TECHNICAL REPORT

FOR

ARC CORPORATION INC.

ON THE

LAC COLOMBET PROPERTY

LAC JOQUES AND FORT MACKENZIE AREA

UNGAVA REGION, QUEBEC, CANADA

NTS REFERENCE: 24-C-15 and 24-F-02

Report for NI 43-101 By M.W. Rennick, P.Eng. 234 Donlea Drive Toronto, Ontario, Canada M4G 2N2

Sund

Melville William Rennick, P.Eng. Consulting Geologist

Toronto, Ontario, Canada November 7, 2013

TABLE OF CONTENTS

1.0	Title Page	
2.0	Table of Contents	2
3.0	List of Figures	3
4.0	Summary	4
5.0	Introduction and Terms of Reference	5
6.0	Disclaimer	6
7.0	Property Description and Access	7
7.1	Schedule "A" - Claim Location, Area and Due Date	7
7.2	Schedule "B" - Claim Status and Expiry Date	9
7.3	Schedule "C" - Claim Expenses Work Credits, Work Required by Due Date and Man sheet	11
8.0	Accessibility Climate Local Resources Infrastructure and Physiography	16
9.0	History	17
10.0	Geological Setting	19
10.0	Description of Rock Types	24
10.2	Mineralization	33
10.3	Description of Sulphide Showings	33
11.0	Deposit Types	40
12.0	Exploration	41
13.0	Drilling	49
14.0	Sampling Methods and Approach	50
15.0	Sample Preparation. Analyses and Security	51
16.0	Data Verification	52
17.0	Adjacent Properties	53
18.0	Interpretation and Conclusions	54
19.0	Other Relevant Data	55
20.0	Recommendations	57
21.0	Estimate of Recommended Programme Cost	59
22.0	Selected References	60
	Certificate of Author	63

Appendix 1:

Assay Reports, Bourlamaque Assay Laboratories Ltd. and Activation Laboratories Ltd.

Appendix 2: Copper-rich Glacial Boulders and Outcrop Sample Compilation by Lockhart

LIST OF FIGURES

		<u>Page No.</u>
1.	Lac Colombet Property – Geology and Location	14
2.	Lac Colombet Property – Claims Location	15
3.	Geology – Labrador Trough	21
3A.	Geology – Lac Colombet Property	22
4.	Structural Provinces and Subprovinces – Canadian Shield	23
5.	Labrador Fold Belt Development	25
6.	Lac Colombet Property, Regional Geology and Historical Copper Occurrences	26
7.	Significant Cu-Ni and Cu-Ni – PGE Deposits in the Labrador Trough	32
8.	Magnetometer Survey by McIntyre Porcupine Mines	34
9.	Induced Polarization Survey by McIntyre Porcupine Mines	36
10.	Sample Point Detail Location	42
11.	Sample Point Detail Locations	43
12.	McIntyre Porcupine Mines Showings and Proposed Survey Area	56

4.0 <u>SUMMARY</u>

Arc Exploration Inc. is in the process of acquiring, from Richmond Minerals Inc, a 100 per cent interest in 57 mining claims referred to as the Lac Colombet Property. This property is located in the central part of the Labrador Trough, approximately 125 kilometres southwest of Kuujjuaq, Quebec, 275 kilometres north-northwest of Schefferville, Quebec and some 1,500 kilometres north of the City of Montreal. The company commissioned the author to provide a National Instrument 43-101 compliant report in support of its proposed acquisition of a 100% interest in the Lac Colombet Property.

The purpose of this report is to provide a review of the property history, an assessment of the economic potential of the property and recommendations for the investigation of that potential, as warranted.

The property is underlain by a series of sedimentary formations with intercalated basic flows and pyroclastic rocks. These rocks host numerous sulphide mineral occurrences, including chalcopyrite. The most prominent feature of the property is an area of outcropping granite which is surrounded by several, sulphide occurrences and is the nesting place of literally hundreds of floats containing significant copper-bearing sulphide mineralization. The floats are located on Granite Peninsula (Figure 12).

The focus of previous exploration of the claims group was to locate the source of the "copper floats". Trenholme (1964) and others referred to it as the Float Zone. Former efforts to locate this source have been mainly directed due south or southeast of the concentration of floats. It is the author's opinion that the search should have been concentrated along a corridor with an azimuth of 200 degrees as displayed in Figure 12.

It is herein recommended that detailed, ground geophysical surveys be conducted over the area outlined on Figure 12 and that a qualified geophysicist be retained to acquire and analyse all other geophysical data generated by former exploration of the claims area.

The total estimated cost of the programme is \$277,000.00

4

5.0 INTRODUCTION AND TERMS OF REFERENCE

On October 31, 2012 the author was engaged by Arc Exploration Inc. to provide an independent technical report for Richmond Minerals Inc. on the Lac Colombet Property in support of Arc's application for listing on the Toronto Stock Exchange. This report was prepared by the author, a Qualified Person.

The author is familiar with the area as a result of previous work in it. In addition, this report is based on personal data, Quebec Ministry of Energy and Resources data, and other public and private data germane to an assessment of the property; all of which are believed to be authentic and reliable.

The author has not made a site visit at this time for the following reasons: the onset of winter conditions prohibit the collection of any significant data that is not already available and forms the basis for this report; the author organized and supervised the initial work carried out on the property by McIntyre Porcupine Mines Limited, in 1961, and visited the property twice after L.S. Trenholme was employed as project manager; available data indicate that since McIntyre abandoned the property and, although the area has been re-staked two to three times over the intervening years, no additional significant data have been generated.

6.0 **<u>DISCLAIMER</u>**

The author has relied upon Warren Hawkins, P.Eng., Exploration Manager for Richmond Minerals Inc. and a qualified person, for certain information regarding the current status of legal title of the subject property, property agreements, corporate structure, and any outstanding environmental orders.

7.0 PROPERTY DESCRIPTION AND ACCESS

7.1

The Lac Colombet Property consists of 57 contiguous, unpatented mining claims comprising 1,690.74 hectares (4226.85 acres), more or less, straddling the boundary between the Lac Joques map sheet (N.T.S. 24-F-02) to the north and the Fort Mackenzie sheet (24-C-15) on the south. Twenty-nine claims are located in the southwest quadrant of the north sheet and 28 are situated in the northwest quadrant of the Fort Mackenzie sheet. The centre of the property lies, approximately, at 57° 00' North Latitude and 68° 52' West Longitude.

All claims comprising the property have a mutual expiry data and time – July 14 at 23:59 hours, 2015. None of the claims have an excess work credit. Thus, in order to retain the property beyond the 2015 date an additional \$1,800.00 in acceptable assessment work must be recorded on each claim – a total of \$102,600.00 – before the present 2015 expiry date.

The following schedules – "A", "B" and "C" provide complete lists of number, location, current status, and assessment work requirements for all claims comprising the subject property.

SCHEDULE "A" - Claim Location, Area and Due Date

<u>Claim No.</u>	Cell	<u>Column</u>	<u>Claim Area (ha)</u>	Due Date
86006	1	12	46.95	14/07/2015
86007	1	13	46.95	14/07/2015
86008	1	14	46.95	14/07/2015
86009	1	15	46.95	14/07/2015
86010	1	16	46.95	14/07/2015
86011	1	17	46.95	14/07/2015
86012	1	18	46.95	14/07/2015
86013	1	19	46.95	14/07/2015
86015	2	12	46.94	14/07/2015
86016	2	13	46.94	14/07/2015
86017	2	14	46.94	14/07/2015
86018	2	15	46.94	14/07/2015
86019	2	16	46.94	14/07/2015

NTS SHEET: 24-F-02

<u>Claim No.</u>	Cell	<u>Column</u>	<u>Claim Area (ha)</u>	Due Date
86020	2	17	46.94	14/07/2015
86021	2	18	46.94	14/07/2015
86024	3	12	46.94	14/07/2015
86025	3	13	46.93	14/07/2015
86026	3	14	46.93	14/07/2015
86027	3	15	46.93	14/07/2015
86028	3	16	46.93	14/07/2015
86029	3	17	46.93	14/07/2015
86030	3	18	46.93	14/07/2015
86033	4	12	46.92	14/07/2015
86034	4	13	46.92	14/07/2015
86035	4	14	46.92	14/07/2015
86036	4	15	46.92	14/07/2015
86037	4	16	46.92	14/07/2015
86038	4	17	46.92	14/07/2015
86039	4	18	46.92	14/07/2015
		NTS SHEI	ET: 24-C-15	
86042	30	11	46.96	14/07/2015
86043	30	12	46.96	14/07/2015
86044	30	13	46.96	14/07/2015
86045	30	14	46.96	14/07/2015
86046	30	15	46.96	14/07/2015
86047	30	16	46.96	14/07/2015
86048	30	17	46.96	14/07/2015
86049	30	18	46.96	14/07/2015
86069	27	18	47.00	14/07/2015
86070	27	19	47.00	14/07/2015
86072	28	11	46.99	14/07/2015
86073	28	12	46.99	14/07/2015
86074	28	13	46.99	14/07/2015
86075	28	14	46.99	14/07/2015
86076	28	15	46.99	14/07/2015
86077	28	16	46.99	14/07/2015
86078	28	17	46.99	14/07/2015
86079	28	18	46.99	14/07/2015
86080	28	19	46.99	14/07/2015
86082	29	11	46.98	14/07/2015
86083	29	12	46.98	14/07/2015
86084	29	13	46.98	14/07/2015
86085	29	14	46.98	14/07/2015
86086	29	15	46.98	14/07/2015
86087	29	16	46.98	14/07/2015
86088	29	17	46.98	14/07/2015
86089	29	18	46.98	14/07/2015

<u>Claim No.</u>	Cell	<u>Column</u>	<u>Claim Area (ha)</u>	Due Date
86090	29	19	46.98	14/07/2015

7.2 <u>SCHEDULE "B" – Claim Status and Expiry Date</u>

<u>Claim</u>	<u>Status</u>	Date Registered	<u>Expiry</u>
CDC 86006	Active	15/07/2005	14/07/2015
CDC 86007	Active	15/07/2005	14/07/2015
CDC 86008	Active	15/07/2005	14/07/2015
CDC 86009	Active	15/07/2005	14/07/2015
CDC 86010	Active	15/07/2005	14/07/2015
CDC 86011	Active	15/07/2005	14/07/2015
CDC 86012	Active	15/07/2005	14/07/2015
CDC 86013	Active	15/07/2005	14/07/2015
CDC 86015	Active	15/07/2005	14/07/2015
CDC 86016	Active	15/07/2005	14/07/2015
CDC 86017	Active	15/07/2005	14/07/2015
CDC 86018	Active	15/07/2005	14/07/2015
CDC 86019	Active	15/07/2005	14/07/2015
CDC 86020	Active	15/07/2005	14/07/2015
CDC 86021	Active	15/07/2005	14/07/2015
CDC 86024	Active	15/07/2005	14/07/2015
CDC 86025	Active	15/07/2005	14/07/2015
CDC 86026	Active	15/07/2005	14/07/2015
CDC 86027	Active	15/07/2005	14/07/2015
CDC 86028	Active	15/07/2005	14/07/2015
CDC 86029	Active	15/07/2005	14/07/2015
CDC 86030	Active	15/07/2005	14/07/2015
CDC 86033	Active	15/07/2005	14/07/2015
CDC 86034	Active	15/07/2005	14/07/2015

<u>Claim</u>	<u>Status</u>	Date Registered	<u>Expiry</u>
CDC 86035	Active	15/07/2005	14/07/2015
CDC 86036	Active	15/07/2005	14/07/2015
CDC 86037	Active	15/07/2005	14/07/2015
CDC 86038	Active	15/07/2005	14/07/2015
CDC 86039	Active	15/07/2005	14/07/2015
CDC 86040	Active	15/07/2005	14/07/2015
CDC 86041	Active	15/07/2005	14/07/2015
CDC 86042	Active	15/07/2005	14/07/2015
CDC 86043	Active	15/07/2005	14/07/2015
CDC 86044	Active	15/07/2005	14/07/2015
CDC 86045	Active	15/07/2005	14/07/2015
CDC 86046	Active	15/07/2005	14/07/2015
CDC 86047	Active	15/07/2005	14/07/2015
CDC 86048	Active	15/07/2005	14/07/2015
CDC 86049	Active	15/07/2005	14/07/2015
CDC 86069	Active	15/07/2005	14/07/2015
CDC 86070	Active	15/07/2005	14/07/2015
CDC 86072	Active	15/07/2005	14/07/2015
CDC 86073	Active	15/07/2005	14/07/2015
CDC 86074	Active	15/07/2005	14/07/2015
CDC 86075	Active	15/07/2005	14/07/2015
CDC 86076	Active	15/07/2005	14/07/2015
CDC 86077	Active	15/07/2005	14/07/2015
CDC 86078	Active	15/07/2005	14/07/2015
CDC 86079	Active	15/07/2005	14/07/2015
CDC 86080	Active	15/07/2005	14/07/2015
CDC 86082	Active	15/07/2005	14/07/2015
CDC 86083	Active	15/07/2005	14/07/2015
CDC 86084	Active	15/07/2005	14/07/2015

<u>Claim</u>	<u>Status</u>	Date Registered	Expiry
CDC 86085	Active	15/07/2005	14/07/2015
CDC 86086	Active	15/07/2005	14/07/2015
CDC 86087	Active	15/07/2005	14/07/2015
CDC 86088	Active	15/07/2005	14/07/2015
CDC 86089	Active	15/07/2005	14/07/2015
CDC 86090	Active	15/07/2005	14/07/2015

7.3

<u>SCHEDULE "C"</u> Claim Expenses Work Credits, Work Required by Due Date and Map Sheet

<u>Claim</u>	Excess Credit	Work Required	NTS
CDC 86006	\$00.00	\$1,800.00	24F02
CDC 86007	\$00.00	\$1,800.00	24F02
CDC 86008	\$00.00	\$1,800.00	24F02
CDC 86009	\$00.00	\$1,800.00	24F02
CDC 86010	\$00.00	\$1,800.00	24F02
CDC 86011	\$00.00	\$1,800.00	24F02
CDC 86012	\$00.00	\$1,800.00	24F02
CDC 86013	\$00.00	\$1,800.00	24F02
CDC 86015	\$00.00	\$1,800.00	24F02
CDC 86016	\$00.00	\$1,800.00	24F02
CDC 86017	\$00.00	\$1,800.00	24F02
CDC 86018	\$00.00	\$1,800.00	24F02
CDC 86019	\$00.00	\$1,800.00	24F02
CDC 86020	\$00.00	\$1,800.00	24F02
CDC 86021	\$00.00	\$1,800.00	24F02
CDC 86024	\$00.00	\$1,800.00	24F02
CDC 86025	\$00.00	\$1,800.00	24F02
CDC 86026	\$00.00	\$1,800.00	24F02
CDC 86027	\$00.00	\$1,800.00	24F02

<u>Claim</u>	Claim Excess Credit Work Required		<u>NTS</u>
CDC 86028	\$00.00	\$1,800.00	24F02
CDC 86029	\$00.00	\$1,800.00	24F02
CDC 86030	\$00.00	\$1,800.00	24F02
CDC 86033	\$00.00	\$1,800.00	24F02
CDC 86034	\$00.00	\$1,800.00	24F02
CDC 86035	\$00.00	\$1,800.00	24F02
CDC 86036	\$00.00	\$1,800.00	24F02
CDC 86037	\$00.00	\$1,800.00	24F02
CDC 86038	\$00.00	\$1,800.00	24F02
CDC 86039	\$00.00	\$1,800.00	24F02
CDC 86042	\$00.00	\$1,800.00	24C15
CDC 86043	\$00.00	\$1,800.00	24C15
CDC 86044	\$00.00	\$1,800.00	24C15
CDC 86045	\$00.00	\$1,800.00	24C15
CDC 86046	\$00.00	\$1,800.00	24C15
CDC 86047	\$00.00	\$1,800.00	24C15
CDC 86048	\$00.00	\$1,800.00	24C15
CDC 86049	\$00.00	\$1,800.00	24C15
CDC 86069	\$00.00	\$1,800.00	24C15
CDC 86070	\$00.00	\$1,800.00	24C15
CDC 86072	\$00.00	\$1,800.00	24C15
CDC 86073	\$00.00	\$1,800.00	24C15
CDC 86074	\$00.00	\$1,800.00	24C15
CDC 86075	\$00.00	\$1,800.00	24C15
CDC 86076	\$00.00	\$1,800.00	24C15
CDC 86077	\$00.00	\$1,800.00	24C15
CDC 86078	\$00.00	\$1,800.00	24C15
CDC 86079	\$00.00	\$1,800.00	24C15
CDC 86080	\$00.00	\$1,800.00	24C15
CDC 86082	\$00.00	\$1,800.00	24C15
CDC 86083	\$00.00	\$1,800.00	24C15

<u>Claim</u>	Excess Credit	Work Required	<u>NTS</u>
CDC 86084	\$00.00	\$1,800.00	24C15
CDC 86085	\$00.00	\$1,800.00	24C15
CDC 86086	\$00.00	\$1,800.00	24C15
CDC 86087	\$00.00	\$1,800.00	24C15
CDC 86088	\$00.00	\$1,800.00	24C15
CDC 86089	\$00.00	\$1,800.00	24C15
CDC 86090	\$00.00	\$1,800.00	24C15

8.0 <u>ACCESSIBILITY, CLIMATE, LOCAL RESOUCES, INFRASTRUCTURE</u> <u>AND PHYSIOGRAPHY</u>

The Lac Colombet Property lies in the central part of the Labrador Trough, approximately 275 kilometres north-northwest of the iron-ore mining centre of Schefferville, Quebec and 125 kilometres southwest of the administrative centre for the Nunavik Region of Quebec, Kuujjuaq (formerly Fort Chimo).

Access to the property is by float-equipped or amphibious and rotary-winged aircraft during the summer months and by ski-equipped aircraft during winter months. Lac Colombet (elevation ± 225 metres above sea level) overlays approximately 55 percent of the total property area and is ample enough to accommodate the operation, of PBY Canso-type amphibious aircraft during summer, and DC-3 Dakota-type aircraft on skis during the winter months. Airport facilities in either Kuujjuaq or Seven Islands (Sept Isles) are equipped to support and handle such traffic and both locations are serviced by regularly scheduled commercial air traffic providing connections to Toronto, Montreal and Winnipeg.

Climatic conditions throughout the region are harsh. Summer temperatures can rise to the mid-30s Celsius and plunge as low as –50° C during the months of December, January and February. Annually, approximately fifty percent of any time frame experiences some precipitation. Annual rainfall is variable, averaging 43 centimetres. Snowfall varies around 3.4 metres.

Physiographically the property is typical of the area of northern Labrador, just south of the treeline. It is dotted with small lakes and ponds and has a local relief in the order of 35 metres. Most of the ridges are predominately bedrock or bedrock covered with a thin blanket of glacial overburden and debris, seldom more than one metre thick. Vegetation consists of black spruce, tamarack, willow and ubiquitous alders in muskeg, and evenly distributed over the lowlands and knolls.

16

9.0 <u>HISTORY</u>

The earliest recorded geological work in the Lac Colombet (Wapanikskan) Area was mapping conducted on behalf of Holannah Mines Limited by A. Newton, during 1953 and H. Babcock, in 1954. About the same time A. Lapointe, prospector, reported copper showings in the vicinity of Gabbro Island; four were located on the east shore and two on the west shore of the lake.

During 1959-60, prospector Charley Roy of Rouyn, Quebec re-examined the Wapanikskan copper showings and located high-grade copper float. As a result, McIntyre Porcupine Mines Limited (McIntyre) optioned the Roy claims and acquired, by staking, several hundred additional claims. McIntyre conducted geological mapping and geophysical surveys, at a scale of 400 feet to the inch (1:4800) over the property and carried out more than 12,000 feet (3,700 metres) of diamond drilling before abandoning the claims.

In 1966-67 a prospector named Evanshen, with prior knowledge of the area, organized <u>a syndicate to re-prospect the known copper occurrences.</u> Most of the syndicate work was done during the summer of 1968 and included "geochemical coverage", general prospecting and field correlation of the copper floats with underlying bedrock. Final exploration work was to be done by a newly formed company – American Copper and Smelting Ltd. The work, recommended by Marleau (1969) was, apparently, never done.

By 1997, Ressources Majescor Inc. had acquired the property and employed Sial Geosciences Inc. to conduct airborne gradient, magnetic and multichannel electromagnetic surveys over it. The equipment was mounted on a rotary-winged platform flown along east-west lines at 100-metre intervals.

17

By 2005 the property was open for staking and was acquired by a syndicate headed by Peter Ferderber of Val d'Or, Quebec. Subsequently, under the terms of an agreement dated June 24, 2005 Aavdex Corporation (Aavdex) secured the right to purchase a one hundred percent interest in the property for certain considerations of money, common shares of Aavdex Corporation and a retained 2% Net Smelter Royalty Return (NSR) on the Property, as defined in the agreement.

From July 7 to August 21, 2005 Aavdex employed a five-man field crew to conduct reconnaissance-type prospecting and sampling on the claim group; since then, the property has lain dormant.

On November 16, 2005 Aavdex changed its name to Richmond Minerals Inc.

On April 30, 2009 Richmond signed a Letter of Undertaking with Vendome Resources Corporation whereby Vendome could acquire a 75% interest in the Property by making cash payments to Richmond in the amount of \$20,000 and issuing to Richmond 600,000 common shares of Vendome. Vendome was to incur a minimum of \$250,000 in exploration and development expenses over a two-year period from the date of closing of the agreement. Because of more pressing demands on financial resources, Vendome returned the Lac Colombet Property, in 2011, to Richmond Minerals Inc. with all the claims in good standing but without having carried out any work on the property.

Since then, 29 extraneous claims along the east boundary and across the south end of the property have been abandoned. However, the primary target area (see Figure 12) remains adequately protected and the 57 claims comprising the subject property are in good standing until July 14, 2015 (see Schedule "B").

10.0 <u>GEOLOGICAL SETTING</u>

The Lac Colombet property lies within the Labrador Subprovince, which is a belt of folded Aphebian rocks, as much as 110 kilometres wide, extending south of Ungava Bay for more than 1,000 kilometres. In the south the belt has been truncated by the Grenville Orogeny.

Rocks of the Subprovince, or Trough, consist of various sedimentary formations – including iron formation – with intercalated basic flows and pyroclastics. These strata form the Kaniapiskau Series and are considered to be Proterozoic (Late Precambrian) age. They overlie, unconformably, the granites and gneisses of the Archean basement. Eastward, the Kaniapiskau thickens to more than 9,000 metres in the eastern part of the Trough (see Figure 5).

The Kaniapiskau strata have been folded into a parallel series of northnorthwesterly-trending anticlinoria and synclinoria with a marked overthrust to the west. Metamorphism increases eastward from subgreenschist facies, to greenschist facies, and almandine amphibolite facies.

Iron ore has been developed and produced in the southwest part of the Trough but no other commercially exploitable metallic mineral deposits are yet known. However, copper-nickel-zinc-and uranium-bearing deposits and occurrences are present.

In the vicinity of Lac Colombet, the Labrador Trough is about 65 kilometres wide, with the lake occupying a central portion. Rocks west of the Trough are granites and gneisses of the Archean basement. To the east, the granitic rocks have invaded and metamorphosed the Kaniapiskau formations.

The rocks underlying the property consist of granite, quartzite, slate, argillite, arkose, conglomerate, basalt, gabbro, and felsite (see |Figure 3A).

Perhaps the major influencing feature of the Lac Colombet Property, relative to past exploration, is an area of outcropping granite near the west shore of the lake. It has generated much of the interest in the area because most of the known occurrences of chalcopyrite are situated around it. Also, the general area hosts a large field of small to very large $-\pm$ one tonne – angular to subangular, mineralized boulders carrying up to seven percent copper along with anomalous values in gold and silver.

Figure 3A Arc Exploration Inc. Lac Colombet Property Lac Joques And Fort Mackenzie Area Ungava Region, Quebec

Geology

(After Lockhart Exploration Services Ltd.)

Lac Colombet Property

Lac Joques And Fort Mackenzie Area Ungava Region, Quebec

Structural Provinces and Sub-Provinces

(After C.H. Stockwell, GSC)

10.1 Description of Rock Types

Rocks underlying the Colombet Property are most completely described by Trenholme (1962) whose observations are included, in their entirety as follows:

<u>Granite</u>

The largest area of outcrop is 4 miles west of the McIntyre Camp on Lake Wapanikskan. Its main characteristics are:

- (a) Dimensions about $2\frac{1}{2}$ miles by 3 miles (North-Northeast).
- (b) *Massive, uniform composition and structure.*
- (c) Some Chloritization of hornblends, particularly for a few inches below some outcrop surfaces.
- (d) Western contact, sheared and crumpled sediments, less marked on the south contact; north contact obscured by overburden. The eastern contact shows a granite pebble conglomerate and arkosic grit lying on a granite regolith, which grades into fresh granite.

The most interesting granite lies just east of the McIntyre camp. It has the following characteristics:

- (*i*) Outcrop dimensions about 3,000' by 6,000' (North-Northeast).
- (ii) Irregular schistosity and high-chlorite, low-quartz zones alternating with bands of massive, high-quartz, low-chlorite granite; migration of quartz is indicated.
- (iii) Red feldspar throughout, locally large brecciated crystals with matrix of quartz and chlorite; minor amounts of magnetite and specular hematite.

(iv) The west contact is obscured but the granite is believed to terminate against a steep fault; the north contact is a fault dipping at plus 45° NW and the adjoining sediments have been highly sheared and crumpled; on the east is a welded contact with quartzite, while the south contact shows gently dipping sediments and volcanic lying on a granite regolith.

Figure 5 Schematic cross sections of the Labrador Fold Belt at successive stages in its development

(After W.R.A. Baragar, GSC)

Figure 6 Arc Exploration Inc. Lac Colombet Property

Lac Colombet Property Lac Joques And Fort Mackenzie Area Ungava Region, Quebec

Regional Geology and Historical Copper Occurrences A few dikelets of granite have been observed within the sediments near the granite contact and what appear to be inclusions of granitised quartzite have been noted in drill cores from the granite.

(v) Bornite occurs in a very minor shear in the granite; a minor fault in the granite floor has been filled with carbonate, accompanied by pyrite and chalcopyrite mineralization of vein and wall rock; and a large train of mineralization floats contains many blocks of granite, which have been brecciated and cemented by felsite and carbonite with accompanying pyrite and chalcopyrite. These floats indicate the metallizing solutions have followed faults of some magnitude, which ruptured the basement rock.

Conglomerate

Small areas of conglomerate are exposed on the east shore of Granite Peninsula. Granite pebbles predominate, with fewer pebbles of quartzite and other sediments; cementing material varies from arenaceous to argillaceous.

<u>Arkose</u>

Small thickness of arkosic grit is found in the basal formations.

<u>Quartzite</u>

Quartzite, with a true thickness estimated between 500 feet and 1,000 feet, generally overlies the basal formations but is locally overlapped by argillite. The quartzite is usually white to pinkish in colour and medium to fine-grained. It is structurally competent, but, when ruptured, forms extensive shatter and fracture zones.

<u>Argillite</u>

The argillite appears to have a true thickness of about 700 feet, but this may be exaggerated by folding. It behaves plastically and is relatively impervious but, when severely crumpled, it admits large amounts of silica and pyrite.

Carbonaceous Horizons

Many carbonaceous horizons are found within the argillites, but the main horizon occurs between the argillite and the overlying basalt. Many narrow bands are also found interbedded with quartzites and argillites above the main argillite horizon. Most of the carbonaceous beds are of soft slaty material, which behaves structurally like the argillites, but a few beds of hard siliceous sub-cherty material have been noted. These fracture in a brittle manner and are more susceptible to sulphide fracturefilling.

The carbonaceous beds are significant structurally and chemically. They are weak and form the loci of many shears by which the adjacent brittle rocks are shattered; they also appear to have had a strong reducing effect on copper-bearing solutions, causing precipitation of chalcopyrite and (occasionally) native copper.

<u>Greywacke</u>

Rocks mapped as "greywacke" in the northern part of the map area are very dark, fine-grained and of basaltic appearance. However, they contain many sub-rounded grains of quartz. Since they occur at the base of the volcanic sequence their composition may be caused by hybridization of unconsolidated sands by lavas.

<u>Basalts</u>

Basalts in the northern part of the map area occasionally show ellipsoidal pillow structures, but few good top determinations are possible. In the southern part of the map area, flow structures seem to be completely absent, grain size is very uniform, and the rocks show only weak schistosity. Several drill holes showed extensive mixing with adjacent quartzites. These basalts have been tentatively classed as intrusive sills and transgressive sheets.

Basaltic "Pipes"

One of these outcrops occurs on Camp Island, another on the east shore of Copper Bay, and a third between Line 36 N and 48 N just west of the base line. The surface outlines of these and others are inferred from magnetic readings that stand out sharply from those over adjacent rocks.

Hand specimens are similar to other basalts in the vicinity, although that on Camp Island is lighter in colour. All contain muchdisseminated fine magnetite.

"Felsite"

"Felsite" is the name given here to a hard, dense, aphanitic rock, buff to salmon pink in colour, which invades all other rock types, with the possible exception of gabbro, and locally forms the cementing material of dynamic breccias.

The best exposure is 1,200 feet east of the Great Dare campsite where felsite forms a breccia containing fragments of basalt and is itself veined by carbonate and chalcopyrite. South of No. 2 showing it appears to have invaded and partially replaced considerable volumes of quartzite. Drill holes in No. 5 zone show extensive dike-like bodies and replacement areas in quartzite and argillite. Many of the brecciated granitic floats have similar cementing material.

<u>Gabbro</u>

The "gabbro" mapped on Gabbro Island and other islands has not been studied in detail and may be coarse intrusive in part.

A pyroxene gabbro dike outcrops on the east shore of Granite Peninsula and has been traced northward for a distance of 3,000 feet in drill holes. It has a true width of about 40 feet and both walls show characteristic chill against the granite.

<u>Metamorphic Injections</u>

Quartz and red feldspar have been injected into strongly sheared impure quartzite on the east shore of Camp Island.

Granite "dikelets" in quartzite in Holes M-9, M-10, and M-11 may be the result of plastic flow of rejuvenated older granitic material rather than being indicative of post Kaniapiskau granite intrusion.

Hydrothermal Veins

These are discussed in the description of the various copper showings.

Glacial Deposits

The map area generally has a light drift cover of ground moraine with poorly developed eskers, drumlins, and wave-cut benches. The main ice movement has been about $N \, 10^{\circ} E$ as indicated by striae, with supporting evidence of lee and stoss forms, drift trails and drumlin elongation.

Lighter and later movements from $N \, 30^\circ E$ to $N \, 20^\circ W$ have been indicated by striae.

Name	Tonnes	Cu(%)	Ni(%)	Ni/Cu
Retty Lake	1 360 500	1.50	0.67	0.45
Pogo	692 600	1.00	0.65	0.65
Centre	91 400	1.26	0.75	0.60
Blue Lake	506 400	0.66	0.50	0.76
Chance Lake	649 400	0.66	0.89	1.35
Aulneau Lake	1 088 000	2.02	0.45	0.22
Erickson #1	519 700	1.12	0.32	0.29
Leslie #2	693 900	1.56	0.33	0.21
Chrysler #2	526 100	1.79	0.48	0.27
Soucy C	129 700	0.72	0.22	0.31
Pio Lake (E vein)	24 000	6.40	3.00	0.47
Hopes Advance #1	2 000 000	0.59	0.16	0.27
Hopes Advance #2	5 100 000	0.76	0.26	0.34

Locations of the principal Cu-Ni and Cu-Ni-PGE deposits in the Labrador Trough

(After: Avramtchev, L. and LeBel-Drolet, S. (1979) La Fosse Platinum Group Inc.

10.2 MINERALIZATION

Most of the documented sulphide deposits in the Labrador Trough occur within basic to ultrabasic sills. The sulphides include combinations of pyrite, chalcopyrite, pentlandite, pyrrhotite, traces of sphalerite and galena, and magnetite. Minor gold values have also been recovered from some of the more massive concentrations of sulphides.

On the Colombet Property the sulphide mineralization is almost exclusively a combination of pyrite and chalcopyrite with the very rarely noted grain of bornite or pyrrhotite. The mineralization occurs disseminated as fine grains or as thin seams, fracture fillings and cementing agents combined with carbonate in quartzite, in proximity to carbonaceous beds. Frequently the best concentrations are in carbonate veins cutting the sediments. The following details relating to the various significant mineral occurrences are quoted directly from Trenholme (1964).

10.3 DESCRIPTION OF SULPHIDE SHOWINGS

(The trenches are described in report dated October 10, 1961)

No. 1 Showing (Strike N 50° W, Dip 20° NE)

Two trenches showed chalcopyrite fracture fillings in quartzite and carbonaceous chert. Six drill holes (M-12 to M-17) tested the zone for a strike length of 600 feet. Most of the chalcopyrite occurs in fractured quartzite lying above carbonaceous beds, which dip north at 20°. Scattered grains and patches of chalcopyrite were found below this horizon. The best intersection was 2.38% Cu across 4 feet at a vertical depth of 90 feet.

Figure 8 Arc Exploration Inc. Lac Colombet Property

Lac Joques And Fort Mackenzie Area Ungava Region, Quebec

Magnetometer Survey Magnetic Contours at 100 gamma Intervals)

(After Lockhart Exploration Services Ltd.)

No. 2 Showing (Strike N 20° W, Dip 40° NE)

Most of the chalcopyrite occurs in quartzite lying adjacent to carbonaceous chert between basalt sills. The best concentrations are in carbonate veins cutting the sediments. Eight additional drill holes (M-18 to M-25) obtained scattered chalcopyrite mineralization over a strike length of 1,100 feet and to a vertical depth of 270 feet. The best intersection obtained was 1.58% Cu over 21.6 feet in Hole M-20. Other intersections are listed under "Results of Drilling."

No. 3 Showing

Additional stripping and picking showed only a few grains of chalcopyrite with heavy pyrite mineralization in quartzite near graphitic schist. The best of four picked samples assayed 0.24% Cu.

No. 4 Showing (Line 12 N, 12 E)

A little fine disseminated chalcopyrite was found in quartzite just north of the strong shatter zone, which crosses the south peninsula. Occasional grains were also discovered in the rusty carbonate-pyrite mineralization on the peninsula. The best of six character samples assayed 0.07% Cu.

No. 5 Zone

Chalcopyrite occurs at numerous places in quartzite, graphitic schist and felsite, as thin fracture fillings and disseminations. In some cases, narrow veins of (dolomite) carbonate carry good concentrations. The rocks appear to be severely crumpled and correlation of beds from hole to hole is difficult. The chalcopyrite mineralization has very erratic distribution.

Figure 9 Arc Exploration Inc. Lac Colombet Property Lac Joques And Fort Mackenzie Area Ungava Region, Quebec

Induced Polarization Survey Chargeability Contours

(After Lockhart Exploration Services Ltd.)
Holes M-1 to M-8 and Hole M-30 tested the zone over a north-south distance of 1,200 feet and to a vertical depth of 750 feet. The best intersection was 0.83% Cu over 11 feet at a vertical depth of 410 feet. Hole M-26 located the granite contact south of the zone and M-30 was drilled vertically to test conditions in the granite below the zone, but did not reach the granite.

Float Zone

The main concentration of large angular floats is on Granite Peninsula between L 60 N and L 64 N at 3,900 feet E. Most of the large floats are shattered granite and quartzite cemented by carbonate, felsite, pyrite and chalcopyrite. The average grade of 13 chip samples between L 60 N and L 64 N was 1.78% Cu, the highest assay being 4.50% and the lowest 0.54%.

Holes M-9, M-10, and M-11 were drilled in the winter, mainly on geophysical evidence, and each intersected the granite contact, but without cutting any important mineralization. Holes M-27, M-28 and M-29 eliminated any chance of the float origin being on Granite Peninsula.

Dr. Norman Drummond of the Department of Geography, McGill University, has pointed out that the floats were not likely rafted to their present positions (the writer's first impression) because of the altitude range (about 75-100 feet) at which they were found. The lack of rounding in the larger floats is explained partly by disintegration since they were deposited, and partly by the likelihood of their being carried in the ice some feet above its grinding surface.

No. 6 Showing

This showing consists of disseminated pyrite, with a very few grains of chalcopyrite, in slightly sheared basalt a few feet above crumpled carbonaceous schist. Except for stripping, no work was done here.

No. 7 Showing (Boudrias find on 184602-4, Rouviere Group I)

A little fine chalcopyrite occurs with disseminated pyrite and pyrrhotite in slightly sheared basalt. Additional prospecting failed to find enough mineralization to justify work.

No. 8 *Showing* (*Line* 12 *N to* 16 *N at* 1,000' *W*)

Stripping and packsack drilling encountered chalcopyrite as disseminations and fracture fillings in quartzite and graphitic schist between flat-lying basalt sills or dikes. The showings are on the edge of a steep escarpment near an assumed north-trending fault.

Five of the six packsack drill holes obtained intersections up to 1.56% Cu across 9.8 feet, but distribution is erratic, and correlation was not feasible.

No. 9 Showing

This showing is 3,500 feet south of No. 8 showing and along the same escarpment. A slip surface trending N 45° E and dipping 60° E forms a quartzite escarpment showing chalcopyrite at frequent intervals over a length of 400 feet. Rock trenching and packsack drilling showed narrow bands of quartzite and carbonaceous slate between basalt sills or dikes, with erratic distribution of chalcopyrite mineralization. The best intersection from five drill holes assayed 1% Cu over 5.0 feet.

No. 10 Showing Line 24 N, 750' E

A minor fault has dropped argillite into contact with granite regolith and conglomerate. The fault strikes N 35° and the dip is nearly vertical. The movement probably does not exceed 10 feet. Carbonate vein material has filled fissures and has been accompanied by pyrite and chalcopyrite over widths of a few inches to 2 feet. Chalcopyrite has also penetrated the granitic south wall for a few inches. The fracture can be traced for about 150 feet and contains some chalcopyrite for about 75 feet. (A composite grab sample of mineralized material from the trenches assayed 1.58% Cu). Although of considerable academic interest, the showing, after being blasted open, did not merit diamond drilling.

11.0 DEPOSIT TYPES

To date, no commercially exploitable base metals have been developed within the Labrador Trough but a number of promising prospects contain significant resources that may eventually be expanded into viable mining operations. These deposits are associated with lenticular bodies of gabbro in highly deformed zone(s) parallel to the regional structural trend.

Figure 7, after Thomas Clark of the Quebec Ministry of Energy and Resources, 1987 illustrates the distribution and gives resources figures for a number of the more significant occurrences.

12.0 EXPLORATION

Work carried out by Evanshen during 1966-67 was focused on the relocation and sampling of mineral occurrences worked on by McIntyre Porcupine Mines Limited during their 1961-62 period of exploring the property. According to Lockhart (2006) the objectives of the 2005 work performed on behalf of Aavdex Corporation (now Richmond Minerals Inc.), *"was to verify the existence of the reported areas of copper mineralization"*. This work confirmed earlier work. The principal occurrence locations are depicted on Figure 6 and individual sample locations are identified from recorded Global Positioning Satellite (GPS) data.

All samples were shipped to Bourlamaque Assay Laboratories Ltd. at Val D'Or, Quebec for processing and analyses. Most of the samples were assayed for copper, gold, silver, cobalt, and uranium. All sample locations, descriptions and assay results were compiled by Lockhart (2006) and presented as Appendix 2 of this document. Also, descriptions of the most significant copper-bearing minerals occurrences are taken verbatim from the same report.

Copper Occurrence No. 227 has a recorded drill intersection of 2.38% copper over 1.2 metres. The host rock is felsite (rhyolite?) with pyrite and chalcopyrite occurring as disseminations and veins with quartz, ankerite and calcite. The occurrence is on the east side of a long (>2km) north-south trending fault and 1.5 kilometres north of a granite plug. This occurrence was blasted open many years ago leaving 3shallow pits. Both grab and channel samples, numbered 88511 to 88523, were collected at this site. The assay values are reported in the appendix. The average copper grade of all 13 chip and grab samples is 0.75% Cu. The average of the 7 chip samples of one metre length each from the largest mineralized outcrop is 1.08% Cu, 11.6g/T Ag and 6 ppm U overt 4 metres length and 3 metres width.

Occurrence 227 appears to have less potential than other prospects within the Richmond Minerals Inc. claim area at Lac Colombet.

41

Figure 10 Arc Exploration Inc. Lac Colombet Property Lac Joques And Fort Mackenzie Area Ungava Region, Quebec

Sample Point Locations

(After Lockhart Exploration Services Ltd.)

Figure 11 Arc Exploration Inc. Lac Colombet Property Lac Joques And Fort Mackenzie Area Ungava Region, Quebec

Sample Point Detail Locations

(After Lockhart Exploration Services Ltd.)

Copper Occurrence No. 225 is marked Zone A on the McIntyre Porcupine map included on page 20 and in the map pocket as File 06-21-06RM-04 Induced Polarization Survey. North-northeast 1.5 km is site 227 and one kilometre to the east is site 229.

Mineralization at Site 225 is controlled by a northwesterly striking vault, is visually impressive forming a gossan on the top, west and south sides of a hill on the west side of Copper Bay. Mineralization is clearly and continuously exposed along the hillside for a distance of more than 30 metres. Immediately west of this outcrop, and some 10 metres lower, is a large, well-exposed, outcrop of basalt. Chalcopyrite and pyrite mineralization in the rock face (up to 40% sulphide at some sites) occurs in quartz carbonate veins that cut brecciated felsite, sandstone, siltstone, graphitic schist, and basalt. The zone is 8 metres wide on surface. At least 5 diamond drill holes were drilled into Zone A. These intersected mineralization at a vertical depth of 60 metres. This mineralization is reported to extend for a length of 300 metres. Mineralization is primarily Cu and Ag with secondary Au and Ni. Radioactivity levels are 2 to 4 times background on the mineralized outcrop. Reported copper and silver grades intersected in drill holes at this site are: 1.58% Cu over 6.6 metres, 2.17% Cu over 5.3 metres, 25.7 grams Ag over 2.2 metres. A total of 13 continuous chip samples, each of 2 metres length, were taken by PGL personnel along the exposed mineralized face, parallel to the strike of the fault. The assays of these samples, numbered 88525 to 77537 are reported in the Appendix 2. Average grade of the 26m long chip sample is 2.86% Cu, 0.008% Co, 6 g/T Ag, 0.19 g/T Au, 0.02% As, and 2 ppm U.

<u>This is a significant copper occurrence that merits additional examination and</u> <u>exploration.</u> Previous survey and drill results should be reviewed to determine where additional exploration is warranted. Copper Occurrence No. 229 marked as Zone H on the McIntyre Porcupine <u>Induced Polarization Survey</u> map noted above, is on the peninsula on the east side of Copper Bay. A northeasterly striking fault arcs sub-parallel to the shoreline of Copper Bay. The copper enriched outcrops are on the east side of this fault. Local elevations are in the order of 10m above lake level. Mineralization occurs as pyrite and chalcopyrite with traces of chalcocite and ankerite disseminated in sandstone and siltstone. McIntyre Porcupine drilled at least 7 holes to test Zone H. One drill hole intersected 1.5 metres of 4.98% Cu. Hole #30 was drilled vertically 758 feet (231m) in Zone H. Section – Drill Hole M-30 is presented as Figure 6 on page 14 of this report.

Publication MM-2004-01 records that this occurrence is fault related, brecciated and altered. Drill core, believed to be from this occurrence, was found to contain the uranium bearing mineral brannerite. This occurrence is classed as one of primary Cu with secondary Ag and U. Outcrops in the vicinity of Waypoint 61 at site 229 contain copper mineralization of economic grade. The host rock types are of variable composition, including quartzite, felsite, metasediments, some limestone and probable metavolcanics. Hand specimens of some of these well-mineralized rocks resemble granodiorite and brecciated felsite (rhyolite?). WP 61 was chip sampled at one-metre intervals over a length of 8 metres. Mineralization extends under overburden beyond the ends of the sample trench. This trench averaged 1.841% Cu, 2.5 g/t Ag and less than 0.01g/t Au over 8m. Radioactivity of the mineralized outcrops ranged from 2 to 4 times the background radiation of 40 to 50 counts per second on a hand held scintillometer. The area contains a number of pits blasted more than 40 years ago by McIntvre Porcupine prospectors. Several of these pits were grab sampled. Samples were analysed in Val d'Or, Quebec by Bourlamaque Assay Laboratories Ltd. for Cu, Ag and Au. The results are presented in Appendix 2.

Several outcrops of economic grade copper mineralization are known within site 229. Previous survey and drill results should be reviewed to determine where additional exploration is warranted.

45

The Float Zone, a Field of Copper-Rich Glacial Boulders situated south and east of occurrence #229 is an area of containing tens of angular boulders with diameters up to several metres. Many of these boulders contain pyrite and copper sulphide minerals with copper content ranging up to 7% copper. The last glacial movement was from south to north.

The abundance, the high copper content, angularity, large size and wide areal distribution of the mineralized glacial boulders on the northwestern portion of Richmond Minerals Inc. claim area is very impressive. As well, there are sites, especially in the <u>vicinity of waypoints 114 and 116</u>, within the "Float Zone" where the <u>mineralized rock appears to be outcrop and not boulder</u>. Early prospectors blasted pits at these sites in what appears to be flat-surfaced outcrop that is well mineralized with copper.

Electromagnetic, magnetometer and induced polarization surveys were made over this area in 1962. These surveys are presented here and in a larger scale copy in the map pocket. No anomalies were detected by these surveys over the most intensely mineralized boulder train area. The "Float Zone" parallels the western shore of Lac Colombet for 1.5 kilometres, from WP134 in the south to WP140 in the north. The boulder train extends west from the shoreline for a distance of 300m inland, a width of 300m. The absence of geophysical anomalies strongly suggests the mineralization is only in boulders, although these boulders would have to be unusually large. If so, their size and angularity normally would indicate their source to be nearby, a relatively short distance "up-ice" (to the south).

Map 06-21-06RM-007 Sample Point Detail Sites, presented here and in a larger scale copy in the map pocket, indicates that McIntyre Porcupine Mines drilled holes (M10, M27, M28 and M9) to test this Float Zone. Hole M10 was drilled east to west and stopped at depth about 75m north of WP114. Drilling did not exhaustively test the copper mineralization at WP114 and the Float Zone of more intensely concentrated mineralized boulders. All of the drill holes were north of WP114, the area that appears to be a mineralized outcrop. The PGL crew verified the 1962 electromagnetic surveys by cutting and surveying a grid of 5 E/W lines, at 50m N/S intervals, over the area between WP164 and WP126, and from the shore to distance 400m west of the shore. A Max/Min electromagnetic survey was completed using a 100m cable length between transmitter and receiver. When no anomalies were located, the cable length was shortened to 50m and the survey was repeated at 25m stations in an effort to detect any shallow conductors. This shortlength cable Max/Min survey detected no conductors. The geophysical surveys should have detected any significant volume of in situ mineralization of the type found at these waypoints. The conclusion is that these occurrences are either relatively small masses or they consist of very large boulders or <u>huge ice-rafted blocks of mineralized felsite</u>. Final resolution of whether this mineralization is an outcrop or in large boulders waits further testing by excavation or shallow drilling.

The large angular mineralized (2.10% Cu) boulder at **WP134** is one of two boulders on the south-facing shoreline of Lake Colombet. Ice movement was from south to north. It appears these boulders were excavated from the lake bottom and moved northward a few hundred metres to their present location.

McIntyre Porcupine Mines Ltd. made an Induced Polarization (IP) survey in the winter of 1962 on the lake ice of the area immediately south of this boulder. Chargeability anomalies were found within the area south and west of WP134. They were thought to be the source of mineralized boulders of the Float Zone and WP134. During February and March 1964 McIntyre Porcupine Mines Ltd. drilled at least 5 holes through the ice of Lac Colombet to test some of the anomalies found by the IP survey. No significant Cu mineralization was found. Drill sites M-31, M-32, M-35, and drill hole M-36, are plotted on Map 06-21-06RM-004 Induced Polarization Survey that is reproduced in this report (page 20) as a copy of the McIntyre map. Using the 5 drill logs provided from the Quebec Assessment Files, this writer plotted the sites for drill holes M-31, M-32, M-33, M-34 and M-35. <u>It</u> appears that drill sites M-31, M-32 and M-35 are not correctly located on the original copy of the McIntyre IP chargeability contour map. This map shows the sites of a number of McIntyre drill holes with relation to the various chargeability anomalies, or Zones, produced by the IP Survey. This map does not display all of the drill holes, and some holes appear to be plotted incorrectly.

13.0 DRILLING

Richmond Minerals Inc. has not done any drilling on the property and previous drilling was not designed to test the area specifically targeted for detailed exploration, at this time.

14.0 <u>SAMPLING METHODS AND APPROACH</u>

It must be assumed that, during the course of the "historical work" on the property, samples were collected and handled under industrial standards of the time.

Analytical work carried out by McIntyre Porcupine Mines Ltd. would have been done at its assay facility in Schumacher, Ontario. Currently accredited laboratories produced other historical assay data.

Samples from the Richmond Minerals Inc. programme were flown directly from the property to Val D'Or, Quebec and the Bourlamaque Assay Laboratories facility.

Security would have met normal exploration standards.

As stated by Lockhart (2006) samples from boulders were normally "grabs" and, normally, "chips" from areas of outcrops.

15.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

The historical data do not provide this information.

16.0 DATA VERIFICATION

The McIntyre work was professionally managed and documented. Subsequent recorded work by Richmond Minerals Inc. was conducted under the supervision of highly qualified and skilled professionals and the author's experience in the area suggests that all the data presented in this report conforms to the generally accepted exploration procedures.

17.0 ADJACENT PROPERTIES

None.

18.0 INTERPRETATION AND CONCLUSIONS

The following conclusions have been arrived at following a careful examination of the data available.

The Lac Colombet Property covers several well-documented mineral occurrences some of which may merit more detailed exploration. However, none of the efforts to discover the source of high grade, copper-bearing, mineralized float which has created the strongest incentive for exploring the property, have succeeded.

Glacial movement in the region "is known" to have been from south to north and most of the searching for the source of the high-grade float has been based on this premise. Strong local faulting and rock ridging, evident on aerial photographs and outcrop maps of the area, suggest that conditions at the ice-rock interface could have varied the direction of movement by 18 to more than 20 degrees east of north. This would have placed the possible source of the float either in Narrow Bay (Figure 8) or further to the south-southwest beyond the mouth of the bay.

Major advances in geophysical capabilities should enable the Company to locate any potential source of the mineralized float and define drill targets for further exploration of the economic potential in this only partially explored section of the property.

19.0 OTHER RELEVANT DATA

In addition to the other considerations documented in the Vending Agreement with the Ferderber syndicate transferring ownership of the property to Aavdex, it was also agreed that a 10 kilometre staking perimeter around the boundaries would exist and that any future staking or acquisition of mineral claims by either the Vendor or the Purchaser within this 10 kilometre perimeter will form a part of the agreement. This agreement remains in force.

20.0 <u>RECOMMENDATIONS</u>

Based on his examination of the available data it is the author's opinion that a search for the source of the high-grade copper-bearing mineralized float located on the Lac Colombet Property is justified. The search area is in Figure 12, and is outlined in red.

The search should commence by conducting detailed magnetic and electromagnetic surveys along lines chained and picketed at 50-metre intervals. Line spacing should be 100 metres.

A state of the art magnetometer should be employed and readings should be recorded at <u>minimum</u> 25-metre intervals along all lines. The resulting data may be presented in profile but must be presented in contoured form.

A MAXMIN 1 electromagnetic unit will be employed to provide data on a minimum of four frequencies, to be selected. Data will be recorded at minimum 25-metre intervals with a 200-metre coil separation.

Where a significant electromagnetic response is recorded on more than one line, "fill-in" lines should be established over the area of response, and surveyed.

At the same time, all of the previous geophysical work generated on the property should be acquired and assessed by a competent, qualified geophysicist to provide guidance for any additional work on the known mineral occurrences. The estimated cost of recommended work, including report preparation and contingencies is \$277,000.00.

All of which is respectfully submitted for your information and consideration.

Melville W. Rennick, P.Eng. Consulting Geologist

Toronto, Ontario, Canada November 7, 2013

21.0 ESTIMATE OF RECOMMENDED PROGRAMME COSTS

Crew Mobilization to Kuujjuaq and Return	\$ 35,000.00
Crew Mobilization Kuujjuaq-Lac Colombet and Return	15,000.00
Service Trips – Kuujjuaq to Lac Colombet	5,000.00
Establishing grid – cutting, chaining, etc. including picket recovery from lake surface – 100 Kilometres	55,000.00
Magnetic Survey – 100 Kilometres	25,000.00
MAXMIN 1 Survey – 100 Kilometres	50,000.00
Ski-doo And Sled Rentals – 2	12,000.00
Geophysical Data (Historic) Recovery and Review	18,000.00
Winter Camp For 4 Men – Installed and Recovered	40,000.00
Project Supervision and Reporting	22,000.00
TOTAL ESTIMATE PROGRAMME COSTS	\$ 277,000.00

Toronto, Ontario, Canada November 7, 2013 Melville W. Rennick, P.Eng. Consulting Geologist

22.0 <u>SELECTED REFERENCES</u>

AVISON, A.T. COOKE, C.; DILLMAN, B., 1986. Report on Geology Sampling and Evaluation of the Potential for Platine Mineralization in the Labrador Trough. 154 pages. GM 54371

BARAGER, W.R.A., Wakuach Lake Map Area, Quebec-Labrador (23 0). Geological Survey of Canada, Department Of Energy, Mines And Resources. Memoir 344. 174 pages.

BEAUMIER, M., 1987. Géochemie des sediments de lac – Région du lac Otelnuk. Ministére de l'Énergie et des Ressources du Québec. DP 87-14.

BERGERON, R., 1952. Exploration Activities. GM 020227

BURWASH, K.C., 1952. Evaluation Report on the Property. 6 pages. GM 02160-B.

BURWASH, K.C., 1952. Evaluation Report on the Property. 20 pages. GM 02160-C.

CLARK, T., 1987. Géologie et mineralization de la region de la Fosse du Labrador. Ministére de l'Énergie et des Ressources du Québec. PRO 87-04

CLARK, T., 1987. Eléments du groupe du platine dans la Fosse du Labrador. Ministère de l'Énergie et des Ressources du Québec. PRO 87-18

CLARK, T.; MARCOUX, P.; BÉLANGER, M.; WILSON, C.; AVRAMTCHEV, L., 1990 Carte des gîtes minéraux du Québec – Région de la Fosse du Labrador. Ministère l'Énergie et des Ressources du Québec. DV 84-11

CLARK, T., WARES, R., 2004. Synthese Lithotectonique et Metallogenique de l'Orogene du Nouveau-Quebec (Fosse du Labrador). Government of Quebec. MM 2004-01

CORKING, W.P., 1948. Geological Report. 28 pages. GM 00407

DESSUREAULT, M.; WOLDEABZGHI, T., 1988. Report on Detailed Prospecting and Sampling Programme – Terre Rouge Lake Property. 39 pages. GM 47543

DESSUREAULT, M.; MACNABB, A.; VACHON, H.; COTÉ, A., 1988. Report on a Sampling Survey – Dietrich Lke Proprty. 35 pages. GM 47994

DIMROTH, E., 1978. Region de la fosse du Labrador (54° 30' – 56° 30'). Ministère des Richesses Naturelles du Quebec. RG-193 DRESSLER, B., 19798. Région de la fosse du Labrador (56° 30' – 57° 15'). Ministère des Richesses Naturelles du Québec. RG-195

DUFF, D.A., 1952. Summary Report on Works Done on the property. 12 pages. GM 02160-A

FAHRIG, W.F., 1956. Lac Herodier (east half) New Québec. Geological Survey of Canada. Paper 55-32

GERMAIN, L., 1947. Preliminary Geological Report on the Property. 9 pages. GM 00334

GIRARD, A., 1984. Les indices mineralises du Lac Colombet – Fosse du Labrador. 66 pages. MB-84-06

GIRARD, A., 1984. Région du Lac Colombet (Wapnikskan) – Fosse du Labrador. DP 84-19

GIRARD, A., 1984. Géologie de la region du Lac Colombet – Fosse du Labrador. 85 pages. DP 88-09

GIRARD, A., 1988. Géologie et métallogénie des indices cuprifères et uranifères de la Région du Lac Colombet (Wapanikskan) – Fosse du Labrador. 85 pages. MB 88-20

IMBAULT, P.E., 1951. Summary Report on 1951 Exploration Activities. 1 page. GM 01502

IMBAULT, P.E., 1951. Information Report. 1 page. GM 24371

LACROIX, S., 1990. Gitologie et genèse du Cu-Ni dans la région du Lac Auineau (Fosse du Labrador). 71 pages. Et 87-15

LAMOTHE, D.; DION, D.J.; CHOINIÈRE, J.; RIVARD, P., 1993. Localisation d'anomalies magnétiques circulaires entre le 56° et le 58° parallèle – Territoire du Nouveau-Quebec. Ministère de l'Énergie et des Ressources du Québec. MB 93-62

LEDUC, M., 1987. Géochimie des sols – Région du Lac Colombet – Nouveau – Québec. 29 pages. MB 87-47

LOCKHART, A. WAYNE, 2006. Richmond Minerals Inc. Lac Colombet Copper Project, Year 2005 Exploration Work, Ungava, New Quebec, Canada.

MARLEAU, R.A., 1968. Geochemical Report on the Wapaniskan Property for Evanspen Mines Ltd. NPL On file . Q.D.N.R.

MARLEAU, R.A., 1968. Geology, Prospecting and S.P. Survey on the Wapaniskan Property. On file. Q.D.N.R.

MARLEAU, R.A., 1969. Comprehensive Report on the Waspaniskan Property. Townships 5348 & 5248 New Quebec, Canada for American Copper and Smelting Ltd. GM-25648. On file. Q.D.N.R.

MOORE, T.; DERRY, D.R., 1957. Geological Report on the Property. 17 pages. GM 01760

OTIS, M.B., 1986. Géochimie des sediments de ruisseaux – Région du Lac Colombet (Wapanikskan). 28 pages. MB 86-10

RENNICK, M.W., 2009. Report on the Richmond Minerals Inc. and Vendomme Capital II Corporation Lac Colombet Property. Lac Joques and Fort MacKenzie Area, Ungava, Quebec, Canada.

RENNICK, M.W., 2012. Report on the Lac Colombet Property, Lac Joques and Fort MacKenzie Area, Ungava, Quebec, Canada, for Richmond Minerals Inc and Arc Corporation.

ROSCOE, S.M., 1957. Cambrian Lake, (east half), Québec. Geological Survey of Canada. Paper 56-6

SEIGEL, H.O., 1963. Induced Polarization Survey on Wapaniskan Lake. GM 13295. On file. Q.D.N.R.

SKELTON, D.; DILLMAN, R.J.; BOULANGER, L., 1989. Report on an EM Survey and a Diamond Drilling Program with 25 Logs of Holes – Marymac Project. 80 pages. GM 48449

TRENHOLME, L.S., 1964. Diamond Drill Log on Roy-Lee Option, Wapaniskan Lake. Geological Map and Reports. McIntyre Porcupine Mines Ltd. GM 14707 On File. Q.D.N.R.

CERTIFICATE OF AUTHOR

I, Melville William Rennick do hereby certify that:

I am a Consulting Geologist residing at 234 Donlea Drive, Toronto, Ontario M4G 2N2.

I am a graduate of the Provincial Institute of Mining, Haileybury, Ontario, in 1955 and have been continuously engaged as a practising geologist since that time.

I am a member of Professional Engineers, Ontario.

I have read the definition of "qualified persons" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I comply with requirements to be a "qualified person" for the purposes of NI 43-101.

I am responsible for the preparation of the attached report titled "Technical Report For ARC Exploration Inc. On The Lac Colombet Property" dated November 7, 2013. I did not make a site visit to the Property relative to this report but have visited it on three former occasions.

I am not aware of any material fact or material change with respect to the subject matter of this report that is not reflected in the report, the omission to disclose which makes the report misleading.

I am independent of the issuer applying all of the tests in 1.5 National Instrument 43-101.

I have read National Instrument 43-101 and Form 43-101F and the attached report, dated November 7, 2013 and has been prepared in compliance with that instrument and form.

I consent to the filing of the attached report titled "Technical Report For ARC Exploration Inc. On the Lac Colombet Property" and dated November 7, 2013, with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of this report.

Melville W. Rennick, P.Eng. Consulting Geologist

Toronto, Ontario, Canada November 7, 2013

APPENDIX 1: ASSAY REPORTS

P. / P.O. BOX 550

148, AVENUE PERREAULT

VAL DOR (QUÉBEC)

JUP 4P5

TEL: (819) 824-4137 FAX: (819) 824-4745

LABORATOIRE D'ANALYSE BOURLAMAQUE LTÉE. BOURLAMAQUE ASSAY LABORATORIES LTD.

JENT	Aavdex Corpo	ration		CERTIFICATE OF ANALYSIS
IDJET				No. 83285
HANTILLONS MPLES	Rock			VAL D'OR (QUÉBEC) August 2, 2005
ICEIVED FROM	Peter Federbe	r		ARSAYS 15 Au Py-Gr., 15 Ag, 15 Cu
Sample No.	Au ppm	Ag g/t	Cu %	
47000	-0.10	2	1 910	

47806	<0.10	2	1.810	
47807	<0.10	2	1.310	
47808	0.10	3	2.280	
47809	<0.10	4	3.020	
47810	0.10	6	4.840	
47811	<0.10	1	0.529	
47812	<0.10	1	0.433	
47813	<0.10	1	0.505	
47814	<0.10	4	3,550	
47815	<0.10	6	4.550	
47816	<0.10	3	2.810	
47817	<0.10	2	1.470	
47818	<0.10	1	3.220	
47819	<0.10	<1	0.582	
47820	<0.10	8	1.350	

Sample No,	Au g/t	Ag g/t	<u>Cu %</u>
47815 dup.	0.10	6	4.500

COF ٢ ANALYSTE / ASSAYER L - D. Melnbardis

C.P. / P.O. BOX 550

148, AVENUE PERREAULT

VAL D'OR (QUÉBEC) JOP 4P5

TÉL.: (819) 824-43 FAX.: (019) 024-67

LABORATOIRE D'ANALYSE BOURLAMAQUE LTÉE. BOURLAMAQUE ASSAY LABORATORIES LTD.

LIENT ROJET ROJECT	Aavdex Corpor	ation			CERTIFICATE OF ANALY CERTIFICATE OF ANAL	ses Ysis
CHANTILLONS	Rock				VAL DOR (OliÉBEC) August 2, 2006	
eçeved from	Peter Federber				ANALYSES ASBAYS 8 Au Py-Gr., 8 Ag, 8 Cu, 3	Co
Sample No.	Au ppm	Ag g/t	Cu %	Co %		
47821	0.37	<1	2,940	0.001		
47822	0.10	<1	1.880			
47823	<0.10	<1	4.230	0.002		
47824	<0.10	<1	2,470			
47825	<0.10	<1	6,890			
47826	< 0.10	<1	1.340	-		S
47827	0.13	<1	3.310		the second se	
28342	0.17	<1	3,710	0.002	control semple.	

Q -ANALYSTE / ASSAYER

L. - D. Melnbardis

67

2 ...

I.P. / P.O. BOX 550

148, AVENUE PERREAULT

VAL D'OR (QUÉBEC)

TEL.: (819) 824-4337 FAX: (819) 824-4746

CERTIFICAT PLANAL VECC

J9P 4P5

LABORATOIRE D'ANALYSE BOURLAMAQUE LTÉE. BOURLAMAQUE ASSAY LABORATORIES LTD.

LIENT	Aavdex Corpo	oration					CERTIFIC	ATE OF A	NALYSIS	
ROJET							No.	83394		
HANTILLONS MPLES	Rock					VAL D'OR	QUÉBECh	August 25	2005	
eçu de Eceived From					10 Au Py-Gr., 10 Ag, 10 Cu					
Sample No.	Au g/t	Agght	Cu %			-				-
88501	<0.10	<1	1.040							
88502	<0.10	<1	1.870							
88503	0.63	<1	2,000							
88504	<0.10	<1	1.720							
88505	<0.10	<1	3 330							
88506	<0.10	<1	2,840	1.4						
88507	0.13	<1	4 210		1.0					
88508	<0.10	<1	3,630							
88509	<0.10	<1	0.675		34 - C					
88510	<0.10	<1	3,670							
2.9	ar b			×	(4)					
ample No.	<u>Au g/t</u>	Ag_g/t	<u>Cu %</u>							
88510 dup.	<0.10	<1	3.670							
										0
						Ø.	RANALYSTE	ASSAYER	1	
						1	- D. Melnb	ardis		

24.4 8 2040

PETER FERDERBER

/ P.O. BOX 555

148, AVENUE PERREAULT

VAL O'OR (QUÉBEC) JBP 4PS

TEL.: (819) 824-4357 FAX: (819) 824-4745

CERTIFICAT D'ANALYSES

LABORATOIRE D'ANALYSE BOURLAMAQUE LTÉE. BOURLAMAQUE ASSAY LABORATORIES LTD.

RET RECT NNTILLONS PLES J DE EVED FROM 	Rock Peter Fec							No.		83395	5	
ANTILLONS PLES J DE EVED FROM	Rock Peter Fec							A-86343		120		
ALES JOE EVED FROM	Rock Peter Fec						VAL DOR (DUEREC)	Aur	nust 29	200	5
ample No.	Peter Feo						ANALYSES	ancocor	. rail	aur co		•••• ••••••••
ample No.		ierber					ASSAYS	35 Au Py- 35 As	Gr.,	35 Ag,	35 C	u, 35 Co
	Au	g/t	Ag g/t	Cu %	<u>Co %</u>	As %						
88511	<0	10	4	0.330	0.005	0.01						
88512	<0	.10	15	1.050	0.007	0.01						
88513	<0	10	11	0.421	0.004	0.01						
88514	<0	.10	6	0.597	0.009	0.01						
88515	. 0	23	15	1.850	0.029	0.02						
88518	0	17	13	1.920	0.008	0.01						
88517	<0	.10	26	1.760	0.006	0.01						
88518	<0	10	6	0.671	0.004	0.01						
88519	<0	10	4	0.316	0.004	0.01						
88520	- 0	13	28	0.823	0,001	0.01						
88521	<0	10	2	0.044	0.002	<0.01						
88522	<0	10	<1	0.003	0.004	0,01						
88523	-0	10	1	0.018	0.004	0.01						
1.88524	-	10	1	0.269	0.001	0.03						
88525		113	7	4 250	0.014	0.01						
88526		17	2	1,240	0.006	0.01						
88527	-	10	3	1.170	0.004	0.03						
88528		113	6	2.480	0.007	0.01						
88520	d	10	4	1.650	0.005	0.03						
89530		20	11	4,600	0.013	0.02						
88531		60	16	6.350	0.012	0.03						
88532		27	10	4.300	0.008	0.02						
88533	đ	10	5	2 740	0.009	0.02						
89534	6	33	6	3.030	0.005	0.02						
89535		10	4	2,060	0.007	0.02	8					
88638		113	4	1.870	0.006	0.01	89					
00530	-1	10	3	1 440	0.003	0.01						
88539	el	10	<1	0.018	0.012	0.01						
98630	-0	10	<1	1.550	0.001	0.01						
00039	-	10	<1	0.005	0.008	0.01						
28541	-	10	<1	3 680	0.003	0.01						
0004 89549	-	10	=1	1 880	0.002	0.01						
00042	-	112	24	3 760	0.001	0.01						
68543	6	1.10	-1	1 500	0.004	0.01						
88544		10	-1	0.374	0.004	0.01						
66543	~	. 10	-	0.014	14 - 14 N. T		ac	101				

L. - D. Melnbardis

we

245 10 3040

PETER FERDERER

15/51/5002 11:18 352-862-2338

/ P.O. BOX 550

146, AVENUE PERREAULT

VAL D'OR (QUÉBEC)

JOP 4P5

TÉL: (819) 824-4337 FAX: (819) 824-4745

1......

LABORATOIRE D'ANALYSE BOURLAMAQUE LTÉE. BOURLAMAQUE ASSAY LABORATORIES LTD.

ENT	Aavdex Corpor	ation				CERTIFICATE OF ANALYSIS
DJET DJECT	000000000000000000000000000000000000000					No. 83395D
HANTILLONS MPLES	Rock				VAL D	ror (QUÉBEC) August 29, 2005
20 DE SEIVED FROM	Peter Federber				ABISAY	rs 3 Au Py-Gr., 3 Ag, 3 Cu, 3 Co 3 As
Sample No.	Au g/t	Ag g/t	Cu %	Co %	As %	
88520	D.17	28	0.817	0,001	0.01	
88530	0.20	10	4.580	0.012	0.03	
88540	<0.10	<1	0.005	0.008	0.01	

OKO ANALYSTE / ASSAYER

L.-D. Melnbardis 351-862-1338 351-862-1338

24.6 8 39Vd

HELLER FERDERBER

148, AVENUE PERREAULT

VAL D'OR (QUÉBEC) J9P 4PS

TEL.: (810) 824-4357 FAX.: (819) 824-4745

LABORATOIRE D'ANALYSE BOURLAMAQUE LTÉE. BOURLAMAQUE ASSAY LABORATORIES LTD.

UENT	Aavdex Corpor	ation					CERTIF	FICAT D'AI	NALYSES ANALYSIS
ROJET							No	83436	5 Pg 1/2
CHANTILLONS AMPLES	Rock					VAL D'OR	QUÈBEC)	Septemb	er 14, 2005
EQUIDE ECEIVED FROM	Peter Federber	8				ANALYSES	67 Au Py 67 As,	-Gr., 67 Aç	g, 67 Cu, 67 Co
Sample No.	Au g/t	Ag g/t	<u>Cu %</u>	<u>Co %</u>	As %				
88546	<0,10	<1	0.229	0.003	<0.01				
88547	<0.10	<1	0.365	0.003	0.01				
88549	<0.10	<1	0.988	0.009	0.01				
88540	<0.10	<1	0.046	0.002	0.01				
88550	<0.10	1	0.676	0.007	0.01				
88551	<0.10	<1	1.080	0.008	0.01				
88557	c0 10	<1	0.804	0.001	0.01				
88557	<0.10	<1	1,780	0 004	0.01				
88554	<0.10	<1	2 210	0.001	<0.01				
88556	<0.10	1	2 380	0.001	0.01				
88556	<0.10	<1	0.962	0.003	0.01				
88657	<0.10	<1	0.242	0.003	0.01				
BREED	<0.10	c1	2 100	0.001	0.01				
99666	<0.10	<1	2 520	<0.001	0.01				
00556	<0.10	-1	0.034	0.001	<0.01				
99561	<0.10	12	1 570	0.005	0.01				
88583	<0.10	<1	0.005	0.018	0.01				
98565	0.17	<1	2 190	0.001	<0.01				
99564	<0.10	<1	5 870	0.001	0.01				
00504	0.23	1	4 860	0.001	0.01				
08565	0.20	-1	1 020	0.001	0.01				
99567	0.10	=1	1 760	<0.001	<0.01				
DREES	<0.10	<1	1 640	0.001	<0.01				
00000	-0.10	-1	0.971	0.004	0.01				
00000	-0.10	-1	0.701	<0.001	0.01				
8857	0.10	<1	2 270	0.001	0.01				
000/	0.10	-	1.910	0.003	0.01				
86574	<0.10	-1	2 380	<0.001	0.01				
000/3	0.10	-	3.040	<0.001	0.01				
865/4	0.27	-	2 530	0.001	<0.01				
005/;		2	2.000	<0.001	<0.01				
88576	5 <0,10	-	3.970	<0.001	<0.01				
88577	<0,10	51	2.910	<0.001	0.01				
88578	5 0.10	~ 1	2.250	<0.001	0.01				

w X ANALYSTE / ASSAYER

L. - D. Melnbardis 8652-289-225 31:11 308-235

PAGE 8

HELES LEBDERBER

P. / P.O. BOX 550

148, AVENUE PERREAULT

VAL D'O

VAL D'OR (QUÉBEC) JOP 4P5

TEL: (819) 824-4337 FAX: (819) 824-4745

CERTIFICAT D'ANALYSES

LABORATOIRE D'ANALYSE BOURLAMAQUE LTÉE. BOURLAMAQUE ASSAY LABORATORIES LTD.

JENT	Aavd	ex Corpora	ation					CERTIF	ICAT	TE OF AN	ALYSIS
DIET		n referencen G						No	2.	83436	Pa 2/2
ULEUI									1		1 . am
MPLES	Rock						VAL D'OR	QUÉBEC)	Se	plember 1	4, 2005
çu de Ceived From	Peter	Federber					ANALYSES ASSAYS	67 Au Py	r-Gr.	67 Ag, 67	7 Cu, 67 Ca
								67 As		-	
Sample No.	0	Au g/t	Ag g/t	<u>Cu %</u>	<u>Co %</u>	<u>As %</u>	-				
88579		0.10	<1	2 220	<0.001	0.01					
88580		<0.10	<1	1.890	0.002	< 0.01					
88581		<0.10	<1	3,230	0.001	0.01					
88582		<0.10	<1	3.710	0.001	< 0.01					
88583		<0.10	<1	2.290	0.001	0.01					
88584		<0.10	<1	3,350	0,001	0.01					
88585	-	0.10	<1	2.060	0.001	0.01					
88586		0.43	<1	4.840	0.002	0.01					
88587		<0.10	<1	0.812	0.018	0.01					
88588		<0.10	<1	1.400	0.002	0.01					
88589		0.20	1	2.160	0.002	0.01					
88590	-	<0.10	<1	0.191	0.011	0.01					
88591		0.10	<1	0.096	0.019	0.01					
88592		<0.10	<1	0.707	0.006	0.01					
88593		<0.10	<1	1.390	0.003	0.01					
88594		<0.10	<1	0.473	0.004	0.01					
88595	1.1	0.20	<1	2.360	0.001	0.01					
88596		0.10	<1	1,500	0.001	0.01					
88597		<0.10	<1	4.500	0.003	0.01					
88598		<0.10	<1	0.119	0.007	0.02					
88599		<0.10	<1	1,120	< 0.001	0.01					
88600		0.17	<1	4,260	< 0.001	0.01					
88601		<0.10	<1	0.004	0.015	0.01					
88802		<0.10	<1	0.005	0.014	0.01					
88603		<0.10	<1	0.004	0.023	0.01					
88604		<0.10	<1	0.616	0.006	0.01					
88605		<0.10	1	4.070	0.004	0.01					
88606		<0.10	<1	0,958	0.003	0.01					
88607	÷	<0.10	<1	2,050	0.001	0.01					
89609		0.10	<1	2.010	0.001	0.01					
88600	1	<0.10	<1	3,400	< 0.001	0.01					
88610		<0.10	<1	0.170	0.003	0.01					
88611		0.10	2	1.620	0.012	0.02					
88612		<0.10	<1	0.735	0.008	0.01					
00012					STRAIN ST	1000					11.54

B. Ma, U to follow.

YER

L. - D. Melnbardis 15/51/5002 11:15 351-867-7938

247 18 3944

PETER FERDERBER
/ P.O. BOX 550

149, AVENUE PERREAULT

VAL D'OR (QUÉBEC) JUP 4P5

TÉL: (819) 824-4337 FAX: (819) 824-4745

LABORATOIRE D'ANALYSE BOURLAMAQUE LTÉE. BOURLAMAQUE ASSAY LABORATORIES LTD.

ENT	Aavdex Corpora	ation					CERTI	FICAT D'A	ANALYSES ANALYSIS
SJET SJECT							No), 83434	BD
INTILLONS IPLES	Rock					VAL D'OR (QUÉBEC)	Septem	ber 14, 2005
U DE EIVED FROM	Peter Federber	2				ANALYSES ASSAYS	6 Au Py- 6 As	Gr., 6 Ag.	6 Cu, 6 Co
ample No.	Au g/t	Ag g/t	Cu %	Co %	As %				
88555	<0.10	<1	2.390	0.001	0.01				
88565	0.27	1	4,910	0.001	0.01				
88575	<0.10	<1	2.560	0.001	0.01				
88585	0.10	<1	2.050	< 0.001	0.01				
88595	0.20	<1	2.390	0.001	0.01				
88605	<0.10	<1	4.020	0.004	0.01			10.10	

I, Mo, U to follow.

i K LYSTE / ASSAYER

L. - D. Melnbardis 15/57/5002 11:15 352-238

24,8 i8 394d

PETER FERDERBER

DONSDOUTING GENBOUSTOS

60.001

uality Analysis ...

Innovative Technologies

Date Submitted: 10/17/2005 12:08:47 PM Invoice No.: A05-3550 Invoice Date: 11/30/2005 Your Reference:

Bouriumaque Assay Laboratories Ltd 148 Perroault Val D'OR Osebec J9P 4P5 Canada

ATTN: Jeannette Doucet

CERTIFICATE OF ANALYSIS

127 Pulp samples were submitted for analysis.

The following analytical package was requested: Code SA INAA(INAAGEO)

REPORT A05-3560

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sumple submitted regarding excess material, it will be meaned when we days of the report. Our institute is submitted to the analytical cost of these analyses. Test results are representative only of metanical submitted for analysis.

Notes;

CERTIFIED BY :

C. Douglas Read, B.Sc. Laboratory Manager

ACTIVATION LABORATORIES LTD.

TRUE Services Drive, Ancarder, Ontate Ceneda LBG 4V6 TELEPHONE +1,865 548,9611 er -1.885,222,827 FAX +1,805,448,0613 E-14AL envaluer 9 exteletricom PCTLASS Official WEBSITE http://www.sctlabsine.com

24.9 51 7004

HELES LEKDERBES

12/21/2005 11:18 327-867-7938

Armiyas Byrshei U Mau Uhi Byrshei 2010 0 Osterstan Lank 8 Armiyas Merbod 196A 198A Osterstan Lank 4 Armiyas Merbod 196A 198A (7807 7 1 L-57 4706 4 1.317 4706 9 1.215 4706 9 1.215 4706 4 1.308 4707 9 1.215 4706 9 1.215 4707 9 1.215 4708 9 1.	
Armiyis Bymbol U Musr Ush Bymbol som 0 Detection Links 5 Armiyis Berbyd mox 138A Option 138A	
Unit Stymbol Sem C Oddraction Limit S Anabytis Narchod NAA Anabytis Narchod NAA Ottom Component NAA Anabytis Narchod NA Anabytis Narchod Na Anabytis Narchod Na Anabytis Narchod Na Anabytis Narchod Narchod	
Delaerian Linit F Anabala Marihad 1944 1944 (1987 7 UA7 4288 4 UB7 1988 9 UB7 1989 1 UA7 1989 1 UA7 1989 1 UA7 1989 1 UA7 1989 1 UA7 1989 1 UA7 1989 1 UA7	
Analysis Mexico MAA Cmbir 7 L-SIF Analysis A L3Br Analysis A L3Br Analysis S L2Br	
1988 7 1.437 42056 4 1.287 42050 9 1.285 67509 1.2 1.431 47914 4 1.305 47973 5 1.641 67974 5 1.642 67974 5 1.643 67974 5 1.643 67974 5 1.647 67974 5 1.647	
42056 4 537 42059 5 12D 47050 23 1.41 47051 4 7.307 47051 5 5.44 47053 8 5.275 4705 8 5.475 4705 8 5.475	
x1303 9 1.200 critico 13 1.411 x1304 6 7.302 x1314 10 1.200 x1315 1.200 x1314 1.200	
cmtop 12 1.441 cmtop 4 1.005 cmtop 5 1.544 cmtop 5 1.544 cmtop 6 1.275 smtt4 2 1.487 cmtop 2 3.786	
47811 4 1.305 47870 3C 1.641 47873 8 1.275 47873 8 1.275 47874 2 1.477 47879 3 1.768	
42914 PC 1,144 19713 P 1,275 19714 E 1,477 Addie 2 1,477	
11723 B 1.275 1774 E 1.417 Aftig 2 1.111	
##14 E 1.417 4019 D 3.118	
ette 2 5.1M	
are a Low	
43857 # 1.166	
42019 3 1,591	
47619 4 1.718	50
4780 +1 110	
80001 F 3.79X	
MB28 12 1.201	
MM20 7 1284	
AND1 7 1.534	
MD-05 28 1.812	
MADE 8 LANC	
MINC? 18 1.100	
MAN 25 1.440	
198aa # 1.721	

Page 4 of 5

LINE TO -- C

221 2000

2.2.2.2.2.

041 001 1.000

C PERSONAL PROPERTY AND ADDRESS

			ACTIVITION ENDING AND A PROVIDE AND
Quelity Control			
Acatria byrital	8	New	
Unit Bymbol	2015		
Detection Limit	1		
Analysia Welloci	ARK	DELA	
199 Ta Minia	2010	0.0204	
Dist-15 Cart	1870		
Division	1530	3,0188	
DH-1# Cel	3900		
1254-To Mana	7540	0.7586	
DHits Cet	2533		
Child to Minor	25-0	0.2207	
CRIMITA Dell	26250		
COL-10 MILLIN	2540	0.3087	
Tilita Cet.	100		
Dei-ta Mass	2960	6.2525	
1994-1w Clark	000		
COV-THE MILLION	1440	0.8107	
Din-La Darh	3610		
Grid to Matter	9622	58158	
biéns Cert	3550		

Activation Laboratories Lid. Report: A05-3650

Sample Numbers, Locations, Descriptions

And

Assay Results

RICHMOND MINERALS INC.

COLOMBET LAKE COPPER EXPLORATION PROJECT, SUMMER 2005, UNGAVA, QUEBEC COPPER-RICH GLACIAL BOULDERS AND OUTCROP SAMPLE COMPILATION

RICHMOND MINERALS INC

060704 Richmond Appendix 2				RICHMOND MINERALS INC.							
					COLOMBET LAKE COPPER PROSPECT					-	
Laboratory	Way Point	UTM	UTM	Float or	Rock Type, Comments		ASSAY	VALUE	S		INAA
Assay No.	Map No.	NORTH	EAST	Outcrop		Cu %	Co %	Ag g/t	Au g/t	As %	U ppm
47806 - 13	61	6319591	507152	Outcrop	Area 229 NW-SE trench at NW end of 8 chip spls of 1n	n each,	8 metre	s total 6	1A to H		
47814 - 15	61			Outcrop	Area 229 W-E plt 4m W of trench, E end 2 chip spls of	1m eac	h, 2 met	tres total	61i to .	1	
none	61	6319587	507158	Outcrop	Area 229 Start SE end of 8 spl chip spl of 8 metres total	229 A	to H. Av	rg 8 spls	= 1.84	1% Cu	
none	61	6319593	507152	Outcrop	Area 229 End NW end of 8 spl chip spl of 8 metres total	229 H	to A. Av	vg 8 spis	s = 2.5 g	y/t Ag.	
47806	61A	6319587	507158	Outcrop	Samples from 0.5 metre deep trench in fg - mg grey	1.810		2	<0.10		
47807	61B	6319588	507157	Outcrop	sheared, fractured sulphide-rich (5 to 20% dissem,	1.310		2	<0.10		
47808	61C	6319589	507156	Outcrop	blebs and <1cm veinlets). Host rock variable,	2.280		3	0.10		
47809	61D	6319590	507155	Outcrop	Variable, resemble granodiorite to felsite breccia (qtzite?)	3.020		4	<0.10		
47810	61E	6319591	507154	Outcrop	Mineralized sub-o/c extends beyond trench ends.	4.840		6	0.10		
47811	61F	6319592	507154	Outcrop	Four old pits blasted in mineralized o/c are within	0.529		1	<0.10		
47812	61G	6319592	507153	Outcrop	15 metres to west and south of trench. One pit was	0.433		1	<0.10		
47813	61H	6319593	507152	Outcrop	sampled (47814 and 47815). This rock and mnizn	0.505		1	<0.10		
47814	611	6319589	507153	Outcrop	are similar to rock in trench and adjacent area.	3.550		4	<0.10		
47815	61J	6319589	507152	Outcrop	Avg assay 47814 + 47815 = 4.05% Cu, 5 g/t Ag.	4.550		6	<0.10		
47816	60	6319694	507140	Outcrop	Old blasted plt. Mineralization similar to above.	2.810		3	<0.10		
none	62	6319687	507184	Outcrop	Cu mnizn in o/c. No spis. These o/c part of mineralized						
none	63	6319725	507134	Outcrop	area greater than 400 by 100 metres.						
none	64	6319365	507055	Outcrop	Red gossan on o/c with 5 to 10 % py + cpy.						
none	65	6319365	507033	Outcrop	Base 8+ m fault (low side to W), 10% sulphide in o/c						
none	70	6319364	507200	Outcrop	Qtz veinlets with 3 to 5 % sulphide in outcrop.						
47817	75	6319553	507137	Outcrop	Old pit.Rhy (gtzite?) Diss+blebs py+cpy gtz veinlets	1.470)	2	<0.10		
none	76	6319792	507225	Outcrop	Old pit. Similar to above.						
none	80	6319643	507071	Outcrop	Old blasted pit, Sulphide gossan.						
47818	81	6319530	507103	Outcrop	Cpy+py in lst. Radiatn 100 cps (2xbkd)spl of 1m vein	3.220		1	<0.10		
					Beds strike 010deg, dip W 70 deg, 4cm calcite xls						
47819	82	6319645	507235	Outcrop	9m trench striken 130 deg. Py+cpy veins, fracts diss	0.582		<1	<0.10		
47820	85	6318417	509344	Outcrop	Outcrop east side of lake on old Rio Tinto work area.	1.350		8	<0.10		
none	100	6314723	508830		Former Rio Tinto base camp on east shore of lake.						
88561	102	5320557	506033	Outcrop	Felsite breccia, greyish, 10% pyrite and minor cpy	1.570	0.005	12	<0.10	0.01	
none	107	6318375	507670	Float	10% coy in guartzite, not assayed						

RICHMOND MINERALS INC.

COLOMBET LAKE COPPER EXPLORATION PROJECT, SUMMER 2005, UNGAVA, QUEBEC COPPER-RICH GLACIAL BOULDERS AND OUTCROP SAMPLE COMPILATION

47821	108	6318395	507672	Float	10% cpy in granite, angular, area 9x2 m, 2 photos	2.940	0.001	<1	0.37		
47822	109	6318540	507602	Float	5-8% cpy, 1-5%py, granite + qtzite, decrep 0.5m bidr	1.880	0	<1	0.10		
none	110	6318615	507652	Float	<2%cpy, <3%py, qtzite+ argillite, subround bidr						
none	111	6318623	507700	Float	5-8% cpy, 1-3%py, granite, subang, 6cm qtz/carb vein						
47823	112	6518650	507705	Float	20% cpy+py, dissem + fract 1 m angular granite bldr	4.230	0.002	<1	<0.10		
47824	113	6318862	507775	Float	20% cpy+py, dissem+ fract 2m ang granite bidr, photo	2.470	0	<1	<0.10		-
47825	114	6318890	507776	Possible o/c	Blasted pit Cu++ in granite, qtzite, shale, diss, fract fill,	6.890	0	<1	<0.10		
47826	115	6318915	507775	Float	4m+ decrepitating Cu+ min'l'zed bldr Photos	1.340	0	<1	<0.10		
47827	116	6319000	507800	Possible o/c	Blasted pit Cu++ in granite, qtzite, shale, diss, fract fill,	3.310	0	<1	0.13		
88501	116A	6319013	507792	Float	8 additional rhyoite breccla boulders found within 50	1.040		<1	<0.10		7
88502	116B	6319008	507784	Float	metres of WP 116 in boulder field (refer to sketch).	1.870		<1	<0.10		12
88503	116C	6319018	507789	Float	Granite breccia bidrs with 15 to30+% cpy+py some	2.000		<1	0.63		7
88504	116D	6319000	507782	Float	massive cpy and py combined for 8 boulders,	1.720		<1	<0.10		7
88505	116E	6318978	507780	Float	118A to 118H.	3.330		<1	<0.10		28
88506	116F	6318997	507787	Float	see above	2.640		<1	<0.10		6
88507	116G	6318967	507781	Float	see above	4.210		<1	0.13		18
88508	116H	6319001	507797	Float	see above	3.630		<1	<0.10		23
none	117	6318960	507760	Float	cpy + py in feisite breccia						-
88556	118	6319054	507739	Float	8-10% cpy in many' cobbies pink gtzite+feisite	0.962	0.003	<1	<0.10	0.01	
none	119	6319097	507821	Float	Gabbro boulder with 1cm vein of specular hematite						
88550	120	6319135	507827	Float	4 angluar breccia granite bldrs 20% cpy+py frac+diss	0.676	0.007	1	<0.10	0.01	43
88551	121	6319159	507829	Float	Feisite cobble 20% cpy+py, qtz carb vein+qtzite	1.080	0.008	<1	<0.10	0.01	5
88552	122	6319169	507830	Float	Feisite breccia cobble angular with 20% cpy+py	0.804	0.001	<1	<0.10	0.01	42
88510	123	6319185	507828	Float	Felsite breccia bldrs 20+% cpy+py some massive cpy	3.670		<1	<0.10		5
88549	124	6319210	507835	Float	Feisite Breccia with gtz/carb vein, 8 to 10% cpy+py	0.046	0.002	<1	<0.10	0.01	5
88548	125	6318817	507589	Float	Feisite Breccia, gtz/carb vein, gtzite, 5 to 10% cov+py	0.988	0.009	<1	<0.10	0.01	6
88509	126	6318840	507726	Float	Feisite Breccia, 10% cpy+py 0.5m ang bldr	0.675		<1	<0.10		6
88553	127	6318963	597758	Float	Felsite breccia, 10 to 20% cpy+py	1.780	0.004	<1	<0.10	0.01	17
88554	128	6318946	507760	Float	Felsite breccia, 15 to 20% cpy+py	2.210	0.001	<1	<0.10	< 0.01	41
88555	129	6318869	507778	Float	Feisite breccia, 10 to 20% cpy+py	2.380	0.001	1	<0.10	0.01	25
none	130	6317500	505961	n/a	cut line 6317500N starts east from this point to lake shore (506825E) a	at this poir	nt.			
88524	131	6317572	506243	outcrop	Sample from fault cliff with Max Min anomaly, area #226	0.269	0.001	1	<0.10	0.03	<2
none	132	6316695	505965	outcrop	Gabbro outcrop on hillside. No minewralization or spi.						
88557	133	6316554	505982	outcrop	Qtzite with massive "blotch" 3 cm thick in fracture, photo	0.242	0.003	<1	<0.10	0.01	
88558	134	6317980	507475	Float	"Warren's" Bidr at lake shore Felsite Breccia 10+% cnv	2,100	0.001	<1	<0.10	0.01	

RICHMOND MINERALS INC.

COLOMBET LAKE COPPER EXPLORATION PROJECT, SUMMER 2005, UNGAVA, QUEBEC COPPER-RICH GLACIAL BOULDERS AND OUTCROP SAMPLE COMPILATION

											the second se
none	135	6318225	507705	n/a	South end of line 507700E, as it enters lake						
none	136	6319510	507710	n/a	Probable Diamond Drill site from 1962.						
none	137	6319511	507541	Float	Boulder with pyrite in quartzite						
88559	138	6318785	507230	Float	6m boulder float. Feisite breccia, decrep, well minrtzd	2.520	< 0.001	<1	<0.10	0.01	
none	139	6319657	507701	n/a	North end of line 507700E, as it enters lake						
none	140	6319507	507765	n/a	East end of line 6319500N as it enters Lake						
none	141	6319020	507915	n/a	East end of line 6319000N as it enters Lake						
none	142	6319068	507875	n/a	Probable drill site from 1962.			_			
88511	143	6320540	506855	outcrop	Grab sample, blasted outcrop, feisite breccia + qtzite	0.330	0.005	4	<0.10	0.01	5
88512	144	6320548	506850	outcrop	Grab sample, blasted outcrop, felsite breccia + qtzite	1.050	0.007	15	<0.10	0.01	25
88513 - 19	145	6320550	506838	outcrop	Chip spls 145A to 145G outcrop, rhy breccia, qtzite						
88513	145A	6320551	506838	outcrop	1 metre long chip sample (N/S) centre 6320551N	0.421	0.004	11	<0.10	0.01	8
88514	145B	6320553	506838	outcrop	1 metre long chip sample (N/S) centre 6320553N	0.597	0.009	6	<0.10	0.01	7
88515	145C	6320554	506838	outcrop	1 metre long chip sample (N/S) centre 6320554N	1.850	0.029	15	0.23	0.02	5
88516	145D	6320555	506838	outcrop	1 metre long chip sample (N/S) centre 6320555N	1.920	0.008	13	0.17	0.01	4
88517	145E	6320550	506837	outcrop	1 metre long chip sample (E/W) centre 506837E	1.760	0.006	26	<0.10	0.01	9
88518	145F	6320550	506836	outcrop	1 metre long chip sample (E/W) centre 506838E	0.671	0.004	6	<0.10	0.01	4
88519	145G	6320550	506835	outcrop	1 metre long chip sample (E/W) centre 506835E	0.316	0.004	4	<0.10	0.01	6
88520 - 23	n/a	6320565	506827	outcrop	Grab samples, blasted outcrop						- 1
88520	227A	6320565	506827	outcrop	Grab samples, blasted outcrop	0.823	0.001	28	0.13	0.01	4
88521	227B	6320568	506789	outcrop	Grab samples, blasted outcrop	0.044	0.002	2	<0.10	< 0.01	4
88522	227C	6320571	506738	outcrop	Grab samples, blasted outcrop	0.003	0.004	<1	<0.10	0.01	8
88523	227D	6320577	506901	outcrop	Grab samples, blasted outcrop	0.018	0.004	1	<0.10	0.01	4
88524	131	6317572	506243	outcrop	Area #226, sample from fault cliff with Max Min anomaly.	0.299	0.001	1	<0.10	0.03	<2
n/a	146	6320550	506915	n/a	Area 227, general location			-		0.00	
none	147	6318080	507190	outcrop	Pink Granite, no mineralization			-			
none	150	6318003	507191	outcrop	Basalt outcrop.						
none	151	6319613	506268	outcrop	Basalt outcrop.	-	-				-
88525 - 37	152	6319632	506324	outcrop	Area 225, start SE end line of chip spis. o/c 13 spis @	2m = 26	m long	Ava ter	hor = 2.8	6% Cu	
none	153	6319651	506307	outcrop	Area 225, end at NW end of 13 spl chip spl of 26 metr	es total 2	25 A to I	A see	sketch		
88525	225A	6319633	506323	outcrop	2 metre chip sample of outcrop 1 of 13	4 250	0.014	7	0.13	0.01	<2
88526	225B	6319634	506322	outcrop	2 metre chip sample of outcrop, 2 of 13	1.240	0.006	2	0.17	0.01	<2
88527	225C	6319635	506321	outcrop	2 metre chip sample of outcrop 3 of 13	1,170	0.004	3	<0.10	0.03	0
88528	225D	6319637	506319	outcrop	2 metre chip sample of outcrop, 4 of 13	2,480	0.007	6	0.13	0.01	<2
88539	225E	6319639	506318	outcron	2 metre chip sample of outcrop 5 of 13	1.650	0.005	4	<0.10	0.03	<2
00000	the dist for her	0010000	000010	000000	a make only demple of outbrop, a of 10	1.000	0.000		-0.10	0.00	-6

RICHMOND MINERALS INC.

COLOMBET LAKE COPPER EXPLORATION PROJECT, SUMMER 2005, UNGAVA, QUEBEC

COPPER-RICH GLACIAL BOULDERS AND OUTCROP SAMPLE COMPILATION

							and the second se			And and a second s	
88530	225F	6319640	507317	outcrop	2 metre chip sample of outcrop, 6 of 13	4.600	0.013	11	0.20	0.02	<2
88531	225G	6319642	506315	outcrop	2 metre chip sample of outcrop, 7 of 13	6.350	0.012	16	0.60	0.03	<2
88532	225H	6319643	506314	outcrop	2 metre chip sample of outcrop, 8 of 13	4.300	0.008	10	0.27	0.02	<2
88533	2251	6319644	506313	outcrop	2 metre chip sample of outcrop, 9 of 13	2.740	0.009	5	<0.10	0.02	3
88534	225J	6319646	506312	outcrop	2 metre chip sample of outcrop, 10 of 13	3.030	0.005	6	0.33	0.02	3
88535	225K	6319648	506310	outcrop	2 metre chip sample of outcrop, 11 of 13	2.060	0.007	4	0.10	0.02	<2
88536	225L	6319649	506309	outcrop	2 metre chip sample of outcrop, 12 of 13	1.870	0.006	4	0.13	0.01	4
88537	225M	6319650	506308	outcrop	2 metre chip sample of outcrop, 13 of 13	1.440	0.003	3	< 0.10	0.01	3
88538	Y159	6318362	507615	Float	Felsite boulder collected by Yvon.	0.018	0.012	<1	<0.10	0.01	3
88539	Y162	6318551	507723	Float	Felsite boulder collected by Yvon.	1.550	0.001	<1	0.10	0.01	18
88540	Y1'72	6319670	507323	Float	Quartz-carbonate vein boulder collected by Yvon.	0.005	0.008	<1	< 0.10	0.01	<2
88541	Y194	6318312	507210	Float	Felsite boulder collected by Yvon.	3.680	0.003	<1	< 0.10	0.01	18
88542	Y195	6318300	507120	Float	Felsite breccia boulder collected by Yvon.	1.880	0.002	<1	<0.10	0.01	7
88543	Y196	6318447	507710	Float	Felsite breccia boulder (6 - 10% cpy) coll by Yvon.	3.760	0.001	<1	0.13	0.01	5
88544	Y198	6318782	507228	Float	Felsite boulder (3 - 6%cpy) collected by Yvon.	1.500	0.004	<1	0.10	0.01	13
88545	Y199	6318810	507276	Float	Felsite breccia boulder (2% cpy) collected by Yvon.	0.374	0.004	<1	<0.10	0.01	5
none	154	6316584	506627	Float	S tip small island, gtzite float with specular hematite						
88546	148	6318135	507175	Float	Felsite breccia+carb/gtz veinlets, sparse py+cpy	0.229	0.003	<1	<0.10	<0.01	5
88547	149	6318220	507170	Float	Felsite breccia+carb/gtz veinlets, sparse py+cpy	0.365	0.003	<1	<0.10	0.01	8
88560	155	6316756	506660	outcrop	Outcrop of pink quartzite, with minor cpy, on island.	0.034	0.001	<1	<0.10	< 0.01	<2
88562	157	6317205	506785	Float	Qtzite with pyrite veins + dissem. No visable cpy.	0,005	0.018	<1	<0.10	0.10	<2
88563	159	6318855	507780	Float	Felsite breccia+qtzite, angular 10 - 15% cpy	2.190	0.001	<1	0.17	< 0.01	7
88564	160	6318855	507786	Float	Felsite breccia, angular, burried, 15-25% cpy	5.870	0.001	<1	<0.10	0.01	9
88565	161	6318875	507786	Float	Black shale with up to 15% cpy, felsite bldrs also	4.860	0.001	1	0.23	0.01	55
88566	162	6318877	507750	Float	Qtzite boulder with qtz veins, 3 to 6% cpy.	1.020	0.001	<1	<0.10	0.01	3
88567	163	6318884	507775	Float	Felsite breccia boulder, 3 to 5% cpy in fract, blebs	1.760	<0.001	<1	<0.10	< 0.01	6
88568	164	6318802	507718	Float	Felsite breccia boulder, 10 to 20% cpy	1.640	0.001	<1	<0.10	<0.01	5
88569	165	6318822	507734	Float	Felsite brec bldr, ang, burried, 2M+ 10 to 15%cpy	0.971	0.004	<1	<0.10	0.01	<2
88570	166	6318848	507740	Float	Felsite boulder,4 to n8% cpy, similar bldrs nearby	0.701	< 0.001	<1	<0.10	0.01	<2
88571	167	6318934	507790	Float	Felsite brec bldr, sub-ang 0.8M, burried 15-20%cpy	2.270	0.001	<1	0.10	0.01	7
88572	168	6318954	507785	Float	Felsite brec bldr 2+m long, 0.6m exposed 20% cpy	1.910	0.003	<1	<0.10	0.01	11
88573	169	6318947	507777	Float	Felsite brec bldr 2x3x2m, half burried, 15-20% cpy	2.380	<0.001	<1	<0.10	0.01	20
88574	170	6318944	507770	Float	Felsite brec bldr 1+m, tip only showing, 20-30%cpy	3.040	<0.001	<1	0.27	0.01	4
88675	171	6318925	507780	Float	Felsite breccia bldr, 0.6m, 10-15% cpy	2.530	0.001	<1	<0.10	< 0.01	65
88576	172	6318909	507783	Float	Felsite breccia bldr, ang, 2x1.5x1m, 20-30% cpy.	3.970	<0.001	<1	<0.10	< 0.01	14
					A DESCRIPTION OF A	and the second se	the second state of the se		The second value of the se	And in case of the local division in which the local division in which the local division in the local divisio	and the second second

RICHMOND MINERALS INC.

COLOMBET LAKE COPPER EXPLORATION PROJECT, SUMMER 2005, UNGAVA, QUEBEC COPPER-RICH GLACIAL BOULDERS AND OUTCROP SAMPLE COMPILATION

			and the second			A	0.004		-0.40	-0.04	20
88577	173	6318911	507800	Float	Black shale (tuff?) <0.5m sub-ang bldrs with cpy	2.910	<0.001	<1	<0.10	0.01	20
88578	174	6318896	507815	Float	Felsite breccia bldr with 8 to 12% cpy	2.250	<0.001	<1	0.10	0.01	9
88579	175	6318890	507809	Float	Felsite breccia bldrs <0.5m, 8 to 15% cpy	2.220	<0.001	<1	0.10	0.01	0
88580	176	6318896	507805	Float	Felsite breccia bidrs <0.5m, 8 to 15% cpy	1.890	0.002	<1	<0.10	<0.01	7
88581	177	6318890	507796	Float	Felsite breccia bldr 2+m, 10 to 15% cpy+malachite	3.230	0.001	<1	<0.10	0.01	20
88582	178	6318906	507793	Float	Feisite breccia bidr 2+m, ang, burried, 25-30% cpy	3.710	0.001	<1	<0.10	<0.01	7
88583	179	6318894	507788	Float	Felsite breccia bldrs 1 to 2m, ang, 10-15% cpy	2.290	0.001	<1	<0.10	0.01	4
88584	180	6318916	507784	Float	Feisite breccia bldr 1+m, angular, 15 to 25% cpy	3.350	0.001	<1	<0.10	0.01	46
88585	181	6318902	507773	Float	Felsite brec bldr 3x4x4m, decrepitated,8-15% cpy	2.060	0.001	<1	0.10	0.01	12
88586	182	6318905	507756	Float	Felsite breccia bldr, subround, 0.5m, 20-30% cpy	4.840	0.002	<1	0.43	0.01	28
88587	221	6318698	507702	Float	Felsite boulder	0.812	0.018	<1	<0.10	0.01	30
88588	185	6319506	506306	Float	Felsite breccia bldr, ang. Qtzite o/c at site <1%cpy	1.400	0.002	<1	<0.10	0.01	3
88580	183	6319389	506293	Float	Felsite breccia boulder.	2.160	0.002	1	0.20	0.01	<2
88500	186	6319518	506373	Float	5+ m RB bldr on face of hill. Spl near base at S side	0,191	0.011	<1	<0,10	0.01	<2
88501	187	6319555	506589	Outcrop	Felsite o/c. 5 to 20% py, no cpy noted.	0.096	0.019	<1	0.10	0.01	33
88502	188	6318343	507500	Float	Felsite tuff. Several bldrs, 10 - 20% py, minor cpy.	0.707	0.006	<1	<0.10	0.01	3
n/a	180	6318270	507590	Outcrop	Granite, hilltop, Photo site	_					
88603	190	6318509	507740	Float	Feisite boulders on hillside with 15 - 25% cpy.	1.390	0.003	<1	<0.10	0.01	15
00080	101	6317627	508537	n/a	Intersection Old Base Line at E/W line 16 North					-	
n/a	102	6317477	506536	n/a	Intersection Old Base Line at lake shore, S end of BL.						
rva n/a	102	5317510	508536	n/a	Intersection Old Base Line at E/W line 12 North						
n/a	104	6316596	506007	n/a	Intersection Line 60 West with lake shore, S end of line.						
n/a	104	0010000	000007	n/a	Old Base Line appears to run 000 to 001 degrees True.						
99504	220	6318525	507250	Float	Felsite and gtzite with cov in fractures and dissem.	0.473	0.004	<1	<0.10	0.01	7
00004	240	6318171	507671	Float	Felsite boulder wirth 10 to 15 % cov.	2.360	0.001	<1	0.20	0.01	11
00090	218	6318516	507734	Float	Felsite boulder, angular,	1.500	0.001	<1	0.10	0.01	7
86590	210	6318644	507705	Float	Feisite breccia bouider with 15 to 25% cpy.	4.500	0.003	<1	<0,10	0.01	24
00001	21/	6318570	507854	Float	Feisite with atz/carb veins with 10 to 15% cpy.	0.119	0.007	<1	<0.10	0.02	6
00090	210	6318551	507723	Float	Felsite boulder wirth 10 to 15 % cpy.	1.120	< 0.001	<1	<0.10	0.01	45
00098	210	6318605	507714	Float	Feisite tuff bldrs with 10 - 15% cpy, and cpy.	4.260	< 0.001	<1	0.17	0.01	
00000	214	6317285	506793	Outcrop	Felsite+otz/carb vein, 10%+ py with <3% cpy.	0.004	0.015	<1	<0.10	0.01	<
00001	211	6317326	506813	Outcrop	Shoreline area sample of pyrite mineralization	0.005	0.014	<1	<0.10	0.01	
00002	212	6317224	506767	Outcron	Felsite with 10 to 20% pv, no visable cpy.	0.004	0.023	<1	<0.10	0.01	<
00003	210	6310686	507265	Floet	Felsite breccia with 10 -15% cpy.	0.616	0.006	<1	<0,10	0.01	
88004	213	6310600	507103	Outeron	Feisite with atz/carb veins with 10 to 12% cpv.	4.070	0.004	1	<0,10	0.01	<

RICHMOND MINERALS INC.

COLOMBET LAKE COPPER EXPLORATION PROJECT, SUMMER 2005, UNGAVA, QUEBEC

COPPER-RICH GLACIAL BOULDERS AND OUTCROP SAMPLE COMPILATION

88606	82	6319645	507235	Outcrop	Feisite from old 9m long trench (130 True), py+cpy	0.958	0.003	<1	<0.10	0.01	3
88607	224	6318312	507210	Float	Felsite Breccia boulder with 10 to 15% cpy.	2.050	0.001	<1	<0.10	0.01	13
88608	225	6318300	507170	Float	Felsite breccia boulder.	2.010	0.001	<1	0.10	0.01	9
88609	226	6318447	507710	Float	Felsite breccla with 10 -15% cpy.	3.400	< 0.001	<1	<0.10	0.01	11
88610	227	6318810	507278	Float	Felsite breccia with 10 -12% cpy.	0.170	0.003	<1	<0.10	0.01	4
88611	228	6319583	506342	Outcrop	Sample from blasted pit, 30% cpy +py.	1.620	0.012	2	0,10	0.02	11
88612	229	5318522	507150	Float	Felsite breccia boulder with 5 to 10% sulphides.	0.735	0.008	<1	<0.10	0.01	17
Laboratory	Way Point	UTM	UTM	Float or	Rock Type, Comments	ASSAY VALUES					INAA
Assay No.	Map No.	NORTH	EAST	Outcrop		Cu %	<u>Co %</u>	Ag g/t	Au g/t	As %	U ppm
END					End of Sampling Series for year 2005 summer field	season					
UTM rea	dings are in	NAD 83			Work done in July and August 2005 Wayne Lock	hart					