

# ONE WORLD LITHIUM ANNOUNCES GEOCHEMICAL RESULTS FROM ITS SALAR del DIABLO LITHIUM PROPERTY, BAJA CALIFORNIA, MEXICO

Vancouver, BC, April 11, 2018 - One World Lithium Inc. (CSE-OWLI) ("OWL") (the "Company") announces that fieldwork at Salar del Diablo Property (the "Property") was recently completed with the work being done from January, 2018 to the end of March, 2018. The programs included area wide geochemical sampling and a time domain electromagnetic survey, which encompassed 79.5 line kilometers. The geophysical program was completed on March 29, 2018 and those results will be released on receipt. The Company intends to complete a gravity survey in the near future and plans to drill test anomalous targets during May, 2018.

### **The Geochemical Program**

A lithium-in-sediment anomaly has been defined that extends over 18 kilometers from north to south and up to 7 kilometers from east to west or approximately 100 square kilometers located in the northern third of the Property.

The geochemical program utilized a six inch power auger to retrieve sediment and salt samples from 18 to 24 inches depth across the Salar with a sample distribution of 500 meters throughout the sampling area. Fifty-nine auger samples and four rock chip samples were taken in the northern part of the claim block as noted in table two. In addition, 28 samples are included from the previous surface sampling program as previously reported on March 10, 2017 and listed in table one. The samples were analyzed at ALS Chemex labs, in North Vancouver, BC.

The rock chip samples were taken from residual warm spring tufa mounds found during the exploration program. Tufa mound samples are anomalous in lithium 16.5 to 97.2 ppm (parts per million). The tufa mounds are aligned in a NNE trend, and may indicate an intra-salar fault that was recently active.

Statistical analysis indicates lithium values range from a low of 4.7 to a high of 196.5 ppm. The average is 83.65 ppm and the median is 75.75 ppm lithium. The lithium is accompanied by anomalous potassium which values range from a low of 0.07% to a high of 1.97%.

Table 1- 2016 lithium and potassium results

| GPS<br>Mark | SAMPLE<br>DESCRIPTION | Recvd<br>Wt. kg | K<br>% | Li ppm | Sample Notes                                                               |
|-------------|-----------------------|-----------------|--------|--------|----------------------------------------------------------------------------|
| 203         | 1029153               | 0.66            | 0.44   | 24.1   | rhyolitic tuff- mark 203                                                   |
| 204         | 1029154               | 1.07            | 0.81   | 35.2   | auger hole 1- 18 inch deep sample- mark 203                                |
| 205         | 1029155               | 1.51            | 0.81   | 28.4   | auger hole 2 - 22 inch deep sample- mark 203                               |
| 206         | 1029156               | 2.58            | 1.37   | 82.0   | auger hole 3-24 inch deep sample-valley floor is rhyolitic tuff - mark 206 |
| 207         | 1029157               | 3.52            | 0.81   | 35.1   | auger hole 4 - 24 inch deep sample- mark 207                               |
| 207         | 1029158               | 4.84            | 0.7    | 31.1   | auger hole 4 5 foot deep sample mark 207                                   |
| 210         | 1029160               | 1.77            | 0.08   | 5.0    | spherulitic rhyolite rock chip - mark 210                                  |
| 211         | 1029161               | 2.03            | 0.32   | 15.2   | fine grained lithic tuff- unconfrormable over spher rhy -mark 210          |
| 213         | 1029162               | 2.59            | 0.07   | 4.7    | crs grained qtz eye lithic tuff - mark 213                                 |
| 213         | 1029163               | 1.61            | 0.42   | 19.4   | fine grained qtz-mica shell bearing tuff- mark 213                         |
| 214         | 1029164               | 1.69            | 1      | 53.3   | auger hole 5 - 24 inch deep salar sed vfg soil - mark 214                  |
| 215         | 1029165               | 2.14            | 1.31   | 66.8   | auger hole 6- clayey salar sed-trc mca salt veneer on srfc- mark 215       |
| 216         | 1029166               | 1.62            | 0.66   | 69.2   | auger hole 7- vfg clayey brn soil, interstitial salt in mtx - mark 216     |
| 217         | 1029167               | 2.27            | 0.52   | 33.9   | auger hole 8- 24 inch deep, m-dk bn vfg slty-clayey w mca +salt-mark 217   |
| 218         | 1029168               | 2.1             | 1.58   | 132.5  | auger hole 9 - m bn clay w vfg salt, tr moisture- mark 218                 |
| 219         | 1029169               | 2.71            | 1.57   | 103.5  | auger hole 10- hard caliche at 18inch depth, m bn fg sdy silt- mark 219    |
| 220         | 1029170               | 2.01            | 1.41   | 91.2   | auger hole 11- dk bn cly slt w abun salt - mark 220                        |
| 220         | 1029171               | 0.75            | 1      | 66.3   | hand pick of salt concentrated at surface- mark 220                        |
| 221         | 1029172               | 2.36            | 1.4    | 92.0   | auger hole 12- vfg sdy silt w caliche layers - mark 221                    |
| 222         | 1029173               | 2.14            | 1.45   | 95.8   | auger hole 13- m bn slty qz-fld sltst - mark 222                           |
| 223         | 1029174               | 1.61            | 1.43   | 90.9   | auger hole 14- vfg qz-fld mica clay- mark 223                              |
| 224         | 1029175               | 2.43            | 1.97   | 188.5  | auger hole 15- hard salt srfc, 2 12 inch holes, mica clay- mark 224        |
| 225         | 1029176               | 2.04            | 1.41   | 159.5  | auger hole 16- slty cly com salt in mtx- mark 225                          |
| 225         | 1029177               | 0.78            | 0.92   | 84.3   | hand pick of salt concentrate at srfc- mark 225                            |
| 226         | 1029178               | 3.33            | 0.4    | 50.8   | auger hole 17- tan fg slty ss +/-mca, com thn cly layers- mark 226         |
| 227         | 1029179               | 0.53            | 0.52   | 30.8   | thn bedded slty vfg lakebed- mark 227                                      |
| 228         | 1029180               | 0.98            | 0.27   | 21.8   | cross bd qz-fld bio vfg ss- mark 228                                       |

Table 2 2018 lithium and potassium results

| GPS  | SAMPLE      | Recvd Wt. | К    | Li    |                                                      |
|------|-------------|-----------|------|-------|------------------------------------------------------|
| Mark | DESCRIPTION | kg        | %    | ppm   | Sample Notes                                         |
| 320  | 1028951     | 2.63      | 0.35 | 18.1  | feldspathic m grn ss, tr qz                          |
| 321  | 1028952     | 3.23      | 0.7  | 71.2  | moist clay, tr fld+evaps                             |
| 322  | 1028953     | 3.06      | 0.7  | 44.9  | f-m grnd fldspthc clay                               |
| 323  | 1028954     | 2.18      | 0.64 | 44.9  | moist mica rich mdst                                 |
| 324  | 1028955     | 2.84      | 1.24 | 69.9  | slty mdst, tr evap                                   |
| 325  | 1028956     | 2.75      | 1.37 | 84.8  | sdy sltst- lo moisture                               |
| 326  | 1028957     | 2.35      | 1.07 | 61.3  | muddy sltst, tr evap & moisture                      |
| 327  | 1028958     | 2.32      | 1.08 |       | sli clayey sdy sltst, lo moist+qz, mca, fldspr       |
| 328  | 1028959     | 2.61      | 0.77 | 46.6  | clayey sltst                                         |
| 329  | 1028960     | 2.73      | 1.53 |       | sltst, no clay, lo moist                             |
| 330  | 1028961     | 2.3       | 0.57 |       | qz-fldspr ss, vfg                                    |
| 331  | 1028962     | 0.77      | 0.58 |       | It bn vfg qz ss, wl srtd                             |
| 332  | 1028963     | 2.4       | 1.51 |       | med-fg qz-fldspr ss                                  |
| 333  | 1028964     | 1.54      | 0.84 |       | sli moist clayey fg qz-fld sltst w mnr sdy component |
| 335  | 1028967     | 1.71      | 0.82 |       | med bn qz sltst                                      |
| 336  | 1028968     | 0.79      | 1.48 |       | v dry slty mdst                                      |
| 337  | 1028969     | 0.62      | 1.51 |       | mdst w qz-rich sltst layers                          |
| 338  | 1028970     | 2.24      | 1.2  |       | slty mdst, com qz+fld                                |
| 339  | 1028971     | 1.33      | 1.38 |       | slty ss,vfg, sbang qz+fld+mica                       |
| 343  | 1028971     | 2.8       | 1.05 |       | sdy sltst, 1-3mm clay layers                         |
| 343  | 1028973     |           |      |       |                                                      |
|      |             | 1.57      | 1.65 |       | thin bd slty mdst, sli moist                         |
| 346  | 1028976     | 1.5       | 1.78 |       | vfg qz sltst, sli moist                              |
| 347  | 1028977     | 1.94      | 1.64 |       | sltyt mdst,tr evaps                                  |
| 348  | 1028978     | 3.93      | 0.37 |       | slty ss, prly srtd                                   |
| 349  | 1028979     | 3.12      | 0.55 |       | sbang vfg-fg qz ss, tr evap                          |
| 350  | 1028980     | 2.39      | 1.68 |       | dense bn mdst                                        |
| 351  | 1028981     | 2.57      | 0.51 |       | prly srtd vfg slty ss                                |
| 352  | 1028982     | 2.82      | 0.7  |       | vfg ss, vfg slt layers intermixed                    |
| 353  | 1028983     | 3.15      | 1.1  |       | vfg ss w slty mtrx                                   |
| 354  | 1028984     | 3.07      | 1.25 |       | slty mdst, mnr thin ss layers                        |
| 355  | 1028985     | 2.95      | 0.58 |       | vfg sdy sltst                                        |
| 356  | 1028986     | 2.87      | 1.37 |       | fg ss w com evap in mtrx                             |
| 357  | 1028987     | 3.79      | 1.18 |       | vfg sdy sltst, tr evap                               |
| 358  | 1028988     | 3.1       | 1.49 | 120   | sdy sltst/mdst w thin mdst layers .5-1mm             |
| 359  | 1028989     | 2.37      | 1.83 | 172.5 | It bn mdst, tr moist + evap                          |
| 360  | 1028990     | 2.51      | 0.86 | 67.8  | vfg sltst, tr evap                                   |
| 361  | 1028991     | 3.31      | 1.17 |       | It bn muddy sltst, no vis sd material                |
| 362  | 1028992     | 2.8       | 1.77 | 180.5 | hard mdst, tr moist, tr evap                         |
| 363  | 1028993     | 3.48      | 1.68 | 178.5 | It bn clyst, com evap in vfg cly mtl                 |
| 364  | 1028994     | 2.52      | 1.51 | 102   | intbd mdst-sltst, salty to taste no vis evaps        |
| 365  | 1028995     | 4.32      | 1.01 | 99.6  | gy-bn mdst, v salty, com evaps in clay frac          |
| 366  | 1028996     | 2.69      | 1.58 | 136   | It bn mdst, moist + evaps in mtrx                    |
| 367  | 1028997     | 3.6       | 1.52 |       | m bn muddy sltst                                     |
| 368  | 1028998     | 3.59      | 0.83 | 108   | m bn slty ss, salts on srfc, evaps in mtrx           |
| 369  | 1028999     | 2.03      | 1.87 | 196.5 | md bn plastic mdst, com moist, com evaps             |
| 370  | 1029300     | 3.2       | 1.25 | 159   | md bn mdst, some evaps                               |
| 371  | 1029301     | 3.45      | 1.13 | 73.5  | m bn slty ss, tr evap                                |
| 372  | 1029302     | 4.06      | 1.21 | 80.7  | md bn sdy sltst                                      |
| 373  | 1029303     | 3.31      | 1.19 | 126   | md bn sltst, some evap in mtrx                       |
| 374  | 1029304     | 3.33      | 0.75 | 52.4  | It - md bn vfg ss w cly mtrx                         |
| 375  | 1029305     | 2.65      | 0.98 |       | It bn sdy sltst, no evap noted                       |
| 376  | 1029306     | 3.03      | 1.43 |       | md bn sltst, no evap seen                            |
| 377  | 1029307     | 3.05      | 1.34 |       | vfg sltst, thin .5-1mm vfg ss layers                 |
| 378  | 1029308     | 2.93      | 0.62 |       | It bn vfg ss, no evap noted                          |
| 379  | 1029309     | 2.17      | 1.07 |       | It bn vfg sdy sltst, only sli salty                  |
| 380  | 1029351     | 2.25      | 1.1  |       | no description available                             |
| 381  | 1029352     | 0.84      | 1.48 |       | no description available                             |
| 382  | 1029353     | 1.23      | 1.72 |       | no description available                             |
|      |             |           |      |       |                                                      |
| 383  | 1029354     | 1.74      | 1.47 | 89.5  | no description available                             |

Bernard Kahlert, P. Eng., a Qualified Person, as defined by the National Instrument 43-101, has reviewed and approved the scientific and technical disclosure contained in this release.

#### **Stock Options**

The Company has granted incentive stock options to a consultant of the Company to purchase up to 300,000 common shares of the Company at a price of \$0.20 per common share. The stock options are exercisable on or before April 10, 2020 and are fully vested.

#### **About One World Lithium Inc.**

One World Lithium Inc. is an exploration Company with its primary focus on exploring and developing lithium projects of merit. It has an option to acquire up to a 90% working interest in the 75,400 hectares (290 square miles or 754 square kilometers), which covers a salar located in Baja California, Mexico. The company intends to list on the OTC QX board.

For further information please visit www.oneworldlithium.com or email info@oneworldlithium.ca

On behalf of the Board of Directors of One World Lithium Inc.,

"Douglas Fulcher"

## **Douglas Fulcher, CEO and President**

Forward-Looking Information: This press release may include forward looking information within the meaning of Canadian securities legislation concerning the business of the OWL. Forward looking information is based on certain key expectations and assumptions made by the management of the OWL, including the closing of the Transaction, the intention of OWL to proceed with the advancement of the Property and exercise of the option, and intentions regarding the proposed exploration program. Although OWL believes that the expectations and assumptions on which such forward looking information is based are reasonable, undue reliance should not be placed on the forward-looking information because OWL can give no assurance that they will prove to be correct. Forward looking statements contained in this press release are made as of the date of this press release. OWL disclaims any intent or obligation to update publically any forward-looking information, whether as a result of new information, future events or results or otherwise, other than as required by applicable securities laws. There can be no assurance that such statements will prove to be accurate and actual results and future events could differ materially from the those anticipated in such statements, important factors that could cause actual results to direr materially from the company's expectations include: (I) inability of OWL to execute its business plan and raise the financing required to close on the transaction and exercise the option; and (II) risks and market fluctuations common to the mining industry and lithium sector in particular. The reader is cautioned that assumptions used in the preparation of any forward-looking information may prove to be incorrect. Events or circumstances may cause actual results to differ materially from those predicted, as a result of numerous known and unknown risks, uncertainties, and other factors, some of which are beyond the control of the OWL. The reader is cautioned not to place undue reliance on any forward-looking information contained in this press release.