End IntervaAg Co Cu Fe Mn Mo Ni PR DESCRIPTION CODE Footage	IS A8927122
5 100 age root age ppm % % % % % % %	- Sample
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.002 0.007 31441.8 0.002 0.007 31441.9 0.002 0.007 31441.9 0.002 0.006 31442.0 0.002 0.007 31442.1
30-MCN-133-06 205	0.002 0.029 31442.2 0.002 0.032 31442.3 0.002 0.013 31442.4 0.002 0.006 31442.5 0.002 0.006 31442.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.002 0.007 31442.7 0.002 0.011 31442.8 0.002 0.032 31442.9 0.002 0.032 31442.0
89-MON-133-16 205 - 39.20 40.70 1.50 <2 0.033 0.771 14.15 0.039 <0.001 0.0336 0 89-MON-133-17 205 - 40.70 42.20 1.50 <2	0.002 0.013 31443.1 0.002 0.016 31443.2 0.002 0.005 31443.3 0.002 0.001 31443.4 0.002 0.007 31443.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.002 0.007 31443.6 0.002 0.007 31443.7 0.002 0.006 31443.8 0.002 0.015 31443.9 0.002 0.004 31444.0
$\frac{89 \text{-MCN} - 133 - 26}{205} = \frac{205}{205} = \frac{205}{205$.002 0.018 31444.1 .002 0.010 31444.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.006 0.009 31444.5 .002 0.016 31444.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.002 0.010 31444.7

Service States	_						L	CER	TIFIC	ATE	OF A	NAL	YSIS	A892	27624	
SAMPLE DESCRIPTION		DDE	Start Footage	End Footage	Interva Footage		Co %	Cu %	Fe %	Mh %	Mb %	Ni %	РЪ %	Zn %	Sample Number	
89-MON-138-01 89-MON-138-02 89-MON-138-03 89-MON-138-04 89-MON-138-05	205 205 205	11111	30.50 32.00 48.40 49.90 50.90	32.00 33.50 49.90 50.90 51.80	1.50 1.50 1.50 1.00 0.90	< 2 < 2 < 2 2 4	0.007 0.013 0.015	0.033 0.034 0.048 0.091 0.343	3.10 3.36 6.55 8.06 33.9	0.018	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.046	< 0.002 < 0.002 0.002 < 0.002 < 0.002	0.004 0.007 0.006	31451.8 31451.9 31452.0 31452.1 31452.2	
89-MON-138-06 89-MON-138-07 89-MON-138-08 89-MON-138-09 89-MON-138-10	205	IIII	51.80 52.80 54.00 55.50 57.00	52.80 54.00 55.50 57.00 58.50	1.00 1.20 1.50 1.50 1.50	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.017	0.128 0.030 0.057 0.079 0.052	5.04 4.26 5.19 7.34 7.37	0.018 0.012 0.013 0.015	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.083 0.073 0.112 0.164	< 0.002 0.002 < 0.002 < 0.002 < 0.002 0.002	0.005 0.003 0.004 0.005	31452.3 31452.4 31452.5 31452.6 31452.7	
89-MON-138-11 89-MON-138-12 89-MON-138-13 89-MON-138-14 89-MON-138-15	205 205 205		58.50 60.00 61.50 62.80 63.30	60.00 61.50 62.80 63.30 63.80	1.50 1.50 1.30 0.50 0.50	< 22 < < 2 < 6 2	0.010 0.009 0.008 0.158 0.028	0.036 0.037 0.041 0.277 0.158	4.68 4.01 3.42 >50.0 16.30	0.021 0.019 0.016 0.012	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.086 0.075 0.059 1.325	< 0.002 < 0.002 < 0.002 < 0.002 0.006 0.004	0.004 0.004 0.003 0.014	31452.8 31452.9 31453.0 31453.1 31453.2	
9-MCN-138-16 9-MCN-138-17 9-MCN-138-18 9-MCN-138-19 9-MCN-138-20	205 205	Ξ	63.80 64.20 65.50 66.50 67.60	64.20 65.50 66.50 67.60 69.40	0.40 1.30 1.00 1.10 1.80	< 22 22 22 22 22 22 22 22 22 22 22 22 22	0.099 0.029 0.034 0.017 0.001	0.075 0.295 0.448 0.265 0.004	>50.0 13.20 15.20 8.92 0.73	0.013 0.032 0.016 0.022	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	1.605 0.288 0.416 0.214	0.004 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002	0.015 0.020 0.010 0.010	31453.3 31453.4 31453.5 31453.6 31453.7	
9-MCN-138-21 9-MCN-138-22 9-MCN-138-23 9-MCN-138-24 9-MCN-138-25	205 205 205		69.40 70.70 73.15 74.00 76.20	70.70 72.00 74.00 74.50 76.70	1.30 1.30 0.85 0.50 0.50	< 22 < 22 < 22 < 22 < 22 < 22	0.020 0.057 0.009 0.056 0.001	0.088 0.182 0.041 0.587 0.004	8.37 15.70 5.97 30.9 0.72	0.018 0.030 0.029	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.208 0.361 0.108 0.912 0.011	0.002 0.002 0.002 0.004 < 0.002	0.006 0.010 0.009 0.018	31453.8 31453.9 31454.0 31454.1 31454.2	
9-MON-138-26 9-MON-138-27		=	76.70 77.20	77.20 78.20	0.50 1.00	< 2	0.054 0.001	0.187 0.019	35.3 1.83		< 0.001 < 0.001	1.060 0.014	0.002 < 0.002	0.011	31454.3 31454.4	-

9	Analytic 450 Ma Ontario	eme al Chemista * 0 theson Blvd. , Canada : 416-890-0	Geochemists .,E., Unit 54	* Registered	Assayers	•	AT 95 TC M	ANAGAN M ITN: P. MOF 0 - 36 TORO DRONTO, O 5C 1C5 McNIC nts: ATTN:	NDAUNT ONTO ST. N		S. MEDD	CC: B. MOU	inv P.C	ge Number tal Pages : roice Date: roice No. : D. Number :	18-OCT-89 1-8928233
		-		-	-	-		CERTI	FICATE	OF AN	ALYSIS	6 A	892823	13	
SAMPLE DESCRIPTION	PREP	Start Footage	End Footage	Interva Footage		Co ¥	Cu ł	Te t	Mn 8	No ł	Ri ł	Pb	Zn ł	Sample Number	
89-MCN-158-01 89-MCN-158-02 89-MCN-158-03 89-MCN-158-04 89-MCN-158-05	205 205 205 205	8.12 9.00 10.00 11.00 12.00	9.00 10.00 11.00 12.00 13.00	0.88 1.00 1.00 1.00 1.00	< < < < < < < < < < < < < < < < < < <	0.007 0.007 0.007 0.008 0.011	0. 005 <0. 001 0. 017 0. 025 0. 034	6.08 6.87 7.47 8.70 8.62	0.085 0.102 0.100 0.110 0.110	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.023 0.025 0.026 0.030 0.056	< 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002	0.012 0.014 0.011 0.013 0.012	31530.6 31530.7 31530.8	
89-MCN-158-06 89-MCN-158-07 89-MCN-158-08 89-MCN-158-09 89-MCN-158-10	205 205 205 205	13.00 14.00 15.00 16.00 17.00	14.00 15.00 16.00 17.00 18.00	1.00 1.00 1.00 1.00 1.00	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.009 0.006 0.006 0.006 0.009	0. 031 0. 003 <0. 001 0. 001 0. 018	6.74 5.15 5.52 5.46 6.82	0.091 0.081 0.091 0.103 0.087	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.053 0.027 0.021 0.029 0.036	< 0.002 < 0.002 < 0.002 < 0.002 < 0.002 0.002	0.010 0.010 0.011 0.011 0.013	31531.0 31531.1 31531.2 31531.3	
89-MCH-158-11 89-MCH-158-12 89-MCH-158-13 89-MCH-158-14 89-MCH-158-15	205 205 205 205 205	18.00 19.00 20.00 21.00 22.00	19.00 20.00 21.00 22.00 23.00	1.00 1.00 1.00 1.00	<pre></pre>	0.013 0.011 0.012 0.007 0.011	0. 043 0. 020 0. 048 0. 028 0. 029	7.52 7.67 8.11 3.99 6.71	0.068 0.094 0.084 0.088 0.061	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.069 0.068 0.086 0.040 0.076	< 0.002 0.002 0.002 < 0.002 0.006	0.010 0.012 0.012 0.004 0.021	31531.5 31531.6 31531.7 31531.8 31531.9	
9-MCH-158-16 9-MCH-158-17 9-MCH-158-18 9-MCH-158-19 9-MCH-158-20	205 — 205 — 205 — 205 — 205 — 205 —	23.00 24.00 25.00 26.00 27.00	24.00 25.00 26.00 27.00 27.92	1.00 1.00 1.00 1.00 0.92	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.012 0.009 0.008 0.009 0.009	0. 033 0. 024 0. 025 0. 034 0. 056	6.38 4.55 4.33 4.43 6.84	0.047 0.030 0.031 0.027 0.042	< 0.001	0.077 0.071 0.064 0.078 0.143	< 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002	0.007 0.005 0.004 0.005 0.008	31532.0 31532.1 31532.2 31532.3 31532.4	
9-MCH-158-21 9-MCH-158-22 9-MCH-158-23 9-MCH-158-24 9-MCH-158-25	205 205 205 205 205	27.92 29.00 29.92 30.92 31.50	29.00 29.92 30.92 31.50 32.40	1.08 0.92 1.00 0.58 0.90	44466	0.060 0.037 0.069 0.079 0.094	0. 614 0. 458 0. 297 0. 197 0. 234	17.70 18.20 38.9 48.6 >50.0	0.026 0.027 0.023 0.047 0.022	< 0.001 < 0.001 < 0.001	0.312 0.372 1.165 1.255 1.485	0.002 0.002 < 0.002 0.002 < 0.002	0.009 0.008 0.012 0.014 0.015	31532.5 31532.6 31532.7 31532.8 31532.9	
9-MCH-158-26 9-MCH-158-27 9-MCH-158-28 9-MCH-158-29	205 — 205 — 205 — 205 —	32.40 33.70 34.44 35.50	33.70 34.44 35.50 36.50	1.35 0.74 0.96 1.00	2422	0.035 0.061 0.002 0.002	0. 242 0. 147 0. 003 <0. 001	19.05 22.9 1.93 2.58	0.020 0.055 0.029 0.046	< 0.001 < 0.001 < 0.001 < 0.001	0.532 0.802 0.012 0.008	0.002 0.004 0.002 < 0.002	0.009 0.011 0.007 0.004	31533.0 31533.1 31533.2 31533.3	