PRELIMINARY EXPLORATION REPORT ON GUERCHEVILLE PROPERTY, CHAPAIS, QUEBEC

NTS Sheet 32G/11 & 32G/12

Quebec, Canada

Jean-Philippe Mai, P. Geo. Benoît Massé André Ciesielski, P. Geo. Montreal, November 2010

TABLE OF CONTENT

	PAGE
1. Summary	1
2. Introduction	2
3. Reliance on Other Experts	2
4. Propert Description & Location	3
5. Acessibility, Climate & Local Resources	5
6. History	6
6.1. Regional Surveys	6
6.2. Gurecheville-A	6
6.3. Guercheville-B	7
6.4. Regional Occurrences	11
7. Geological Setting	10
7.1. Regional Geology	12
7.2. Regional Structure & Metamorphism	12
7.3. Guercheville Property	14
8. Regional Deposit Types	18
8.1. Mesothermal Orogenic Gold Deposits	19
8.2. Porphyritic & Hydrothermal Cu-Au Mineralization	19
8.3. Mafic Volcanic Hosted Zn±Cu±Au±Ag Shear Zones	19
9. Mineralization	20
9.1. Lac Anctil Type Mineralization	20
9.2. Lac Anctil "A-2" Showing	20
10. CARDS Targets	23
11. Exploration	25
11.1. Ground Geophysics	25
11.2. Geochenical Sampling	25
12. Results	27
12.1. Ground Geophysics	27
12.2. Rock Geochemical Results	27
13. Drilling	27
14. Sampling Method & Approach	28
15. Sample Preparation	28
16. Data Verification	29
17. Adjacent Properties	30
18. Mineral Processing & Metallurgical Testing	30

Preliminary Report on Guercheville Property, Chapais, Quebec, November 2010

19.	Mineral Resources & Mineral Reserve Estimates	30
20.	Other Relevant Data	30
21.	Conclusion & Discussion	31
22.	Recommendations	32
23.	References	33
24.	Date and Signature	37
Ap	pendix I	41
Ap	pendix II	43
Ap	pendix III	48
Ap	pendix IV	61
Lis	t of Tables	PAGE
I M	lineral Discoveries	20
III	Exploration works	25
III	Lithogeochemical results	27
IV	Standard assays	29
Lis	t of Figures	
1	Location Map	3
2	Claim Map	4
3	Historical Works	9
4	Historical Intersections	10
5	Ajacent Gold Deopsits	11
6	Regional geology	13
7	Guercheville Map	15
8	Regional Structure Map	16
9	Total Magnetic Field Anomalies	17
10	Geology of Mineral Deposits	18
11	Lac Anctil Assay Map	21
12	Lac Anctil .A" Quartz Vein Photographs	22
13	CARDS Target Map	24
14	Guercheville Sample Map	26

MAIN ABBREVIATIONS Km : kilometer UTM : Universal Transverse Mercator NAD : North American Datum g/t : gramme per metric ton °C : degree celsius

NTS : National Topographic System Gy : 1000 Million years

1. SUMMARY

The Guercheville gold & copper property is located south-west of the town of Chapais in the province of Québec. The property includes two claim groups: the Guercheville A and the Guercheville B. In 2008 new claims (CDC) were added to the land package which now covers a total area of 21.21 km².

The Guercheville property is located in the Caopatina segment of the Chibougamau-Matagami greenstone belt, within the Abitibi Subprovince. Rock units in this segment are dominantly composed of basalts of the Obatogamau Formation intruded by a series of mafic to felsic volcanic centers. The Caopatina segment is known for hosting the Joe Mann mine, main gold producer of the Chibougamau-Chapais mining district, but also smaller gold and base metals deposits. Several gold, copper, zinc and silver showings have been reported on the Guercheville claims from past work in the area.

Exploration work on the Guercheville property in 2008 consisted in ground geophysics (IP, infiniTEM) leading to the recognition of new anomalies, followed by lithogeochemical sampling during two reconnaissance exploration programs. The IP and infiniTEM surveys, conducted during the winter 2008, were located on three (3) cut grids positioned over copper and gold targets generated by CARDS. The exploration programs, conducted the following summer, had for objective reconnaissance mapping and sampling over the geophysical grids and over other areas of interest. The mapping and sampling over the property permitted the discovery of a new gold showing, the Lac Anctil "A-2" showing (sample #794473: 0.49 g/t Au). It also permitted the localisation and confirmation of historical showings on the properties the Lac Anctil "A" gold zone (sample #876119: 3.96 g/t Au).

2. INTRODUCTION

At the request of DIAGNOS Inc., the author was contracted to complete a technical report on the Guercheville property located 200 km northeast of Val d'Or, Abitibi.

On the property, gold and copper targets were generated using DIAGNOS' proprietary Computer Aided Resource Detection System (CARDS) in 2006. Generation of these targets using "data mining techniques" was carried out by the "CARDS team" at DIAGNOS.

This report presents the geology and potential for gold and copper mineralization of the Guercheville property. It summarizes the ongoing exploration work carried out by DIAGNOS on the Guercheville property and sets out recommendations for additional work.

Parts of the information on the Guercheville claims and surrounding areas presented in this report is derived from historical public data, including assessment reports and geological, geochemical, and geophysical compilations, available online from SIGÉOM and GESTIM of Québec Ministère des Ressources Naturelles et de la Faune (MRNF). The first author of this report, André Ciesielski P.Geo., conducted a site visit of the Guercheville property on the 18th and 19th of August 2010.

DIAGNOS co-author geologists carried out exploration work on the Guercheville property in the summer of 2008. Work was supervised by Jean-Philippe Mai, P.Geo.

In this report, figures with UTM coordinates are in NAD 83 zone 18 projection.

3. RELIANCE ON OTHER EXPERTS

If not commented, the author considers the documentary sources as reliable, technically valid and usable with considerations related to the present frame of work. The author relied on exploration works carried out by DIAGNOS personnel in 2008.

Field information and samples were obtain and processed according to industry standards. Cu-Au targets on the Guercheville property were generated using DIAGNOS proprietary Computer Aided Resource Detection System (CARDS). The methodology, validity, and any representations made upon such targets is and remains the sole responsibility of the "CARDS team".

4. PROPERTY DESCRIPTION & LOCATION

The Guercheville-A and Guercheville-B properties are located approximately 45 km southwest of the town of Chapais, in the province of Quebec, Canada (Figure 1).

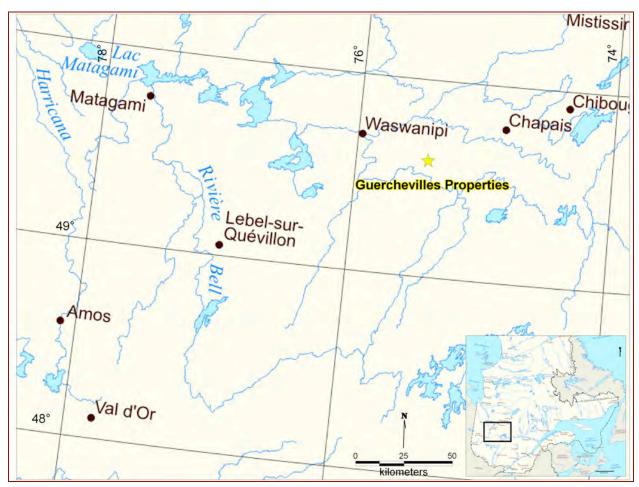


Figure 1 : Location map of Guercheville properties

The Guercheville-A claim block is located on NTS map sheet 32G/12 in the southeastern quadrant of the La Roncière Township. Two (2) claims have been added to the property in the summer 2008 (Figure 2). The Guercheville-A property is composed of six (6) contiguous claims covering a 334.65 hectares (3.35 km²) surface area. Title numbers and expiry dates are listed in Appendix I.

The Guercheville-B claim block is located on NTS map sheet 32G/11 in the Guercheville Township. During the summer 2008, eleven (11) claims have been added to the block (Figure 2). Guercheville-B is now composed of thirty-two (32) contiguous claims and covers a 1785.88 hectares (17.86 km²) surface area.

Booth Guercheville-A and B claim blocks are in good standing and 100% owned by DIAGNOS Inc.

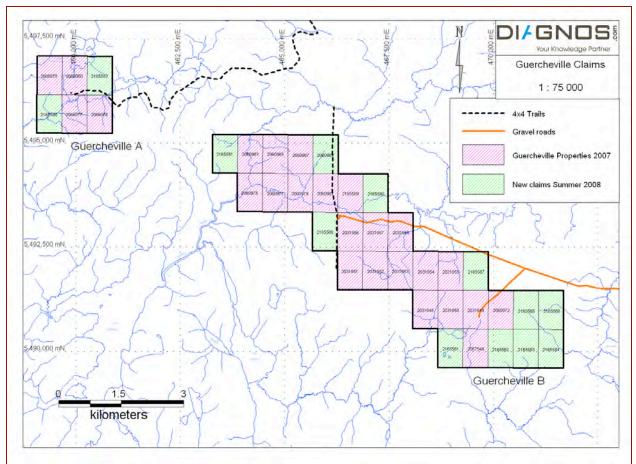


Figure 2 : Guercheville property claim map and access. Note that the list of claims including permit numbers and area covered is presented in Appendix I.

Historical gold showings are known to the southeast of the property in the Lac Anctil area, assaying 4 g/t Au.

The Guercheville property is subject to the Mining Law of the Province of Quebec.

To the best knowledge of the author, the Guercheville property is not subject to any other surface rights than those related to environmental protection of the mining law. To the knowledge of the author, the property has not been legally surveyed. The author doesn't have information regarding environmental liabilities on the property.

5. ACCESSIBILITY, CLIMATE & LOCAL RESOURCES

The Guercheville property can be accessed by all weather gravel roads and 4x4 trails which are part of a network of logging roads accessible from provincial highway 113, some 20 km west of Chapais (Figure 2). Some sectors can only be accessed by boat.

The climate is characterized by cold winter and mild summers. Temperatures can range from 5°C to 35°C during the summer months and can reach -35°C, rarely rising above 0°C during the winter months with an average snow cover of 83 cm and 115 mm of rain in summer. Lakes are typically frozen and suitable for diamond drilling from January to April.

Chapais, population 1630 (2006), is the closest town to the property area, located on route 113 near Chibougamau in the Jamésie region where major utilities and some services can be found. It is surrounded by, but not a part of, the municipality of Baie-James. The community was first settled in 1929, when copper, silver and gold was found in the area. Opémisca Copper Mines operated the community's mine until 1991. More recently, with the closure of the mines the community's primary industry has been forestry. Mining industrial resources can be found in Val d'Or, 200 km to the southwest.

The topography of the property is generally flat with a few small hills and swamps. The altitude ranges from 320m to 405m. The Guercheville property includes a few large lakes as well as a section of the Opawica River.

Except for a few protruding hill tops, most of the region is covered by glacial deposits, with a thickness ranging from under one meter to a few meters thick.

6. HISTORY

Much of the previous work conducted on the Guercheville property area has been oriented towards geological mapping, trenching, geophysical surveys and diamond drilling. A list of assessment reports on the Guercheville property claims, with brief details of previous work, is included in Appendix II. The following section is based on public domain information released prior to December 2008.

6.1. REGIONAL SURVEYS COVERING THE GUERCHEVILLE PROPERTY

1982 Quebec government INPUT survey was conducted by Questor Surveys Ltd (DP927).

1995 Quebec government SYGHEM 4 & 5 survey was conducted by Sial Geosciences Inc (DP-95-01).

6.2. GUERCHEVILLE-A PROPERTY

The Guercheville-A property has been subject to previous exploration work including ground geophysical and geochemical surveys, geological mapping, sampling and drilling. Most of this work was carried out between 1979 and 1995 on two historical properties: La Roncière and Rachel (Figure 3). Throughout the years, two companies worked on the La Roncière property: Serem Ltée and Claims Bouchard/Gamache; and two companies worked on the Rachel property: Minnova and Corporation Minière Inmet. Only one drill hole (82-LRC-D-3 by Serem Ltee) is reported on the Guercheville-A property, with assay values of 0.45% Zn over 1.3m and 0.98% Zn over 0.4m. Moreover, a 13.5 g/t Au showing is reported in grab sample #85452 by Minnova, and a 1.3% Zn showing is reported in grab sample #555092 by Claims Bouchard / Gamache (Figure 4).

- Previous Work

1958 Ventures Ltd conducted geological mapping and stream sediment geochemistry over the southeast quadrant of NTS map sheet 32G/12, which include the Guercheville-A property (GM 07818).

1979-1980 Serem Ltée conducted geological mapping and ground geophysical surveys (MAG, EM horizontal loop) on La Roncière property, located over a section of the Guercheville-A property (Figure 3). In this sector, they identified two isolated INPUT-EM anomalies of respectively 2 and 4 channels. (GM 34614, GM 45144, GM 50709)

1980 Falconbridge & Nickel Mines Ltd conducted an airborne geophysical survey (MAG, EM) over a large area in the region which includes the Guercheville-A property. A few anomalies were identified on the Guercheville-A claims. (GM 36598)

1982 Serem Ltée drilled a 97m hole on the Guercheville-A property. This drill hole (82-LRC-D-3) returned values of 0.45% Zn over 1.3m and 0.98% Zn over 0.4m (Figure 4). (GM 49033)

1988-1991 Minnova conducted exploration work, including ground geophysical surveys (gradiometric, MAG, VLF), geological mapping, rock sampling, and soil sampling, on the Rachel property. The Rachel property is located over the Guercheville-A property (Figure 6).

Two of the rock samples taken by Minnova on the on the Guercheville-A claims returned high gold values: sample #85452 assayed 13.5 g/t Au, and sample #85479 assayed 7.6 g/t Au (Figure 4). Furthermore, on the eastern section of the Guercheville-A property, the geochemical survey highlighted a zone of enriched in Au, Sb, Cr and rare earth elements (GM 48061, GM 49988, GM51091).

1994 Claims Bouchard/Gamache conducted exploration work on the La Roncière property (Figure 4), including ground geophysics (VLF, Beep-Mat), geological mapping and sampling. The rock samples returned an anomalous background area reaching up to 2384 ppm Zn and 1315 ppm Cu (GM 53503).

1994-1995 Corporation Minière Inmet conducted a ground geophysical survey (IP), and a geochemical survey on the Rachel Property (Figure 4) (GM 53903, GM 53947).

1995 Claims Bouchard & Claims Gamache conducted geological mapping and sampling in six trenches on the La Roncière property. Sample #555077, located in trench 2, assayed 0.2% Cu; and sample #555092, located in trench #3, assayed 1.3% Zn (Figure 4) (GM 54742, GM 55388).

6.3. GUERCHEVILLE-B PROPERTY

The Guercheville-B property has been worked on by different companies between 1957 and 2001. Most of this work was carried out during a 20 years period from 1981 to 2001. On this property, historical exploration work consists of airborne and ground geophysical surveys, geochemical surveys, geological mapping, rock sampling and drilling. Two drill holes were drilled on the Guercheville-B claims : RA-01 and GL-80-3 (Figure 3); however, drill hole GL-80-3 never came out of the overburden. Drill hole RA-01, on the other hand, returned assay values of 0.18 g/t Au over 1.5m. Moreover, three Au showings (1.3 g/t, 0.34 g/t, 0.12 g/t), and one Ag-Zn showing (12.3 g/t Ag & 0.21% Zn) are also reported in grab samples taken on the Guercheville-B claims (Figure 4).

- Previous Work

1957 American Metal Co Ltd conducted an Airborne MAG survey covering the SE section of the Guercheville-B property (GM 05440).

1981 SDBJ conducted ground geophysical surveys (MAG, Max-Min, VLF) on their GL-2, GL-3 properties, located partly over the Guercheville property (Figure 6). Subsequently, they tested an EM-VLF anomaly on grid GL-3 by drilling hole GL-80-3. This 30.5m drill hole never came out of the overburden. SDBJ considered that the thickness of the overburden explained the EM anomaly (GM 37345, GM 38222).

1984-1985 Exploration Orbite VSPA Inc & others conducted geological photointerpretation and ground geophysical surveys (gradiometric, MAG, VLF) on their Groupe K and Groupe L properties, located partially over the Guercheville-B property (Figure 4) (GM 42225, GM 42226, GM 42554).

1985-1986 Metaux Canadiens Getty Ltee conducted an exploration program including geological mapping, rock sampling, and stream sediment sampling on the Bachelor Lake

property, located over the Guercheville-B property (Figure 4). They analysed a total of 66 rock samples and 2 stream samples, but did not get good assay results (GM 42485, GM 43741).

1986 Ressources Aurex Inc. conducted geological mapping and sampling on the Groupe L property (Figure 4). However, no samples seem to have been taken directly on the Guercheville-B claims (GM 43359).

1987 Ministère des Ressources Naturelles conducted a geological mapping campaign over the du Guesclin region, which includes the Guercheville-B property. During this reconnaissance mapping, they discovered the Lac Anctil "A" ("Lac Anctil Est" in the MRNQ compilation) showing (1.3 g/t Au), which is located in the southeastern part of the Guercheville-B property (Figure 4) (DP 87-12, MB 90-01).

1989-1990 Minnova conducted ground geophysical surveys (gradiometric, MAG, VLF), geological mapping and sampling on their Rachel property, located over the northwest section of the Guercheville-B property (Figure 6). From the samples taken on the Guercheville-B claims, sample #85501 assayed 12.3 g/t Au and 0.21% Zn, and sample #85511 assayed 0.34 g/t Au (GM 48290, GM 49988).

1993 Westminer Canada Ltd conducted ground geophysical surveys (MAG, IP) on the Lac Anctil Extensions property, which is located over the southeastern corner of the Guercheville-B property (Figure 4). A few anomalies were identified on the Guercheville-B claims (GM 52091).

1994-1995 Corporation Minière Inmet conducted exploration work on the Rachel property, including a ground geophysical survey (IP), soil sampling and drilling. Drill hole RA-01, located on the Guercheville-B claims, returned values of 0.18 g/t Au over 1.5m (GM 53903, GM 54148, GM 53947).

1997-2001 Claims Simard conducted geological mapping and sampling on the Claim Simard property, located in the center section of the Guercheville-B property (Figure 6). The best assay result obtained was sample #49047 with 0.12 g/t Au (Figure 4) (GM 57108, GM 59530).

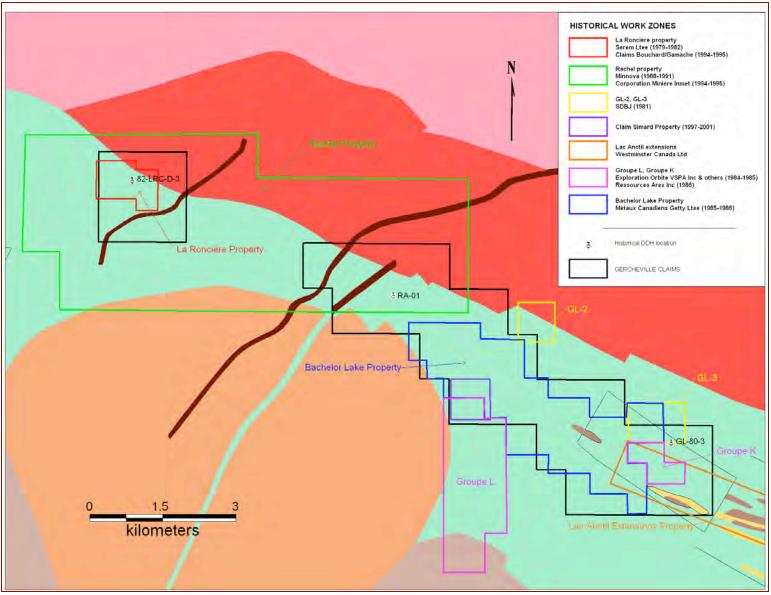


Figure 3 : Historical works and drill holes on the Guercheville property.

Pale Green : Obatoganau basalt and felsic volcanics; Red : Rachel tonalite pluton; Pink : Granodiorite; Orange : Granodiorite La Ronde pluton; Pale brown-purple : Gabbro-anorthosite Opawica complex. See figure 7 for detail legend.

Preliminary Report on Guercheville Property, Chapais, Quebec, November 2010

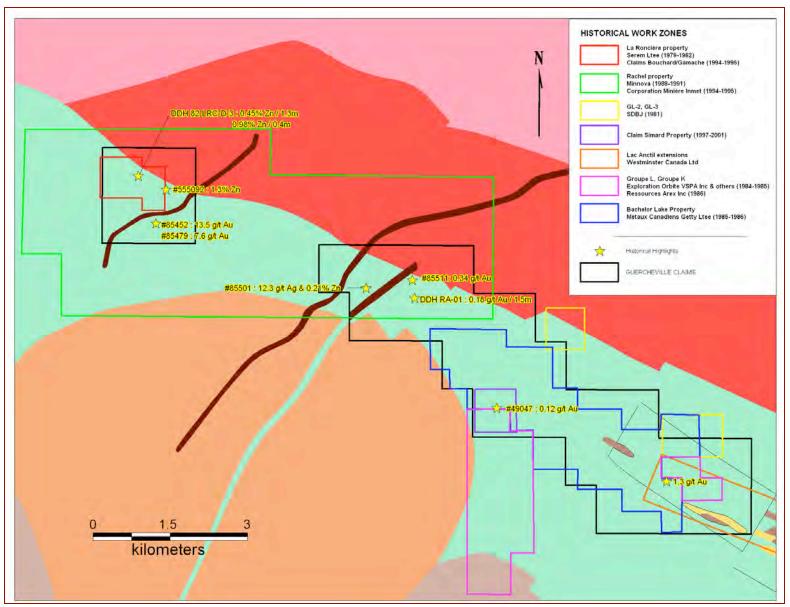


Figure 4 : Historical mineralized intersections on the Guercheville property. See figure 7 for legend.

6.4. REGIONAL OCCURRENCES & DEPOSITS

The Guercheville property is surrounded by known mineral occurrences and deposits. The following deposits are all located within 25 km from the property (Figure 5):

- The Lac Fenton showing, located 10 km from the Guercheville-B property, was evaluated at 402 000 tonnes grading 5.01 g/t Au^{1} .

- The Mariposite deposit, located 15 km from the Guercheville-A property, was evaluated at 518 000 tonnes grading 2.7 g/t Au^1 .

- The Shortt Lake mine (abandoned), located 20 km from the Guercheville-A property, produced 2 667 535 tonnes grading 4.34 g/t Au^2 .

- The Zone Lemnac/Gand deposit, located 25km from the Guercheville-A property, was evaluated at 145 000 tonnes grading 5.14 g/t Au^1 .

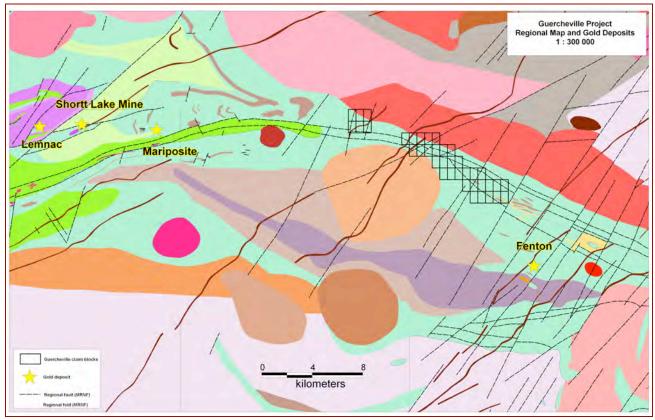


Figure 5 : Gold deposits located in the Guercheville property area. See Figure 7 for legend.

¹ Ministère des Ressources Naturelles du Québec : SIGEOM database

² Natural Resources Canada : <u>http://cgc.rncan.gc.ca/mindep/synth_dep/gold/greenstone/tables/appendix1_e.php</u>

Preliminary Report on Guercheville Property, Chapais, Quebec, November 2010

7. GEOLOGICAL SETTING

7.1. REGIONAL GEOLOGY

The Guercheville property lies within the southern Caopatina Segment of the NE Abitibi Archean greenstone belt (Figure 6). The Chibougamau-Matagami sequences form the northern half of the "Northern Volcanic Zone" of the Abitibi Subprovince as defined by Chown et al., (1992). The belt stretches for over 400 km, from the Kapuskasing structure to the Grenville front. The region is characterized by major 2.75 to 2.72 Gy WNW-trending volcanic and sedimentary segments intercalated with pre, syn and late-tectonic 2.72 to 2.65 Gy large plutonic or gneisso-plutonic complexes emplaced and deformed during or shortly after the major compressive/shortening Kenoran orogeny ca 2.7 Gy.

The Caopatina Segment is a volcano-sedimentary rock assemblage composed of two principal formations: the Obatogamau formation, a vast plain of tholeitic basalts with a few mafic to felsic volcanic centers, and the Caopatina formation, an overlying sedimentary sequence. These formations are part of the lower volcanic cycle of the Roy Group.

The Guercheville property is located in the Obatogamau formation where numerous plutonic masses are recorded. Locally, stratification and schistosity observed within the volcanic rocks are moulded around theses pre to syn-tectonic intrusions.

7.2. REGIONAL STRUCTURE & METAMORPHISM

Rocks from the Chibougamau-Matagami greenstone belt were deformed and metamorphosed by two orogenies. The Kenoran orogeny, occurring ca 2.7 Gy, is a multi-phase regional deformational event that resulted in large E-W domes & basins structures and associated E-W, SE and NE regional fault systems. The NNE-trending regional fault system is much younger and related to the Grenville orogeny, occurring ca 1 Gy.

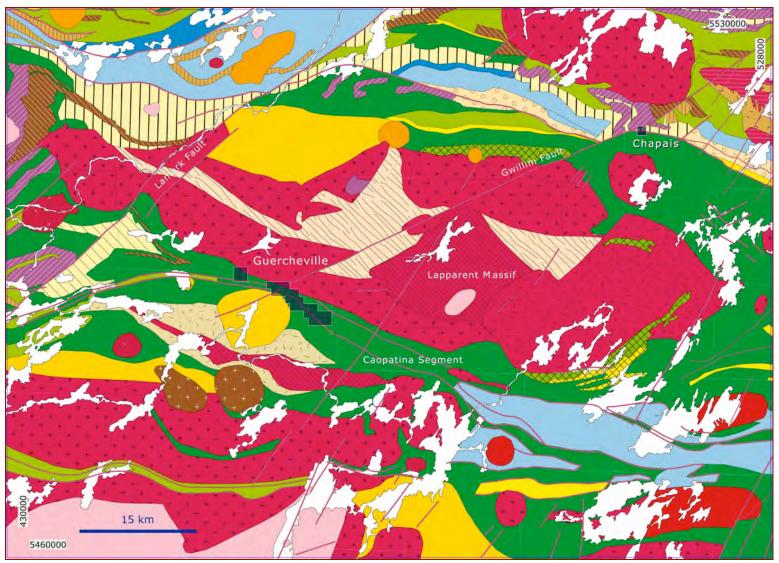


Figure 6 : Regional geological map of the Guercheville property large area showing the main WNW-trending basaltic Caopatina segment located between the gneisso-plutonic Lapparent massif to the north and the Opawica plutonic belt to the south. Sequences are transected by the NE-trending Lamark fault to the west and the ENE-trending Gwillim fault in the Chapais area. After Goutier & Melançon (2010).

Medium Green : Obatogamau basalt Fm, Pale Green : Intermediate felsic volcanics, Blue : late–Kenoran detrital Caopatina Fm, Red : syn-tectonic plutonic rocks, Pale Yellow : genissic complex, Medium Yellow : post-tectonic tonalitic pluton

Preliminary Report on Guercheville Property, Chapais, Quebec, November 2010

The tectonic grain of the region is defined by a late phase of the Kenoran orogeny, considered to be the dominating tectonic event. This deformation phase, with a stress (σ 1) roughly oriented N-S, provoked isoclinals folds, transposition and shears responsible for the predominantly E-W orientation of the stratification and associated schistosity. Corridors have preferentially absorbed the N-S compression to form E-W shear zones. The NE faults and the associated secondary faults are the result of a late phase of the orogeny. These faults crosscut older sequences and structures (stratification, schistosity, fold axis and E-W faults) and are the illustration of strike slip regional movement occurring towards the end of the orogeny (Figure 6).

The metamorphism of the belt reach the greenshist grade, locally amphibolite facies near the Grenville front and along deformational corridors and intrusion margins.

7.3. GUERCHEVILLE PROPERTY

- Local GEOLOGY

The two claim blocks of the Guercheville property are straddling section of basalts from the Obatogamau formation. In this area, the basalts are squeezed between the Rachel pluton to the NE and the La Ronde pluton to the SE. The Rachel pluton is a syntectonic tonalite, partly located in the NE region of both Guercheville-A and Guercheville-B properties. The La Ronde pluton is a syntectonic monzonite, partly located in NW section of the Guercheville-B property (Figure 7).

In the SW section of the Guercheville-B property, gabbro sills and felsdpatic wacke are mapped intercalated in the volcanic rocks of the Obatogamau formation. In this area, the stratigraphy and schistosity of the volcanic rocks are parallel, which is generally the case in the Obatogamau formation.

In the north of the Guercheville-B block and in the Guercheville-A Block, NE-trending Proterozoic diabase dykes crosscut the Archean rocks.

- Structure

The Guercheville-B property is located over a major regional syncline, the Druillettes syncline; as well as over a regional E-W deformational corridor, the Opawica-Guercheville fault zone (Figure 8). In the property area, the Druillettes syncline is overturned to the north and plunges to the east. The Opawica-Guercheville fault zone, on the other hand, corresponds to a series of parallel shear zones limited to a corridor less than 1 km wide. This structure is parallel to the regional schistosity and possesses a distinct magnetic signature, marked by the presence of numerous INPUT anomalies (Figure 9, Dion and Simard, 1999). The schistosity on the Guercheville claims is sub-vertical and moulded around the La Ronde pluton.

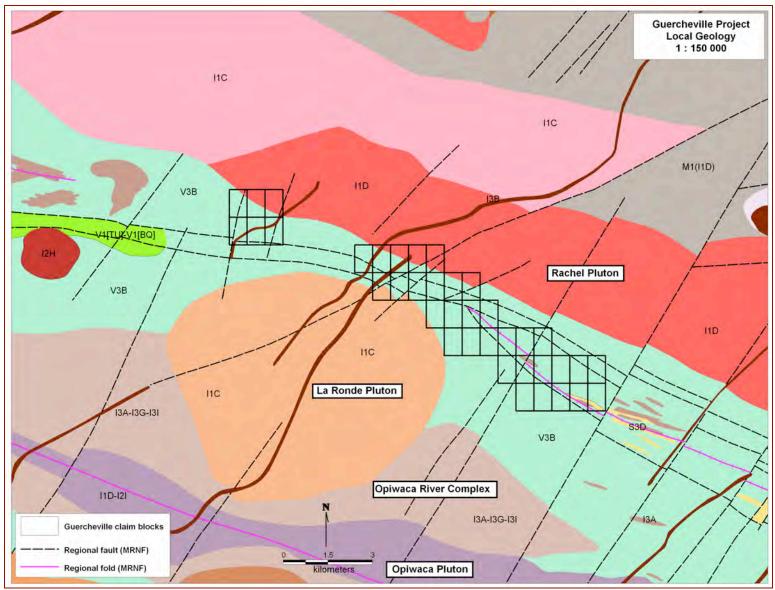


Figure 7 : Geological map of the Guercheville property showing the Caopatina WNW-trending volcanic and sedimentary segment intercalated between the Rachel pluton to the north and the Opawica plutonic complex to the south. I1C : Granodiorite, I1D : Tonalite, I2H : Monzodiorite, I2I : Qz diorite, I3A : Gabbro, I3G : Anorthosite, V3B : Basalt, V1 : Felsic volcanics, S3D : Feldspar wacke.

Preliminary Report on Guercheville Property, Chapais, Quebec, November 2010

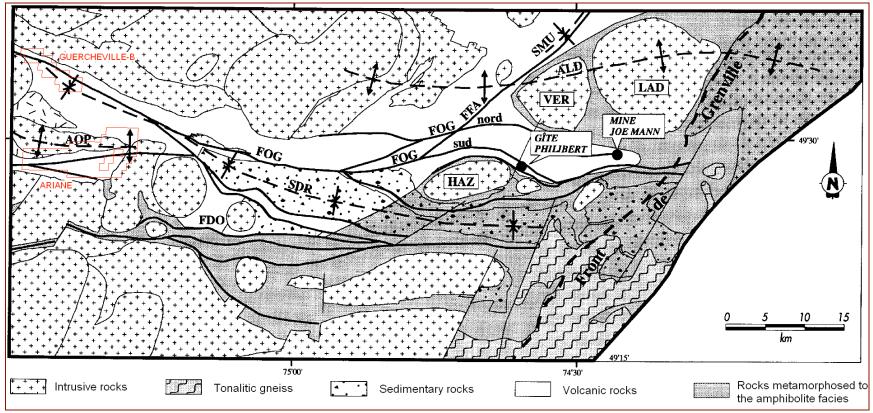


Figure 8 : Regional structures in the Opawica Segment (after Dion and Simard, 1999). – FOG : Opawica-Guercheville Fault; FDO : Doda Fault; FFA : Fancamp Fault; SMU : Muscocho syncline; SDR : Druillettes syncline; ALD : La Dauversière anticline; APO : Opawica anticline; HAZ : La Dauversière pluton; VER : Verneuil pluton.

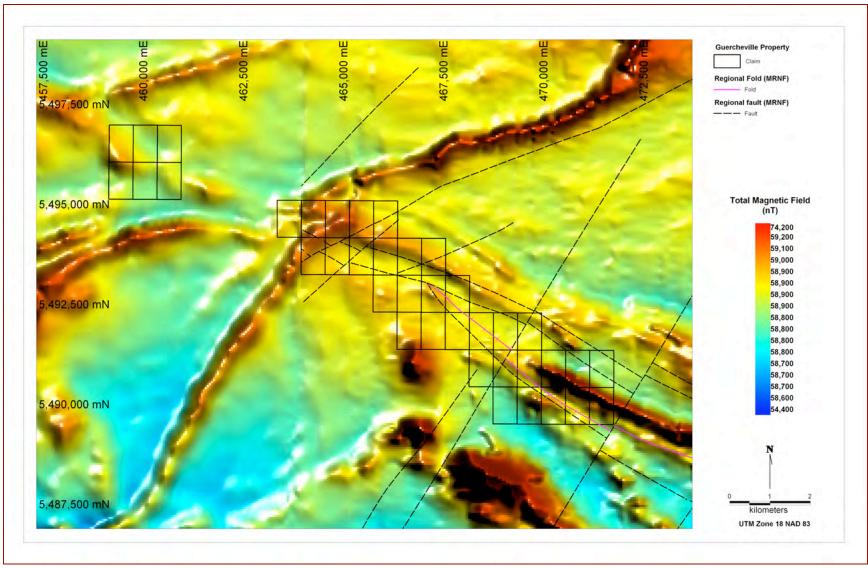


Figure 9 : Total magnetic field anomalies, in the Guercheville property area

8. REGIONAL DEPOSIT TYPES

The mining district of Chapais-Chibougamau has for long been known as "the shear zone hosted deposits region" and produced approximately 1.2M tons of copper, 3.7M oz of gold, 20.9M oz of silver, 115 000 kg of zinc and 4000 kg of lead (MB-96-14). The region is host to several types of deposits and showings within a wide variety of geological context.

The Caopatina Segment is host of the principal gold producing mine in the district, the Joe Mann mine. It is also host of two past producing gold deposits, the Lac Shortt mine and the Lac Bachelor mine, and of one past producing Zn-Pb-Ag deposit, the Coniagas mine (Figure 10).

Therefore the following sections present deposit types that are the most likely to be found on the Guercheville property.

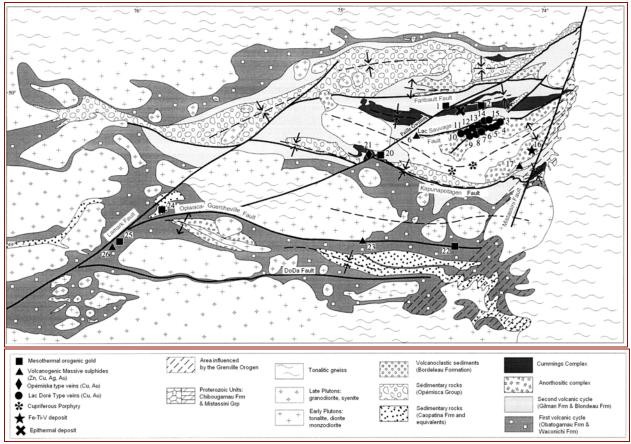


Figure 10 : Geology and mineral deposits of the Chibougamau-Caopatina region (modified from Chown and al., 1990). 1: Gwillim mine; 2: Norbeau mine; 3: Portage mine; 4: Henderson mine; 5: Henderson II mine; 6: Bateman Bay mine; 7: Copper Rand mine; 8: Merill mine; 9: Campbell mine; 10: Obalski mine; 11: Kokko Creek mine; 12: Quebec Chibougamau mine; 13: Cedar Bay mine; 14: Copper Cliff mine; 15: Jaculet mine; 16: Vanadium showing; 17: Lemoine mine; 18: Delvin; 19: Queylus breccias; 20 Cooke mine; 21: Opemisca mine; 22: Joe Mann mine; 23: Lac des Vents showing; 24: Lac Shortt mine; 25: Bachelor mine; 26 Coniagas mine.

8.1. MESOTHERMAL OROGENIC GOLD DEPOSITS

Mesothermal orogenic gold deposits, also known as greenstone-hosted quartz-carbonate vein deposits, are structurally controlled, complex epigenetic deposits that are hosted in deformed and metamorphosed terranes. They consist of simple to complex networks of gold-bearing, laminated quartz-carbonate fault-fill veins in moderately to steeply dipping, compressional brittle-ductile shear zones and faults, with locally associated extensional veins and hydrothermal breccias. They are dominantly hosted by mafic metamorphic rocks of greenschist to locally lower amphibolite facies. Typically, the proximal alteration haloes are zoned and characterized , in rocks at greenschist facies, by iron-carbonatization and sericitization, with sulfidation of the immediate vein selvages (mainly pyrite) (Dubé and Gosselin, 2007).

In the Caopatina Segment, the Joe Mann and the Lac Shortt gold deposits, as well as numerous orogenic gold showings are found along the E-W Opawica-Guercheville deformational corridor (Figure 10). The Guercheville property is located along this corridor.

Furthermore, the Lac Fenton showing, located 10 km sout-east of the Guercheville-B property, is an orogenic gold type deposit. The ESE orientation of shear zones and stratigraphy in the Lac Fenton system is the main difference with the Joe Mann deposit (Dion and Simard, 1999).

8.2. PORPHYRITIC & HYDROTHERMAL CU-AU MINERALISATION RELATED TO PLUTONIC ACTIVITY

The Opawica River Complex and the Opawica pluton form together a very similar geological and structural context as the one formed by the Lac Doré Complex and the Chibougamau pluton in the Chibougamau mining camp. The Opawica River Complex and Lac Doré Complex are both anorthositic complexes of similar composition and texture (Midra and al., 1994). Both were deformed by the Kenoran orogeny, and were intruded by a synvolcanic tonalite-diorite pluton (respectively the Opawica and Chibougamau plutons). The main difference between the two is their respective size.

The Lac Doré Complex and the Chibougamau Pluton are host to two type of Cu-Au mineralization: porhyritic type and lode type.

- CU-AU PORPHYRITIC TYPE

The Cu and Cu-Au porphyry mineralisation generally corresponds to disseminated, veins and veinlets within a complex network of mineralised fractures and breccias. These structures are enclosed within or along the margins of intermediate to felsic granitoid masses (Pilote and Guha 1995). Porphyritic type mineralisation has been described in both the Lac Doré Complex and the Chibougamau pluton. However, no porphyritic type mineralisation has been reported to date in the Opawica River Complex or in the Opawica pluton. Nevertheless, this type of mineralisation remains a possibility considering the favourable geological context.

8.3. MAFIC VOLCANIC HOSTED ZN \pm CU \pm AU \pm AG Shear Zones

This type of mineral occurrence includes base metal showings for which the exhalative origin is not evident. These occurrences are generally associated with shear zones and crosscutting various lithologies (Dion and Simard, 1999). Many showing in the Guercheville property area, a few of them located on the property, can be classified under this deposit type. However no economic deposit of this type has been discovered so far in the region.

9. MINERALIZATION

Exploration work performed by DIAGNOS during the summer 2008 resulted in the discovery of one new gold showing, the Lac Anctil "A-2", located approximately 1.3 km NE of the Lac Anctil "A" historical showing. Lac Anctil "A" showing returned a value of 3.96 g/t Au approximately 360m NW of the historical Argentex DDH: LA-87-6: 36,07g/t Au over 0,9 m and 1.3 g/t obtained by the MRNQ in 1987.

Table 1. Mineral occurrences found by DIAGNOS during the 2000 summer campaign.							
Name	Property	Description	2008 Assay results				
Lac Anctil "A"	Guercheville-B	<u>Historical showing</u> - pyrite in quartz- carbonate veins within sheared basalts	Surface samples up to 3.96 g/t Au over 0.3m (channel sample)				
Lac Anctil "A-2"	Guercheville-B	<u>New 2008 showing</u> - silicified horizon in the hinge of a fold in sheared rock	Surface sample 0.49 g/t Au				

Table I : Mineral occurrences found by DIAGNOS during the 2008 summer campaign

9.1. LAC ANCTIL TYPE MINERALIZATION

The Lac Anctil "A" mineralization can be described as blebs of pyrite in quartz veins within sheared basalts of the Obatogamau formation.

The Lac Anctil "A" zone, as defined by DIAGNOS following the 2008 summer exploration program, can be described as an area of approximately 500 meters long by 200 meters wide following the regional schistosity, in which anomalous gold values (over 10 ppb) were obtained in quartz veins (Figure 11). The highest assay value of this zone is 3.96 g/t Au over 0.3 m.

9.2. LAC ANCTIL "A-2" SHOWING

The Lac Anctil "A-2" showing is located approximately 1.3 km NE of the Lac Anctil "A" zone, on geophysical GRID 3 from the Guercheville-B property. This showing (0.49 g/t Au) comes from a grab sample taken from the hinge of a fold. The mineralization is described as trace amounts of sulfides in a folded rock containing silicified horizons (Figure 12).

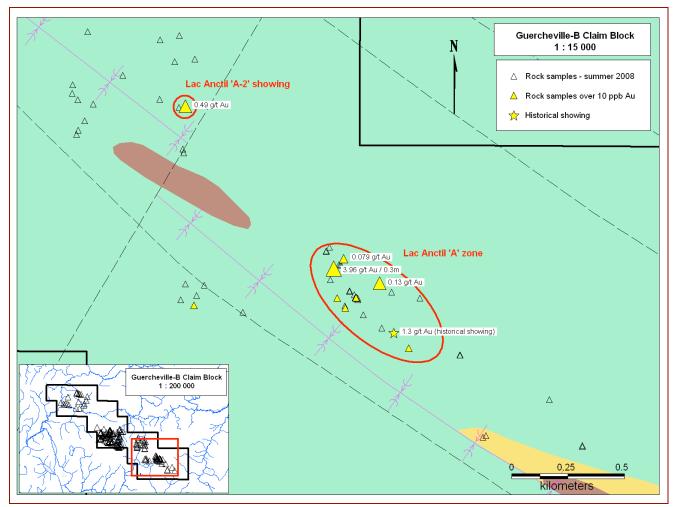


Figure 11 : Assay results from Lac Anctil Area, on Gercheville-B property

Figure 12 : Lac Anctil "A": Quartz veins in shear zones within basalts of the Obatogamau formation.

10. CARDS TARGETS

DIAGNOS inc. used its proprietary Computer Aided Resource Detection System (CARDS) to target the mineral potential of the Abitibi Subprovince and generate copper and gold targets over several NTS map sheets in the Abitibi. Copper and gold targets within NTS map sheet 32G/11 and 32G/12, led to map staking of prospective ground, including claims of the Guercheville property in 2006 (Figure 13).

CARDS is a computer system used by researchers at DIAGNOS to identify areas with a high statistical probability of similarity to known areas of mineralization. The backbone of CARDS is the MCubiX-KE (Knowledge Extraction) data mining mathematical engine.

MCubiX-KE uses powerful pattern recognition algorithms to learn the signatures of positive and negative data points and create a model that can make predictions on the positive or negative nature of new data points. MCubiX-KE uses these algorithms to analyze digitally compiled exploration data and identify points (targets) with signatures similar to known areas of mineralization.

Data is entered into CARDS in the form of geo-referenced data points and images. Each point in the database is linked to its own set of characteristics that are extracted from the following sources :

- geological maps: rock type, alteration;
- geophysical surveys: total magnetic field, residual field, first derivative field, gravity;
- geochemical surveys: rock, soil, lake bottom, drill hole assays;
- sets of characteristics are calculated according to various models;
- proximity to mineral occurrences;
- proximity to mineralized drill holes;
- proximity to lithological contacts;
- proximity to specific intrusive suites;
- proximity to interpreted lineaments;
- proximity to mapped faults and shear zones.

Targets generated by CARDS should be evaluated in conjunction with all readily available geological data in the evaluation of the economic potential of a property as well as in the outlining of exploration and drill targets.

Note: high statistical probability refers to decision tree classification of targets zone signatures; it should not be viewed as high statistical probability of finding mineralization at a target zone.

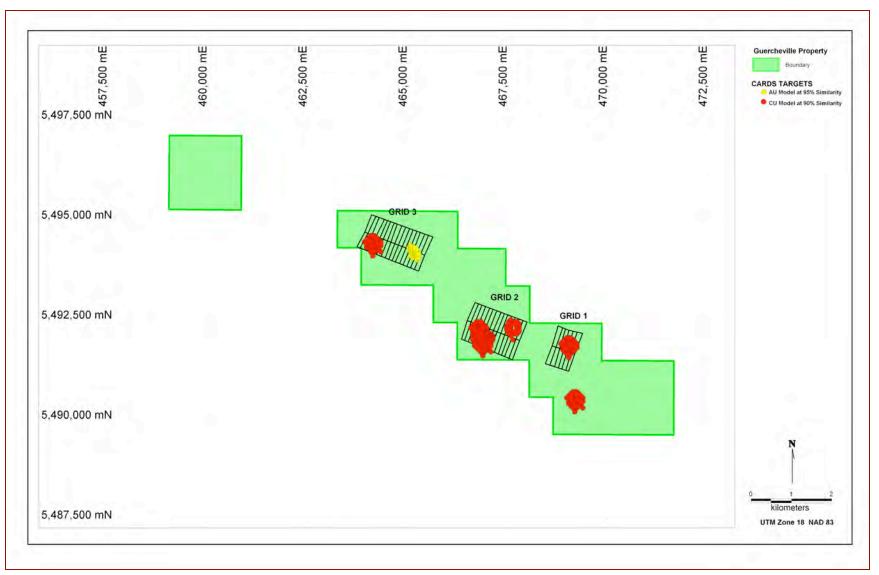


Figure 13 : CARDS Targets and Geophysical Grids

11. EXPLORATION

In 2008, the exploration work performed by DIAGNOS on the Guercheville property, includes ground induced polarization and infiniTEM surveys, and lithogeochemical sampling. Details are listed in Table II.

Property	Lithoge	eochemistry	Geophysics
	Boulder	Outcrop	(Line-Km)
Guercheville-A		2	0
Guercheville-B	15	178	50.2
Total	15	180	50.2

Table II : Exploration work conducted on the Guercheville property in 2008

11.1. GROUND GEOPHYSICS

Several chargeability anomalies and conductors were identified in the course of the ground IP and infiniTEM surveys carried out by ABITIBI GEOPGHYSIQUES INC. in late 2007 and early 2008. These surveys were conducted on five cut grids at 100m (IP survey) and 200m (infiniTEM survey) line spacing for a total of 50.20 line-kilometers. Three (3) grids are located on the Guercheville-B property (Figure 13). The grids were positioned in order to survey the copper and gold targets generated by CARDS. Abitibi Geophysics was commissioned by DIAGNOS Inc to complete geophysical measurements along grid lines set up by B.J. Renaissance.

11.2. LITHOGEOCHEMICAL SAMPLING

In the summer of 2008, DIAGNOS conducted two fieldwork campaigns on the Guercheville property. The first campaign took place from June 30th to July 13th, while the second took place from August 11th to August 24th. During these campaigns, a total of 180 grab samples and 15 channel samples were collected from boulders and outcrops (Figure 14), and delivered for analysis to ALS Chemex Laboratory in Val d'Or, Quebec.

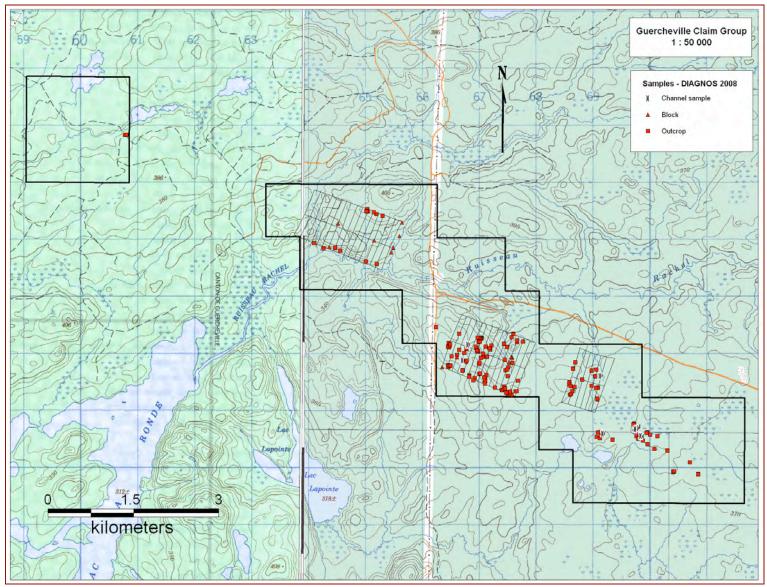


Figure 14 : Guercheville property – sample location, DIAGNOS 2008

12. RESULTS

12.1. GROUND GEOPHYSICS

The results from the IP and infiniTEM surveys are presented in a report by Abitibi Géophysique. Report 07N092A includes the results over Grids 1, 2 and 3 of the Guercheville-B property. The report describes the methodology along with the location of identified anomalies and conductors; the report is submitted along with this report as Appendix IV.

12.2. GEOCHEMICAL RESULTS

The rock samples collected on the Guercheville property were analysed for multi-element packages and for precious elements gold platinum and palladium. The 180 grab samples were taken from outcrops and occasional boulders, and the 15 channel samples were taken dominantly from outcrops located in the the Lac Anctil area. Overall, three (3) samples assayed above 0.1 g/t Au and one sample (1) assayed above 1 g/t Au, Table II. Complete assays with standards and duplicates are listed in Appendix III.

Sample #	type	Au (ppm)	Ag (ppm)	Cu (ppm)	Length	Lithology	Area
876119	channel	3.96			over 0.3m	Rusty quartz- carbonate vein	Lac Anctil 'A'
876049	grab	0.13				Quartz vein	Lac Anctil 'A'
794473	grab	0.49				Folded silicified rock	Lac Anctil 'A-2'

Table III : Lithogeochemical sampling results

- RESULTS DISCUSSION

On the Guercheville group claims, one hundred and ninety-five (195) rock samples (grab & channel samples) were collected within mafic volcanic rocks. Quartz veins in sheared basalt revealed to be the most favourable hosts for mineralization.

Quartz vein samples returned the highest values for Au. The mineralized veins located in the Lac Anctil "A" consist of a rusty quartz-carbonate veins included in sheared basalt. Mineralization is found as disseminated sulfide or as sulfide clasts. Samples of quartz veins had up to 7% Py: assays returned values up to 0.13 g/t and 3.96 g/t Au over 30cm. (Table III, Figure 14)

A folded and silicified mafic volcanic rock located in the Lac Anctil "A-2" was sampled and returned assay value up to 0.49 g/t Au. (Table III, Figure 11)

Sampling within sheared basalt and dykes outside the main targeted zone revealed no anomalous values.

13. Drilling

No drilling has been performed on the Guercheville property in the course of the present report.

14. SAMPLING METHOD & APPROACH

Lithogeochemical samples were collected in the course of geological mapping transects, either from outcrops or boulders. A sample description and the site location, obtained from a handheld GPS, were noted on a pre-numbered sampling booklet provided by ALS Chemex Laboratories. Sample descriptions include lithology, structural measurements, mineralogy, mineralization and alteration. The sampling site was flagged and clearly marked in the field with the sample number for eventual future visits.

15. SAMPLE PREPARATION, ANALYSES & SECURITY

All rock samples were kept under lock until hand delivered for analysis to ALS Chemex in Val d'Or, Quebec.

Rock samples were prepared at ALS-Chemex laboratory in Val d'Or according to well established and secure protocol. The analytical methods favoured by DIAGNOS are as follows:

- ICP-AES for base metals and other elements of more general geochemical interest, following the Four-Acid "Near Total" Digestion Geochemical Procedure ME-ICP61(ALS Chemex internal code). Followed by Procedure Cu-OG62 for samples containing higher copper values.

- 30g fire assay and ICP-AES finish for precious elements gold platinum and palladium, using Geochemical Procedure PGM-ICP23 (ALS Chemex internal code)

ALS Chemex is a well-known reputable laboratory that meets international standards for geochemical analysis. The reader should refer to www.alsglobal.com/mineral site for more detail.

16. DATA VERIFICATION

For quality control purposes, commercial rock assay standards, duplicate field samples and blank samples were added to submitted rock samples, Table IV. Further statistical verification will enable to assess the accuracy of the laboratoty analysis.

						Variance to standard value	
Sample #	Material	Reference	Au ppm	Cu ppm	Cu %	Au ppm	Cu %
866016	Standard	Oreas 54 Pa	2.65	>10000	1.48	0.250	0.070
876400	Standard	Oreas 54 Pa	2.89	>10000	1.54	0.010	0.010
876201	Standard	Oreas 54 Pa	2.73	>10000	1.53	0.170	0.020
866038	Standard	Oreas 15 Pa	0.678			0.342	
876230	Standard	Oreas 15 Pa	1.035			0.015	
794496	Standard	Oreas 15 Pa	0.975			0.045	
876335	Standard	Oreas 18Pb	3.29			0.340	
876474	Standard	Oreas 18Pb	3.06			0.570	
876127	Standard	Oreas 18Pb	0.007			3.623	
876410	Standard	Oreas 50Pb	0.884	6730		0.043	0.071
876021	Standard	Oreas 50Pb	0.852	1		0.011	0.774
794383	Standard	Oreas 50Pb	0.786	6720		0.055	0.072
876447	Standard	Oreas 4Pb	0.045			0.004	
866027	Blank		0.004	5			
876343	Blank		0.002	-1			
876428	Blank		0.005	7			
876453	Blank		0.005	7			
794393	Blank		-0.001	1			

Table IV : Standard material submitted for analysis

17. Adjacent Properties

A total of 8 claims are directly adjacent to the property, all of them are located in the southeast corner of the Guercheville claim block. Land area north, south and west of the claims remain open for staking. Those 8 claims adjacent to the property are held by three (3) different companies or individuals: SOQUEM INC., CORPORATION NIMISKEN and GLEN GRIESBACH and may be part of larger claim groups or properties operated by each of the previously mentioned companies or individuals. No information is available to the author on any exploration works currently being carried out on these claims.

18. MINERAL PROCESSING & METALLURGICAL TESTING

No mineralogical processing nor metallurgical testing has been carried out on the Guercheville property samples.

19. Mineral Resources & Mineral Reserve Estimates

No mineral resource nor mineral reserve estimates were performed using the Guercheville property assay results

20. Other Relevant Data & Information

The authors are not aware of any other relevant data or information concerning the present report.

21. CONCLUSION & DISCUSSION

Since 1957, the area of the Guercheville claims has seen several exploration programs: work included airborne and ground geophysical surveys, geochemical surveys, geological mapping, rock sampling and drilling.

DIAGNOS used, in 2006, its proprietary Computer Aided Resource Detection System (CARDS) to target the mineral potential of the Abitibi subprovince and generated targets covering several NTS map sheets in the Abitibi region. Copper and gold targets within areas cover by NTS map sheet 32G/11 and 32G/12 led to map staking of prospective ground, including claims of the Guercheville property.

In 2008, DIAGNOS commissioned Abitibi Geophysique to perform ground geophysical (IP, infiniTEM) surveys over selected areas previously identified by CARDS. The survey led to the recognition of new anomalies which were followed up by reconnaissance exploration programs.

Field exploration on the Guercheville property conducted by DIAGNOS, in the summer of 2008, consisted primarily of prospecting and rock sampling. A total of 195 mostly grab and channel rock samples from outcrop were collected and sent for assays.

Samples collected by during the 2008 field program, display the following assay highlights:

3 samples above 0.1 ppm Au 5 samples above 12 % Fe

Gold veins mineralization on the Guercheville claims occurs E-W quartz veins in the Lac Anctil area. Quartz veins are the main host to the Au mineralization with grades varying from 0.1 ppm to 3.96 ppm Au. Alteration associated with mineralization is primarily silicification, chloritization and carbonatization.

The Guercheville claims show great potential for Au mineralization based on historical and DIAGNOS results. The following points should also be taken into consideration:

Diamond drill holes date back to 1996 in Lac Pauline area.

Only one (1) drill hole have been done in 1980 by SDBJ. (MRNF: GM 38 222)

Ground geophysical surveys date back to 1981 and 1984-1985 in the Lac Anctil area.

No work has been done on deeper penetrating ground geophysical surveys to better delineate mineralization at depth.

Within and outside the Guercheville claim limits, little work has been done on finding lateral along-strike extensions to mineralization or finding additional sub-parallel mineralized horizons.

Mineralization is commonly associated with E-W quartz veins in sheared basalt, and yet the extent and location of these quartz veins units is very poorly defined within and outside the Guercheville claims.

In view of these considerations, the Guercheville claims should be maintained; the property and surrounding region warrants additional work.

22. RECOMMENDATIONS

Although a first phase field exploration program on the Guercheville property did reveal Au anomalous mineralization, the gold potential of the Guercheville property has not been fully evaluated.

Recommendations for additional exploration work on the Guercheville property are as follows:

- Ongoing compilation and integration of geological reports, drilling reports and geophysical ground and recent airborne surveys, including from adjacent properties.

- Delineation of all known or inferred fault and shear zones from surface mapping and geophysical surveys. Lineament extraction from DEM and detailed recent airborne surveys.

- Determine new target areas for field follow-up in the immediate vicinity of the Guercheville claims and possibly on a regional scale: areas with potential for Au mineralization.

- Detailed prospecting and mapping of the Lac Anctil area.

- Conduct extensive prospecting and sampling outside areas of past drilling, trenching, or known mineralization in order to find along-strike extensions and additional concordant mineralized horizons.

- Field follow-up consisting of prospecting and limited geochemical surveys over selected target areas.

- Where appropriate, conduct over selected target areas ground geophysical surveys: including deeper penetrating ground geophysical surveys such as InfiniTEM to delineate deep seated mineralization.

23. References & Bibilography

CHOWN, E.H., DAIGNEAULT, R., MUELLER, W., MORTENSEN, J.K., 1992 : Tectonic evolution of the Northern Volcanic Zone, Abitibi belt, Québec, Canadian Journal of Earth Sciences; volume 29, pages 2211-2225.

CHOWN, E.H., DAIGNEAULT, R., MUELLER, W., 1990 : Geological setting of the eastern extremity of the Abitibi belt, Litho-tectonic framework and associated mineralization of the eastern extremity of the Abitibi greenstone belt, J. Guha, E.H. Chown et R. Daigneault, Geological Survey of Canada; Open File 2158, pages 1-32.

DION, C, SIMARD, M, 1999 : Compilation et synthèse géologique et métallogénique du segment de Caopatina, region de Chibougamau, Ministère des Ressources naturelles, Québec; MB 99-33.

DUBÉ, B., GOSSELIN, P., 2007 : Greenstone-hosted quartz-carbonate vein deposits, W.D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of geological provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication, No 5, p.49-73.

GOUTIER, J., MELANÇON, M., 2010 : Compilation géologique de la Sous-Province de l'Abitibi, Ministère des Ressources naturelles, Québec; RP2010-04.

MIDRA, R, LAUZIERE, K, CHOWN, E H, TAIT, L., 1993 : Geologie du secteur du lac Doda (Feuillet 32G/06) bande Caopatina-Desmaraisville (sous-province de l'Abitibi), Ministère des Ressources naturelles, Québec; MB 93-12.

PILOTE, P, DION, C, MORIN, R., 1996 : Geologie et évolution métallogénique de la région de Chibougamau : des gîtes de type Cu-Au-Mo porphyriques aux gisements filoniens mésothermaux aurifères, Ministère des Ressources naturelles, Québec; MB 96-14.

PILOTE, P, GUHA, J, 1995 : Metallogeny of the eastern extremity of the Abitibi belt, Metallogeny and geologic evolution of the Chibougamau mining area – from porphyry Cu-Au-Mo to mesothermal lode gold deposits, P. Pilote, Geologocal Survey of Canada; Open File 3143, pages 31-41.

TAIT, L, SHARMA, K N M, CHOWN, E H, BARRETTE, J P., 1990 : Géologie de la région de du Guesclin – Rapport Intérimaire, Ministère des Ressources naturelles, Québec; MB 90-01.

Natural Resources Canada http://cgc.rncan.gc.ca/mindep/synth_dep/gold/greenstone/tables/appendix1_e.php

Ministère des Ressources Naturelles du Québec (SIGEOM database) http://sigeom.mrnf.gouv.qc.ca/signet/classes/I1102_index?l=f&entt=LG List of Assessment Reports on the Ghercheville-A Property

GM 07818 - 3 REPORTS (1 GEOLOGICAL, E M & GEOCHEMICAL AND 2 GEOLOGICAL), OPAWICA PROJECT. 1958, Par BURRILL, G H R, GREENWOOD, H J. 20 pages. 1 carte. 1 microfiche.

GM 45144 - ENTENTE MRNQ - SEREM "D" DU 21 AOUT 1978, RAPPORT FINAL D'EXECUTION, PROJET NW QUEBECOIS. 1979, Par CORNET, A, GIRARD, P. 35 pages. 1 microfiche.

GM 34614 - LEVES GEOLOGIQUES ET GEOPHYSIQUES SUR LES PROPRIETES BOYVINET "A", LESUEUR "A", "B", "C", "D" ET LA RONCIERE "A", "C", "D" ET "E", PROJET NW QUEBECOIS. 1979, Par BOILEAU, P, PROVOST, G. 55 pages. 24 cartes. 12 microfiches.

GM 50709 - RESULTATS DES TRAVAUX GEOLOGIQUES ET GEOPHYSIQUES EFFECTUES DANS LE SUD DU SECTEUR DE LE SUEUR. 1980, Par GAUTHIER, J. 57 pages. 24 cartes. 6 microfiches.

GM 36598 - RAPPORT SOMMAIRE SUR UN LEVE GEOPHYSIQUE HELIPORTE DANS LA REGION DU LAC OPAWIKA. 1980, Par RELEVES GEOPHYSIQUES INC. 52 pages. 10 cartes. 10 microfiches.

GM 49033 - LOG DE SONDAGE CAROTTE, PROPRIETE LARONCIERE D. 1982, Par LIGER, A. 6 pages. 1 carte. 1 microfiche.

GM 48061 - LEVES GEOPHYSIQUES, PROJET RACHEL PN-120. 1988, Par PLANTE, L. 24 pages. 6 cartes. 2 microfiches.

GM 49988 - RAPPORT SUR LES TRAVAUX DE TERRAIN, PROPRIETE RACHEL. 1990, Par BELANGER, S. 76 pages. 14 cartes. 9 microfiches.

GM 51091 - REPORT ON THE GEOCHEMISTRY OF HUMUS, RACHEL PROJECT. 1991, Par THOMAS, R, GLEESON, C F. 101 pages. 10 cartes. 7 microfiches.

GM 53903 - RAPPORT SOMMAIRE SUR L'INTERPRETATION DE LEVES DE POLARISATION PROVOQUEE, PROPRIETE RACHEL. 1994, Par LAMBERT, G. 12 pages. 46 cartes. 4 microfiches.

GM 53503 - RAPPORT GEOLOGIQUE DE LA PROPRIETE DE LA RONCIERE. 1994, Par AYAD, A B. 9 pages. 1 carte. 1 microfiche.

GM 55388 - RAPPORT D'EXPLORATION, PROJET LA RONCIERE. 1995, Par POITRAS, S. 23 pages. 1 microfiche.

GM 54742 - RAPPORT DE CARTOGRAPHIE DES TRANCHEES MECANIQUES, PROPRIETE LA RONCIERE. 1995, Par POITRAS, S. 24 pages. 1 carte. 1 microfiche.

GM 53947 - RAPPORT GEOCHIMIQUE, LEVE D'HUMUS, PROJET RACHEL. 1995, Par CLOUTIER, M A. 240 pages. 25 cartes. 9 microfiches.

List of Assesment Reports on the Guercheville-B Property

GM 05440 - 1 PLAN OF AIRBORNE MAG CONTOUR INCLUDING SKETCH OF CLAIMS LOCATION. 1957, Par HUTCHINSON, R W. 1 carte. 1 microfiche.

GM 38222 - RESUME DES TRAVAUX 1980 ET 1981 DE LA PROPRIETE DU LAC FENTON. 1981, Par BELAND, G, CONTANT, L. 193 pages. 43 cartes. 11 microfiches.

GM 37345 - LEVES GEOPHYSIQUES, CANTON GUERCHEVILLE, GL-1, GL-2, GL-3. 1981, Par BELAND, G. 11 pages. 11 cartes. 3 microfiches.

GM 39954 - RAPPORT D'EVALUATION TECHNIQUE SUR LE PROJET LAC PAUL. 1982, Par GRENIER, J. 47 pages. 8 cartes. 3 microfiches.

GM 39953 - PRELIMINARY REPORT ON THE LAC PAUL PROPERTY. 1982, Par HINZER, J B. 19 pages. 3 cartes. 1 microfiche.

GM 40568 - RAPPORT D'EVALUATION TECHNIQUE SUR LE PROJET LAC PAUL. 1983, Par GRENIER, J. 65 pages. 9 cartes. 4 microfiches.

GM 42225 - RAPPORT SUR LA PHOTO-INTERPRETATION GEOLOGIQUE DES DIX GROUPES DE CLAIMS DU PROJET LAC PAUL. 1984, Par GRENIER, J, TANGUAY, M G. 8 pages. 6 cartes. 3 microfiches.

GM 42554 - LEVES ELECTROMAGNETIQUES VLF & MAGNETIQUE, PROJET LAC PAUL. 1985, Par LAVOIE, C. 33 pages. 78 cartes. 18 microfiches.

GM 42485 - 1985 SUMMARY REPORT, BACHELOR LAKE PROPERTY. 1985, Par TITARO, D. 26 pages. 3 cartes. 2 microfiches.

GM 42226 - RAPPORT DE LEVES MAGNETIQUES. 1985, Par GOSSELIN, R. 19 pages. 10 cartes. 3 microfiches.

GM 43741 - INTERIM SUMMARY OF 1986 FIELD ACTIVITIES, BACHELOR LAKE PROPERTY. 1986, Par COLL, R I, TITARO, D. 25 pages. 2 cartes. 1 microfiche.

GM 43359 - RAPPORT SUR LES TRAVAUX EXECUTES, CAMPAGNE D'EXPLORATION 1985, PROJET GUERCHEVILLE-DROUET. 1986, Par DE GROSBOIS, M. 78 pages. 12 cartes. 5 microfiches.

DP-87-12 - GEOLOGIE DE LA REGION DE DU GUESCLIN - DISTRICT DE CHIBOUGAMAU. 1987, Par TAIT, L, CHOWN, E H. 2 CARTES /5F (ECHELLES 1/20 000 ET 1/50 000). 2 microfiches.

GM 48290 - LEVES GEOPHYSIQUES - MAG & TBF, PROJET RACHEL PN-120, PARTIE EST. 1989, Par PLANTE, L, LAVOIE, C. 16 pages. 6 cartes. 2 microfiches.

GM 49988 - RAPPORT SUR LES TRAVAUX DE TERRAIN, PROPRIETE RACHEL. 1990, Par BELANGER, S. 76 pages. 14 cartes. 9 microfiches.

GM 52091 - REPORT ON GEOPHYSICAL WORK (MAGNETIC & INDUCED POLARIZATION SURVEYS), LAC ANCTIL EXTENSIONS (4039) PROPERTY. 1993, Par BERUBE, P. 11 pages. 9 cartes. 2 microfiches.

GM 53903 - RAPPORT SOMMAIRE SUR L'INTERPRETATION DE LEVES DE POLARISATION PROVOQUEE, PROPRIETE RACHEL. 1994, Par LAMBERT, G. 12 pages. 46 cartes. 4 microfiches.

GM 54148 - RAPPORT DE FORAGE, PROPRIETE RACHEL. 1995, Par PRUD'HOMME, S. 68 pages. 4 cartes. 3 microfiches.

GM 53947 - RAPPORT GEOCHIMIQUE, LEVE D'HUMUS, PROJET RACHEL. 1995, Par CLOUTIER, M A. 240 pages. 25 cartes. 9 microfiches.

GM 57108 - VISITE DE PROPRIETE ET ECHANTILLONNAGE PAR DYNAMITAGE. 1997, Par GAUCHER, E, SIMARD, R. 16 pages. 2 cartes. 1 microfiche.

GM 59530 - RAPPORT GEOLOGIQUE ET D'ECHANTILLONNAGE, PROJET DU LAC OLIVETTE NORD. 2001, Par TESSIER, Y, SIMARD, R. 21 pages. 1 microfiche.

21. DATE AND SIGNATURE

Report Title: Preliminary Exploration Report on Guercheville Property, Chapais, Québec

Signed in Montreal This 30th of November 2010

André Ciesielski, P. Geo. 1777 Du Manoir Av. Montreal, Qc, H2V 1B7 Tel : 514 544 9741

Certificate of Author

I, Andre Ciesielski, P. Geo. do hereby certify that :

I am a Canadian citizen, living at 1777 Du Manoir Av., Montreal, H2V 1B7, Qc, Canada ; telephone : 1 514 544 9741; e-mail : ancies@videotron.ca

I have a bachelor degree in geology from Université de Montréal (BSc. geol) a DEA and a Doctorat (3e) from "Université Pierre et Marie Curie" (Paris VI) (DEA, and DSc. geol).

I am a member of "L'Ordre des Géologues du Québec" under # 514.

I have worked as a geologist for a total of 30 years since my graduation from university. I have performed geological works and made numerous field trips in the Abitibi belt.

I have read the definition of "qualified person" set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.

I am responsible for the preparation of the Report titled

"Preliminary Exploration Report on Guercheville Property, Chapais, Quebec".

I have visited the property on August 18 and 19, 2010 to complete this report.

I have not had prior involvement with the property that is the subject of this Technical Report.

I am not aware of any material fact or material change with respect to the subject matter of this Technical Report that would make it misleading.

I am independent of the issuer applying all of the tests in Section 1.5 of National Instrument 43-101.

I have read National Instrument 43-101 and Form 43-101F1 and the technical Report has been prepared in compliance with that instrument and form.

I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files or on their websites accessible by the public, of the Technical Report.

This November, 30th 2010, André Ciesielski, P. Geol.

Certificate of Author

Report Title: Preliminary Exploration Report on Guercheville Property, Chapais, Québec

I, Jean-Philippe Mai, residing in St-Bruno-de-Montarville, Québec, Canada do hereby certify that:

- 1. I am Project Manager with the firm of DIAGNOS inc. with an office at Suite 340, 7005, Taschereau Boulevard, Brossard, Québec, Canada;
- 2. I am a graduate of Université du Québec à Montréal (UQAM), Montréal, Québec with a B.Sc. in Geology in 2003. I have participated in exploration programs for gold, base metals and coal in Canada (Québec, Ontario), South America (Guyana), Australia and in the Dominican Republic.
- 3. I am a member in good standing of l'Ordre des Géologues du Québec (#1170).
- 4. I am an employee of and hold stocks options in DIAGNOS inc., vendor of the Guercheville property claims and hence not independent of the issuer;
- 5. I am a co-author and have assisted in the preparation of this report, but I have not personally visited the project area;
- 6. The current report is based on compilation of historical data in the public domain carried out by employees of DIAGNOS inc. under my supervision using Exploration Best Practices Guidelines;
- 7. I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and to any publication of the Technical Report by them for regulatory purposes, including electronic publication in the public company files or on their websites accessible by the public.

Dated November 29, 2010

Brossard, Québec, Canada

Jean-Philippe Mai B.Sc., P.Geo.

Certificate of Author

Report Title: Preliminary Exploration Report on Guercheville Property, Chapais, Québec

I, Benoit Masse, residing in Brossard, Québec, Canada do hereby certify that:

- 1) I am a Geologist in Training with the firm of DIAGNOS inc. with an office at Suite 340, 7005, Taschereau Boulevard, Brossard, Québec, Canada;
- I am a member in good standing of the Ordre des géologues du Québec (#1323) as a Geologist in Training (GIT).
- 3) I am a co-author of this report and have visited the Guercheville property in July and August 2008.

Dated November 29, 2010

Brossard, Québec, Canada

Benoît Massé B.Sc., géo. stag. / GIT #1323

APPENDIX I

Title No	NTS Sheet	Area (Ha)	Status	Registration	Expiry	Excess	Required	Fees	Titleholder
2057548	SNRC 32G11	55,83	Actif	23/02/2007	22/02/2011	400	1200	52.00	DIAGNOS INC 100 % (21100)
2060972	SNRC 32G11	55,82	Actif	01/03/2007	28/02/2011	4076.51	1200	52.00	DIAGNOS INC 100 % (21100)
2060975	SNRC 32G11	55,80	Actif	01/03/2007	28/02/2011	9292.83	1200	52.00	DIAGNOS INC 100 % (21100)
2060977	SNRC 32G11	55,80	Actif	01/03/2007	28/02/2011	14092.83	1200	52.00	DIAGNOS INC 100 % (21100)
2060979	SNRC 32G11	55,80	Actif	01/03/2007	28/02/2011	14092.83	1200	52.00	DIAGNOS INC 100 % (21100)
2060981	SNRC 32G11	55,80	Actif	01/03/2007	28/02/2011	400	1200	52.00	DIAGNOS INC 100 % (21100)
2060983	SNRC 32G11	55,79	Actif	01/03/2007	28/02/2011	10416.32	1200	52.00	DIAGNOS INC 100 % (21100)
2060985	SNRC 32G11	55,79	Actif	01/03/2007	28/02/2011	14092.83	1200	52.00	DIAGNOS INC 100 % (21100)
2060987	SNRC 32G11	55,79	Actif	01/03/2007	28/02/2011	14092.83	1200	52.00	DIAGNOS INC 100 % (21100)
2060989	SNRC 32G11	55,79	Actif	01/03/2007	28/02/2011	4076.51	1200	52.00	DIAGNOS INC 100 % (21100)
2066077	SNRC 32G12	55,78	Actif	09/03/2007	08/03/2011	400	1200	52.00	DIAGNOS INC 100 % (21100)
2066078	SNRC 32G12	55,78	Actif	09/03/2007	08/03/2011	1676.51	1200	52.00	DIAGNOS INC 100 % (21100)
2066079	SNRC 32G12	55,77	Actif	09/03/2007	08/03/2011	400	1200	52.00	DIAGNOS INC 100 % (21100)
2066080	SNRC 32G12	55,77	Actif	09/03/2007	08/03/2011	400	1200	52.00	DIAGNOS INC 100 % (21100)
2165581	SNRC 32G11	55,83	Actif	11/07/2008	10/07/2012	0	1200	52.00	DIAGNOS INC 100 % (21100)
2165582	SNRC 32G11	55,83	Actif	11/07/2008	10/07/2012	0	1200	52.00	DIAGNOS INC 100 % (21100)
2165583	SNRC 32G11	55,83	Actif	11/07/2008	10/07/2012	2476.51	1200	52.00	DIAGNOS INC 100 % (21100)
2165584	SNRC 32G11	55,83	Actif	11/07/2008	10/07/2012	0	1200	52.00	DIAGNOS INC 100 % (21100)
2165585	SNRC 32G11	55,82	Actif	11/07/2008	10/07/2012	0	1200	52.00	DIAGNOS INC 100 % (21100)
2165586	SNRC 32G11	55,82	Actif	11/07/2008	10/07/2012	0	1200	52.00	DIAGNOS INC 100 % (21100)
2165587	SNRC 32G11	55,81	Actif	11/07/2008	10/07/2012	0	1200	52.00	DIAGNOS INC 100 % (21100)
2165588	SNRC 32G11	55,80	Actif	11/07/2008	10/07/2012	0	1200	52.00	DIAGNOS INC 100 % (21100)
2165589	SNRC 32G11	55,80	Actif	11/07/2008	10/07/2012	0	1200	52.00	DIAGNOS INC 100 % (21100)
2165590	SNRC 32G11	55,80	Actif	11/07/2008	10/07/2012	0	1200	52.00	DIAGNOS INC 100 % (21100)
2165591	SNRC 32G12	55,79	Actif	11/07/2008	10/07/2012	0	1200	52.00	DIAGNOS INC 100 % (21100)
2165592	SNRC 32G12	55,78	Actif	11/07/2008	10/07/2012	0	1200	52.00	DIAGNOS INC 100 % (21100)
2165593	SNRC 32G12	55,77	Actif	11/07/2008	10/07/2012	0	1200	52.00	DIAGNOS INC 100 % (21100)
2031848	SNRC 32G11	55,82	Actif	09/11/2006	08/11/2012	0	1200	52.00	DIAGNOS INC 100 % (21100)
2031849	SNRC 32G11	55,82	Actif	09/11/2006	08/11/2012	2876.5	1200	52.00	DIAGNOS INC 100 % (21100)
2031850	SNRC 32G11	55,82	Actif	09/11/2006	08/11/2012	8092.82	1200	52.00	DIAGNOS INC 100 % (21100)
2031851	SNRC 32G11	55,81	Actif	09/11/2006	08/11/2012	12092.82	1200	52.00	DIAGNOS INC 100 % (21100)
2031852	SNRC 32G11	55,81	Actif	09/11/2006	08/11/2012	12892.82	1200	52.00	DIAGNOS INC 100 % (21100)
2031853	SNRC 32G11	55,81	Actif	09/11/2006	08/11/2012	12892.82	1200	52.00	DIAGNOS INC 100 % (21100)
2031854	SNRC 32G11	55,81	Actif	09/11/2006	08/11/2012	2876.51	1200	52.00	DIAGNOS INC 100 % (21100)
2031855	SNRC 32G11	55,81	Actif	09/11/2006	08/11/2012	12892.82	1200	52.00	DIAGNOS INC 100 % (21100)
2031856	SNRC 32G11	55,80	Actif	09/11/2006	08/11/2012	12892.82	1200	52.00	DIAGNOS INC 100 % (21100)
2031857	SNRC 32G11	55,80	Actif	09/11/2006	08/11/2012	12892.82	1200	52.00	DIAGNOS INC 100 % (21100)
2031858	SNRC 32G11	55,80	Actif	09/11/2005	08/11/2012	10492.82	1200	52.00	DIAGNOS INC 100 % (21100)

APPENDIX II

Guercheville-A Claim Block

Report: number	Year	Company	Report: title	Geology	Geophysics	Geochemistry	Drilling	Sampling	Result highlights	Notes
GM 07818	1958	VENTURES LTD	3 REPORTS (1 GEOLOGICAL, E M & GEOCHEMICAL AND 2 GEOLOGICAL), OPAWICA PROJECT	Geological Mapping		Stream sediment geochemistry				
GM 34614	1979	SEREM LTEE	LEVES GEOLOGIQUES ET GEOPHYSIQUES SUR LES PROPRIETES BOYVINET "A", LESUEUR "A", "B", "C", "D" ET LA RONCIERE "A", "C", "D" ET "E", PROJET NW QUEBECOIS	Geological Mapping	Ground EM and MAG surveys					
GM 45144	1979	SEREM LTEE	ENTENTE MRNQ - SEREM "D" DU 21 AOUT 1978, RAPPORT FINAL D'EXECUTION, PROJET NW QUEBECOIS	Geological Mapping	Ground EM and MAG surveys					
GM 50709	1980	SEREM LTEE	RESULTATS DES TRAVAUX GEOLOGIQUES ET GEOPHYSIQUES EFFECTUES DANS LE SUD DU SECTEUR DE LE SUEUR	Geological mapping	Ground MAG and E M H surveys					
GM 36598	1980	FALCONBRIDGE NICKEL MINES LTD	RAPPORT SOMMAIRE SUR UN LEVE GEOPHYSIQUE HELIPORTE DANS LA REGION DU LAC OPAWIKA		Airborne E M and MAG surveys					
GM 49033	1982	SEREM LTEE	LOG DE SONDAGE CAROTTE, PROPRIETE LARONCIERE D				DDH: 82-LRC-D-3		DDH 82-LRC-D-3: 0.45% Zn / 1.3m, 0.98% Zn / 0.4m	
GM 48061	1988	MINNOVA INC	LEVES GEOPHYSIQUES, PROJET RACHEL PN-120		Groun MAG, gradiometric and VLF surveys					
GM 49988	1990	MINNOVA INC	RAPPORT SUR LES TRAVAUX DE TERRAIN, PROPRIETE RACHEL	Geological Mapping and sampling				Samples: 85401-85404, 85441- 85442, 85449-85452, 85454-85456, 85479- 85480, 85526-85530, 85601-85603, 85635- 85636, 85872-85878	85452: 13.5 g/t Au 85479: 7.6 g/t Au	
GM 51091	1991	MINNOVA INC	REPORT ON THE GEOCHEMISTRY OF HUMUS, RACHEL PROJECT			Soil sampling				
GM 53503	1994	CLAIMS BOUCHARD, CLAIMS GAMACHE	RAPPORT GEOLOGIQUE DE LA PROPRIETE DE LA RONCIERE	Geological Mapping and sampling	prospection with VLF and Beep-Mat			samples: 504201-504223	504211: 0.13% Cu 5042?? : 0.24 % Zn	samples are located in a Trench near DDH hole 82-LRC-D-3 (see image GM53503P001)
GM 53903	1994	CORPORATION MINIERE INMET- DIVISION EXPLORATION	RAPPORT SOMMAIRE SUR L'INTERPRETATION DE LEVES DE POLARISATION PROVOQUEE, PROPRIETE RACHEL		Ground I P survey					

Report: number	Year	Company	Report: title	Geology	Geophysics	Geochemistry	Drilling	Sampling	Result highlights	Notes
GM 53947			RAPPORT GEOCHIMIQUE, LEVE D'HUMUS, PROJET RACHEL			Soil sampling				
GM 54742		BOUCHARD,	RAPPORT DE CARTOGRAPHIE DES TRANCHEES MECANIQUES, PROPRIETE LA RONCIERE	Geological Mapping and sampling				• ·	555092: 1.3% Zn	sample #555077 is located in trench #2, and sample #555092 is located in trench # 3
GM 55388			RAPPORT D'EXPLORATION, PROJET LA RONCIERE	Geological Mapping and sampling				grab samples: 555051-555104 (IDEM as GM 54742)	IDEM as GM 54742	IDEM as GM 54742

Guercheville-B Claim Block

Report: number	Year	Company	Report: title	Geology	Geophysics	Geochemistry	Drilling	Sampling	Result highlights	Notes
GM 05440	1957	AMERICAN METAL CO LTD	1 PLAN OF AIRBORNE MAG CONTOUR INCLUDING SKETCH OF CLAIMS LOCATION		Airborne MAG survey					
GM 37345	1981	SDBJ	LEVES GEOPHYSIQUES, CANTON GUERCHEVILLE, GL-1, GL-2, GL-3		Ground EM and MAG surveys					
GM 38222	1981	S D B J	RESUME DES TRAVAUX 1980 ET 1981 DE LA PROPRIETE DU LAC FENTON				DDH: GL-80-3		No assays, the hole never entered bedrock	The hole was stopped after 30m in overburden; the thickness of the overburden explaining the EM-VLF anomaly
GM 39953	1982	CLAIMS GAUDREAU, INVESMIN	PRELIMINARY REPORT ON THE LAC PAUL PROPERTY	Technical evaluation						
GM 39954	1982	CLAIMS GAUDREAU, INVESMIN	RAPPORT D'EVALUATION TECHNIQUE SUR LE PROJET LAC PAUL	Technical evaluation						
GM 40568	1983	INVESMIN	RAPPORT D'EVALUATION TECHNIQUE SUR LE PROJET LAC PAUL	Technical evaluation						
GM 42225	1984	EXPLORATION ORBITE V S P A INC, INVESMIN	RAPPORT SUR LA PHOTO- INTERPRETATION GEOLOGIQUE DES DIX GROUPES DE CLAIMS DU PROJET LAC PAUL	geological Photo- interpretation						
GM 42554	1985		LEVES ELECTROMAGNETIQUES VLF & MAGNETIQUE, PROJET LAC PAUL		Ground MAG, gradiometric and VLF surveys					
GM 42226	1985	EXPLORATION ORBITE V S P A INC, INVESMIN	RAPPORT DE LEVES MAGNETIQUES		Ground MAG survey					
GM 42485	1985	METAUX CANADIENS GETTY LTEE	1985 SUMMARY REPORT, BACHELOR LAKE PROPERTY	Geological Mapping and sampling		Stream sediment geochemistry		Rock samples: C4651-C4673, C4675- C4695, C4701-C4713 Steam samples: C4714-C4715		
GM 43359	1986	RESSOURCES AUREX INC	RAPPORT SUR LES TRAVAUX EXECUTES, CAMPAGNE D'EXPLORATION 1985, PROJET GUERCHEVILLE-DROUET	Geological Mapping and sampling				no rock samples on the Guercheville-B claims		
GM 43741	1986	METAUX CANADIENS GETTY LTEE	INTERIM SUMMARY OF 1986 FIELD ACTIVITIES, BACHELOR LAKE PROPERTY	Geological Mapping and sampling				Rock samples: C4551-C4559		
DP 87-12	1987	MRN	GEOLOGIE DE LA REGION DE DU GUESCLIN - DISTRICT DE CHIBOUGAMAU	Geological mapping and sampling					Gab samples: 1.3 g/t Au	Lac Anctil 'A' showing

Guercheville-B Claim Block

Report: number	Year	Company	Report: title	Geology	Geophysics	Geochemistry	Drilling	Sampling	Result highlights	Notes
GM 48290	1989	MINNOVA INC	LEVES GEOPHYSIQUES - MAG & TBF, PROJET RACHEL PN-120, PARTIE EST		Ground MAG, gradiometric and VLF surveys					
GM 49988	1990	MINNOVA INC	TERRAIN, PROPRIETE RACHEL	Geological Mapping and sampling				Samples: 85492-85525, 85531- 85533, 85711-85713, 85726, 85733-85737, 85739-85742, 99101- 99103, 99105-99155, 88158-99182, 99307-	85501: 12.3 g/t Ag & 0.21%Zn 85511: 0.34 g/t Au	
GM 52091	1993	WESTMINER CANADA LTD	REPORT ON GEOPHYSICAL WORK (MAGNETIC & INDUCED POLARIZATION SURVEYS), LAC ANCTIL EXTENSIONS (4039) PROPERTY		Ground MAG and IP surveys					
GM 53903	1994	CORPORATION MINIERE INMET- DIVISION EXPLORATION	RAPPORT SOMMAIRE SUR L'INTERPRETATION DE LEVES DE POLARISATION PROVOQUEE, PROPRIETE RACHEL		Ground I P survey					
GM 54148	1995	CORPORATION MINIERE INMET	RAPPORT DE FORAGE, PROPRIETE RACHEL				DDH: RA-01	samples : 202112-202226, 202960-202966		
GM 53947		CORPORATION MINIERE INMET- DIVISION EXPLORATION	RAPPORT GEOCHIMIQUE, LEVE D'HUMUS, PROJET RACHEL			Soil sampling				
GM 57108	1997	CLAIMS SIMARD		Geological Mapping and sampling				Samples : 49047, 49049-49064, 49090-49100, 68803- 68810	49047: 0.12 g/ t Au	
GM 59530	2001	CLAIMS SIMARD		Geological Mapping and sampling	Beep Mat			samples : 22067-22110		

APPENDIX III

Easting	Northing	Sample II	Assay	Au	Pt.	Pd	Ag	Al	As	Ba	Be	В.	Ça	Cd	Co	Dr	CU	Fe	Ga
NAD 83	NAD 83		Certificate	PGM-ICP23	PGM-ICP23	PDM PGM-ICP23	ppm ME-ICP61	56 ME-ICP61	IPPM ME-ICP61	00ml ME-ICP61	ppm ME-ICP61	ME-ICP61	% ME-ICP61	ppm ME-ICP61	ME-ICP61	ME-ICP61	DDM ME-ICP61	90 ME-ICP61	ME-ICP51
469855	5490796	866036	TB08127354	0.002	+0.005	-0.001	-0.5	0.91	-5	-10	-0.5	-2	1.02	-0.5	9	19	12	2.59	-10
469859	5490784	866037	TB08127354	0.005	-0.005	-0.001	-0.5	2.17	9	20	-0.5	3	1.57	-0.5	19	17	143	5.25	10
460801	5496059	876434	TB08127354	0 004	-0.005	0.001	-0.5	7.21	-5	50	-0.5	4	5.14	-0.5	43	113	150	B.35	20
460822	5496069	876435	TB08127354	0.004	+0.005	0.001	-0.5	6.28	-5	220	0.7	2	1.31	-0.5	5	15	24	1.37	20
469864	5490783	876436	TB08127354	0.002	+0.005	0.001	-0.5	B0.0	-5	80	-0.5	-2	0:06	-0.5	1	26	10	0.54	-10
469863	5490785	876437	TB08127354	0.002	-0.005	-0.001	-0.5	0.16	-5	40	-0.5	2	0.07	-0.5	1.1	18	13	0.92	-10
469863	5490785	876438	TB08127354	0.004	+0.005	-0.001	-0.5	0.77	5	10	-0.5	2	0.34	-0.5	34	12	329	3.44	-10
469863	5490785	876439	TB08127354	0.004	-0.005	-0.001	-0.5	1.09	5	20	-0.5	3	0.67	-0.5	13	12	67	4.17	10
470426	5490162	876475	TB08127354	0.01	0.011	0.011	-0.5	7.5	21	40	-0.5	2	6.12	-0.5	50	215	121	7.8	20
470440	5490169	876476	TB08127354	0.004	0.01	0.011	-0.5	7.27	-5	40	-0,5	-2	6.5	-0.5	41	177	67	6.8	10
470868	5490125	876477	TB08127354	0.003	-0.005	0.002	-0.5	7.39	21	40	-0.5	-2	6.83	-0,5	42	233	80	7.78	20
470868	5490120	876478	TB08127354	0.002	-0.005	0.001	-0.5	6.64	17	20	-0.5	-2	7.57	-0,5	22	186	63	6,69	20
470721	5490329	876479	TB08127354	0 002	-0.005	0.003	-0.5	6.23	7	30	-0.5	3	5.22	-0,5	51	155	30	B.37	10
470323	5490527	876480	TB08127354	0.003	-0,005	-0.001	-0,5	6,53	12	10	-0.5	-2	7.91	-0.5	34	264	56	7.17	10
470325	5490528	876481	TB08127354	0.001	-0.005	-0.001	-0.5	2,99	-5	10	-0.5	-2	1.7	-0.5	18	81	4	3.36	10
470097	5490559	876482	TB08127354	0.012	-0.005	0.001	-0.5	3.04	8	10	0,5	-2	2,23	-0,5	18	102	202	3.84	-10
469077	5491950	876001	VO08099353 VO08099353	0.003	-0 005	0.002	-0.5	7.26	-5	10	-0,5	-2 -2	74	-0.5	42 45	147	122	7,45 8.28	20 20
469056 468989	5491834 5491665	876002 876003	VO08099353 VO08099353	0.003	-0.005	-0.001	-0.5	7.58	18	40	-0.5	-2	5.06	-0.5	40	156	69	9.08	20
468620	5491509	B76003	VO08099353	0.003	0.006	0.002	-0.5	7.02	5	10	-0.5	-2	8.55	-0.5	35	135	22	7.69	10
468627	5491528	876005	VO08099353	0.002	0.006	0.004	-0.5	7.64	8	20	-0.5	-2	7.83	-0.5	42	165	157	7.9	20
468656	5491570	876006	VO08099353	0.006	-0.005	-0.001	-0.5	7.78	8	10	-0.5	-2	7.59	-0.5	41	166	98	8.13	20
468693	5491645	876007	VO08099353	0.008	-0.005	-0.001	-0.5	6.97	15	30	-0.5	-2	6.13	-0.5	39	94	141	7.89	20
466475	5491988	876008	VO08099353	0.004	-0.005	-0.001	-0.5	7 87	6	70	-0.5	-2	7.38	-0.5	33	152	34	B.47	20
466472	5492026	676009	VO08099353	0.009	0.005	-0.001	-0.5	7.29	-5	90	-0.5	-2	10.2	-0.5	31	152	72	7.42	20
466489	5492020	876010	VO08099353	0.003	-0.005	-0.001	-0.5	5.74	-5	190	0.6	-2	2.01	-0.5	9	36	33	1.85	10
466492	5492014	876011	VO08099353	0.006	-0.005	-0.001	0.6	5.47	-5	40	0.5	-2	1.37	0.5	11	53	9	2.49	10
466492	5492014	876012	VO08099353	0.009	-0.005	-0.001	-0.5	5.28	-5	40.	0.5	2	1.38	-0.5	15	38	23	2.8	20
466513	5492024	876013	VO08099353	0.006	-0.005	-0.001	-0.5	8.4	-5	60	0.7	-2	8,29	-0.5	30	114	63	7.62	20
466531	5492179	876014	VO08099353	0.005	-0.005	-0.001	-0.5	72	-5	320	0.5	-2	4.06	-0.5	63	209	172	11.7	30
466669	5492582	876015	VO08099353	0.005	-0.005	-0.001	-0.5	6.84	-5	20	-0.5	-2	5.76	-0.5	41	68	92	10.55	20
466820	5492393	876016	VO08099353	0.003	-0,005	-0.001	-0.5	0.91	-5	10	-0.5	-2	0.18	-0.5	4	36	4	0.88	-10
466819	5492397	876017	VO08099353	0.003	-0.005	-0.001	-0.5	2.67	6	10	-0.5	-2	2.34	-0.5	17	70	51	4,47	10
466795	5492317	876018	VO08099353	0.005	-0.005	0.001	-0.5	8.41	9	30	-0.5	-2	6.76	-0.5	47	227	105	6.77	20
466758	5492242	876019	VO08099353	0.003	-0.005	-0.001	-0.5	0.29	-5	-10	-0.5	-2	0.18	-0.5	3	27	23	0.73	-10
466723	5492116	876020	V008099353	0.001	-0.005	-0.001	-0.5	7.19	5	10	-0.5	-2	7,49	-0.5	40	196	90	8,11	20
Standa	rd: 50 Pb	876021	V008099353	0.852	-0.005	0.011	-0.5	5.67	-6	10	-0,5	-2	2,68	-0.5	38	120	1	9.93	HO
473517	5481421	876022	VQ08099353	0.005	-0,005	-0.001	-0.5	5,62	10	10	-0,5	-2	2.62	-0.5	37	108	1	9.77	10
473553	5481442	876023	VO08099353	0.002	-0.005	-0.001	-0.5	2.25	-5	-10	-0.5	-2	0.37	-0.5	18	18	-1	3,87	10
473555	5481442	676024	V008099353	0.01	0.005	-0.001	0.5	5.28	-5	10	-0,5	-2	4.88	-0.5	44	20	90	B.71	10
473572	5481446	876025	VO08099353	0.002	-0 005	-0.001	-0,5	0.58	-5	-10	-0,5	-2	0.04	-0.5	5	43	-1	1,36	-10
473593	5481488	B76026	VO08099353	0.003	-0.005	-0.001	+0.5	4.57	-5	10	-0.5	-2	4.02	-0.5	35	19	-1	9.45	10
473598	5481537	876027	VO08099353	0.018	-0 005	-0.001	-0.5	7.04	-5	470	0.7	-2	4.58	-0,5	33	89	42	6,69	20
469082	5490774	876028	VO08099353	0.006	-0.005	-0.001	-0.5	7.2	-5	10	-0.5	-2	6.45	0.5	41	116	65	8.28	20
469103	5490845	876029	VO08099353	0.004	0.011	0.014	-0.5	7.94	5	40	-0.5	-2	8.55	-0.5	46	261	59	7.08	20
469187	5490838	876030	VO08099353	0.002	-0.005	-0.001	-0.5	2.36	-5	40	-0.5	-2	1.58	-0.5	7	58	63	3.51	-10
469141	5490749	676031	VO08099353	0.014	-0.005	-0.001	-0.5	0.46	-5	-10	-0.5	-2	0.04	-0.5	4	-38	-1	0.82	-10
469141	5490749	876032	VODER99353	1000	-0.005	-0.001	-0.5	0.17	-0	-10	-0.5	-4	0.03	-0.5	27	300	-	(0,31	-10
469154	5490793 5490748	676033 876034	VO08099353	0.003	-0.005	0.007	-0.5	6.64	8	50	-0,5	-2 -2	8.29	-0.5		200	508	12.8	10
469358 469743	5490718 5491008	876034 876035	VO08099353 VO08099353	0.007	0.014	0.018	-0.5	7.82	-5	20	-0.5	-2	7.99	-0.5	44	266 38	50 4	7 15	-10
469743	5491008	876035	VO08099353 VO08099353	0.004	-0.005	0.001	-0.5	7.76	6	60	-0.5	-2	6.17	-0.5	43	192	82	8.29	20
464489	5494087	876030	V008099353 V008099353	0.004	0.005	0.001	-0.5	8.06	8	40	-0.5	-2	7.45	-0.5	43	263	76	7.27	10
469730	5494087	876038	VO08099353	0.003	-0,005	-0.001	0.5	0.31	-5	10	-0.5	-2	0.18	-0.5	2	38	10	0.63	-10
469730	5490989	876039	VO08099353	0.003	-0.005	-0.001	-0.5	7.54	47	30	-0.5	-2	4.96	-0.5	41	190	78	9.88	20
469814	5490738	876040	VO08099353	0.003	-0.005	-0.001	-0.5	0.51	-5	-10	-0.5	-2	0.33	-0.5	3	32	2	1.01	-10
469813	5490747	876041	VO08099353	0.008	-0.005	-0.001	-0.5	0.52	-5	20	-0.5	-2	0.26	-0.5	4	61	ĩ	0.9	-10
469813	5490747	876042	VO08099353	0.006	0.008	0.004	-0.5	7.44	12	30	-0.5	-2	4.82	-0.5	47	204	80	6.89	20
469869	5490781	876042	VO08099353	0.007	-0.005	-0.001	-0.5	5,73	8	20	0.6	-2	4.41	-0.5	29	11	12	13	20
469870	5490773	876044	V008099353	0.002	-0.005	-0.001	-0.5	0.28	-5	-10	-0.5	-2	0.07	-0.5	T	21	-1	1.12	-10
	2100710	016044	1 200000000	ALCON.	0.000	01001	0.16	0.40			0.0		wiser.						

Easting	Northing	Sample II	Assay	Au	Pt	Pd	Ag	Al	As	Ba	Be	В	Ca	Ed	Cα	Cn	CU	Fe	Ga
NAD 83	NAD 83		Certificate	øpm	ppm	ppm	ppm	%	ppm	mag	ppm	plam	96	ppm	ppm	ppm	ppm	56	pipm
100000	5100000	170015	10000000000	PGM-ICP23	PGM-ICP23	PGM-ICP23	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
469833 469833	5490809	876045 876046	VO08099353 VO08099353	0.002	+0.005	-0.001	-0.5	5.92	14	20	-0.5	-2	4.82	-0.5	44	4	44 57	13.65	20
469863	5490814 5490779	876046	VO08099353	0.006	-0.005	-0.001	-0.5	0.53	-5	10	-0.5	-2	0.34	0.5	7	21	163	11.3	-10
469969	5490851	876048	VO08099353	0.003	-0.005	-0.001	-0.5	2.22	-5	30	-0.5	-2	0.86	-0.5	10	72	19	2.2	-10
469967	5490847	876049	VO08099353	0.13	-0.005	-0.001	-0.5	0,46	260	30	-0.5	-2	0.08	-0,5	1	42	2	0.9	-10
469959	5490843	876050	VO08099353	0.004	-0.005	-0.001	-0,5	6,6	28	10	-0.5	-2	1.38	-0,5	44	4	36	13.5	20
486371	5491992	876051	VO08099353	0.013	-0.005	0.001	-0.5	7.63	7	340	0.7	-2	5.91	-0.5	34	124	199	7.1	20
466489	5492339	876052	VO08099353	0.004	0 005	-0.001	-0.5	7.46	5	60	-0.5	.2	7.08	-0.5	42	177	84	7.92	20
466471	5492355	876053	VO08099353	0.002	-0 005	0.001	0.5	7.75	9	30	-0.5	-2	5.12	-0.5	40	152	96	8.66	20
466501	5492374	876054	VO08099353	0.003	-0.005	-0.001	-0.5	7.45	-5	30	-0.5	-2	5.74	-0.5	39	168	62	6.73	20
466496	5492367	876055	VO08099353	0.004	-0.005	-0.001	-0.5	8.7	-5	100	-0.5	-2	7.22	-0.5	36	177	75	6.95	20
466486	5492418	876056	VO08099353	0.003	-0.005	0.002	-0,5	7.35	-5	20	-0.5	-2	7.2	-0.5	41	205	80	8.28	20
466509	5492394	876057	VO08099353	0.002	-0.005	0.001	-0.5	7.79	-5	20	-0.5	-2	8.89	-0.5	41	192	92	7 69	20
466870	5492298	876058	VO08099353	0,002	-0.005	0.001	-0.5	7.56	6	10	-0.5	-2	10.75	-0.5	39	254	7	5.87	20
466630	5492208	876059	VO08099353	0.007	0.005	-0.001	-0.5	6.18	-5.	130	0.9	2	1.23	-0.5	Z	24	33	0.77	20
466627	5492167	876060	VO08099353	0.003	0.005	-0.001	-0.5	7,51	+5	20	-0.5	-2	6.49	-0.5	52	141	18	8.76	20
466731	5491941	876061	VO08099353	0.004	-0.005	-0.001	-0.5	7,59	-5	80	2.4	-2	2.21	-0,5	З	-17	15	2.22	30
466722	5491932	876062	VO08099353	0.002	-0.005	-0.001	-0.5	7.01	-5	60	0.7	-2	5.08	-0.5	37	127	71	8.54	20
466789	5492087	876063	VO08099353	0.002	0.007	0.003	-0,5	7,37	-5	20	-0.5	-2	6,98	-0.5	41	226	64	8.08	20
466793	5492108	876064	V008099353	0.000	-0.005	0.006	-0.5	8.83	-5	30	-0.5	-2	9	-0.5	33	161	67	6.52	20
467060	5492504	876065	VO08099353	0.002	0.005	-0.001	-0.5	8.07	-5	20	0.5	-2	7,92	-0.5	47	260	90	718	20
467055	5492500	876066	VO08099353	0.002	-0 005	-0.001	-0,5	7.97	-5	40	-0.5	-2	7.42	-0,5	48	247	79	8.16	20
467051	5492489	876067	VO08099353	0.006	-0.005	-0.001	-0.5	7.85	-5	90	-0.5	-2	7.4	-0.5	45	227	94	7.93	20
467023	5492505	876068	VO08099353	0,006	0.005	-0.001	-0.5	7.08	-5	30	-0.5	-2	6.15	-0.5	43	210	51	8.25	20
467016	5492500	876069	VO08099353	E00.0	-0.005	-0.001	-0.5	7.36	-5	30	-0.5	-2	7.27	-0.5	42	220	75	7.8B	20
466993	5492514	876070	VO08099353	0.004	-0.005	-0.001	-0.5	7.12	-5	30	-0.5	-2	5.59	-0.5	44	227	59	8.05	20
467013	5492438	876071	VO08099353	0.006	0.007	0.018	-0.5	7.61	-5	40	-0.5	-2	7.01	-0.5	48	223	74	7 39	20
467031	5492439 5492440	876072 876073	VO08099353	0.006	0.005	0.02	-0.5	7.86	-5	50	-0.5	-2	7.55	0.5	46	215	95	7.89	20
467030 466981	5492440	876073	VO08099353 VO08099353	0.006	0.006	-0.001	-0.5	7.18 6.2	-5	50	-0.5	-2 -2	7.17	-0.5	35	162	82	7 41 7.53	10
466967	5492330	876075	VO08099353	0.004	-0.005	0.001	-0.5	8.27	-5	70	-0.5	-2	6.01	-0.5	43	175	46	9.11	20
486959	5492350	876076	VO08099353	0.002	-0.005	-0.001	-0.5	6.97	-5	40	-0.5	-2	7.78	-0.5	32	132	56	10.2	20
467000	5492270	876077	VO08099353	0.002	-0.005	-0.001	-0.5	0.53	-5	10	-0.5	-2	0.64	-0.5	5	24	28	1.43	-10
466996	5492280	876078	VO08099353	0.001	-0 005	-0.001	-0.5	6.99	-5	30	-0.5	.2	6.34	-0.5	45	108	83	9 22	20
486980	5492285	876079	VO08099353	0.003	-0 005	0.001	-0.5	0.07	-5	-10	-0.5	-2	0.12	-0.5	+1	36	10	2.12	-10
466846	5491852	876080	VO08099353	0.004	-0.005	-0.001	-0.5	7.56	-5	20	-0.5	-2	6.77	-0.5	41	189	72	8	20
466847	5491836	876081	VO08099353	0.002	-0.005	-0.001	-0.5	2.52	-5	10	-0.5	-2	0.38	-0.5	6	34	3	1.92	10
466845	5491828	876082	VO08099353	0.004	-0.005	-0.001	-0.5	4.2	-5	10	-0.5	-2	0.7	-0.5	9	53	3	2.88	10
467022	5491878	876083	VO08099353	0.003	-0.005	0.001	-0.5	7.68	-5	30	-0.5	-2	7.57	-0.5	44	211	B1	8.17	20
467234	5492374	876084	VO08099353	0.003	+0.005	-0.001	-0.5	7.68	-5	30	-0.5	+2	7.24	-0.5	44	226	83	8.06	20
467216	5492305	876085	VO08099353	0.002	0.011	0.00B	-0.5	7.39	:5	20	-0.5	-2	10.35	0.5	42	237	10	6.93	20
467201	5492327	876086	VO08099353	0.006	0.008	800.0	-0.5	5.03	-5	30	-0.5	-2	5.75	0.5	27	149	29	5.06	10
467153	5492176	876087	VO08099353	0,001	-0.005	-0.001	-0.5	0.41	-5	10	-0.5	-2	0.6	-0,5	2	35	7	1.43	-10
467155	5492177	876088	VO08099353	0.002	-0.005	-0.001	-0.5	1,31	-5	-10	-0.5	-2	0.83	-0,5	10	37	15	2.88	-10
467095	5492177	876089	VO08099353	0.003	-0 005	-0.001	-0,5	4,8	-5	10	-0.5	-2	6.15	-0,5	24	127	28	5.56	10
467038	5491885	876090	VO08099353	0.002	-0.005	-0.001	-0.5	517	+5	20	-0.5	-2	4.1	-0,5	32	170	33	6.03	10
467125	5491749	876091	VO08099353	0.002	-0.005	0.002	0.8	7,93	-5	.10	-0.5	.2	7 51	-0,5	42	177	108	7.99	20
467116	5491703	876092	VO08099353	0.003	-0.005	0.001	0.5	7.49	-5	-10	-0.5	-2	4.46	-0,5	43	211	70	6.98	20
467455	5492403	876093	VO08099353	0.031	-0.005	0.001	-0.5	7.85	40	510	0.9	-2	0.89	-0.5	19	89	55	3.9	20
467686	5492428	876094	VO08099353	0.002	-0.005	0.001	0.6	8.02	8	-10	-0.5	-2	4.35	-0.5	40	156	14	8.54	20
467681	5492462	876095	VO08099353	0.004	-0.005	-0.001	0.7	8.36	15	-10	-0.5	-2	2.69	-0,5	36	144	50	9.49	20
467599	5492165	876096	VO08099353	£00.0	0.009	0.008	-0.5	7.89	19	50	-0.5	-2	3.55	-0.5	40	69	113	8.23	20
467585	5492167	876097	VO08099353	0.015	0.009	0.007	0.7	7.41	26	50	-0.5	-Z	4.77	-0.5	-41	79	146	7.59	20
467603	5492069	876098	VO08099353	0.00E	-0.005	-0.001	0.7	6.7	25	180	0.9	-2	3.92	-0.5	22	2	23	7.62	20
467542	5492081	876099	VO08099353	0.003	-0.005	-0.001	-0.5	7.29	5	230	0.6	-2	6.35	-0.5	7	27	19	1,92	20
167542	54920H1	876100	VO08099353	0,004	0.005	-0.001	-15	7.63	5	230	0.6	2	3.68	-0,5	B	36	26	-21	20
467661	5491571	876101	V008099353	0.005	-0.005	-0.001	-0,5	4,54	5	-10	-0.5	-2	2.87	-0.5	31	52	23	7.12	10
467590	5491508	876102	V008099353	0.003	-0.005	-0.001	0.7	771	-5	-10	-0,5	-2	6.98	-0,5	41	194	67	7.86	20
467527	5491509	876103	V008099353	0.002	-0 005	-0,001	0.6	8.17	7	-10	-0.5	-2	6.52	-0.5	45	185	110	7.9	20
467532	5491517	876104	VO08099353	0.003	-0.005	-0.001	0.5	8 19	-5	60	-0.5	-2	6.35	-0,5	.41	186	46	7.92	20

Easting	Northing	Sample #	Assay	AM	Pt	Pd	AE	AI	As	Ba	Be	Bi	Ca	Ed	Co	Cr	Cu	Fe	Ga
ES GAN	NAD 83		Certificate	ppm PGM-ICP23	PGM-ICP23	Ppm FGM-ICP23	ME-CP61	NE-ICP51	PB/TI ME-ICPE1	Ppm ME-ICP61	ME-ICP61	ppm ME-ICP61	% MEHCPG1	ppm ME-ICP61	ppm ME-ICP61	ppm- ME-ICP61	ppm ME-ICP61	% ME4CP61	ppm ME-ICP6
67552	5491540	876105	VC08099353	0.002	-0.005	-0.001	-0.5	8.58	MERCPET 11	60	-0.5	-2	6.35	-0.5	45	220	98	7.72	20 ME-ILPO
67451	5491647	876106	VC08099353	0.004	-0.005	0.001	-0.5	8.58	-5	-10	-0.5	-2	7 89	-0.5	45	198	105	8.0B	20
167475	5491622	876107	VO08099353	0.004	-0.005	0.001	0.5	7.98	-5	20	-0.5	-2	6.61	-0.5	41	199	98	7.31	20
67520	5491837	876108	VO08099353	0.004	-0.005	-0.001	0.5	0.25	-5	-10	-0.5	-2	10.45	-0.5	5	11	20	4	-10
67791	5492440	676109	VC08099353	0.003	-0.005	-0.001	-0.5	7.74	9	10	-0.5	-2	4.29	-0.5	38	149	92	8.55	20
64288	5494074	876110	VO08099353	0.003	-0.005	-0.001	-0.5	B.41	-5	40	-0.5	-2	5.91	-0.5	41	129	119	7.92	20
64284							-0.5		11	60	-0.5	-2	8.46	-0.5	46		115		20
	5494073 5494033	876111	VC08099353	0.003	-0 005	-D.001		9.16 9.56	9							125		7,15	
464577		876112	V008099353	0.006	0.012	0.015	-0.5	8.55		-10	-0.5	2	8.21	-0.5	47	201	116	7.08	20
165055	5494769	876113	VO08099351	0,002	-0.005	0.001	-0.5	0.54	-5	10	-0.5	-2	0.1	-0.5	9	37	2	1.03	-10
69806	5490957	876114	V009099351	0.079	0,005	0.003	-0.5	1.3	-5	20	-0.5	-2	0,71	-0.5		45	112	1.79	-10
69808	5490953	876115	VD08099351	0.002	0.005	0.001	-0,5	7.52	-5	20	-0.5	-2	7.22	-0.5	43	145	131	8.47	20
169792	5490930	876116	VO08099351	0,005	-0.005	-0.001	-0.5	0,32	-5	-10	-0.5	-2	0 19	-0.5	2	20	69	0 73	-10
169795	5490928	876117	VO08099351	0.006	-0.005	0.001	-0.5	1.29	-5	10	-0.5	-2	7.68	-0.5		25	97	1.56	-10
69785	5490929	876118	VO08099351	0.001	-0.005	0.001	-0.5	7,42	-5	20	-0.5	-2	6.34	-0.5	44	162	151	8.15	10
\$69763	5490912	676119	VO08099351	3.96	-0.005	-0.001	-0.5	1.12	56	60	-0.5	-2	0.18	-0.5	13	23	147	3.31	-10
469894	5490707	876120	VO08099351	0.006	-0.005	0.001	-0.5	0,17	-5	-10	-0.5	-2	0.14	-0.5	2	26	6	0.34	-10
70021	5490808	876121	VC08099351	0.01	-0.005	0.001	-0.5	7,58	24	210	-0.5	-2	0,96	-0.5	27	123	13	6.26	20
74188	5481506	876122	VO08099351	0.011	-0.005	0.001	-0.5	6.46	5	10	0.5	-2	6.78	-0.5	40	69	155	9.54	20
74192	5461508	876123	VD08099351	0.005	-0 005	-0.001	-0.5	8,47	-5	10	0.5	-2	6.93	-0,5	44	70	122	9.45	20
69747	5490864	876124	VD08099351	0,005	-0.005	-0.001	-0.5	7.02	26	10	-0.5	-2	6.4	-0.5	31	24	153	8.44	20
69861	5490782	876125	VO08099351	0.005	-0.005	0.001	-0.5	1,62	9	20	-0.5	-2	1.27	-0.5	25	9	508	5.54	10
\$69977	5490647	876126	VO08099351	0.001	-0.005	-0.001	0.8	0.05	6	10	-0.5	-2	0.03	-0.5	-1	19	2	0.28	-10
TANDARD	7-Dress 18Pb	876127	VO08099351	0.007	0.01	0.002	-0.5	5.9	3820	230	0.9	-2	4.39	-0.5	33	50	91	8.34	20
164386	5494096	876151	VO08099351	0.002	-0.005	-0.001	0.5	6.68	5	530	0.8	-2	1.54	-D.5	4	12	6	1.75	20
165052	5494720	876152	VO08099351	0.009	-0.005	-0.001	-0.5	6.73	6	80	-0.5	-2	8.53	-0.5	32	253	12	5.38	10
165065	5494723	876153	VO08099351	0.002	0.006	0.001	-0,5	7.63	11	50	-0.5	-2	8.54	-0.5	35	356	122	5.53	10
165050	5494734	876154	VO08099351	0.001	-0.005	-0.001	-0,5	8.17	7	30	-0.5	-2	4.21	-0.5	45	415	154	5,79	10
65038	5494730	876155	VO08099351	0.001	-0.005	0.001	-0.5	7.63	7	20	-0.5	-2	8,9	-0.5	32	349	78	5.5	10
165667	5494525	794342	VO08099352	0,012	-0 005	0.003	-0.5	6.78	-5	10	-0.5	-2	11.05	0.B	24	124	203	5.89	20
165617	5494291	794343	VO08099352	-0.001	-0.005	-0.001	-0.5	6.89	-9	260	0.8	-2	1.73	-0.5	5	31	6	2.08	20
65511	5494086	794344	VO08099352	0.001	-0.005	0.001	-0.5	7.11	-5	350	0.7	2	2.21	-0.5	6	31	9	2.24	20
65475	5494004	794345	VO08099352	0.003	-0.005	-0.001	-0.5	7.09	-5	350	0.7	-2	3	-0.5	11	40	.3	3 34	20
65318	5494646	794346	VO08099352	0.02	-0.005	0.001	-0.5	0.2	-5	-10	-0.5	-2	0.77	-0.5	з	51	273	0.63	-10
65210	5494680	794347	VD08099352	0.003	-0.005	-0.001	-0.5	7.6	-5	330	0.8	2	4.67	-0.5	22	174	17	4.71	20
69095	5491428	794348	VD08099352	0,004	-0.005	0.001	-0.5	7.28	-5	10	-0.5	-2	6.82	-0.5	39	179	90	7.85	20
69092	5491445	794349	V006099352	0.001	-0.005	-0.001	-0.5	7.57	9	30	-0.5	3	5.56	-0.5	35	181	56	8.15	20
68991	5491931	794350	VD08099352	0.004	0.012	0.015	0.5	6.98	-5	40	-0.5	-2	5.39	-0.5	39	60	104	8.3	20
67419	5491593	794440	VO08099352	0.003	-0.005	0.007	-0.5	5.46	5	200	-0.5	-2	8.75	-0.5	46	292	14	7.21	10
67526	5491989	794441	VO08099352	0.001	-0.005	0.001	-0.5	7.94	в	30	-0.5	-2	7.43	-0.5	39	201	41	7 97	10
67483	5491937	794442	VO08099352	-0.001	0.013	0.017	-0.5	8.59	В	110	-0.5	-2	6.92	-0.5	44	282	90	7.7B	10
67512	5491951	794443	VO08099352	0.001	0.011	0.018	-0.5	8.34	7	100	-0.5	-2	B.57	-0.5	46	269	68	7.01	10
67550	5491541	794443	VO08099352 VO08099352	0.001	-0.005	-0.001	-0.5	8.01	6	20	-0.5	-2	8.9	-0.5	40	230	55	8.34	10
67562	5491564	794445	VO08099352	0.001	-0.005	0.001	-0.5	7.93	-5	50	-0.5	-2	7.36	-0.5	40	230	86	8.69	10
67508	5491552	794446	VO08099352	1.	-0.005	-0.001	-0.5	7.77	-2 -5	30	-0.5	-2	6,83	-0.5	42	213	127	8.68	10
				0.001					7										
67491	5491546	794447	V008099352	0,001	-0.005	-0.001	-0.5	5,26		30	-0.5	-2	2 47	-0.5	30	179	49	5,82	10
67419	5491593	794448	VO08099352 VO08099352	0,002	-0.005	-0.001	-0.5	B	-5	30	-0.5		7.07	-0.5	42	208	51	7.41	10
164540	5494510	794449	V008089352	0.001	-0.005	-0.001	-0.5	7.09	-5	400	0.7	-2	1.91	-0.5	5	18	b	1,52	20
04040	6494510	794450	VCJ#090352	-1.001	-0.005	-0.001		\$ 75		5.40	0.7	-2	T KZ	-0.5	1	-	81	1.85	111
66263	5492694	794467	VO08099352	0.001	-0.005	-0.001	-0.5	0.22	9	-10	-0.5	-2	0.1	-0.5	1	47	4	0.54	-10
465169	5494711	794468	V008099352	0.001	-0.005	-0.001	-0.5	1.52	9	20	-0.5	-2	0.51	-0.5	6	92	2	1.18	-10
65175	5494216	794469	V008099352	0.002	-0.005	-0.001	-0.5	7.56	-5	400	0.7	-2	3.03	-0.5	9	21	15	3.3	20
65028	5493842	794470	VO08099352	-0.001	-0.005	0,004	-0,5	7.89	12	30	-0.5	-2	6,81	-0.5	45	240	103	7.75	10
465221	5493800	794471	V008099352	0.001	-0.005	-0.001	-0,5	8.02	7	80	-0.5	-2	5.25	-0.5	40	225	123	10.1	10
469146	5491844	794472	VD08099352	0,001	-0.005	-0.001	0.5	0.12	-5	-10	-0.5	-2	B.05	-0.5	-1	44	2	0.39	-10
69103	5491635	794473	VO08099352	0.495	-0.005	-0.001	-0.5	4.17	60	490	-0.5	2	0.55	-0.5	В	93	42	1.66	10
69075	5491630	794474	VO08099352	0.005	-0.005	0.001	-0.5	7.78	25	40	-0.5	-2	4.54	-0.5	41	170	73	9.64	10
688825	5491772	794475	VO08099352	0.003	-0.005	-0.001	-0.5	2.71	В	10	-0.5	-2	2.1	-0.5	12	77	14	3.1	-10
68708	5492081	794476	VO08099352	0.002	-0.005	0.004	-0.5	7.62	12	10	-0.5	-2	7	-0.5	45	216	119	8.97	10
	W 1015.00	794477	VO08099352	-0.001	-0.005	0.002	-0.5	7.73	6	50	-0.5	-2	5.34	-0.5	43	181	122	8.09	10
68669	5491966	1.94411																	

Easting NAD 83	Northing NAD 83	Sample #	Assay Certificate	AU ppm PGM-ICP23	Pt ppm PGM-ICP23	Pd ppm PGM-ICP23	Ag ppm ME-ICP61	AI % ME-ICP51	As ppm ME-ICP61	Ba ppm ME-ICP61	Be ppm ME-ICP61	Bi ppm ME-ICP61	Ca % ME-ICP61	Cd ppm ME-ICP61	Co ppm ME-ICP61	Cr ppm ME-ICP61	Cu ppm ME-ICP61	Fe % ME-ICP61	Ga ppm ME-ICP6
468600	5491693	794479	VO08099352	0.001	-0.005	-0.001	-0.5	8.25	10	60	-0.5	-2	5.06	-0.5	49	51	94	11.6	20
468626	5491663	794480	VO08099352	0.001	-0.005	-0.001	-0.5	7.84	12	50	-0.5	-2	6.91	+0.5	42	182	111	8.79	10
467622	5492583	794481	VO08099352	0.002	-0.005	-0.001	-0.5	7.99	11	20	-0.5	-2	6.01	-0.5	42	123	70	9.33	10
467620	5492574	794482	VO08099352	0.007	-0.005	-0.001	-0.5	6.97	6	530	0.5	-2	1.08	-0.5	2	6	1	0.63	10
467587	5492519	794483	VO08099352	0.003	-0.005	0.003	-0.5	7.83	26	10	-0.5	-2	5.76	-0.5	42	178	94	7.85	10
467507	5492348	794484	VO08099352	0.001	0,008	0.007	-0.5	7.47	18	20	-0.5	-2	6.22	-0.5	34	173	67	8.72	10
467467	5492124	794485	VO08099352	0.001	-0.005	0.003	-0.5	2.28	7	20	-0.5	-2	0.66	-0.5	15	76	40	4.86	-10
467295	5491637	794486	VO08099352	-0.001	-0.005	0.001	-0.5	7.98	6	20	-0.5	-2	7.55	-0.5	45	219	82	8.86	10
467698	5491755	794487	VO08099352	0.001	-0.005	-0.001	-0.5	5.43	6	50	-0.5	-2	4.69	-0.5	24	138	27	8.9	-10
467122	5491817	794488	VO08099352	0.001	-0.005	0.001	-0.5	8.14	8	20	-0.5	-2	7.06	-0.5	47	226	69	9.13	10
467144	5491857	794489	VO08099352	0.002	-0.005	0.002	-0.5	7.97	6	20	-0.5	-2	7.08	-0.5	45	222	95	8.52	10
466943	5491808	794490	VO08099352	-0.001	-0.005	0.001	-0.5	8.14	11	40	-0.5	-2	4.46	-0.5	47	202	30	9.78	10
466943	5491808	794491	VO08099352	0.001	0.005	0.001	0.5	7.82	9	377	0.5	-3	ñ	0.5	38	183	50	8.78	tū
467104	5491814	794492	VO08099352	0.002	-0.005	0.001	0.5	7.25	8	20	-0.5	-2	6.67	-0.5	44	206	86	8.44	10
466915	5491765	794493	VO08099352	0.001	-0.005	-0.001	-0.5	2.94	6	20	-0.5	-2	2.63	-0.5	15	83	19	4.02	-10
467014	5492048	794494	VO08099352	-0.001	-0.005	0.001	-0.5	7.51	-5	40	-0.5	-2	6.71	-0.5	41	223	57	8.09	10
467024	5492074	794495	VO08099352	0.001	-0.005	0.001	-0.5	7.92	5	30	-0,5	-2	6,42	-0.5	47	218	101	8.25	10
Standard.	Oreas 15Pa	794496	VO08099352	0.975	-0.005	0.001	-0.5	6.94	1075	250	0.9	-2	5.32	-0.5	36	194	56	7.58	10
\$67050	5492157	794497	VO08099352	0.002	-0.005	-0.001	-0.5	8.11	12	50	-0.5	-2	6.95	-0.5	43	201	69	8.55	20
467084	5492231	794498	VO08099352	0.001	-0.005	-0.001	-0.5	3.79	-5	10	-0.5	-2	3.47	-0.5	25	69	44	6.26	10
467133	5492350	794499	VO08099352	0.001	-0.005	-0.001	-0.5	3,32	9	110	-0.5	-2	1.12	-0.5	3	21	8	1.33	-10
	5491571	794500	VO08099352	0.002	-0.005	-0.001	-0.5	7.36	6	20	-0.5	-2	10.9	-0.5	40	111	92	7.71	10

Easting	Northing	Sample ii	Assay	ж.	La	Mg	Mo	Ma	Na	Ń	P	Pb	5	5b	Sc	Ŝŕ.	Th	71	π
NAD 83	NAD 83		Certificate	% ME-ICP61	ppm ME-ICP61	K ME-ICP51	ppm ME-ICP61	ppm ME-ICP61	ME-ICP61	ppm ME-ICP61	ppm ME-ICP61	ppm ME-ICP61	NE-ICP61	apm ME-ICP61	ppm ME-ICP61	ppm ME-ICP51	ppm ME-ICP61	% ME-ICP61	ppm ME-ICP61
469855	5490796	866036	TE08127354	0.02	=10	0,3	483	ME-ICP61	0.18	6	260	-2	0.02	-5	ME-ILPE1	11 11	-20	0.21	-10
469859	5490784	866037	TB08127354	0.06	-10	0.37	618	-1	0.61	7	420	5	0.57	-5	13	58	-20	0.38	-10
460801	5496059	876434	TB08127354	0.23	-10	3.93	1220	8	0.94	122	330	2	0.23	-5	36	101	-20	0.56	-10
460822	5496069	876435	TB08127354	0.61	10	0.45	212	3	3.61	11	240	4	0.02	-5	2	216	-20	0.11	-10
469864	5490783	876436	TB08127354	-0.01	-10	0.03	64	1	0.02	7	20	-2	0.01	-5	-1	3	-20	0.01	-10
469863	5490785	876437	TB08127354	-0.01	-10	0.04	97	1.1	0.05	3	20	-2	0.01	-5	-1	4	-20	0.01	-10
469863	5490785	876438	TE08127354	0.01	-10	0.16	274	1	0.17	6	170	·2	0.69	-5	4	15	-20	0,13	-10
469863	5490785	876439	TB08127354	0.02	-10	0.23	357	-1	0.25	12	190	4	0.4	5	7	20	-20	0.18	-10
470426	5490162	876475	TB08127354	0.13	-10	2.97	1170	-1	2.14	134	190	4	0.02	-5	32	75	-20	0.39	-10
470440	5490169	876476	TB08127354	0.11	-10	3.48	1220	-1	1.64	113	150	-2	0.01	-5	34	103	-20	0.35	-10
470868	5490125	876477	TB08127354	0.09	-10	3 55	1405	-1	1,83	136	210	-2	0.03	-5	33	165	-20	0.46	-10
470868	5490120	876478	TB08127354	0.04	-10	2.63	1100	-1	8.0	66	130	3	0.14	-5	32	129	-20	0.37	-10
470721	5490329	876479	TB08127354	0.11	-10	5.31	1290	-1	1.29	180	190	-2	0.01	-5	24	83	-20	0.39	-10
470323	5490527	876480	TB08127354	0.06	-10	4.9	1300	-1	0.91	84	90	2	0.04	-5	44	84	-20	0.35	-10
470325	5490528	876481	TB08127354	0.03	-10	1.93	542	-1	0.24	50	50	-2	-0.01	-5	16	22	-20	0.12	10
470097	5490559	876482	TB08127354	0.02	-10	1.79	569	-1	0.44	34	90	-2	0.03	-5	17	39	-20	0.21	-10
469077	5491950	876001	V008099353	0.02	-10	3.14	1625	-1	1.05	114	210	4	0:04	5	38	90	-20	0.43	10
469056	5491834	876002	V008099353	0.02	-10	3.84	1530	-1	0.72	108	190	2	D.1	-5	36	78 99	-20	0.39	10
468989 468620	5491665 5491509	876003 876004	VO08099353 VO08099353	0.15	-10	3.87 3.41	1405		2.57	85 105	390 220	-2 2	0.02	-5	40	143	-20	0.75	-10
468620	5491509	876004	VO08099353	0.03	-10	3.41	1235	-1	1.28	109	240	-2	0.03	-5	40	143	-20	0.42	-10
468656	5491526	876005	V008099353	0.03	-10	3.98	1315	3	1.02	118	260	2	0.13	-5	36	100	-20	0.48	-10
468693	5491645	876007	VO08099353	0.08	-10	4.07	1405	-1	1.55	53	210	-2	0.05	-5	41	103	-20	0.40	10
466475	5491988	87600B	VO08099353	0.34	-10	3.68	1400	4	1.84	81	560	2	0.06	-5	36	138	-20	0.8	-10
466472	5492026	876009	VO08099353	0.31	-10	2.26	1590	-1	1.23	70	490	3	0.14	-5	36	129	-20	0.79	-10
466489	5492020	876010	V008099353	0.37	20	0.38	283	-1	3 84	13	400	g	0.58	-5	4	283	-20	0.14	-10
466492	5492014	876011	VO08099353	0.11	10	0.71	257	-1	2 52	18	240	11	0.52	-5	9	348	-20	0.16	-10
466492	5492014	876012	VO08099353	0.11	30	0.84	228	-1	2.01	18	270	12	0.65	-5	9	358	-20	0.15	-10
466513	5492024	876013	VO08099353	0.48	-10	2.5	1495	-1	1.04	47	440	2	0.05	-5	37	96	-20	0.76	-10
466531	5492179	876014	VO08099353	1.92	-10	4.27	1465	-1	0.83	109	240	-2	0.44	-5	30	126	-20	0.77	-10
466669	5492582	876015	VO08099353	0.11	-10	3.22	1450	-1	1.29	36	420	-2	0.07	5	43	194	-20	0.76	-10
466820	5492393	876016	VO08099353	0.02	-10	0.3	110	-1	0.15	7	30	-2	-0.01	-5	5	14	-20	0.03	-10
466819	5492397	876017	VO08099353	0.05	-10	1.43	694	-1	0.51	18	140	2	0.03	-5	18	36	-20	0.23	-10
466795	5492317	876018	VO08099353	0.08	-10	3.13	1520	-1	2.8	132	310	10	0.02	-5	41	94	-20	0.47	10
466758	5492242	876019	VO08099353	0.01	-10	0.15	131	-1	0.06	7	70	-2	0.03	-5	2	2	-20	0.01	-10
466723	5492116	876020	VO08099353	0.11	-10	4.01	1320	-1	0.87	96	260	4	0.13	7	35	91	-20	0.51	-10
Standa	rd: 50 Pb	876021	V008099353	0.02	-10	6.56	1725	-	1.58	35	20	2	-0.01	-5	80	30	-20	0.98	-10
473517	5481421	876022	VO08099353	0.02	-10	6.46	1725	-1	1.57	33	20	-2	-0.01	-5	76	31	-20	1.01	-10
473553	5481442	876023	VO08099353	-0.01	-10	2.3	264	-1	0.06	23	10	-2	-0.01	-5	13	3	-20	0.09	-10
473555	5481442	876024	VO08099353	0.04	-10	4.32	975	-1	2.51	45	110	2	0.04	-5	43	64	-20	1.12	10
473572	5481446	876025	VO08099353	10.0-	-10	0.53	98	-1	0.03	9	10	-2	-0.01	-5	5	3	-20	0.02	-10
473593	5481488	876026	VO08099353	0.02	-10	5.37	1490	-1	0.01	47	40	-2	-0.01	-5	23	58	-20	1.16	-10
473598	5481537	876027	VO08099353	1.44	10	2.82	1075	-1	2.23	59	630	2	0.05	-5	24	243	-20	0.61	-10
469082	5490774	876028	VO08099353	0.05	-10	3.89	1260	-1	1.02	67	240	-2	0.04	-5	33	83	-20	0.48	-10
469103	5490845	876029	VO08099353	0.1	-10	3.66	1260	-1	0.89	151	110	-2	0.02	-5	35	99	-20	0.33	-10
469187	5490838	876030	V008099353	0.17	-10	0.64	427	-1	0.52	12	110	-2	0.07	-5	8	28	-20	0.14	-10
469141	5490749	876031	VO08099353	0.01	-10	0.27	92	-1	0.09	9	20	-2	-0.01	-5	1	1	-20	0.01	-10
-469141	5490749	176032	V00809353	0.01	- 10	0.04	77	- 0.	0.09	- 2	10	-2	-0.01	-5			-20	0.01	10
469154	5490793	876033	VO08099353	0.29	-10	3.06	2870	-1	0.65	82	200	-2	0.23	-5	31	68	-20	0.32	10
469358	5490718	876034	V008099353	0.07	-10	4.79	1250	-1	0.98	148	140	2	0.01	-5	32	124	-20	0.33	10
469743	5491008	876035	V008099353	0.01	-10	0.33	191	-1	0.11	10	40	-2	-0.01	-5	5	6	-20	0.04	-10
464122	5494167	876036	V008099353	0.29	-10	4.11	1270	-1	1.8	108	250	3	0.07	-5	34	136	-20	0.47	-10
464489	5494087	876037	V008099353	0.15	-10	4.24	1335	-1	1.29	146	160	-2	0.02	-5	36	89	-20	0.32	10
469730	5490991	876035	VO08099353	0.02	-10	013	81	1	0.08	6	20	-2	0.01	-5	4	1	-20	0.01	10
469729	5490989	876039	V008099353	0.08	-10	4.77	1440	-1	1.44	105	220	-2	0.03	7	50	92	-20	0.69	-10
469814	5490735	876040	VO08099353	0.01	-10	0.3	141	-1	0.08	5	80	-2	-0.01	-5	2	5	-20	0.02	-10
469813	5490747	876041	VO08099353	0.01	-10	0.25	124	-1	0.09	6	40	-2	-0.01	-5	3	11	-20	0.04	-10
469813	5490747	876042	VO08099353	0.08	-10	4.1	1305	-1	1.78	70	290	-2	0.01	-5	34	162	-20	0.58	-10
469869	5490781	876043	V008099353	0.14	-10	1.2	2440	1	1.66	-1	700	-2	0.05	-5	38	73	-20	1.01	-10
469870	5490773	876044	V008099353	-0.01	-10	0.07	120	-1	0.04	-1	40	-2	0.01	-5	2	2	-20	0.04	-10

Easting	Northing	Sample #	Assay	К. 36	La	Mg	Мп	Mo	Na	NI	P	Pb	5.	50	'Sc	Sr	Th	11	TI
VAD 83	NAD 83		Certificate	ME-ICP61	ppm MEICP61	ME-ICP61	ppm ME-ICP61	ME ICP61	ME #CP61	ME-ICP61	ME-ICP61	ppm ME-ICP61	ME ICP61	ppm ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME ICP61	ME ICP61
69833	5490809	876045	VO08099353	0.14	-10	1.94	2640	-1	1.21	1	540	2	0.22	11	46	48	-20	1.0B	10
169833	5490814	876046	VO08099353	0.14	-10	1.99	1350	-1	1.69	6	440	-2	0.11	-5	49	104	-20	3.1	10
69863	5490779	876047	VO08099353	0.03	-10	80.0	167	-1	0 16	-1	120	-2	0.35	-5	4	18	-20	0 12	-10
169969	5490851	876048	VO08099353	0.07	+1.0	0.66	285	-1	0.49	27	50	2	0.01	-5	8	24	-20	0.2	-10
169967	5490847	876049	VO08099353	0.14	-10	80.0	96	-1	0.03	- t	20	-2	0.01	-5	1	4	-20	0.01	-10
169959	5490843	876050	VO08099353	0.01	-10	3	1090	-1	1.63	47	440	-2	0.01	-5	51	100	-20	1.42	-10
466371	5491992	876051	V008099353	1.07	10	2.89	1235	-1	2.72	70	310	10	0.11	-5	26	501	-20	0.44	10
466489	5492339	876052	VO08099353	0.31	-10	4.34	1335		1.29	103	270	-2	0.05	-5	35	86	-20	0.52	-10
66471	5492355	876053	VO08099353	0.35	-10	4.05	1310	-1	2.52	77	390	9	0.08	Б	36	72	-20	0.66	-10
66501	5492374	876054	VO08099353	0.12	-10	3.35	1395	-1	2.16	88	330	15	0.01	-5	35	95	-20	0.53	-10
66496	5492367	876055	VO08099353	0.56	-10	2.94	1215	-1	1.74	75	200	-2	0.02	6	31	145	-20	0.47	-10
66486	5492418	876056	VO08099353	0.12	-10	4.15	1365	-1	1.19	94	210	2	0.06	5	39	126	-20	0.48	-10
66509	5492394	876057	VO08099353	0.13	-10	3.3	1260	-1	1.27	86	230	-2	0.03	6	37	110	-20	0.46	-10
66670	5492298	876058	V008099353	0.02	-10	1.35	1725	-1	0.09	109	340	-2	-0.01	-5	41	71	-20	0.52	-10
66630	5492208	876059	V008099353	0.12	-10	0.17	113	-1	4,18	4	20	11	0.06	-5	2	134	-20	0.04	-10
66627	5492167	876060	V008099353	0.24	-10	4.68	1405	-1	1.61	157	270	.2	-0,01	-5	26	62	-20	0.53	-10
66731	5491941	876061	VO08099353	0.12	10	0.81	408	-1	3.47	3	30	12	0.02	-5	6	133	-20	0.11	-10
66722	5491932	876062	VO08099353	0.51	-10	2.86	1350	-1	1.87	50	430	-2	0.1	-5	36	101	-20	0.7	-10
66789	5492087	876063	VO08099353	0.16	-10	4.43	1395	-1	1.52	102	220	-2	0.01	6	38	93	-20	0.46	-10
66793	5492108	876064	VO08099353	0.15	-10	2.23	1300	-1	0.92	70	200	-2	0.02	-5	29	127	-20	0.38	-10
67060	5492504	876065	VO08099353	0.06	-10	2.1	1520	-1	1.13	135	250	-2	0.06	-5	40	134	-20	0.5	-10
67055	5492500	876066	VO08099353	0.14	-10	3.01	1740	-1	1.18	142	230	-2	0.03	-5	40	99	-20	0.5	-10
67051	5492489	876067	VO08099353	0,2	-10	4.68	1410	1	1.17	138	240	-2	0.02	5	38	114	-20	0.48	-10
67023	5492505	876068	VO08099353	0.13	+10	5.25	1265	-1	1.7	117	220	-2	-0,01	-5	33	69	-20	0.47	-10
67016	5492500	576069	VO08099353	0.15	-10	4.47	1345	-1	1.35	129	230	-2	0.08	-5	34	97	-20	0.5	-10
66993	5492514	876070	VO08099353	0.12	-10	5.11	1110	-1	2.02	123	190	-2	-0.01	-5	30	98	-20	0.49	-10
67013	5492438	B76071	VO08099353	0.13	-10	5.14	1265	-1	1.4	139	140	-2	0.02	-5	36	91	-20	0.36	-10
67031	5492439	876072	VO08099353	0.19	-10	4.15	1185	-1	1.39	133	160	-2	0.06	-5	38	112	-20	0.37	-10
67030	5492440	876073	VO08099353	0.14	-10	4,73	1325	-1	1.25	131	140	-2	0.01	-5	31	106	-20	0.36	-10
66981	5492322	876074	VO08099353	0,1	-10	2,63	896	-1	1.6	69	90.	-2	0,01	-5	29	62	-20	0.45	-10
66967	5492330	876075	VO08099353	0.31	-10	4,4	1180	-1	2.07	78	250	-2	-0.01	-5	38	191	-20	0.55	-10
66959	5492350	876076	VO08099353	0.18	-10	3.06	1610	-1	0.67	54	210	-2	0.02	-5	37	64	-20	0.59	-10
67000	5492270	876077	VO08099353	-0.01	-10	0.28	214	-1	0.1	3	08	-2	0.04	-5	2	3	-20	0.03	-10
66996	5492280	876078	VO08099353	0.05	-10	4.34	1580	-1	1.59	62	180	-2	0.02	-5	43	118	-20	0.54	-10
66980	5492285	876079	VO08099353	-0.01	-10	0.04	67	-1	0.01	-1	90	-2	0.18	-5	-0	1	-20	0.01	-10
66846	5491852	876080	VO08099353	0.13	-10	3.71	1430	-1	1.15	75	36/0	-2	0.03	-5	39	154	-20	0.66	-10
66847	5491836	876081	VO08099353	0.01	-10	0.74	137	-1	0,3	9	60	-2	-0.01	-5	11	51	-20	0.08	-10
166845	5491828	876082	VO08099353	0.04	-10	1.19	229	2	0.87	13	90	-2	0.01	-5	14	73	-20	0.13	-10
67022	5491878	876083	V008099353	0.08	-10	3.57	1605	-1	1.54	108	210	-2	0.04	-5	39	97	-20	0.47	-10
67234	5492374	876084	VQ08099353	0.12	-10	3.89	1400	-1	1.74	126	240	-2	0.03	-5	38	120	-20	0.49	-10
167216	5492305	876085	VO08099353	0.04	-10	2.6	1230	-1	D.77	134	08	-2	-0.01	-5	38	84	-20	0.37	-10
67201	5492327	876086	V008099353	80.0	-10	1.76	839	-1	1.32	78	50	-2	0.02	-5	22	53	-20	0.22	-10
57153	5492176	876087	VO08099353	0.01	-10	0.13	183	-1	0.04	3	280	12	0.02	-5	1	4	-20	0.02	-10
67155	5492177	876088	VO08099353	0.01	-10	0.99	350	-1	0.22	8	90	-2	0.01	-5	9	7	-20	0.14	-10
167095	5492177	876089	VO08099353	0.05	-10	2.3	1035	-1	0.35	56	120	-2	0.01	-5	19	61	-20	0.23	-10
67038	5491885	876090	VO08099353	0.07	-10	2.28	1250	-1	1.58	73	130	-2	0.03	-5	27	54	-20	0,34	-10
467125	5491749	876091	VO08099353	0 12	-10	4.28	1400	-1	0.92	100	320	-2	0.21	-5	37	94	-20	0.5	-10
167116	5491703	876092	VO08099353	0.05	-10	2.96	1420	-1	1.66	110	160	2	0.02	-5	37	65	-20	0.47	-10
67455	5492403	876093	VO08099353	1.12	10	88.0	697	-1	2.83	54	680	-2	0.2	-5	14	164	-20	0.21	-10
167686	5492428	876094	VO08099353	0.05	-10	4.02	1415	-1	2.32	70	380	3	-0.01	-5	40	104	-20	0.63	-10
167681	5492462	876095	VO08099353	0.05	10	3.59	1555	-1	1.51	86	500	-2	0.03	-5	40	63	-20	0.84	-10
67599	5492165	876096	VO08099353	0.11	-10	2.71	1085	-1	1.84	63	300	-2	8.05	-5	43	74	-20	0.36	-10
167585	5492167	876097	VO08099353	0.19	=10	2.05	1425	-1	1.79	70	310	-2	0.42	-5	39	85	-20	0.38	-10
67603	5492069	876098	VO08099353	0.58	10	0.66	1580	-1	1.58	1	930	-2	0.09	-5	26	245	-20	0.89	-10
167542	5492081	876099	VO08099353	0.98	10	0.53	1145	-1	1.95	34	330	6	0.05	-5	5	276	-20	0.1	-10
67542	5492081	575100	V008099353	1) 95	40	0.66	//05	- 0	2.02	46	340	5	103	-5	E	246	-20	01	-116
167661	5491571	876101	V008099353	0.04	-10	2.58	1145	1	0.93	29	120	5	0,01	3	36	36	-20	0.5	-10
67590	5491508	876102	VO08099353	0.1	-10	3.84	1450	-1	1.04	103	210	-2	0.05	-5	38	125	-20	0.4B	-10
167527	5491509	876103	VO08099353	0.07	10	4,32	1380	-1	0.83	109	280	-2	0.01	-5	38	83	-20	0.46	-10
67532	5491517	B76104	VO08099353	0.09	10	4.44	1410	-1	1.23	100	270	-2	0.02	-5	38	69	-20	0.49	-10

Easting NAD 83	Northing NAD 83	Sample it	Assay Certificate	K	6J ppm	Mg	Ma	Mo	Na %	NI. pdm	pom.	diê Diam	5	507 1000	SC ppm	5r paim	Th	T1 	TI
	1010 00	2.2	Ste manue	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICPG1	ME-ICP61	ME-ICP61	ME-ICP61	ME ICP61	ME-ICP
67552	5491540	876105	VO08099353	0.33	-10	4.73	1495	-1	13	137	240	-2	0.04	-5	37	151	-20	0.43	-10
67451	5491647	876106	VO08099353	0.05	-10	4	1485	-1	1.22	122	270	2	0.08	-5	37	163	-20	0.46	-10
87475	5491622	876107	VO08099353	0.08	-10	3.83	1350	-1	1.66	104	240	6	0.07	-5	35	126	-20	0.44	-10
67520	5491837	876108	V008099353	-0.01	-10	3.34	1670	-1	0.02	35	80	5	0.11	-5	7	17	-20	0.01	-10
67791	5492440	876109	V008099353	0.05	-10	3.77	1370 1855	-1	1.64	86 88	370	-2	0.07	-5	38 39	76	-20	0.61	-10
64288	5494074	876110	VO08099353 VO08099353	0.3	-10	2.91	1545	1	1.65	88	280	-2	0.05	-5	41	158	-20	0.5	-10
464577	5494073 5494033	876112	VO08099353	0.11	-10	4.12	1325	-1	1.06	171	190	-2	0.04	-5	34	131	-20	0.35	-10
465055	5494769	876112	VO08099351	0.01	-10	0.38	125	1	0.1	19	40	-2	0.04	-5	34	6	-20	0.05	-10
469806	5490957	876114	V008099351	0.03	-10	0.59	254		0,22	21	30	-2	0.02	5	7	14	-20	0.1	-10
469808	5490953	876115	V008099351	0.07	10	3.49	1425	-1	1.31	96	260	-2	0.17	5	37	100	-20	0.5	-10
469792	5490930	875116	VO08099351	0.01	-10	0.14	92	1	0.07	6	10	-2	0.01	-5	1	4	-20	0.01	-10
469795	5490928	876117	V008099351	0.03	-10	0.56	789	1	0.29	17	80	2	0.01	-5	4	26	-20	0.05	-10
469785	5490929	876118	VO08099351	0.05	10	3.41	1385	-1	1.67	106	250	-2	0.13	-5	38	111	-20	0.52	-10
469763	5490912	876119	VO08099351	0.12	-10	0.24	102	T	0.23	46	70	4	0.36	-5	2	13	-20	0.04	-10
469894	5490707	876120	VO08099351	0.02	-10	0.04	52	1	0.04	4	10	-2	0.01	-5	1	4	-20	0.01	-10
470021	5490808	876121	VO08099351	1.33	-10	3.01	534	-1	1.16	103	220	-2	0.03	-6	21	66	-20	0.16	-10
474188	5481506	876122	VO08099351	0.12	-10	2.5	1670	-1	1.45	35	630	-2	0.24	-5	41	14B	-20	1.09	-10
474192	5481508	876123	VO08099351	0.12	-10	2,48	1665	-1	1.41	42	720	2	0.32	6	41	148	-20	1.13	-10
469747	5490864	876124	VO08099351	0.07	-10	3.29	1260	-1	1.01	30	290	-2	0.13	6	44	140	-20	0.57	-10
469861	5490782	876125	V008099351	0.06	-10	0.3	484	-1	0.41	1	270	5	1.01	6	12	38	-20	0.29	-10
A69977	5490647	876126	VO08099351	-0.01	~10	0.02	30	-1	0.01	1	10	-2	0.01	-5	1	1	-20	-0.01	-10
STANDARD	P-Drees 18Pb	876127	VO08099351	0:58	10	3.04	1840	2	1.58	123	1400	18	1.59	9	15	299	-20	0.76	-10
464386	5494096	876151	VO08099351	1.71	10	0.38	269	-1	3.2	4	590	5	0.01	-5	3	595	-20	0.22	-10
465052	5494720	876152	VO08099351	0.32	-10	4.78	1160	-1	1.88	93	130	2	-0,01	-5	47	40	-20	0.3	-10
465065	5494723	876153	VO08099351	0.19	-10	5.07	1095	-1	1.15	109	90	-2	0.01	-5	43	70	-20	0.25	-10
465050	5494734	876154	VO08099351	0.1	-10	4.68	1150	-1	2.43	132	110	-2	0.01	-5	37	39	-20	0.29	-10
465038	5494730	876155	VO08099351	0.09	-10	4.98	1075	-1	1.12	108	90	4	0.01	5	41	74	-20	0.25	-10
465667	5494525	794342	VO08099352	0.05	10	1.16	1140	-1	0.11	64	150	-2	0.34	-5	27	281	20	0.28	-10
465617	5494291	794343	VO08099352	1.38	20	0.47	420	-1	3.01	3	440	3	0.02	-5	3	156	20	0.19	-10
485511	5494086	794344	V008099352	0.95	10	0.45	315	-1	2.97	4	420	2	0.01	-5	3	268	-20	0.21	-10
485475	5494004	794345	VO08099352	0.71	10	0.89	487	t	2.79	18	570	2	-0.01	-5	10	213	-20	0.27	-10
465318	5494646	794346	V008099352	0.01	-10	0.12	134	1	0.03		20	-2	0.02	-5	17	6	-20	0.01	-10
465210 469095	5494680 5491428	794347 794348	VO08099352 VO08099352	0.78	30 10	2.47	854 1260	1	2.27	61	1140 240	-2	0.02	5	17	545	20 20	0.41	-10
469095	5491420	794349	V008099352	0.15	10	3.96	1260	-1	1.55	94	220	-2	0.04	5	36	97	-20	0.40	-10
468991	5491931	794350	V008099352	0.34	10	3.51	1410	1	1.77	37	290	-2	0.04	-5	41	99	20	0.48	-10
467419	5491593	794440	VO08099352	0.63	10	7.17	1130	-1	1.43	220	1350	-2	0.01	-5	36	424	-20	0.73	10
467526	5491989	794441	VO08099352	0.15	-10	4.29	1340	-1	1.16	120	330	-2	-0.01	-5	36	115	-20	0.46	-10
467483	5491937	794442	VO08099352	0.75	-10	4.9	1200	-1	1.26	168	140	-2	0.06	-5	36	124	-20	0.33	-10
467512	5491951	794443	VO08099352	0.51	-10	4.73	1265	-1	1.32	156	130	-2	0.01	-5	36	103	-20	0.33	10
467550	5491541	794444	VO08099352	0.06	-10	3.77	1310	-1	0.83	102	220	-2	0.01	-5	41	151	-20	0.5	-10
467562	5491564	794445	VO08099352	0.13	-10	4.55	1390	-1	1.23	114	230	-2	0.02	-5	40	135	-20	0.49	10
467508	5491552	794446	VO08099352	0.16.	-10	4.3	1285	-1	1.24	100	200	-2	0.14	-5	40	80	-20	0.5	10
467491	5491546	794447	VO08099352	0.08	-10	2.78	866	-1	0.69	78	160	-2	-0.01	.45	25	82	-20	0.35	-10
467419	5491593	794448	VO08099352	0.11	-10	2.83	1310	-1	2.04	106	200	-2	0.04	-5	39	90	-20	0.49	-10
464540	5494510	794449	VO08099352	1.08	10	0.35	203	-1	3.46	4	380	-2	-0.01	-5	2	426	-20	0.17	-10
464540	5494510	794450	VO08099352	0.70	-10	2.25	167	1	2,46	2	250	2	-0.01	-5	1	378	-20	0.17	-10
466263	5492694	794467	VO08099352	0.01	-10	0/12	85	1	0.03	4	10	-2	-0.01	-5	1	-1	-20	0.01	-10
165169	5494711	794468	VO08099352	0.03	-10	0.7	225	2	0.64	16	40	-2	-0.01	-5	6	6	-20	0,06	-10
\$65175	5494216	794469	VO08099352	1.04	20	0,72	538	-1	2.93	4	800	3	0.01	-5	9	289	-20	0.31	-10
465028	5493842	794470	VO08099352	0.11	-10	4.67	1370	-1	1.18	146	200	-2	0.01	6	36	104	-20	0.4	10
465221	5493800	794471	VO08099352	0.22	-10	3.11	1410	-1	2.15	73	240	-2	0,13	5	45	65	-20	0.53	10
469146	5491844	794472	V008099352	0.01	-10	0.05	59	1	0.02	3	-10	-2	-0.01	-5	-1	1	-20	0.01	-10
469103	5491635	794473	VO08099352	1.4	-10	0.24	86	3	1.35	13	210	-2	0.42	-5	19	24.	-20	0.45	-10
469075	5491630	794474	VO08099352	0.15	-10	3.89	1375	-1	2.26	87	410	-2	0.06	-5	40	71	-20	0.79	10
468825	5491772	794475	V008099352	0.03	-10	1.08	536	1	0.79	22	150	-2	-0.01	-5	11	24	-20	0.28	-10
468708	5492081	794476	V008099352	0.03	-10	4.66	1470	-1	1.18	92	240	-2	0.05	-5	42	121	-20	0.5	-10
468669	5491966	794477	V008099352	0.22	-10	3.15	1415	-1	2.12	141	230	-2	0:13	-5	41	130	-20	0,49	10
468602	5491730	794478	VO08099352	0.18	10	2.03	1715	-1	1.44	-1	820	-2	0.02	-5	42	42	-20	1.2	10

Easting NAD 83	Northing NAD 83	Sample #	Assay Certificate	K % ME-ICP61	La ppm ME-ICP61	Mg % ME-ICP61	Mn ppm ME-ICP61	Ma ppm ME-ICP61	Na % ME-ICP61	Ni ppm ME-ICP61	P ppm ME-ICP61	Pb ppm ME-ICP61	5 58 ME-ICP61	Sb ppm ME-ICP61	5c ppm ME-ICP61	Sr ppm ME-ICP61	Th ppm ME-ICP61	TI 59 ME-ICP61	TI ppm ME-ICP6
468600	5491693	794479	V008099352	0.24	-10	4.51	1555	-1	1.46	58	270	-2	0.04	-5	58	102	-20	0.8	-10
468626	5491663	794480	VO08099352	0.11	-10	4.07	1435	-1	1.39	113	250	-2	0.04	-5	38	106	-20	0.51	10
467622	5492583	794481	V008099352	0.07	-10	3.84	1370	-1	1.47	84	280	-2	0.07	-5	38	175	-20	0.54	-10
467620	5492574	794482	VO08099352	1.67	-10	0.27	99	-1	3.12	2	60	-2	-0.01	-5	1	91	-20	0.05	-10
467587	5492519	794483	VO08099352	0.01	-10	3.23	1415	-1	1.45	126	210	-2	0.09	-5	40	123	-20	0.48	10
467507	5492348	794484	VO08099352	0.03	-10	4.17	1405	-1	1.68	46	240	-2	0.01	-5	41	140	-20	0.52	10
67467	5492124	794485	VO08099352	0.01	-10	1	1450	-1	0.18	20	120	-2	-0.01	-5	13	11	-20	0.18	-10
67295	5491637	794486	VO08099352	0.11	-10	4.55	1435	-1	1.42	102	200	-2	0.04	-5	41	103	-20	0.5	-10
67698	5491755	794487	VO08099352	0.45	-10	3.04	1830	3	0.67	49	100	-2	0.01	-5	31	20	-20	0.27	10
67122	5491817	794488	VO08099352	0.13	-10	5.05	1470	-1	1,85	119	190	-2	0.06	5	42	94	-20	0.5	-10
67144	5491857	794489	VO08099352	0 16	-10	43	1435	-1	1.4	122	210	-2	0.01	-5	39	132	-20	0.46	-10
66943	5491808	794490	V008099352	0.1	-10	4.85	1585	-1	1.4	102	290	-2	0.01	-5	39	88	-20	0.69	10
66943	5491808	790491	VO0809852	0.1	-10	3,78	1410	-1	T.ā.	85	390	-2	0.05	÷	37	105	-20	D.65	70
67104	5491814	794492	VO08099352	0.11	-10	4.64	1335	-1	1.23	116	190	-2	0.03	-5	36	74	-20	0.45	10
66915	5491765	794493	VO08099352	0.08	-10	1.19	677	-1	0.46	28	150	-2	0.01	-5	15	59	-20	0.27	-10
67014	5492048	794494	VO08099352	0.22	-10	4.18	1360	-1	1,51	106	190	-2	-0.01	-5	.37	126	-20	0.41	10
67024	5492074	794495	VO08099352	0.17	-10	4.75	1350	+1	1.39	135	220	-2	0.03	-5	39	91	-20	0.45	10
Standard	Oreas 15Pa	794496	VO08099352	0.58	20	3.67	1150	-1	1.98	130	1290	6	0.46	-5	17	357	-20	0.92	10
167050	5492157	794497	VO08099352	0.22	-10	4.45	1350	-1	1.12	105	200	2	0.01	-5	38	124	-20	0.46	-10
67084	5492231	794498	VO08099352	0.05	-10	2.12	998	-1	0.84	21	200	-2	0.01	-5	27	63	-20	0.38	-10
67133	5492350	794499	VO08099352	0.15	-10	0.41	172	-1	1.34	4	100	-2	-0.01	-5	1	106	-20	0.08	-10
67680	5491571	794500	VO08099352	0.07	-10	2.54	1355	-T	1.4	69	250	-2	0.02	-5	40	138	-20	0.5	10

Duplicate

Easting NAD 83	Northing NAD 83	Sample #	Assay Certificate	U	V	W	Zn ppm	Cu %
NAU 53	NAU 83		certificate	ppm ME-ICP61	ppm ME-ICP61	ME-ICP61	ME-ICP61	CU-OG6
469855	5490796	866036	TB08127354	-10	60	-10	12	
469859	5490784	866037	TB08127354	-10	29	-10	41	
460801	5496059	876434	TB08127354	-10	256	-10	100	
460822	5496069	876435	TB08127354	-10	22	-10	16	
469864	5490783	876436	TB08127354	-10	2	-10	2	
469863	5490785	876437	TB08127354	-10	2	-10	3	
469863	5490785	876438	TB08127354	-10	9	-10	10	
469863	5490785	876439	TB08127354	-10	12	-10	12	
470426	5490162	876475	TB08127354	-10	230	-10	82	
470440	5490169	876476	TB08127354	-10	200	-10	69	
470868	5490125	876477	TB08127354	-10	256	-10	82	
470868	5490120	876478	TB08127354	-10	208	-10	65	
470721	5490329	876479	TB08127354	-10	219	-10	53	
470323	5490527	876480	TB08127354	-10	239	-10	57	
470325	5490528	876481	TB08127354	-10	90	-10	23	
470097	5490559	876482	TB08127354	-10	106	-10	33	
469077	5491950	876001	VO08099353	-10	239	-10	148	
469056	5491834	876002	VO08099353	-10	240	-10	85	
468989	5491665	876003	VO08099353	10	318	-10	102	
468620	5491509	876004	VO08099353	-10	224	-10	35	
468627	5491528	876005	VO08099353	-10	255	-10	50	
468656	5491570	876006	VO08099353	-10	240	-10	80	
468693	5491645	876007	VO08099353	-10	235	-10	77	
466475	5491988	876008	VO08099353	-10	296	-10	90	
466472	5492026	876009	VO08099353	-10	286	-10	88	
466489	5492020	876010	VO08099353	20	34	-10	24	
466492	5492014	876011	VO08099353	10	78	-10	41	
466492	5492014	876012	VO08099353	10	93	-10	50	
466513	5492024	876013	VO08099353	-10	295	-10	67	
466531	5492179	876014	VO08099353	-10	309	-10	193	
466669	5492582	876015	VO08099353	-10	322	-10	121	
466820	5492393	876016	VO08099353	-10	38	20	6	
466819	5492397	876017	VO08099353	-10	119	-10	54	
466795	5492317	876018	VO08099353	10	246	-10	91	
466758	5492242	876019	VO08099353	-10	9	-10	9	
466723	5492116	876020	VO08099353	-10	239	-10	118	
	d: 50 Pb	876021	VO08099353	-10	89	10	35	
473517	5481421	876022	VO08099353	-10	89	-10	34	
473553	5481442	876023	VO08099353	-10	70	-10	24	
473555	5481442	876024	VO08099353	10	129	-10	35	
473572	5481446	876025	VO08099353	-10	25	-10	6	
473593 473598	5481488 5481537	876026 876027	VO08099353 VO08099353	-10	152	-10	41	
			VO08099353 VO08099353	-10	189	-10	78	
469082 469103	5490774	876028 876029	VO08099353 VO08099353	-10	249	-10	131 69	
469103	5490845		VO08099353 VO08099353	-10	210	-10 -10		
469187	5490838 5490749	876030 876031	VO08099353 VO08099353	-10 -10	50 9	-10	19 5	
469141	5490749	876031	VO08099353 VO08099353	-10	2	-10	2	
469154	5490793	876032	VO08099353	-10	189	-10	116	
469358	5490793	876034	VO08099353 VO08099353	-10	205	-10	71	
469358	5490718	876035	VO08099353	-10	30	-10	8	
469743	5491008	876036	VO08099353 VO08099353	-10	225	-10	97	
464122	5494167	876036	VO08099353 VO08099353	-10	225	-10	66	
464489	5494087	876037	VO08099353 VO08099353	-10	8	-10	4	
469730	5490991	876038	VO08099353 VO08099353			10	103	
469729	5490989	876040	VO08099353	-10 -10	332 16	-10	103	
469813	5490738	876040	VO08099353	-10	17	-10	7	
469813	5490747	876041	VO08099353 VO08099353	-10	249	-10	101	
469869	5490747	876042	VO08099353 VO08099353	-10	82	-10	156	
469869	5490781		VO08099353 VO08099353					
44532963711	0490773	876044	1000033223	-10	3	-10	4	

Easting NAD 83	Northing NAD 83	Sample #	Assay Certificate	U ppm ME-ICP61	V ppm ME-ICP61	W ppm ME-ICP61	Zn ppm ME-ICP61	Cu % Cu-OG62
469833	5490809	876045	VO08099353	-10	381	-10	122	00000
469833	5490814	876046	VO08099353	-10	542	-10	59	
469863	5490779	876047	VO08099353	-10	9	-10	5	
469969	5490851	876048	VO08099353	-10	62	-10	24	
469967	5490847	876049	VO08099353	-10	12	-10	5	
469959	5490843	876050	VO08099353	-10	950	-10	46	
			VO08099353		204			
466371	5491992	876051 876052	(1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	10		10	91	
466489	5492339		VO08099353	-10	249	-10	72	
466471	5492355	876053	VO08099353	10	273	-10	96	
466501	5492374	876054	VO08099353	10	238	-10	124	
466496	5492367	876055	VO08099353	10	226	-10	75	
466486	5492418	876056	VO08099353	-10	245	-10	84	
466509	5492394	876057	VO08099353	-10	237	-10	82	
466670	5492298	876058	VO08099353	-10	228	-10	160	
466630	5492208	876059	VO08099353	30	12	-10	18	
466627	5492167	876060	VO08099353	10	235	-10	160	
466731	5491941	876061	VO08099353	20	112	-10	62	
466722	5491932	876062	VO08099353	10	281	-10	99	
466789	5492087	876063	VO08099353	10	235	-10	79	
466793	5492108	876064	VO08099353	-10	194	-10	78	
467060	5492504	876065	VO08099353	-10	257	-10	84	
467055	5492500	876066	VO08099353	10	255	-10	93	
467051	5492489	876067	VO08099353	10	241	-10	78	
467023	5492505	876068	VO08099353	10	236	-10	84	
467016	5492500	876069	VO08099353	-10	251	-10	87	
466993	5492514	876070	VO08099353	10	250	-10	84	
467013	5492438	876070	VO08099353	-10	215	-10	69	
467031	5492439	876072	VO08099353	10	219	-10	79	
467030	5492440	876073	VO08099353	-10	212	-10	73	
466981	5492322	876074	VO08099353	10	207	-10	93	
466967	5492330	876075	VO08099353	10	261	-10	98	
466959	5492350	876076	VO08099353	-10	285	-10	114	
467000	5492270	876077	VO08099353	-10	17	-10	7	
466996	5492280	876078	VO08099353	10	279	-10	94	
466980	5492285	876079	VO08099353	-10	4	-10	2	
466846	5491852	876080	VO08099353	-10	281	-10	100	
466847	5491836	876081	VO08099353	-10	119	-10	16	
466845	5491828	876082	VO08099353	10	161	-10	30	
467022	5491878	876083	VO08099353	-10	248	-10	83	
467234	5492374	876084	VO08099353	10	242	-10	86	
467216	5492305	876085	VO08099353	-10	200	-10	78	
467201	5492327	876086	VO08099353	10	132	-10	57	
467153	5492176	876087	VO08099353	-10	12	-10	2	
467155	5492177	876088	VO08099353	-10	71	-10	22	
467095		876089	VO08099353 VO08099353	-10	135	-10	46	
	5492177 5491885		VO08099353 VO08099353					
467038		876090		10	179	-10	59	
467125	5491749	876091	VO08099353	-10	263	-10	91	
467116	5491703	876092	VO08099353	-10	255	-10	84	
467455	5492403	876093	VO08099353	-10	110	-10	98	
467686	5492428	876094	VO08099353	-10	317	-10	94	
467681	5492462	876095	VO08099353	-10	349	-10	132	
467599	5492165	876096	VO08099353	-10	304	-10	109	
467585	5492167	876097	VO08099353	-10	265	-10	112	
467603	5492069	876098	VO08099353	-10	31	-10	162	
467542	5492081	876099	VO08099353	-10	33	-10	41	
467542	5492051	876100	V008099353	-10	40	-10	47	
467661	5491571	876101	VO08099353	-10	265	-10	81	
467590	5491508	876102	VO08099353	-10	265	-10	91	
467527	5491509	876103	VO08099353	-10	265	-10	88	
	5491517	876104	VO08099353		276	-10	87	

Easting NAD 83	Northing NAD 83	Sample #	Assay Certificate	U ppm	V ppm	W ppm	Zn ppm	Cu %
467552	5491540	876105	VO08099353	ME-ICP61 -10	ME-ICP61 259	ME-ICP61 -10	ME-ICP61 85	Cu-0662
467451	5491540	876105	VO08099353 VO08099353	-10	259	-10	96	
467475	5491647	876107	VO08099353	-10	238	-10	96	
467520	5491822	876108	VO08099353	10	11	-10	19	
467520	5491037	876108	VO08099353 VO08099353	-10	316	-10	121	
467791			VO08099353 VO08099353					
464284	5494074 5494073	876110	VO08099353 VO08099353	-10	277	-10	109	
464264	5494073	876111	VO08099353 VO08099353	-10 -10	286	-10	89 79	
464577	5494033	876112 876113	VO08099351 VO08099351		224 18	-10	5	
469806	5490957	876114	VO08099351	-10 -10	46	-10	14	
469808	5490953	876115	VO08099351	-10	265	-10	81	
469792	5490930	876116	VO08099351	-10	10	-10	3	
469795	5490928	876117	VO08099351	-10	30	-10	12	
469785	5490928	876118	VO08099351	-10	267	-10	85	
469763	5490929	876119	VO08099351	-10	23	-10	3	
469763	5490912	876120	VO08099351	10	3	-10	-2	
470021	5490808	876121	V008099351	-10	187	-10	38	
474188	5481506	876122	V008099351	-10	387	-10	74	
474192	5481508	876123	V008099351	-10	380	-10	76	
469747	5490864	876124	VO08099351	-10	288	-10	73	
469861	5490782	876125	V008099351	-10	20	-10	16	
469977	5490647	876126	VO08099351	-10	1	-10	-2	
	-Oreas 18Pb	876127	V008099351	-10	130	-10	118	
464386	5494096	876151	VO08099351	10	26	-10	60	
465052	5494720	876152	V008099351	10	184	-10	52	
465065	5494723	876153	V008099351	-10	186	-10	54	
465050	5494734	876154	V008099351	10	169	-10	72	
465038	5494730	876155	V008099351	-10	187	-10	52	
465667	5494525	794342	VO08099352	10	189	-10	61	
465617	5494291	794343	VO08099352 VO08099352	10	32	-10	44	
465511	5494086	794344	Contract of the second second	10	32	-10	60 57	
165475	5494004	794345	V008099352	10	64	-10	57	
465318	5494646	794346	V008099352	-10	7	-10	7	
465210	5494680	794347	VO08099352	10	132	-10	111	
469095	5491428	794348	V008099352	10	243	-10	76	
469092	5491445	794349	VO08099352	10	250	-10	83 90	
468991	5491931	794350 794440	VO08099352 VO08099352	10	260	-10		
467419	5491593			-10	247	-10	86	
467526 467483	5491989 5491937	794441	VO08099352 VO08099352	-10	238 198	-10	75 59	
		794442		-10		-10		
467512	5491951 5491541	794443 794444	VO08099352 VO08099352	10 10	196	-10	95	
467550	5491564	794444	VO08099352 VO08099352	-10	254 249	-10	78 83	
467562			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-10		
467508	5491552	794446	V008099352	-10	248	-10	85	
467491	5491546	794447	VO08099352	-10	158	-10	59	
467419	5491593	794448	VO08099352 VO08099352	10	247	-10	79 51	
464540	5494510	794449	VO08099352 VO08099352	10	20	-10		6. B. T. T. T.
464540 466263	5494510 5492694	794450	VO08099352	-10	8	-10	41	
465169	5492694	794467	VO08099352 VO08099352	10	22	-10		
465169		794468	VO08099352 VO08099352	10			11 82	
	5494216		VO08099352 VO08099352		55	-10		
465028	5493842	794470	VO08099352 VO08099352	-10	213	-10	78	
465221	5493800	794471	and the second se	10	279	-10	81	
469146	5491844	794472	VO08099352	-10	5	-10	11	
469103	5491635	794473	VO08099352	-10	167	20	9	
469075	5491630	794474	VO08099352	10	324	-10	99	
468825	5491772	794475	V008099352	-10	98	-10	33	
468708	5492081	794476	V008099352	-10	265	-10	86	
468669 468602	5491966 5491730	794477	V008099352	10	264	-10	91	
	5491/30	794478	VO08099352	-10	213	-10	66	

Easting NAD 83	Northing NAD 83	Sample #	Assay Certificate	U ppm ME-ICP61	V ppm ME-ICP61	W ppm ME-ICP61	Zn ppm ME-ICP61	Cu % Cu-OG62
468600	5491693	794479	VO08099352	-10	410	-10	105	
468626	5491663	794480	VO08099352	-10	256	-10	90	
467622	5492583	794481	VO08099352	10	260	-10	97	
467620	5492574	794482	VO08099352	10	8	-10	23	
467587	5492519	794483	VO08099352	10	260	-10	84	
467507	5492348	794484	VO08099352	-10	266	-10	89	
467467	5492124	794485	VO08099352	-10	91	-10	47	
467295	5491637	794486	VO08099352	-10	252	-10	92	
467698	5491755	794487	VO08099352	-10	206	-10	136	
467122	5491817	794488	VO08099352	-10	251	-10	88	
467144	5491857	794489	VO08099352	-10	240	-10	84	
466943	5491808	794490	VO08099352	-10	289	-10	124	
466943	5491808	794491	VO08099352	10	276	10	109	
467104	5491814	794492	VO08099352	-10	226	-10	83	9
466915	5491765	794493	VO08099352	-10	119	-10	37	
467014	5492048	794494	VO08099352	10	227	-10	89	
467024	5492074	794495	VO08099352	-10	233	-10	84	
Standard:	Oreas 15Pa	794496	VO08099352	-10	141	-10	107	
467050	5492157	794497	VO08099352	-10	232	-10	96	
467084	5492231	794498	VO08099352	-10	186	-10	101	
467133	5492350	794499	VO08099352	-10	20	-10	20	
467680	5491571	794500	VO08099352	-10	254	-10	70	

APPENDIX IV

DIAGNOS INC.

RESISTIVITY / INDUCED POLARIZATION & GROUND INFINITEM® SURVEYS

> GUERCHEVILLE PROPERTY JAMES BAY MUNICIPALITY QUEBEC, CANADA

INTERPRETATION REPORT

07N092A

May 2008

1746, CH. SULLIVAN, VAL-D'OR (QUEBEC) J9P 7H

TABLE OF CONTENTS

ABSTRACT	. 1
1. The Mandate	.2
2. THE GUERCHEVILLE PROPERTY	. 3
3. RESISTIVITY / INDUCED POLARIZATION SURVEY	. 5
4. GROUND INFINITEM [®] SURVEY	. 8
5. DATA PROCESSING AND DELIVERABLES	12
6. IP SURVEY - RESULTS & RECOMMENDATIONS	15
7. GROUND INFINITEM [®] SURVEY- RESULTS & RECOMMENDATIONS	29
8. Follow-up Summary	31

LIST OF FIGURES

GENERAL LOCATION OF THE GUERCHEVILLE PROPERTY	2
INDEX OF CLAIMS AND SURVEY GRIDS – GUERCHEVILLE PROPERTY	4
THE DIPOLE-DIPOLE ARRAY	5
TRANSMITTED SIGNAL ACROSS $C_1 - C_2$	5
ELREC-PRO TIME GATES	6
INFINITEM [®] PRIMARY FIELD	9
Image2D [®] DEMO ON SYNTHETIC DATASETS	14
G1 GRID	
FIRST-PRIORITY PROPOSED DDH G1-04 ON LINE 0+00E	16
FIRST-PRIORITY PROPOSED DDH G1-05 ON LINE 2+00E	16
FIRST-PRIORITY PROPOSED DDH G1-04 & G1-05 ON LINE 1+00E	16
FIRST-PRIORITY PROPOSED DDH G1-11 ON LINE 4+00E	17
SECOND-PRIORITY PROPOSED DDH G1-01 ON LINE 0+00E	17
SECOND-PRIORITY PROPOSED DDH G1-03 ON LINE 2+00E	17
SECOND-PRIORITY PROPOSED DDH G1-10 ON LINE 4+00E	18
G2 GRID	
FIRST-PRIORITY PROPOSED DDH G2-02 ON LINE 0+00E	20
FIRST-PRIORITY PROPOSED DDH G2-02 ON LINE 4+00E	20
FIRST-PRIORITY PROPOSED DDH G2-08 ON LINE 4+00E	20
FIRST-PRIORITY PROPOSED DDH G2-13 ON LINE 2+00E	21
SECOND-PRIORITY PROPOSED DDH G2-01 ON LINE 7+00E	21
SECOND-PRIORITY PROPOSED DDH G2-04 ON LINE 6+00E	21
SECOND-PRIORITY PROPOSED DDH G2-06 ON LINE 11+00E	22

TABLE OF CONTENTS (CONTINUED)

SECOND-PRIORITY PROPOSED DDH G2-07 ON LINE 11+00E	22
SECOND-PRIORITY PROPOSED DDH G2-14 ON LINE 2+00E	22
THIRD-PRIORITY PROPOSED DDH G2-03 ON LINE 10+00E	23
THIRD-PRIORITY PROPOSED DDH G2-19 ON LINE 9+00E	23
G3 GRID	
FIRST-PRIORITY PROPOSED DDH G3-10 ON LINE 5+00W	25
FIRST-PRIORITY PROPOSED DDH G3-13 ON LINE 14+00W	25
FIRST-PRIORITY PROPOSED DDH G3-14 ON LINE 2+00W	25
FIRST-PRIORITY PROPOSED DDH G3-14 ON LINE 10+00W	26
SECOND-PRIORITY PROPOSED DDH G3-07 ON LINE 9+00W	26
SECOND-PRIORITY PROPOSED DDH G3-07 ON LINE 12+00W	26
SECOND-PRIORITY PROPOSED DDH G3-08 ON LINE 2+00W	27
SECOND-PRIORITY PROPOSED DDH G3-10 ON LINE 14+00W	27
SECOND-PRIORITY PROPOSED DDH G3-06 ON LINE 3+00W	27
THIRD-PRIORITY PROPOSED DDH G3-01 ON LINE 8+00W	28
THIRD-PRIORITY PROPOSED DDH G3-06 ON LINE 3+00W	28
THIRD-PRIORITY PROPOSED DDH G3-10 ON LINE 9+00W	28

LIST OF TABLES

TABLE 1:	TRANSMITTING LOOPS SPECIFICATIONS	8
TABLE 2:	PROTEM TIME GATES LOCATION	10
TABLE 3:	DESCRIPTION OF THE GROUND INFINITEM® ANOMALIES	29

APPENDIXES

APPENDIX A - DESCRIPTION OF ALL IP / RESISTIVITY ANOMALIES INTERPRETED ON THE G1 GRID	34
APPENDIX B - DESCRIPTION OF ALL IP / RESISTIVITY ANOMALIES INTERPRETED ON THE G2 GRID	36
APPENDIX C - DESCRIPTION OF ALL IP / RESISTIVITY ANOMALIES INTERPRETED ON THE G3 GRID	41
APPENDIX D - PROFILES OF SECONDARY MAGNETIC FIELD PARTIAL DERIVATIVES	45

ABSTRACT

On behalf of Diagnos Inc., a **Resistivity / Induced Polarization** and a ground **InfiniTEM**[®] TDEM survey were carried out over the **Guercheville Property**. The complementary use of both techniques will allow mapping the full range of disseminated to massive sulphides mineralization.

During the months of December 2007 and March 2008, **33.0 km** of IP surveying (dipoledipole; a = 25 m and n = 1 to 6) and **17.2 km** of ground InfiniTEM[®] were carried out over part of the **Guercheville Property**. Survey specifications, instrumentation control, data acquisition, processing and interpretation were all successfully performed within our Quality System framework.

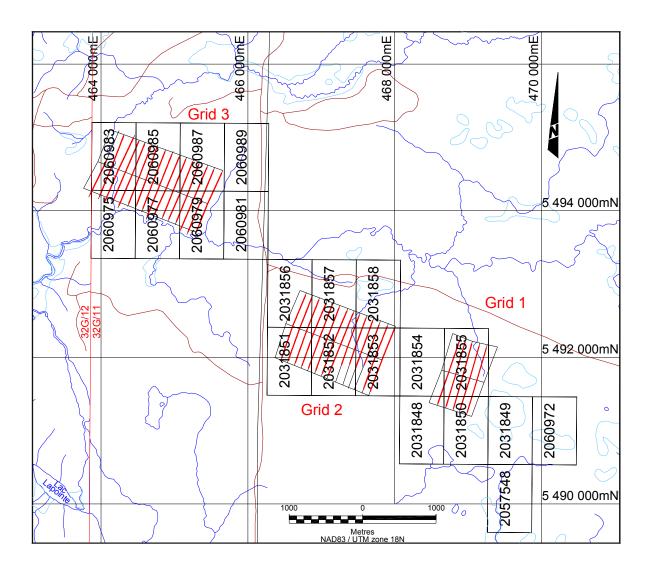
A total of eleven chargeability anomalies were identified on the **G1 Grid**, twenty-two on **G2 Grid** and fifteen on the **G3 Grid**. On the **G1 Grid**, the IP anomalies extend ~E-W and are probably caused by shallow sources. The most interesting targets could be could be caused by disseminated to semimassive sulphides (**G1-04** and **G1-05**). From the ground InfiniTEM[®] survey, an ambiguous response was identified on lines 2+00E and 4+00E. On line 2+00E, this questionable EM response appears proximal to the source of **G1-05**.

On the G2 Grid. the IP anomalies extend ~NW-SE. The most promising targets, **G2-04**, **G2-06**, **G2-07**, G2-08 and G2-19, could be caused bv disseminated to semi-massive sulphides. From the ground InfiniTEM[®] survey, a conductor of moderate quality was identified on lines 0+00E, 2+00E and 4+00E. This conductor is closely located to **G2-02**. Finally, on the G3 Grid, the IP anomalies also extend ~NW-SE. G3-13 and G3-14 seems to be promising targets. Their source could be caused by disseminated to semi-massive sulphides. From the ground InfiniTEM[®] survey, a conductor of poor quality was identified across the grid and its EM response corresponds to a possible deformation zone.

1. THE MANDATE

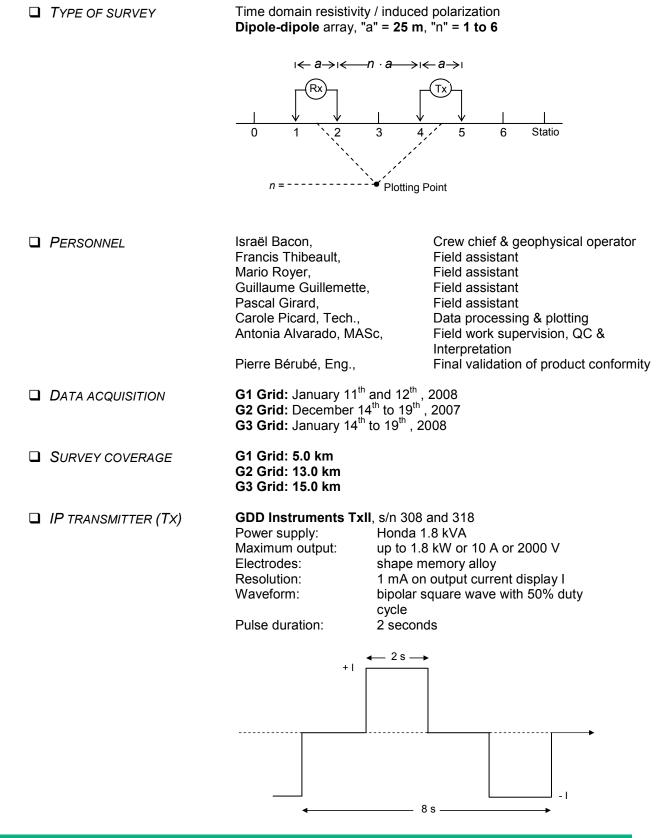
Project ID	Guercheville Property (Our reference: 07N092A)
GENERAL LOCATION	James Bay Municipality, Quebec, Canada.
CUSTOMER	Diagnos Inc. 7005, boul. Taschereau, # 340 Brossard, Quebec, Canada J4Z 1A7 Phone: (450) 678-8882, extension 239. Fax: (450) 678-8119
REPRESENTATIVE	Jean-Philippe Mai, B.Sc., GIT Project Manager jpmai@diagnos.ca
SURVEY TYPE	 Time domain resistivity / induced polarization Ground <i>InfiniTEM</i>[®] TDEM
GEOPHYSICAL OBJECTIVES	• Assess the presence of semi-massive, massiv

- Assess the presence of semi-massive, massive and disseminated sulphides.
- Propose a follow-up program over the most promising anomalies.


GENERAL LOCATION OF THE GUERCHEVILLE PROPERTY

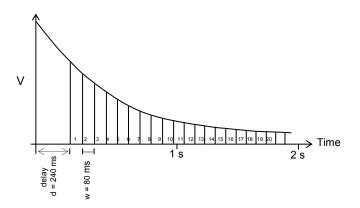
2. THE GUERCHEVILLE PROPERTY

	James Bay Municipality Centered on ~49° 34' N and ~75° 26' W NTS sheets: 32G/12 & 11
NEAREST SETTLEMENT	Chapais (approximately 43 km towards the northeast from the Guercheville Property).
□ Access	About 15 km before the town of Chapais, drive south for approximately 35 km on a logging road and turn west. From there, continue for about 25 km to reach the Guercheville Property.
	The property lies over a flat terrain crossed by several rivers. The topography presents a denivelation of approximately 14 feet. It is covered by dense vegetation and some swamps.
Cultural features	None over the survey area.
SURVEY GRIDS	The Guercheville Property includes three survey grids, named G1 , G2 and G3 .
	G1 Grid consists of N015° survey lines at 100 m interval extending from lines 0+00E to 4+00E, crossed by a baseline (0+00) and two tie lines (5+00N and 5+00S). All lines were picketed at every 25 m.
	G2 Grid consists of N020° survey lines of variable length due to the presence of a lake. These lines were cut every 100 m from line 0+00E to 13+00E. One base line (0+00) and two tie lines (5+00N and 5+00S) cross the survey lines. All lines are picketed every 25 m.
	G3 Grid consists of $N025^{\circ}$ survey lines at 100 m interval extending from lines 0+00 to 15+00W. They are crossed by a baseline (0+00) and two tie lines (5+00N and 4+25S). All lines were picketed at every 25 m.
	Refer to the figure on the following page for the grid layout.
COORDINATE SYSTEM	Projection: Universal Transverse Mercator Datum: NAD83 UTM Zone: 18N



INDEX OF CLAIMS AND SURVEY GRIDS - GUERCHEVILLE PROPERTY

3. RESISTIVITY / INDUCED POLARIZATION SURVEY



□ IP RECEIVER (Rx)

IRIS Elrec-PRO, s/n 131 (10 input channels) Electrodes: shape memory alloy

- **V**_P Primary voltage measurement:
- ♦ Input impedance: $100 \text{ M}\Omega$
- \diamond Resolution: 1 µV 0.2%
- \diamond Typical accuracy:
- M_a Apparent chargeability measurement:
- ♦ Resolution: 0.01 mV/V
- \diamond Typical accuracy: 0.4%
- \diamond Arithmetic sampling mode, 20 time slices (M₁ to M₂₀)

All gates are normalized with respect to a standard decay curve for QC in the field.

 $\rho_a = \pi \cdot n \cdot (n+1) \cdot (n+2) \cdot a \cdot \frac{V_p}{r}$

Cumulative error:

5% max, mainly due to chaining accuracy.

Before the survey:

- ✓ Transmitter & motor generator were checked for maximum output using calibrated loads.
- ✓ Receiver was checked using the Abitibi Geophysics SIMP™ certified and calibrated V_P & M_a signal simulator.

During data acquisition:

- ✓ Rx & Tx cable insulation was verified every morning.
- ✓ Proprietary Software Refusilo[®] allowed a daily thorough monitoring of data quality and survey efficiency.
- ✓ Enough pulses were stacked: 6 pulses for every reading.
- \checkmark The crew chief reported that the access to the grids was very difficult. Several errors in the numbering (picketing) of the stations were also informed. These facts did not allow to complete the survey on G2 Grid from line 7+00E to line 11+00E. Finally, G3 Grid was especially difficult to survey due to a defective bridge and dangerous river crossing the northern portion of the grid from line 11+00W to line 15+00W. These issues affected the daily productivity.

□ APPARENT RESISTIVITY CALCULATION

QUALITY CONTROL

At the Base of Operations:

- ✓ Field QCs were inspected & validated.
 ✓ Each IP decay curve was analyzed with *Refusilo[®]*. The few gates that were rejected were not included in the calculation of the plotted M_a .

QUALITY STATISTICS

Dipole-dipole: a = 25 m, n= 1 to 6	;	G1 Grid	G2 Grid	G3 Grid
Average contact resistance at the Rx		7.1 kΩ	19.8 kΩ	16.3 kΩ
Average output current across C1-C2		724 mA	428 mA	375 mA
Average measured voltage Vp across P ₁ -	n = 1	5741 mV	3572 mV	4080 mV
P ₂	n = 6	231 mV	95 mV	94 mV
Observed gates found to fit a pure electrode polarization relaxation curve	;	95.1 %	83 %	80 %
Average deviation of the validated normalized gates with respect to the	n = 1	0.07 mV/V	0.04 mV/V	0.05 mV/V
plotted mean chargeabilities	n = 6	0.31 mV/V	0.52 mV/V	0.43 mV/V

4. GROUND INFINITEM® SURVEY

Type of survey	TDEM (Time Domain Electro Configuration : <i>InfiniTEM</i> [®] (F Reading intervals: 50 m / de	Patent No.: US 7,116,107 B2)
Measurements	Vertical Z and horizontal/or ∂ B /∂ t of the secondary magr	thogonal X & Y partial derivatives netic field (inductive coils).
Personnel	Jacques Demers, Tech., Mathieu Simard, P. François Leger, Pascal Demontigny, Carole Picard, Tech., Antonia Alvarado, MASc, Pierre Bérubé, Eng.,	Crew chief Field Assistant Field assistant Field assistant Data plotting Fieldwork supervision, data processing, QC & interpretation Final validation of product conformity
DATA ACQUISITION	G1 Grid: March 31 st and Apri G2 Grid: April 2 nd and April G3 Grid: March 22 nd , March	04 th , 2008
SURVEY COVERAGE	G1 Grid: 2.85 km G2 Grid: 6.75 km G3 Grid: 7.60 km	
TRANSMITTING LOOPS SPECIFICATIONS		e Geophysical Interpretation Maps 10.0_G3) inserted in pouches at the layout.

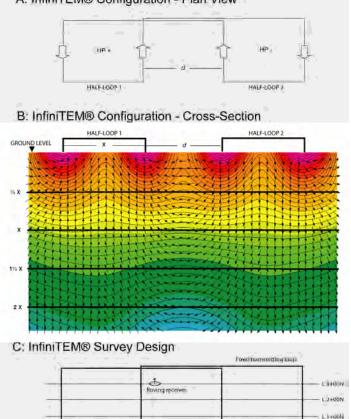
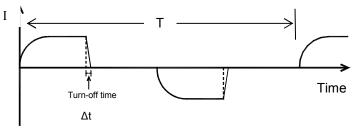

Grid	Loop #	Size (mN x mE)	Acquisition (YY-MM-DD)	Current (A)	Turn-Off Time (µs)
G1	DBD03	1000 x 600	08-03-31 08-04-01	16.0	400
G2	DBD04	1000 x 600	08-04-02	16.5	400
Gz	DBD05	1000 x 800	08-04-04	15.5	400
G3	DBD06	925 x 800	08-03-30	16.0	400
63	DBD07	925 x 800	08-03-22 08-03-23	17.0	400

Table 1: Transmitting Loops Specifications

□ INFINITEM[®] PRIMARY FIELD

A: InfiniTEM® Configuration - Plan View


D TDEM TRANSMITTER (TX)

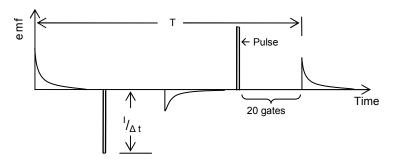
Geonics TEM57-MK2, s/n 30604Z

Power supply :	5.5 k\
Maximum output :	up to
Transmitted signal :	bipola
Repetition rate :	30 Hz

5.5 kVA Kubota motor generator up to 7.5 kW, 25 A or 1000 V bipolar wave, 50% duty cycle 30 Hz (T/4 = 8.333 ms)

Current (I) waveform in the Tx loop:

□ TDEM RECEIVER (Rx)


Geonics Digital Protem 67D, s/n 31704

 T_x synchronization: Integration time: Start of integration : Number of gates : Additional delay : crystal 1 cycle of 30 seconds 80 µs from end of trailing edge 20, geometrically spaced 0

Table 2 : PROTEM Time Gates Location

Gates #	Start (µs)	Center (µs)	Width (μs)
1	80.00	88.13	16.25
2	96.25	106.9	21.25
3	117.5	131.3	27.50
4	145.0	161.9	33.75
5	178.8	200.6	43.75
6	222.5	250.6	56.25
7	278.5	314.4	71.25
8	350.0	395.6	91.25
9	441.3	499.4	116.3
10	557.5	631.3	147.5
11	705.0	799.4	188.8
12	893.8	1014	240.0
13	1134	1287	306.3
14	1440	1636	391.3
15	1831	2081	498.8
16	2330	2648	636.3
17	2966	3373	812.5
18	3779	4297	1036
19	4815	5475	1321
20	6136	6978	1685

Electromotive force waveform generated in the ground

SURFACE COIL

Geonics **3D-3**, s/n 303 Simultaneous measurement of the Z, X & Y components. Effective area: 200 m^2

SIGNS CONVENTION	Z: vertical, positive upward.
	X: orthogonal, positive towards grid's North.
	Y: orthogonal, positive towards grid's West.

Geonics PROTEM :Rx data transfer to PC via RS232Geonics DATEM :Quality controlEMIT Maxwell[®] :Data processing, plotting and
interpretation.

QUALITY CONTROL (RECORDS AVAILABLE UPON REQUEST)

□ SOFTWARE

Before the survey:

- Transmitter & motor generator were checked for maximum output using calibrated loads.
- ✓ GSC geomagnetic forecasts were consulted.

Daily and prior to data acquisition:

- Receiver was calibrated and accurately synchronized with the transmitter.
- ✓ The battery voltage of the receiver was checked.
- ✓ The polarity of the primary field was checked.
- Crystal drifts have been thoroughly monitored daily and are within quality control specifications.

At the Base of Operations:

- ✓ Field QCs were inspected & validated.
- X, Y & Z Primary field components polarity was checked & corrected if required.

Survey noise evaluation:

- No geomagnetic activity was observed throughout the survey period.
- ✓ No abnormal instrumental noise was detected during the survey.
- ✓ The background geological noise over the Guercheville Property is evaluated at approximately 0.11 nV/Am².

5. DATA PROCESSING AND DELIVERABLES

□ *TRUE-DEPTH IP SECTIONS* Apparent resistivity and chargeability pseudosections were inverted using our proprietary *image2D*[®] package. The process is fully automated as there is no need to guess a starting model or to filter the pseudosection to generate one. The ground is divided in cells of a/4 side and a back-projection of the raw data is performed. The result is a smooth earth model showing all conductive, resistive and polarizable sources. The resulting truedepth sections integrate all possible solutions, highlighting the most probable ones.

A synthetic example showing the ability of *image2D*[®] to resolve sources and to facilitate the location of DDH is presented on page 14.

PRECISIONS CONCERNING image2D[®]
Imaging cannot create information that is not in the raw data set (pseudosections), i.e., the limitations of the technique and array that was used will still prevail. With pole-dipole, for instance, resolution is asymmetrical and vertical sources may show a false dip. However, noise is efficiently rejected, near-surface effects are easily identified and complex responses, such as two adjoining sources, a wide body or a dipping geological contact, are well resolved.

> This imaging process will not recover intrinsic resistivities unless the source is very wide. However, as opposed to pseudosections, geological data from drill-holes may be superimposed on *image2D*[®] true-depth sections.

NORMALIZATION OF THE
 TDEM MEASUREMENTS

The Geonics field measurements were converted from mV to nV/Am^2 (nT/A-s) units, according to current intensity inside the loop and effective surface area of the Rx antenna.

$$nV/Am^{2} = \frac{V*192}{A*2^{n}*S/100}$$

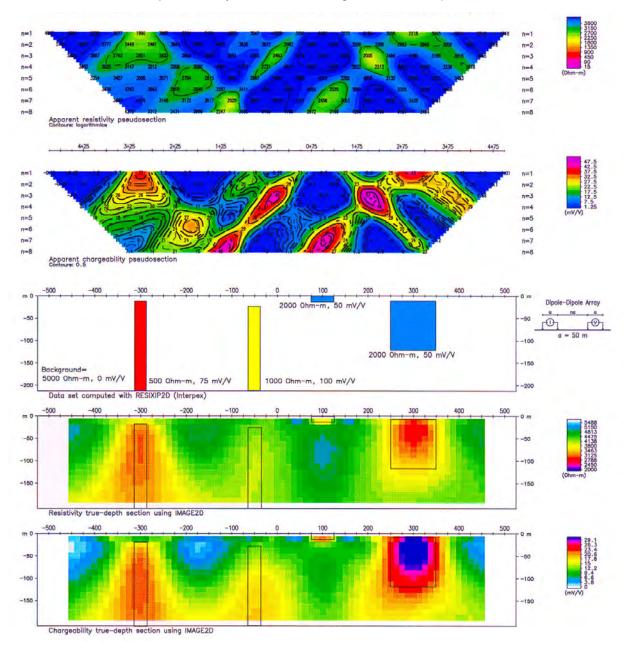
where V = measured voltage at the Rx coil (mV),

n = gain of each reading,

- S = effective area of the Rx coil,
- A = current inside the loop.
- □ SUPPLIED MAP The following maps are inserted in a pouch at the end of this report. Our Quality System requires that every final map be inspected by at least two qualified persons before being approved and included within a final report.

Grid	Map Number	Description	Scale
	Line 0+00E to line 4+00E (5 plates)	Color Apparent Resistivity / Chargeability Pseudosections and <i>image2D</i> [®] True-depth Sections	1:2500
	8.2_G1	IP Survey - <i>image2D</i> [®] Resistivity at a depth of 50 m	1:5000
	8.3_G1	IP Survey - <i>image2D</i> [®] Chargeability at a depth of 50 m	1:5000
G1	8.5_G1	IP Survey – <i>image2D</i> [®] Time Constant at a depth of 50 m	1:5000
	3 stacked profiles	Ground InfiniTEM $^{\ensuremath{\mathbb{B}}}$ survey - Partial Derivatives $\partial B/\partial t$	1:5000
	6.6b_G1	Ground <i>InfiniTEM</i> [®] survey – Total Secondary Field Contours Channels 12 to 19 (nV/Am ²)	1:5000
	10.0_G1	Geophysical Interpretation	1:5000
	Line 0+00E to line 13+00E (14 plates)	Color Apparent Resistivity / Chargeability Pseudosections and <i>image2D</i> [®] True-depth Sections	1:2500
	8.2_G2	IP Survey - <i>image2D</i> [®] Resistivity at a depth of 50 m	1:5000
	8.3_G2	IP Survey - <i>image2D</i> [®] Chargeability at a depth of 50 m	1:5000
G2	8.5_G2	IP Survey – <i>image2D</i> [®] Time Constant at a depth of 50 m	1:5000
	7 stacked profiles	Ground InfiniTEM $^{\ensuremath{\mathbb{B}}}$ survey - Partial Derivatives $\partial B/\partial t$	1:5000
	6.6b_G2	Ground <i>InfiniTEM</i> [®] survey – Total Secondary Field Contours Channels 12 to 19 (nV/Am ²)	1:5000
	10.0_G2	Geophysical Interpretation	1:5000
	Line 0+00W to line 15+00E (16 plates)	Color Apparent Resistivity / Chargeability Pseudosections and <i>image2D</i> [®] True-depth Sections	1:2500
	8.2_G3	IP Survey - <i>image2D</i> [®] Resistivity at a depth of 50 m	1:5000
	8.3_G3	IP Survey - <i>image2D</i> [®] Chargeability at a depth of 50 m	1:5000
G3	8.5_G3	IP Survey – <i>image2D</i> [®] Time Constant at a depth of 50 m	1:5000
	8 stacked profiles	Ground InfiniTEM $^{\otimes}$ survey - Partial Derivatives $\partial B/\partial t$	1:5000
	6.6b_G3	Ground <i>InfiniTEM</i> [®] survey – Total Secondary Field Contours Channels 12 to 19 (nV/Am ²)	1:5000
	10.0_G3	Geophysical Interpretation	1:5000

DIGITAL DATA


The above-described maps are delivered in the Oasis Montaj map file format on CD-Rom.

A copy of all survey acquisition data (ASCII text format) and processed data (Geosoft Montaj databases) area also delivered on CD-Rom.

image2D[®] DEMO ON SYNTHETIC DATASETS

Top half of figure: classic apparent resistivity and chargeability pseudosections. **Centre of plate**: the synthetic model that generates these pseudosections.

Bottom half of figure: the reconstructed resistivity and chargeability true-depth sections after inversion of the pseudosections using *image2D*[®]. The model is superimposed on these sections.

6. IP SURVEY - RESULTS & RECOMMENDATIONS

Resistivity & Chargeability Maps – **G1 Grid**

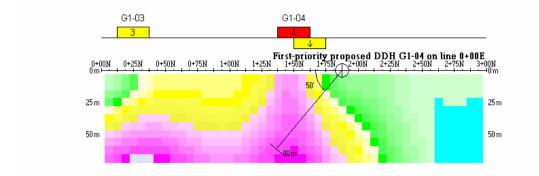
Following interpretation of pseudosections and *image2D*[®] true-depth sections, a total of eleven ~E-W polarizable anomalous trends (**G1-01** to **G1-11**) were compiled over **G1 Grid**. These anomalies have been correlated from line-to-line according to their strength, resistivity association and the general strike orientation. The inferred surface projections of their sources are shown along the survey lines on both the *Geophysical Interpretation Map* (10.0_G1) and the pseudosection plates. On the *Geophysical Interpretation Map*, the conductive zones were outlined using pink shaded areas. The 10 000 Ω -m contour line (in blue) was chosen to delineate the most resistive zones (blue-shaded areas).

The *image2D*[®] *Resistivity Map* (8.2_G1) plotted at a depth of 50 m shows a homogenous background of ~6000 Ω -m disrupted by E-W conductive areas and resistive zones along the survey grid. Generally, the IP anomalies extend ~E-W and are mostly caused by shallow sources (subcropping).

On one hand, trends **G1-04**, **G1-11** and **G1-05** are characterized by the highest chargeability values recorded (map 8.3_G1). **G1-04** and **G1-05** are closely spaced; they could share the same type of mineralization. Their sources could be a variation of disseminated to semi-massive sulphides. From the ground *InfiniTEM*[®] survey, an ambiguous response was identified on lines 2+00E and 4+00E. On line 2+00E, this conductor is questionable but appears proximal to the source of **G1-05**. Therefore, drilling should be carried out on this anomaly.

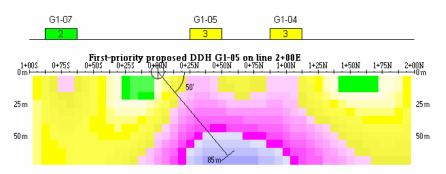
G-11 is mostly located within a homogenous resistive background (~ 6000 Ω -m). However, on lines 1+00E and 2+00E, its signature appears within a more conductive zone (~ 4000 Ω -m). This could be an indication of the presence of sulphides (it is not possible to define their nature) but cannot be precisely defined. Therefore, prospecting and drilling is suggested to better define its origin.

On the other hand, trends **G1-03**, **G1-09** and **G1-10** are mostly represented by relatively lower chargeability values and associated with a resistivity high. Their signatures could be related to quartz veins style mineralization.

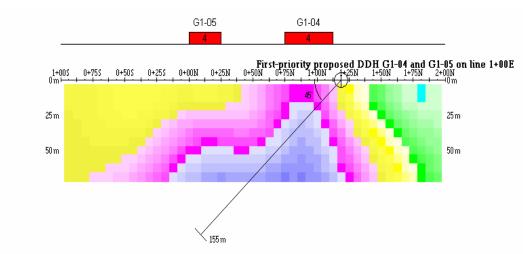

Single line moderately polarizable anomalies (**G1-06**, **G1-07** and **G1-08**) are ill-defined; prospecting is nevertheless recommended over these anomalies.

The interpreted anomalies are fully described in the Appendix A found at the end of this report.

All-priority DDH targets are illustrated hereafter on their respective chargeability true-depth sections.

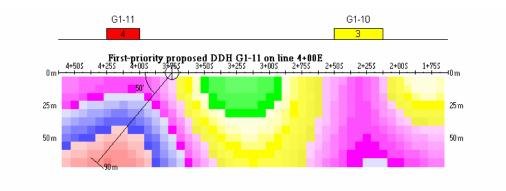


G1 GRID: FIRST-PRIORITY DDH TARGETS (G1-04, G1-05 & G1-11)

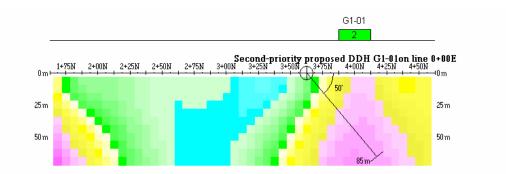


FIRST-PRIORITY PROPOSED DDH G1-04 ON LINE 0+00E:

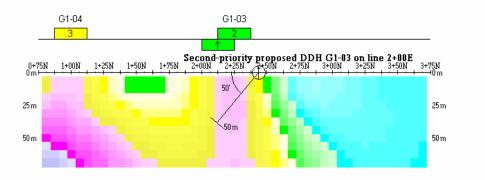
FIRST-PRIORITY PROPOSED DDH G1-05 ON LINE 2+00E:



FIRST-PRIORITY PROPOSED DDH G1-04 & G1-05 ON LINE 1+00E:

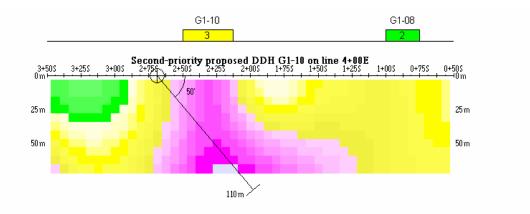


FIRST-PRIORITY PROPOSED DDH G1-11 ON LINE 4+00E:



G1 GRID: SECOND-PRIORITY DDH TARGETS (G1-01, G1-03 & G1-10)

SECOND-PRIORITY PROPOSED DDH G1-01 ON LINE 0+00E:



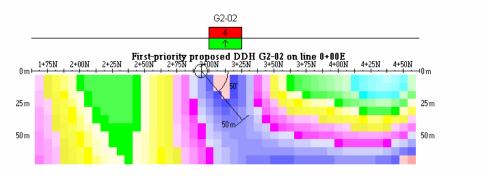
SECOND-PRIORITY PROPOSED DDH G1-03 ON LINE 2+00E:

SECOND-PRIORITY PROPOSED DDH G1-10 ON LINE 4+00E:

Resistivity & Chargeability Maps – **G2 Grid**

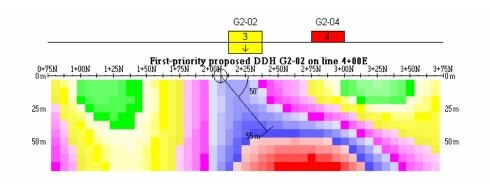
Following interpretation of pseudosections and *image2D*[®] true-depth sections, a total of twenty two NW-SE polarizable anomalous trends (**G2-01** to **G2-22**) were compiled over **G2 Grid**. These anomalies have been correlated from line-to-line according to their strength, resistivity association and the general strike orientation. The inferred surface projections of their sources are shown along the survey lines on both the *Geophysical Interpretation Map* (10.0_G2) and the pseudosection plates. On the *Geophysical Interpretation Map*, the conductive zones were outlined using pink shaded areas. The 12 000 Ω -m contour line (in blue) was chosen to delineate the most resistive zones (blue-shaded areas).

The major features of the *image2D*[®] *Resistivity Map* (8.2_G2) plotted at a depth of 50 m shows that **G2 Grid** is dominated by NW-SE conductive zones that could correspond to deformation zones. From the *Chargeability Map* (8.3_G2) plotted at a depth of 50 m, the inferred conductive zones match with the higher chargeable values. Thus, **G2-04**, **G2-06**, the northern portion of **G2-07**, **G2-08** and **G2-19**, could be caused by disseminated to semi-massive sulphides. **G2-02** also appears as a promising target. From the ground *InfiniTEM*[®] survey, a conductor of moderate quality was identified on the southern flank of **G2-02** (lines 0+00E, 2+00E and 4+00E). From the interpretation of the true-depth sections, it is suspected that **G2-02** and **G2-04** could share the same source. Therefore, drilling is recommended on lines 0+00E and 4+00E (**G2-04**).

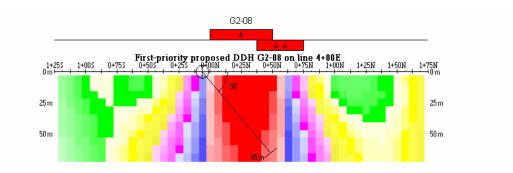

Following a meticulous comparison between the chargeability amplitudes and their resistive association, **G2-13** and **G2-14** could likely be part of a single folded structure. Both anomalies are embodied within a resistive zone located in the south western portion of the grid. Their sources could be partially caused by quartz veins style mineralization.

The interpreted anomalies are fully described in the Appendix B found at the end of this report.

All-priority DDH targets are illustrated hereafter on their respective chargeability true-depth sections.

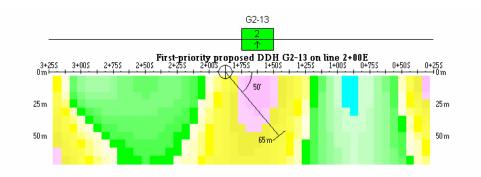


G2 GRID: FIRST-PRIORITY DDH TARGETS (G2-02, G2-08 & G2-13)

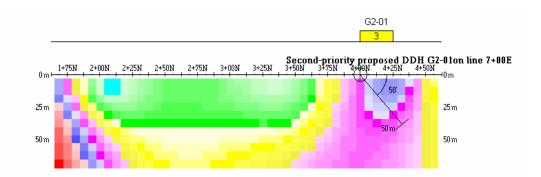


FIRST-PRIORITY PROPOSED DDH G2-02 ON LINE 0+00E:

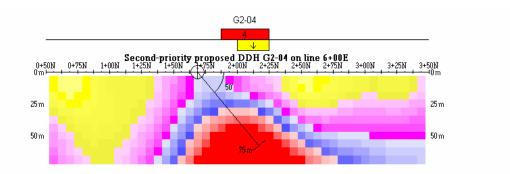
FIRST-PRIORITY PROPOSED DDH G2-02 ON LINE 4+00E:



FIRST-PRIORITY PROPOSED DDH G2-08 ON LINE 4+00E:

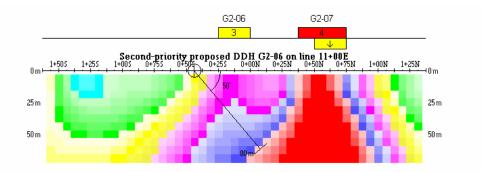


FIRST-PRIORITY PROPOSED DDH G2-13 ON LINE 2+00E:

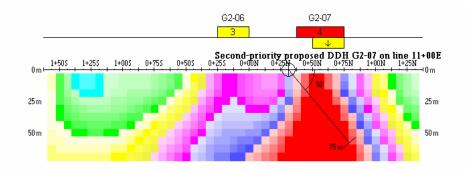


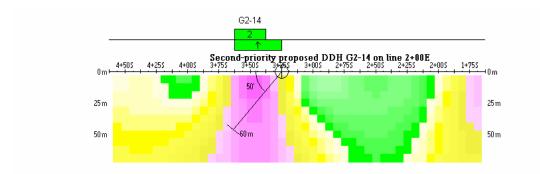
G2 GRID: SECOND-PRIORITY DDH TARGETS (G2-01, G2-04, G2-06, G2-07 & G2-14)

SECOND-PRIORITY PROPOSED DDH G2-01 ON LINE 7+00E:

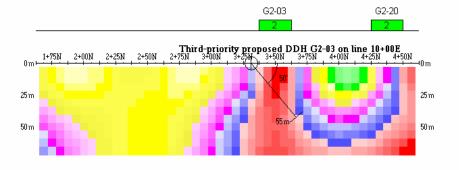


SECOND-PRIORITY PROPOSED DDH G2-04 ON LINE 6+00E:

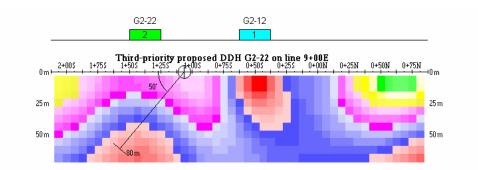



SECOND-PRIORITY PROPOSED DDH G2-06 ON LINE 11+00E:

SECOND-PRIORITY PROPOSED DDH G2-07 ON LINE 11+00E:



SECOND-PRIORITY PROPOSED DDH G2-14 ON LINE 2+00E:



G2 GRID: THIRD-PRIORITY DDH TARGETS (**G2-03 & G2-22**)

THIRD-PRIORITY PROPOSED DDH G2-03 ON LINE 10+00E:

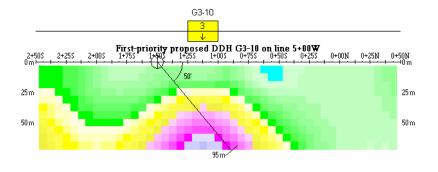
THIRD-PRIORITY PROPOSED DDH G2-22 ON LINE 9+00E:

RESISTIVITY & CHARGEABILITY MAPS – G3 GRID

Following interpretation of pseudosections and *image2D*[®] true-depth sections, a total of fifteen ~E-W polarizable anomalous trends (**G3-01** to **G3-15**) were compiled over **G3 Grid**. These anomalies have been correlated from line-to-line according to their strength, resistivity association and the general strike orientation. The inferred surface projections of their sources are shown along the survey lines on both the *Geophysical Interpretation Map* (10.0_G3) and the pseudosection plates. On the *Geophysical Interpretation Map*, the conductive zones were outlined using pink shaded areas. The 10 000 Ω -m contour line (in blue) was chosen to delineate the most resistive zones (blue-shaded areas).

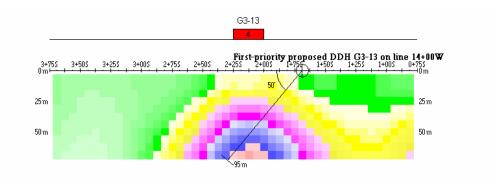
The *image2D*[®] *Resistivity Map* (8.2_G1) plotted at a depth of 50 m shows an homogenous background of ~6000 Ω -m disrupted by E-W conductive areas (possibly related to deformation zones) and resistive zones. On one hand, **G3-10** (from line 9+00W to line 15+00W) is characterized by the highest chargeability values recorded (map 8.3_G3). Its source could be caused by disseminated to semi-massive sulphides. From the ground *InfiniTEM*[®] survey, a conductor of poor quality was identified across the grid and its EM response corresponds to a possible deformation zone. From line 11+00W to line 15+00W, it coincides with **G3-10** and its amplitude increases by a factor of 2. This could mean an increase in the content of sulphides, a change in their nature towards the west or simply a shallower source. Drilling is recommended on lines 9+00W and 14+00W.

On the other hand, **G3-13** and **G3-14** seem to be promising targets. **G3-13** is a strongly polarizable anomaly embodied within a resistive zone. Its signature could be caused by semi-massive sulphides and it should be drilled. **G3-14** is a highly polarizable trend running into a possible WNW-ESE shear zone westward. Its source could be caused by disseminated to semi-massive sulphides.

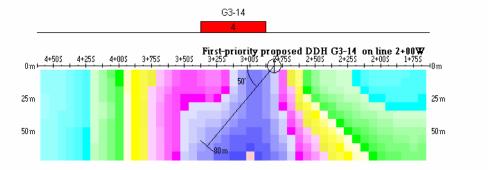

Finally, **G3-07** and **G3-08** could correspond to the same trend. Their continuity could be interrupted by NW-SE and NE-SW conjugated faults inferred from the *Chargeability Map* (8.3_G3). This would cause a variation in the depth of their sources along the trends. Even thought, they could be caused by quartz veins style mineralization; drilling and prospecting is suggested.

The interpreted anomalies are fully described in the Appendix C found at the end of this report.

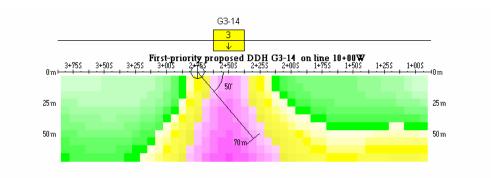
All-priority DDH targets are illustrated hereafter on their respective chargeability true-depth sections.



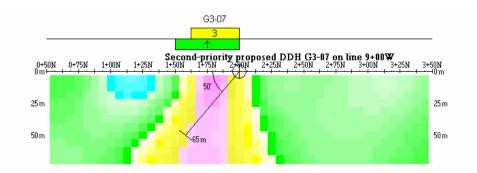
G3 GRID: FIRST-PRIORITY DDH TARGETS (G3-10, G3-13 & G3-14)

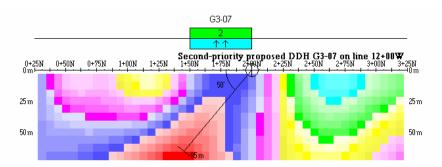


FIRST-PRIORITY PROPOSED DDH G3-10 ON LINE 5+00W:


FIRST-PRIORITY PROPOSED DDH G3-13 ON LINE 14+00W:

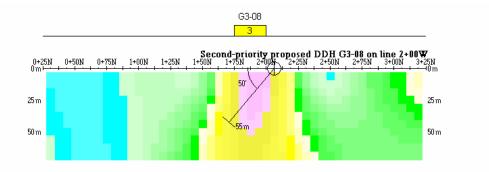
FIRST-PRIORITY PROPOSED DDH G3-14 ON LINE 2+00W:



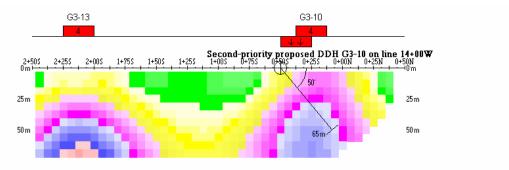

FIRST-PRIORITY PROPOSED DDH G3-14 ON LINE 10+00W:

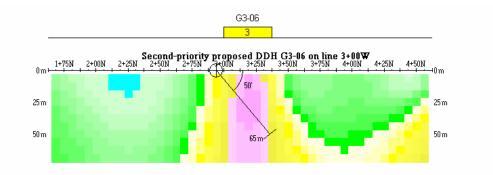
G3 GRID: SECOND-PRIORITY DDH TARGETS (G3-06, G3-07, G3-08 & G3-10)

SECOND-PRIORITY PROPOSED DDH G3-07 ON LINE 9+00W:

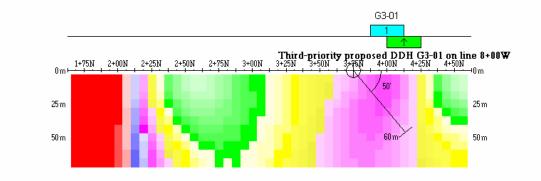


SECOND-PRIORITY PROPOSED DDH G3-07 ON LINE 12+00W:

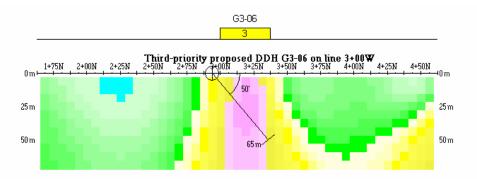



SECOND-PRIORITY PROPOSED DDH G3-08 ON LINE 2+00W:

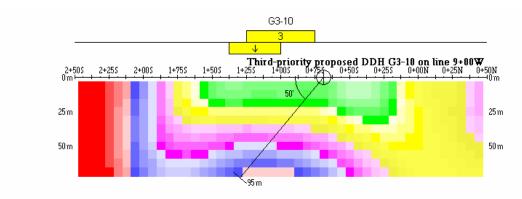
SECOND-PRIORITY PROPOSED DDH G3-10 ON LINE 14+00W:



SECOND-PRIORITY PROPOSED DDH G3-06 ON LINE 3+00W:



G3 GRID: THIRD-PRIORITY DDH TARGETS (**G3-01**, **G3-06 & G3-10**)



THIRD-PRIORITY PROPOSED DDH G3-01 ON LINE 8+00W:

THIRD-PRIORITY PROPOSED DDH G3-06 ON LINE 3+00W:

THIRD-PRIORITY PROPOSED DDH G3-10 ON LINE 9+00W:

7. GROUND INFINITEM[®] SURVEY- RESULTS & RECOMMENDATIONS

Four conductors have been identified from the ground *InfiniTEM*[®] survey over the Guercheville Property: one conductor on **G1 Grid** (**G1-EM01**), two conductors on **G2 grid** (**G2-EM01** & **G2-EM02**) and one conductor on **G3 grid** (**G3-EM01**). Refer to Table 3 for a full description. A time constant (τ) value has been computed from the decay curve analysis for each anomalous profile segments. A good conductor would be characterized by a strong τ value. We suggest using τ values only for comparison between anomalies. Conductors' depth-to-top was estimated to more or less a quarter of its signature wavelength. Note that this depth value may be overshot if the conductive source is not perpendicular to the survey lines.

		Tabl	e 3. Descriptior	n of the Ground	t InfiniTEM® A	Anomalies
Anomaly	Loca	ation	Conductor's	Estimated depth-to-	Dip	Comments
	Line	Station	quality (*)	top (λ/4)	-	
	2+00E	0+50S	?	?	?	Poor quality conductor. Located on the northern flank of a low resistivity zone. Ambiguous response similar to the signature of the background. On line 2+00E this conductor is proximal to a strongly polarizable source (G1-05). Drill-testing suggested on line 2+00E
G1-EM01	4+00E	0+50S	?	?	?	 (DDH G1-05, page 16). However, a conductor of better quality is suspected from line 0+00E to line 4+00E, which is open-ended towards the south. A survey extension southward might help to define a second conductor.
	0+00E	2+75N		200 – 225 m	Moderately dipping	origin. G2-EM01 and G2-EM02 could
	2+00E	2+25N		225 m	towards the north	fragmented by a ~N-S fault that
G2-EM01	Image: Mont with the system 2+00E 2+75N 200 - 225 m Moderately dipping towards the north Both sources are of probable metallic origin. G2-EM01 and G2-EM02 could represent a single conductor 2+00E 2+25N 225 m Moderately dipping towards the north Both sources are of probable metallic origin. G2-EM01 and G2-EM02 could represent a single conductor 4+00E 2+00N 215 m Moderately dipping towards the north possibly cause a depth increase towards the NW. 6+00E 1+25N 175 m Moderately dipping towards G2-EM01 is close to a strongly polarizable source (G2-02). Shows a close to a strongly polarizable source (G2-02). Shows a close to a strongly polarizable source (M2-M2).					
	6+00E	1+25N		175 m		polarizable source (G2-02). Shows a
	8+00E	0+50N	Moderate (τ = 1.0 ms)	115 m	the south	signature coincides partially with a strong IP anomaly (G2-19).
G2-EM02	10+00E	0+25S	((- 1.0 113)	70 m	Subvertical	Drill-testing of G2-EM01 suggested on line 4+00E (DDH G2-02, page 20). Drill-testing of G2-EM02 recommended on line 12+00E.
	12+00E	1+75S		75 m		A survey extension towards the west and the east is suggested.

		Tabl	e 3. Descriptior	n of the Ground	a InfiniTEM® A	Anomalies
Anomaly	Loca	ation	Conductor's	Estimated depth-to-	Dip	Comments
Anomary	Line	Station	quality (*)	top (λ/4)	Dip	Comments
	1+00W	2+75S		Large shallow	Moderately	From the interpreted fault towards the east, G3-EM01 follows a shear zone
	3+00W	2+25S		90 – 100 m	dipping	extending NW-SE along the grid. From
	5+00W	2+25S		175 m	towards the north	line 1+00W to line 7+00W, its signature
	7+00W	2+00S		≥ 175 m		is not well defined and could be caused
	9+00W	1+25S		?	?	by a ionic source
	11+00W	1+00S		?	Moderately	However, from line 11+00W to line
	13+00W	0+50S		140 – 150 m	dipping towards the north (almost subvertical)	15+00W its amplitude increases up to a maximum of 40 (nV/Am ²). In this portion, G3-EM01 coincides with the western extension of an IP anomaly, G3-10 and, from line 11+00W to line
G3-EM01	15+00W	0+258	Poor (τ = 0.4 ms)	175 – 200 m	Subvertical	15+00W, a deformation zone coincides with G3-10 . On lines 9+00W and 11+00W, an open-ended conductor appears towards the north. Its signature masks G3-EM01 on lines 9+00W and 11+00W. Therefore, its dip and depth is difficult to estimate. Drilling of G3-EM01 suggested on line 14+00W (DDH G3-10, page 27). Survey extension northward recommended in order to better define the location of a second conductor located north of G3- EM01 .

* Quality of the conductor: Poor: $\tau \le 0.5$ ms Moderate: $0.5 < \tau \le 1.5$ ms Good: $\tau > 1.5$ ms

8. FOLLOW-UP SUMMARY

Grid	Drievity	Anomaly	Loca	tion
Grid	Priority	Anomaly	Line	Station
	1	G1-04	0+00E	0+25N
		G1-01	0+00E	4+00N
	2	G1-03	2+00E	2+25N
G1		G1-10	4+00E	2+25S
		G1-06	0+00E	0+63S
	3	G1-07	2+00E	0+75S
		G1-08	4+00E	0+88S
			0+00E	3+13N
		G2-02	2+00E	2+63N
			4+00E	2+25N
	1		2+00E	0+88N
		G2-08	4+00E	0+25N
			6+00E	0+00N
		G2-13	2+00E	1+63S
		00.01	6+00E	4+25N
		G2-01	7+00E	4+00N
G2		G2-04	6+00E	2+13N
GZ	2	00.07	11+00E	0+56N
		G2-07	13+00E	0+00N
		G2-14	2+00E	3+50S
		G2-03	10+00E	3+38N
		G2-05	8+00E	2+50N
		G2-10	12+00E	2+63S
	3	G2-17	1+00E	2+50S
		G2-18	6+00E	2+88S
		G2-20	12+00E	4+00N
		G2-22	10+00E	1+88S
		G3-10	5+00W	1+13S
	1	G3-13	14+00W	2+13S
		C2 44	2+00W	3+13S
		G3-14	10+00W	2+63S
		G3-06	3+00W	3+19N
G3	2	G3-07	9+00W	1+81N
	<u>∠</u>	G3-08	2+00W	1+88N
		G3-10	14+00W	0+88S
			7+00W	3+94N
	3	G3-01	8+00W	4+00N
			11+00W	3+75N

Drilling

			D	DH target (not colla	ır) (*)
Grid	Priority	Anomaly	Line	Station	Estimated Vertical Depth (m)
		G1-04 (*)	0+00E	1+50N	50
	1	G1-05	2+00E	0+38N	45
	Į.	G1-04 & G1-05	1+00E	0+93N – 0+13 N	25 – 55
G1		G1-11	4+00E	4+12S	45
		G1-01 (*)	0+00E	4+00N	45
	2	G1-03 (*)	2+00E	2+25N	25
		G1-10 (*)	4+00E	2+33S	45
		G2-02 (*)	0+00E	3+13N	25
		62-02 ()	4+00E	2+25N	25
	1	G2-08 (*)	4+00E	0+25N	35
		G2-13 (*)	2+00E	1+63S	25
		G2-01 (*)	7+00E	4+13N	15
G2		G2-04 (*)	6+00E	2+06N	45
	2	G2-06	11+00E	0+13S	35
	2	G2-07 (*)	11+00E	0+56N	25
		G2-14 (*)	2+00E	3+50S	30
	3	G2-03 (*)	10+00E	3+50N	25
	3	G2-22	9+00E	1+38S	40
		G3-10 (*)	5+00W	1+13S	40
	1	G3-13	14+00W	2+13S	55
	1	G3-14 (*)	2+00W	3+13S	35
		G3-14 (*)	10+00W	2+50S	30
		G3-06 (*)	3+00W	3+33S	30
G3		G3-07 (*)	9+00W	1+75N	30
	2	G3-07	12+00W	1+75N	30
		G3-08 (*)	2+00W	1+88N	25
		G3-10 (*)	14+00W	0+25S	30
	2	G3-01(*)	8+00W	4+00N	30
	3	G3-10	9+00W	1+06S	50
(*) Pending prospec	ting results.				

The interpretation of the geophysical data embodied in this report is essentially a geophysical appraisal of the Guercheville Property. As such, it incorporates only as much geoscientific information as the author has on hand at the time. Geoscientists thoroughly familiar with the area are in a better position to evaluate the geological significance of the various geophysical signatures. Moreover, as time passes and information provided by follow-up programs are compiled, exploration targets recognized in this study might be downgraded or upgraded.

Respectfully submitted, Abitibi Geophysics Inc.

Antonia Alvarado, MASc

Pierre Bérubé,Eng., Geophysicist

Anomali	Loci	Location	Contrast	rast		Dui outer.
Апошају	Line	Station	Charg.	Res.	CIIAIII00	LIUIU
	0+00E	4+00N	2	·	Moderately to weakly polarizable source located within a conductive zone. Well defined signature on line 0+00E. Likely outcropping.	ç
5	1+00E	4+25N	~	ı	A survey extension towards the west could help to better define this anomaly.	N
S	3+00E	North End	¢.		Weakly polarizable source. Not very well defined (open-ended anomaly).	~
20-10	4+00E	4+38N	-	÷	A survey extension towards the north will allow to better define its source.	+
	2+00E	2+25N	2	÷	Moderately to weakly polarizable source associated with a resistive high. Its signature could be related to guartz veins style mineralization.	
G1-03	3+00E	2+13N	~	←	E-W trending. Likely outcropping.	7
	4+00E	1+75N	~	÷	Initial prospecting followed by possible drilling is recommended on line 2+00E.	
	0+00E	1+50N	4	Ŷ	Strongly polarizable and conductive E-W trends.	
G1_04	1+00E	0+94N	4	ı	G1-04 and G1-05 are closely spaced; they could share the same type of	Ŧ
	2+00E	1+00N	S		alization.	-
	3+00E	1+38N	~		Their sources could be caused by disseminated to semi-massive	
	0+00E	0+25N	ი	→	supnides. G1-04 extends on approximately 300 m. G1-05 extends on approximately 400 m.	
	1+00E	0+13N	7	÷	The amplitude of their signatures decreases towards the east. The source of G1-04 appears to be shallower than the one that caused G1-05	
G1-05	2+00E	0+38N	3	ı	Possibly caused by deep sources. From the ground <i>InfiniTEM®</i> survey, an ambiguous response was	-
	3+00E	0+38N	N	↑ ↑	Initial prospecting of G1-04 followed by possible drilling is recommended on line 0+00E.	
	4+00E	0+13S	-	ı	Drilling of G1-05 on line 2+00E is suggested. Also, drilling of both anomalies could be carried out on line 1+00E using a single DDH. A survey extension towards the west is suggested on both lines.	

DIAGNOS INC

Kes.	Accession	Foc	Location	Contrast	trast	Commonto	Duiouitu
0+00E 0+63S 2 2+00E 0+75S 2 - 2+00E 0+75S 2 - 4+00E 0+88S 2 - 4+00E 0+88S 2 - 1+85 1+88S 1 - 1+88S 1+88S 1 - 3+00E 1+88S 1 - 3+00E 1+94S 2 (R) 1+94S 3 1 - 1+94S 3 1 - 1+00E 2+25S 3 (R) 1+00E 2+25S 3 - 1+00E 4+38S 2 (R) 1+00E 4+38S 3 - 2+00E 4+38S 3 - 2+00E 4+13S 3 - 2+00E 4+13S 3 - 2+00E 4+13S 3 -		Line	Station	Charg.	Res.		
2+00E 0+75S 2 - 4+00E 0+88S 2 - 0+00E 1+88S 2 - 0+00E 1+88S 1 - 0+00E 1+88S 1 - 2+00E 1+88S 1 - 3+00E 1+88S 1 - 3+00E 1+94S 2 (R) 4+00E 2+25S 3 (R) 0+00E 2+25S 3 (R) 1+00E 2+25S 3 (R) 1+00E 2+38S 3 (R) 1+00E 4+38S 3 - 2+00E 4+38S 3 - 3+00E 4+13S 3 - 4+00E 4+13S 3 -	G1-06	0+00E	0+63S	7	I	Single line moderately polarizable sources. Located within a resistive background.	ю
4+00E 0+88S 2 - 0+00E 1+88S 1 - 0+00E 1+88S 1 - 2+00E 1+88S 1 - 2+00E 1+88S 1 - 3+00E 1+94S 2 (R) 3+00E 1+94S 2 (R) 0+00E 2+25S 3 (R) 1+00E 2+25S 3 (R) 0+00E 2+25S 3 (R) 1+00E 2+25S 3 (R) 1+00E 4+38S 3 (R) 2+00E 4+38S 3 - 3+00E 4+13S 3 1 4+00E 4+13S 3 1	G1-07	2+00E	0+75S	7	,	Likely caused by shallow sources. Not well defined (incomplete signatures).	з
0+00E 1+88S 1 - 2+00E 1+88S 1 - 2+00E 1+88S 1 - 3+00E 1+88S 1 - 3+00E 1+94S 2 (R) 3+00E 1+94S 2 (R) 4+00E 2+25S 3 (R) 0+00E South End 1 - 1+00E South End 1 - 1+00E South End 1 - 1+00E 4+38S 3 - 2+00E 4+13S 3 - 3+00E 4+13S 3 1 4+00E 4+13S 3 1	G1-08	4+00E	0+88S	N		Could be investigating by prospecting on lines 0+00E, 2+00E and 4+00E.	ę
2+00E 1+88S 1 2+00E 1+94S 2 3+00E 1+94S 2 3+00E 1+94S 2 4+00E 2+25S 3 0+00E 2+25S 3 0+00E South End 1 1+00E 4+38S 3 1+00E 4+38S 3 2+00E 4+38S 3 3+00E 4+13S 3 4+00E 4+13S 3	G1-09	0+00E	1+88S	-	1	able single ecommended	4
3+00E 1+94S 2 (R) 3+00E 1+94S 2 (R) 4+00E 2+25S 3 (R) 0+00E South End 1 - 0+00E South End 1 - 1+00E 4+38S 3 - 2+00E 4+38S 3 - 3+00E 4+13S 3 1 4+00E 4+13S 3 1		2+00E	1+88S	-	ı	Weakly to strongly polarizable source. Located within a resistive background. Its source could be caused by quartz veins style mineralization.	
4+00E 2+25S 3 (R) 4+00E South End 1 - 0+00E South End 1 - 1+00E 4+38S 3 - 2+00E 4+38S 3 - 3+00E 4+13S 3 1 4+00E 4+13S 3 1	G1-10	3+00E	1+94S	7	(R)	E-W trending, the amplitude of its signature decrease towards the west. Likely outcropping. Could be interpreted as the eastern extension of G1-09 .	3
0+00E South End 1 - 1+00E 4+38S 3 - 2+00E 4+38S 2 - 3+00E 4+13S 3 1 4+00E 4+13S 4 -		4+00E	2+25S	3	(R)	A survey extension towards the east is suggested. Could be investigated by prospecting on line 4+00E. Pending results, DDH could be carried out.	
1+00E 4+38S 3 - 2+00E 4+38S 2 - 3+00E 4+13S 3 ↑ 4+00E 4+13S 4 -		0+00E	South End	1	I	Strongly polarizable source.	
2+00E 4+38S 2		1+00E	4+38S	3	ı	indication of the presence of sulphides (it is not possible to define their	
4+13S 3 1 1 4+13S 4 -	G1-11	2+00E	4+38S	2	ı	nature). Its response is not completely defined from line to line, shows the best	-
4+13S 4 -		3+00E	4+13S	3	Ļ	response on line 4+00E. Could be investigated by drilling on line 4+00E	
-		4+00E	4+13S	4	ı	A survey extension towards the south is suggested.	

•	
C	נ
Z	
ш	
C)
ш	1
_	

Chargeability Increase ? = Marginal 1 = Weak 2 = Moderate 3 = High 4 = Very High

Resistivity Increase ↑ = Resistive ↑↑ = Very Resistive (R) = Wide Resistive Zone (R) = Wide Resistive Zone ↓ = Conductive ↓↓ = Very Conductive

Circle Line 2+00E 2+00E 3+00E 3+00E 6+00E 6+00E 6+00E 7+00E	Station 4+38N	Charg.	Res.		
	4+38N				
		2	→	Moderately polarizable and conductive source.	
	North End	2	·	Its source could be related to disseminated sulphides. E-W trending. extends on approximately 500 m.	
	North End	2		Its signature is incomplete towards the north on lines 3+00E and 4+00E	ç
6+00E 7+00E	4+38N	3	1	Outcropping on lines 6+00E and 7+00E.	4
7+00E	4+25N	3	7	A survey extension is recommended westward. Prospecting is recommended on lines 6+00E and 7+00E. Pending	
	4+00N	3	ı	results, drilling is recommended on line 7+00E.	
0+00E	3+13N	4	Ļ	Strongly polarizable NW-SE trend, extending on approximately 500 m.	
1+00E	2+88N	2	·	Its proximity to G2-04 masks its signature from line 3+00E to 5+00E. Could	
2+00E	2+63N	8		From the ground <i>InfiniTEM</i> ® survey, a conductor of moderate quality was	
3+00E	2+25N	8		identified on lines 0+00E, 2+00E and 4+00E.	_
4+00E	2+25N	с	→	Initial prospecting on lines 0+00E, 2+00E and 4+00E is suggested,	
5+00E	2+00N	с		followed by possible drilling on lines 0+00E and 4+00E.	
				Single line moderately polarizable source located within a resistive	
22-03 10+00E	3+38N	ç		background. Well defined and likely subcropping.	٣
	5	N	I	Probably caused by shallow sources. Could be investigated by prospecting. Depending on the results a DDH could be carried out.)
0+00E	North End	2			
1+00E	3+94N	2	→	Strongly polarizable and conductive NW-SE trend, extending on	
2+00E	3+63N	4	→	Runs parallel to a possible deformation zone (shear, thrust).	
3+00E	3+00N	4		Probably caused by deep sources, however is outcropping on lines 6+00E	
G2-04 4+00E	2+88N	4		Its signature from line 3+00E to 5+00E seems to merge with G2-02 .	ы
5+00E	2+50N	4	→	T Rather ill-defined from line 0+00E to line 3+00E. I Initial prospecting on line 6+00E. followed by possible drilling is	
6+00E	2+13N	4	→	mended.	
7+00E	1+63N	3	÷	A survey extension towards the west is suggested. This will allow to define its continuity.	
8+00E	0+88N	С	→		

GUERCHEVILLE PROPERTY / 07N092A

36 -

DIAGNOS INC

GUERCHEVILLE PROPERTY / 07N092A

DESCRIPTION OF ALL IP / RESISTIVITY ANOMALIES INTERPRETED ON THE G2 GRID

Contrast
÷.
۲ ۲
÷+ €
- د
÷
÷ €
4
4 ←
3
۰ د
3 -
3 -
→ c
4 4
4
→
→ €

DIAGNOS INC

→

ო

0+88S

8+00E

Location	ation		Contrast	rast	Comments	Priority
Line Station Charg.		Charg.		Res.		6 1 0 1
0+00E 0+75N 2		2		ı	Moderately polarizable source. Not well defined. Its proximity and chargeability amplitude on line 1+00E suggest that this anomaly could share the same source as G2-08 .	~
1+00E 0+88N 3		n		I	Could be outcropping on line 0+00E. Prospecting recommended on line 0+00E. A survey extension towards the west would help to better define its origin.	2
12+00E 2+63S 3		3		ı	Moderately polarizable source. Could be interpreted as the southeastern extension of G2-22 .	ç
13+00E 2+56S 2		2		÷	Likely outcropping. Could be investigated by prospecting on line 12+00E.	0
1+00E 0+25S 2		2		←	Moderately polarizable and resistive source. Not well defined. Its proximity to G2-08 masks its signature on line 2+00E.	c
2+00E 0+13N 3		ю		÷	Could be outcropping. A survey extension towards the west would help to better define its origin.	°
9+00E 0+50S 1	0+50S 1	1			Weakly polarizable source.	
10+00E 0+88S 1	0+88S 1	1		I	Could be interpreted as the southeastern extension of GZ-ZZ. Leaint signature.	4
11+00E South End 1	South End 1	-		ı	No further work recommended at the moment.	
0+00E 0+75S 1	0+75S 1	-		÷	Moderately notarizable controe	
1+00E 1+13S 2		2		Ļ	NW-SE trending extends our approximately 500 m. Derivative secondated with a resistivity high howards the east (from line 0+00E	
2+00E 1+63S 2		2		÷	to a transmission of the signature could be caused by a quartz vein style minimum of the minimum of the minimum of the signature could be caused by a quartz vein style minimum of the minimum of the signature could be caused by a quartz vein style	Ŧ
3+00E 2+13S 2		2		ı	Rimeralization. The sourceastern portion is embodied within a resistive zone. Runs parallel to a possible deformation zone (shear, thrust).	-
4+00E 2+75S 2		2		I	Source intervention properties of the possible drilling is recommended on line	
5+00E 3+50S 2		2		I		

DIAGNOS INC

Anomotiv	Foc	Location	Contrast	rast	Commonte	
	Line	Station	Charg.	Res.		
	0+00E	3+06S	2	ı		
	1+00E	3+13S	7		T Moderately polarizable source located within a resistivity high. NW-SE to E-W tranding extends on annoximately 700 m	
	2+00E	3+50S	7	←	Could be outcropping, however its signature is incomplete from line 3+00E to	
C2_11	3+00E	4+31S	3	Ļ	line 7+00E. Its signature is possibly masked by G2.17 on line 1+00E	ç
t - 70	4+00E	South End	2	ı	Initial prospecting followed by possible drilling is recommended on line	4
	5+00E	South End	2		2+00E.	
	6+00E	South End	7	ı	A survey extension towards the south would help to better define its source. Also a survev extension should be carried out westward.	
	7+00E	4+38S	2	÷		
G2-15	12+00E	3+88S	7	÷	Moderately polarizable and conductive source possibly related to disseminated sulphides. Rather ill-defined.	ę
	13+00E	4+00S	7	→	A survey extension towards the east would help to better define its source.	
G2-16	13+00E	0+75S	5	→	Single line moderately polarizable and conductive source. Its signature is not well defined and it could be mask by G2-19 and G-17 . Located close to a possible shear zone. No further work recommended at the moment.	4
G2-17	1+00E	2+50S	З	÷	Single line highly polarizable and conductive source. Likely outcropping. Well defined. Could be investigated by prospecting.	e
G2-18	9+00E	2+88S	2	ı	Single line moderately polarizable source located within a resistivity high. Likely outcropping. Well defined. Could be investigated by prospecting.	e
C2 10	12+00E	1+50S	4	$\uparrow\uparrow$	Strongly polarizable and conductive source. Located within a possible NW-SE deformation zone. From the ground <i>InfiniTEM</i> [®] survey, a conductor of moderate quality was	ç
61-70	13+00E	1+75S	4	\rightarrow \rightarrow	identified on line 12+00E. Incomplete and not well defined signature. No further work recommended at the moment.	n

DIAGNOS INC

Anomaly	Foc	Location	Contrast	rast	Comments	Driority
KIBIIIOII	Line	Station	Charg.	Res.		
	8+00E	4+00N	1	ı	Moderately polarizable source.	
	9+00E	North End	1	→	E-W trending, extends on approximately 500 m. Could be interpreted as the eastern extension of G2-01 .	
12,20	10+00E	4+38N	2		Interpreted on the northern end of each surveyed line, therefore its signature	~
07-70	11+00E	North End	2		Prospecting suggested on line 12+00E.	,
	12+00E	4+00N	2		A survey extension northward is recommended. Also, a survey extension towards the east will allow to define its	
	13+00E	4+00N			continuity.	
					Single line moderately polarizable source. Faint signature.	
G2-21	8+00E	0+25N	2	ı	Its signature could be mask by G2-04 . Could be interpreted as the northern extension of G2-12 .	4
					No further work recommended at the moment.	
		300.1	c		Moderately to weakly polarizable source.	
, , , , ,	8+00E	000+1	7		Could be interpreted as the southern extension of G2-00. Well defined on line 9+00E.	ç
77-70					Could be outcropping on line 10+00E.	'n
	10+00E	1+88S	~	ı	Could be investigating by prospecting on line 10+00E.	
					Drilling recommended on line 9+00E.	

LEGEND:

Chargeability Increase	= Marginal	= Weak	= Moderate	= High	= Very High
유명	اا ب	" ~	∥ ⊲	။ က	4

Resistivity Increase ↑ = Resistive ↑↑ = Very Resistive (R) = Wide Resistive Zone (R) = Voide Resistive Zone ↓ = Conductive ↓ = Very Conductive

Anomaly	Loc	Location		Contrast	Comments	Driority
	Line	Station	Charg.	Res.		
	14+00W	4+13N	ż	•		
	13+00W	3+81N	1	$\uparrow\uparrow$		
	12+00W	3+50N	~		i weakiy polarizable and resistive winw-⊏⊃⊏ trend, extending on approximatelv 800 m.	
	11+00W	3+75N	-	←	Its source could be caused by quartz veins style mineralization.	
G3-01	10+00W	4+00N	-		Not well defined signature, mostly interpreted in the northern end of each surveved line	e
	M00+6	3+81N	-	$\uparrow\uparrow$	Shows its higher chargeability amplitude on lines 7+00W and 8+00W.	
	W00+8	4+00N	-	←	Could be investigated by prospecting on lines 7+00W, 8+00W and	
	W00+2	3+94N	-			
	M00+9	3+94N	-	$\uparrow\uparrow$		
	5+00W	North End	с		Waakly notaritzahla and rasistiva source	
G3-02	4+00W	North End	2	÷	Well defined but incomplete signature (open-ended anomaly).	с
	3+00W	North End	2	÷	A survey extension northward would help to better define its origin.	
	1+00W	North End	-	→	Weakly polarizable and conductive source. Open-ended anomaly.	
دی-U3 ا	M00+0	North End	1	÷	Faint signature. No further work recommended at the moment.	4
	W00++1	2+13N	ذ	ı	Weakly polarizable source.	~
وی-04	13+00W	2+63N	-	4	Faunt signature. No further work recommended at the moment.	4
G3-05	11+00W	2+88N	-	$\uparrow\uparrow$	Weakly polarizable and resistive source. Faint signature. No further work recommended at the moment.	4
C3 06	4+00W	2+75N	3	→	Highly polarizable and conductive source. Closely located to an inferred NE-SW fault.	ç
00-00	3+00W	3+19N	ĸ	→	Its signature could be related to disserimitated suprides. Initial prospecting followed by possible drilling is recommended on line 3+00W.	N

_

Driority		ç		Ω. α	7	Ø	L			٩ د		=		1
Comments		Moderately polarizable and resistive WNW-ESE trend, extending on	approximately 600 m. Its source could be caused by quartz veins style mineralization.	Well defined and likely subcropping from line 7+00W to line 9+00W, its scinature becomes faint from line 10+00W to line 13+00W and its source		I herefore, G3-U7 seems to plunge towards the west, maybe caused by a NW-SE inferred fault.	Initial prospecting followed by possible drilling is recommended on line 9+00W.	Drilling suggested on line 12+00W.	Moderately polarizable source embodied within a conductive zone.	Faint signature and likely caterios on approximatery 400 m. Faint signature and likely cause by deep source, however seems to be	Could be interpreted as the eastern extension of G3-07 .	could be investigated by prospecting on line 2+0000. Depending on the results, DDH could be carried out.	Weakly polarizable source located within a resistivity high. Faint signature.	Likely outcropping. No further work recommended at the moment.
Contrast	Res.	÷	$\uparrow\uparrow$	Ļ	·	÷	÷	÷	ı		Ļ			I
Con	Charg.	-	2	2	L	ę	3	2	2	Ţ	2	ç	Ţ	L
Location	Station	1+31N	1+75N	1+75N	1+63N	1+81N	1+75N	1+88N	1+25N	1+63N	1+44N	1+88N	3+25N	3+19N
Loci	Line	13+00W	12+00W	11+00W	10+00W	M00+6	8+00W	7+00W	5+00W	4+00W	3+00W	2+00W	2+00W	1+00W
Anomaly				<u> </u>	G3-07	<u>.</u>				00	5			200

Anomaly	Loc	Location		Contrast	Commente	Driority
f inite interview	Line	Station	Charg.	Res.		
	15+00W	N90+0	4	→		
	14+00W	0+25S	4	† †	Hinhly notarizable and resistive WNW-FSF trend extending on	
	12+00W	0+63S	ć	† †	and resistive winner-rock notid, exterioring m.	
	11+00W	0+75S	-	^	Its source could be caused by disseminated to semi-massive sulphides.	
	10+00W	0+88S	2	→	This signature varies arong the grid and in general it is not well defined. Likely caused by deep sources, could be subcropping on lines 3+00W,	
	M00+6	1+00S	с	→	5+00W and 14+00W.	
	8+00W	1+00S	-	→	T shows its higher chargeability amplitude on lines 5+UUVV, 14+UUVV and 15+00W.	
G3-10	7+00W	1+13S	-	→	From line 9+00W to line 15+00W, G3-10 coincides with a conductor of	1, 2 and 3
	6+00W	1+25S	с	→	poor quality, G3-EM01 . In this portion, they both follow a possible shear	
	5+00W	1+13S	з	→	Initial prospecting followed by possible drilling is recommended on	
	4+00W	1+13S	с		Tines 5+00W (priority 1) and 14+00W (priority 2).	
	3+00W	1+00S	4	→	This will help to better define its sources along the grid.	
	2+00W	1+00S	~		A survey extension towards the west and towards the east could	
	1+00W	0+88S	ć	† †	heip define its continuity.	
	W00+0	0+81S	с	→		
	12+00W	0+13N	7	-	Weakly polarizable source. Partially located within a conductive zone.	
ور - ۱	11+00W	0+63N	-	→	Faint signature. No further work recommended at the moment.	4
G3-12	2+00W	0+13S	~		Single line weakly polarizable source. Faint signature. Could be caused by variations in overburden thickness. No further work recommended at the moment.	4
	15+00W	2+13S	4		Strongly polarizable anomaly embodied within a resistive zone.	
C3 13	14+00W	2+13S	4		E-W trending, extends on approximately 200 m. Likely caused by shallow sources.	Ţ
	13+00W	2+13S	4		Drilling recommended on line 14+00W. A survey extension westward is suggested. This would help to	-
	12+00W	2+25S	2	ı	better define its continuity.	

GUERCHEVILLE PROPERTY / 07N092A

43 -

DIAGNOS INC

Access	Loc	-ocation	Con	Contrast	Commute	Dricrity
	Line	Station	Charg.	Res.		
	V11+00W	2+50S	Э	→		
	10+00W	2+63S	e	→		
	M00+6	2+56S	ო	→	Highly polarizable WNW-ESE trend extending on approximately 1100 m.	
	8+00W	2+81S	4		Kuns parallel to a possible WNW-ESE shear zone.	
	7+00W	2+94S	с		T its source could be caused by disseminated to semi-massive supplices.	
C2 11	00W	3+00S	с	→	T best delitied off liftes 3+00W afta T0+00W. Monthy subcreating the housing the source scuid the doctors on lines 0+00M	Ŧ
t-20	5+00W	3+06S	с		TIMOSLIY SUDVIUPPITIG, TOWEVEL ILS SOULCE COULD DE GEEPEL OT TITLES OFOUVY, 14-DANN ELAANN 2004 114-DANN	-
	4+00W	3+06S	4		Could be investigated by prospecting on lines 2+00W and 10+00W	
	3+00W	3+00S	4		Pould be investigated by prospecting on miles 2:0000 and 10:0000.	
	2+00W	3+13S	4		A survey extension eastward would help to follow the source.	
	1+00W	3+13S	ო	←		
	M00+0	2+56S	2			
	12+00W	4+13S	-		Weakly polarizable source.	
G3-15	13+00W	4+00S	-		Faint and incomplete signature (open-ended anomaly).	4
	14+00W	3+88S	-		No further work recommended at the moment.	

LEGEND:

Chargeability Increase ? = Marginal 1 = Weak 2 = Moderate 3 = High 4 = Very High

T = Resistive	↑↑ = Very Resistiv

```
↑↑ = Very Resistive
(R) = Wide Resistive Zone
Decrease
↓ = Conductive
↓↓ = Very Conductive
```


APPENDIX C

GROUND INFINITEM[®] SURVEY PROFILES OF SECONDARY MAGNETIC FIELD PARTIAL DERIVATIVES:

 $\partial \mathbf{B}_z / \partial \mathbf{t}$ $\partial \mathbf{B}_x / \partial \mathbf{t}$ $\partial \mathbf{B}_y / \partial \mathbf{t}$