T.21,22N R.21,22E Lat 63° 39' N Long 141° 18' W

TECHNICAL REPORT on the TAURUS PROPERTY

Fairbanks Recording District Alaska, U.S.A.

for

SENATOR MINERALS INC

#1018 - 475 Howe Street Vancouver, BC V6C 2B3 Tel: 604-904-1330 Fax: 425-984-9440

by

Edward Harrington, B.Sc. (Geol.), P.Geo.

RELIANCE GEOLOGICAL SERVICES INC

3476 Dartmoor Place Vancouver, BC, V5S 4G2 Tel: 604-437-9538 Fax: 604-437-9531

15 January 2010

Reliance Geological Services Inc. -

TABLE OF CONTENTS - Taurus Technical Report

1.0	TITLE PAGE	i
2.0	TABLE of CONTENTS	ii
3.0	SUMMARY	iii
4.0	INTRODUCTION and TERMS of REFERENCE	1
5.0	RELIANCE on OTHER EXPERTS	1
6.0	PROPERTY DESCRIPTION and LOCATION	3
7.0	ACCESSIBLITY, CLIMATE, LOCAL RESOURCES, INFRASTUCTURE	
	and PHYSIOGRAPHY	3
8.0	HISTORY	4
	8.1 Area History	4
	8.2 Previous Work	
	8.2.1 1996 Exploration Work	
	8.2.1.1 General Methods and Procedures	
	8.2.1.2 Geophysics	
	8.2.1.3 Diamond Drilling	
	8.2.2 2007 Property Examination	
9.0	GEOLOGICAL SETTING	
	9.1 Regional Geology	
	9.2 Property Geology	
	9.2.1 General Geology	
	9.2.2 Lithologies	
	9.2.2.1 Precambrian	
	9.2.2.2 Cretaceous	
	9.2.2.3 Tertiary	
10.0		
11.0		
	11.1 Structure	
10.0	11.2 Alteration	
12.0		
13.0 14.0	DRILLING SAMPLING METHOD and APPROACH	
14.0 15.0	SAMPLING METHOD and APPROACH SAMPLE PREPARATION, ANALYSIS and SECURITY	
16.0	DATA VERIFICATION	
17.0	ADJACENT PROPERTIES	
17.0	17.1 Casino	
	17.1 Casilo	
18.0	MINERAL PROCESSING and METALLURGICAL TESTING	
19.0	MINERAL PROCESSING and METALLORGICAL TESTING	
20.0	OTHER RELAVANT DATA and INFORMATION	
20.0		

21.0	INTERPRETATIONS and CONCLUSIONS	.45
	21.1 Interpretations	
	21.2 Conclusions	. 50
22.0	RECOMMENDATIONS	.51
23.0	REFERENCES	.53
GLOS	SARY	.56
CERT	IFICATE	.58

LIST OF FIGURES

Figure 1	General Location	2
Figure 2	Claim Map	5
Figure 3	Soil Geochemistry - Copper	10
Figure 4	Soil Geochemistry - Molybdenum	11
Figure 5	Drilling Prior to 1996	12
Figure 6	Grid Location	14
Figure 7	1996 Drilling	22
Figure 8	Property Geology	28
Figure 9	T08-40 Cross-section	34
Figure 10	T08-41 Cross-section	35
Figure 11	T08-42 Cross-section	36
Figure 12	Inferred Resource Calculation – Areas of Influence	44
Figure 13	Recommended Drill Locations	52

LIST OF TABLES

Table 1	Drilling 1971-1980	8
Table 2	Drilling 1996	.17
Table 3	Selected 1996 Drilling Results	.20
Table 4	2007 Assay Results	.23
Table 5	Comparison Grades	.23
Table 6	2008 Drilling Geochemical Summary	.33
Table 7	Statistical Results for Chemex Analyses of Standard Samples	.39
Table 8	Casino Deposit – Resource Estimate	.41

LIST OF APPENDICES

APPENDIX A	Claim Information
APPENDIX B	Drill Logs
APPENDIX C	Sample Standards Specifications and Insertion Points
APPENDIX D	Core Sample Data
APPENDIX E	Comparison Values Chemex vs NITON
APPENDIX F	Inferred Resource Calculations

SUMMARY

At the request of Senator Minerals Inc ("Senator"), this technical report has been prepared on the Taurus property ("Property"), Fairbanks Recording District, Alaska, U.S.A. The report incorporates a summary of work, an estimate of inferred resources, an appraisal of exploration potential, and recommendations for further work. This report is based on a compilation and analysis of published geological reports prepared by cited persons, and the results of work programs supervised by the writer, a "qualified person" within the meaning of National Instrument 43-101 of the Canadian Securities Administrators.

The writer examined Property geology and infrastructure, and supervised the exploration programs carried out on the Property during June, July and August, 1996, and July, August, and September, 2008.

The Taurus property is situated in the Tanacross quadrangle, Fairbanks Recording District, Alaska, 10 miles west of the Yukon/Alaska border, and approximately 60 miles east-northeast of the Tok, Alaska, and consists of a contiguous block of twenty-seven 160-acre lode mining claims and six 40-acre lode mining claims, totaling 4,560 acres.

Geology consists of late Precambrian or early Palaeozoic basement rocks intruded by a Cretaceous granodiorite pluton and Tertiary felsic stocks, dykes, and volcanic rocks. The McCord Creek and Tourmaline faults crosscut the basement and intrusive rocks.

Porphyry-style, supergene and hypogene, copper/molybdenum/gold mineralization occurs at the East Taurus Zone within a Tertiary intrusive complex. Mineralization is hosted by quartz monzonite and quartz monzonite porphyry. An oxidized and argillically altered leach-cap overlies the mineralized zone and extends from surface to depths to 280 feet.

iii

Although the Taurus property has been the subject of surface exploration and at least eight drilling programs between 1971 and 2008, because of its significant size, the Property remains relatively unexplored.

Work by various companies during the 1970s consisted of mapping, geophysical and soil geochemical surveys, and 11,396 feet of diamond and rotary drilling.

In 1993, Noranda estimated a preliminary reserve on the East Taurus zone of 25 million tonnes grading 0.30% copper and 0.039% molybdenum. While this reserve estimate is considered relevant, it is historical, and does not meet NI 43-101 standards. Senator is not treating the historical estimate as a NI 43-101-compliant defined resource or reserve as it has not been verified by a qualified person. Therefore, this historical estimate should not be relied upon.

In 1996, Reliance Geological Services established a 50 line-mile grid and carried out IP and magnetic surveys over the Property, and an eight-hole diamond drill program totaling 8,052 feet at the East Taurus Zone. Significant porphyry-style mineralization and alteration were encountered within quartz monzonite porphyry. Significant results were:

- T96-30: 458 feet of 0.293% copper, 0.034% moly, and 0.108 g/t gold;
- T96-31: 984 feet of 0.161% copper, 0.024% moly, and 0.075 g/t gold;
- T96-32: 348 feet of 0.3% copper, 0.044% moly, and 0.188 g/t gold; and
- T96-37: 150-foot intersection of 0.324% copper, 0.027% molybdenum, and 0.071 g/t gold, and 420 feet of 0.204% copper, 0.031% molybdenum and 0.077 g/t gold.

In 2007, Adam Travis, an independent geologist, visited the Property along with a prospector and a geological assistant. Nine selected core intervals were taken from the core racks in order to prepare check samples of the 1996 drilling results. Check sampling assay results matched well with 1996 reported results.

iv

In 2008, Senator carried out a core drilling program on the Taurus property consisting of three vertical NQ2-size holes totaling 3,179 feet (969 meters). T08-40 was located to test to the north, and up-slope, of previous East Taurus drilling, while T08-41 and T08-42 were designed to test to the west and east respectively. Holes were placed within 600' of previously drilled holes in order to qualify all holes for resource development calculations. All three holes returned significant mineralized intervals:

- T08-40: 116 feet grading 0.186% copper, 0.038% moly, 0.33 g/t gold and 772 feet grading 0.309% copper, 0.036% moly, 0.245 g/t gold;
- T08-41: 179 feet grading 0.258% copper, 0.021% moly, 0.149 g/t gold; and
- T08-42: 57 feet grading 0.232% copper, 0.004% moly, 0.015 gold.

Results of the 2008 drilling have extended the East Taurus zone to the west, north, and east. The following table summarizes results from the 2008 drilling program.

	Interval				Value	Average Value					
Hole	Feet	Meter	r Copper (ppm		Gold (g/t)		Moly (ppm)		Cu	Gold	Moly
		s	Low	High	Low	High	Low	High	%	(g/t)	%
T08-40	116	35.4	642	5170	0.154	1.090	137	1560	0.186	0.330	0.038
	772	235.3	24	15400	0.027	2.660	12	1480	0.309	0.245	0.036
T08-41	179	54.6	731	5140	0.030	0.509	65	893	0.258	0.149	0.021
T08-42	57	17.4	1070	4260	0.010	0.021	10	171	0.232	0.015-	0.004

2008 Drilling Results Summary

Vertical hole T08-40, drilled in 2008, returned two intersections with significant results: 116 feet (35.4 meters) of 0.186% copper, 0.038% molybdenum, and 0.33 g/t gold, and 772 feet (235.3 meters) of 0.309% copper, 0.036% molybdenum, and 0.245 g/t gold, and ended in mineralized rock. The upper mineralized section of T08-40, 116 feet, is coincident with the leach-cap zone identified in the geological log. While drilling prior to 2008 showed that the leach-cap carried negligible metal values, T08-40 intersected significant values.

Significant exploration observations follow:

- T08-40, located outside of the anomalous soil area and along the northern edge of one of the IP anomalous zones, returned significant mineralization within the leach-cap. As topography rises to the northwest of T08-40, the unglaciated nature of the Property may have allowed geochemical elements in the soil to migrate downhill, making the area to the north and northwest of the East Taurus zone, which is outside the geochemical and IP anomalies, more prospective;
- Gold mineralization is closely associated with copper mineralization but also occurs separately. Copper mineralization, as shown by results from T08-042, can occur without significant gold or molybdenum mineralization. The differing mineral associations suggests that Taurus may have been affected by multiple mineralizing events, each depositing a different mineral suite;
- The four zones of anomalous IP chargeability shown by the 1996 IP survey cover a total area of approximately 4.7 square kilometers at an inferred depth of 500 feet (152 meters). Copper-in-soil (>100 ppm or 0.01%) and molybdenum-in-soil anomalies (>10 ppm, or 0.001%) are associated with the IP anomalies, overlying approximately 10% of the IP area;
- While forty-five holes have been drilled, with more than half located in the East Taurus zone, only twenty-five were more than 300 feet (100 meters) deep;
- Hole 75-1, drilled vertically to 908 feet (276 meters) in 1975, had calculated results of 0.401% copper and 0.039% molybdenum from the last 83 feet (25 meters), with the hole terminating in mineralization grading 0.55% copper;
- Hole ET-2, drilled in 1979, and the first cored hole to be analyzed for gold, was drilled vertically to 950 feet (290 meters) and intersected gold mineralization ranging from 200 ppb to 7,800 ppb (0.2 to 7.8 g/t). The average grade over 553 feet (168 meters), from 27 to 580 feet (8 to 177 meters), was 603 ppb (0.603 g/t) gold;

- Holes 75-1 and ET-1 were not originally assayed for gold. In 1990, six samples of salvaged core assayed from 9.26 to 62.74 g/t gold;
- The Taurus Bowl, consisting of West Taurus and Zone 4, with coincident anomalies including copper and molybdenum in soils and IP chargeability, has been drill tested, but not at depths greater than 120 feet;
- In 1971, two shallow holes drilled in the Taurus Bowl encountered copper geochemical values ranging from 58 to 460 ppm, with copper values increasing with depth. In 1993, a 185-foot (56-meter) RC hole was drilled in the Taurus Bowl area but was abandoned. No copper mineralization was observed, but gold values over the hole ranged from 40 ppb to 168 ppb (0.04 to 0.168 g/t);
- Although the most significant copper-gold-molybdenum mineralization has been encountered in quartz monzonite and quartz-monzonite porphyry, schists and gneisses could also hold potential to host mineralization. In 1970, DH-10, drilled in East Taurus, terminated in gneiss averaging 0.14% copper. The presence of this mineralization along with the southward extension of the 2 square kilometer 1996 IP anomaly, which extends south from East Taurus, suggests that the area south of East Taurus is open; and
- Both Taurus and the nearby Casino deposit show porphyry-style copper-goldmolybdenum mineralization with similar host rocks and mineralization/alteration styles, as well as intact supergene enrichment zones that have not been scoured off by subsequent glaciation.

The Taurus property is considered to have good potential to host an economic copper-molybdenum-gold porphyry-style deposit because:

 An inferred mineral resource at Taurus is estimated at 75.2 million tons grading 0.275% copper, 0.032% molybdenum, and 0.166 g/t gold. The estimated inferred resource would contain 414.2 million pounds of copper, 48.8 million pounds of molybdenum, and 401,700 ounces of gold.

- Porphyry-style mineralization and alteration have been identified in an alkaline intrusive complex;
- Mineralization at the East Taurus Zone is open to the west, north, south, and east, as well as at depth;
- Significant copper, molybdenum, and gold values have been obtained from close to surface to depths of over 1,400 feet in the East Taurus Zone. Because deep holes have ended in mineralization with significant values, the exploration target is considered open at depth throughout the area of the IP anomaly;
- Shallow drill holes in the Taurus Bowl has shown some copper mineralization, which although not significant, has been reported to increase in grade with depth;
- Target areas, consisting of favorable geology and associated geophysical and geochemical anomalies, have been defined at the East Taurus, McCord Creek, West Taurus and No. 4 zones. Results from drill hole T08-40 (2008) suggest that the area up-slope of the geochemical anomalies may be prospective. The combined area of the identified geophysical and geochemical targets is approximately 3.86 square miles (10 square kilometers); and
- Potential size: Drilling shows significant copper mineralization at a depth of over 1,400 feet. Using an average thickness of 1,000 feet, an area of 3.86 square miles, and a rock weight of 168 pounds per cubic foot, the Property's anomalous target zone hosts approximately 9 billion tons of material.

Four target areas of potential porphyry-style mineralization warranting core drilling have been outlined on the Taurus property. The number of target areas identified by exploration work to date supports the recommendation of at least twenty drill holes. Drilling is designed to reach depths of up to 2,000 feet (610 meters).

The main priority of the next core drilling program should be to test the area north and west of the East Taurus zone in order to expand the inferred resource estimate.

viii

Reliance Geological Services Inc.

Core drilling is also recommended to test IP and geochemical anomalies comprising the portion of East Taurus south of McCord Creek, the central McCord Creek zone, and the western Zone 4 and West Taurus zones.

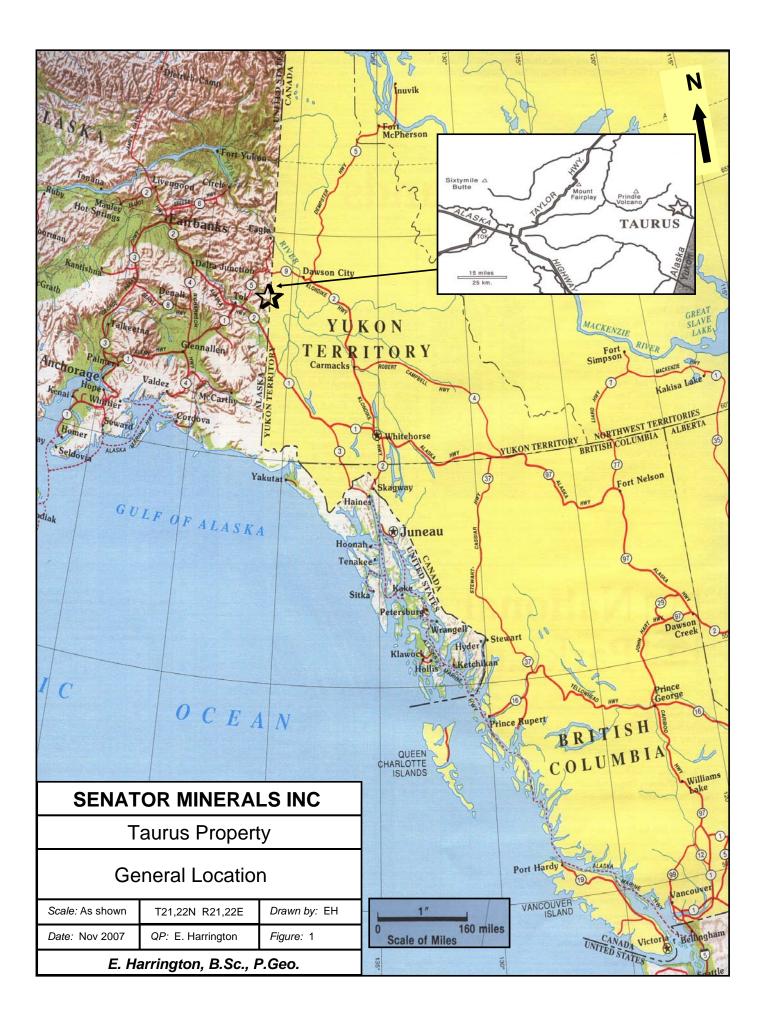
As expanding the size of the East Taurus deposit is a priority, drilling should commence at East Taurus, and possibly only move to other target areas when the extent of mineralization at East Taurus has been defined.

It is estimated that drilling will total approximately 40,000 feet (12,200 meters) and cost US\$6,000,000.

Reliance Geological Services Inc. -

4.0 INTRODUCTION and TERMS of REFERENCE

At the request of Senator Minerals Inc (the "Company" or "Senator"), this technical report is presented for the Taurus property ("Property"), Fairbanks Recording District, Alaska, U.S.A, to summarize exploration work, estimate inferred resources, appraise the exploration potential of the Property, and make recommendations for future work. The Taurus property consists of a contiguous block of twenty-seven 160-acre and six 40-acre unsurveyed lode mining claims, totaling 4,560 acres.


This technical report is based on geological reports, a compilation of published and unpublished data, maps and reports by cited authors, and field examinations of the Property made by the writer. The writer is a "qualified person" within the meaning of National Instrument 43-101 of the Canadian Securities Administrators.

The writer examined Property geology and infrastructure, and supervised the exploration programs carried out on the Property during June, July and August, 1996, and from 16 July to 4 September, 2008.

Because the majority of the information about the Property and surrounding areas is given in American terms and units, this report will use American terminology to maintain consistency. Metric units will be given as required for clarity.

5.0 RELIANCE on OTHER EXPERTS

This report is based on a review of information provided by the Property owner, published and private geologic reports, observations made during the 1996 exploration program on the Property, check sampling done in 2007, and the 2008 core drilling program. All interpretation and conclusions are based on the writer's research and personal examination of the Taurus property.

6.0 PROPERTY DESCRIPTION and LOCATION

The Property is located 10 miles west of the Alaska-Yukon border in the Tanacross (C-1) quadrangle in east-central Alaska, USA at latitude 63° 39' North by longitude 141° 18' West (Figure 1). The Taurus property is 34 miles east of Mile 20 on the Taylor Highway, 60 miles east-northeast of Tok Junction on the Alaska Highway, and 52 miles northnortheast of the settlement of Northway.

The Taurus property consists of twenty-seven 160-acre and six 40-acre contiguous unsurveyed lode mining claims (Figure 2). Total area covered by the claims is 4,560 acres. The claims are registered in the name of Richard R. Redfern of Elko, Nevada ("Redfern") and beneficially owned 100% by Senator Minerals Inc. There are no royalties attached to the Property. The writer has investigated claim ownership and assessment filing, and the Taurus claims are in good standing until 31 August 2010. See Appendix A for claim details.

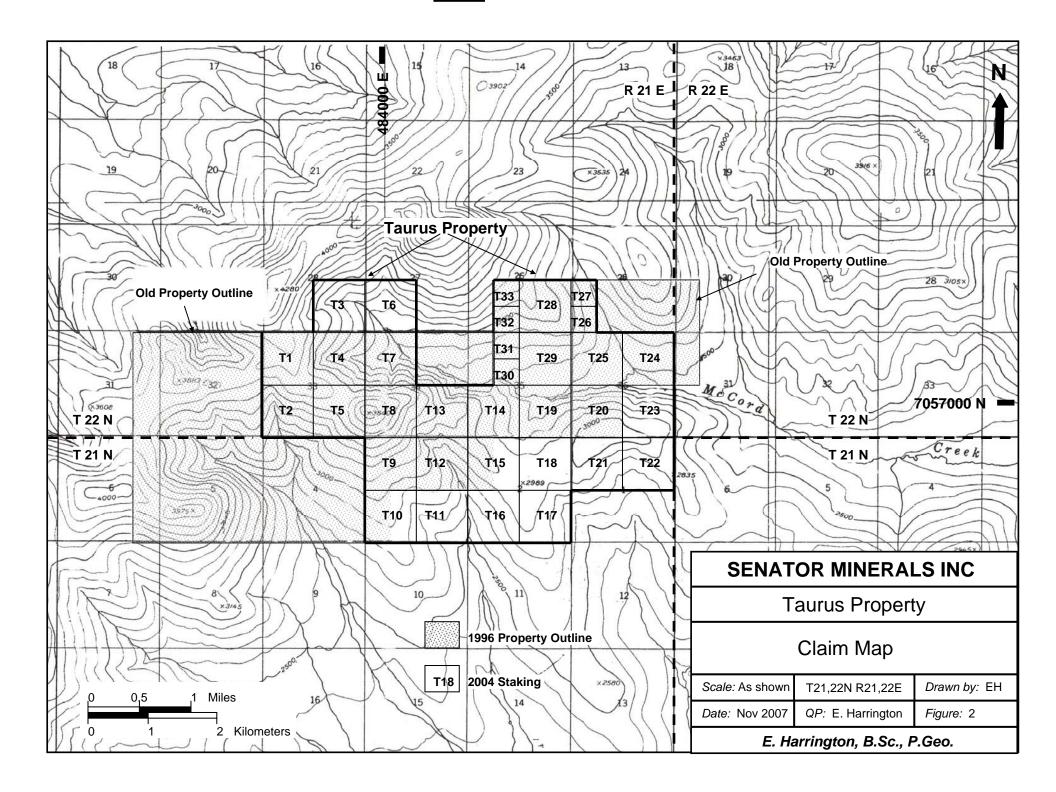
The writer is not aware of any particular environmental, political, or regulatory problems that would adversely affect mineral exploration and development on the Property. It should be noted that a proposed Hardrock Mining and Reclamation Act of 2009 ("H.R. 699") includes a 4% royalty on existing mining projects and an 8% royalty on new projects, and would eliminate the process for patenting federal land (http://www.opencongress.org/bill/111-h699/show\, January 2010).

7.0 <u>ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTUCTURE, and</u> <u>PHYSIOGRAPHY</u>

Main access to the Taurus property is by either helicopter or fixed wing aircraft. There are two gravel airstrips available, East Taurus and Taurus Bowl.

The East Taurus strip was renovated for the 2008 drilling program and is in good condition. Small single-engine planes can land on the Taurus Bowl strip, but it would require upgrading in order to support an exploration program. Aircraft charter service is based in Tok, Alaska, approximately 40 minutes away by air.

There are numerous two-track trails leading into the Property area from the Alaska Highway to the south, and the Taylor Highway to the west. Alternative winter access along these trails is possible for tracked vehicles and equipment while freezing conditions exist. As land ownership is a mix of State of Alaska, Bureau of Land Management (federal), and aboriginal, trail access would have to be negotiated.


The Property is situated within the unglaciated Yukon-Tanana Upland physiographic region, the Alaskan extension of the Klondike Plateau region in the Yukon Territory. The topography is moderately rolling, with elevations ranging from 2,300 feet along the eastern Property boundary to 4,200 feet in the northwest corner of the Property. The Taurus property covers the northern, western, and southern slopes and ridges forming the watershed of eastward-flowing McCord Creek. The eastern-most claims cover the northern and southern slopes of the McCord Creek drainage.

The area has annual precipitation of less than 20 inches. Temperatures range from winter lows of -50°F to summer highs of 90°F. Field season is mid-May to mid-October.

8.0 <u>HISTORY</u>

8.1 Area History

Placer gold was discovered in the Yukon-Tanana region in 1893, and placer mining was active until 1916. After World War I, gold production declined until the late 1920s, when large dredging operations became productive in the Fairbanks district.

Mining activity continued until World War II, when the Strategic Metals Act was introduced and many gold mining operations were closed. In the early 1990s, placer gold mining claims were operated on McCord Creek immediately east of the Property but production data are unavailable.

8.2 Previous Work (Figures 3, 4, 5, 6 and 7)

- 1970: International Minerals and Chemicals Corp ("IMCC") contracted a reconnaissance geochemical program that led to the discovery of coppermolybdenum mineralization and the subsequent staking of the original Taurus property. IMCC later conducted soil sampling and an induced polarization survey.
- 1971: Duval Corp diamond drilled seventeen holes; two in the "Taurus Bowl" area, now West Taurus and Zone 4, and fifteen in the East Taurus zone. The Taurus Bowl drill holes, which were 121 and 103 feet in depth, did not intersect significant copper or molybdenum mineralization. Both holes encountered copper geochemical values ranging from 58 to 460 ppm, with copper values increasing with depth. A ground magnetic survey was completed over the Taurus area.
- 1974: Rioamex, a division of Atlas Alloys Inc, used six rotary drill holes to test new areas of significant mineralization, but not to enlarge or define known areas of mineralization. None of these drill holes intersected significant mineralization. Deep over-burden was apparently a problem.
- 1975: IMCC diamond drilled two deep holes in the East Taurus zone to test its deepseated porphyry copper-molybdenum potential. Hole 75-1, drilled vertically to 908 feet (276 meters), cut an 853-foot intersection containing 0.345% copper and 0.039% molybdenum. The last 83 feet contained 0.401% copper and 0.039% molybdenum, terminating in mineralization grading 0.55% copper. Hole 75-2 cut a 714-foot intersection containing 0.22% copper and 0.019% molybdenum, with the hole bottoming in 0.15% copper.

- 1976: Cities Service Minerals Corp ("CSMC") conducted detailed magnetics surveying, geochemical sampling and additional reconnaissance and detailed geological mapping of the East Taurus zone.
- 1977: CSMC conducted 1,072 line-miles of combined airborne magnetics and electromagnetics surveys in the Ladue area of the Tanacross quadrangle, including detailed frequency domain IP and ground magnetics.
- 1978: 1979 U.S. Borax joint ventured the Taurus property with CSMC, assumed operatorship, and over the next two years carried out geological mapping rock geochemical sampling, and diamond drilling of two holes on the East Taurus zone. Hole ET-1 intersected 0.190% copper and 0.020% molybdenum from 450 to 621 feet (171 feet) in quartz latite breccia.
- 1979: The U.S. Boraz/CSMC joint venture drilled Hole ET-2, which returned 0.260% copper and 0.048% molybdenum from 180 to 950 feet (770 feet), including 390 feet of 0.320% copper and 0.063% molybdenum, and intersected 603 ppb (0.018 oz/t) gold from 27 to 580 feet (553 feet).

ET-1 and ET-2 were collared within 400 feet of each other. Most of this work was directed at assessing potential for porphyry-style copper-molybdenum mineralization.

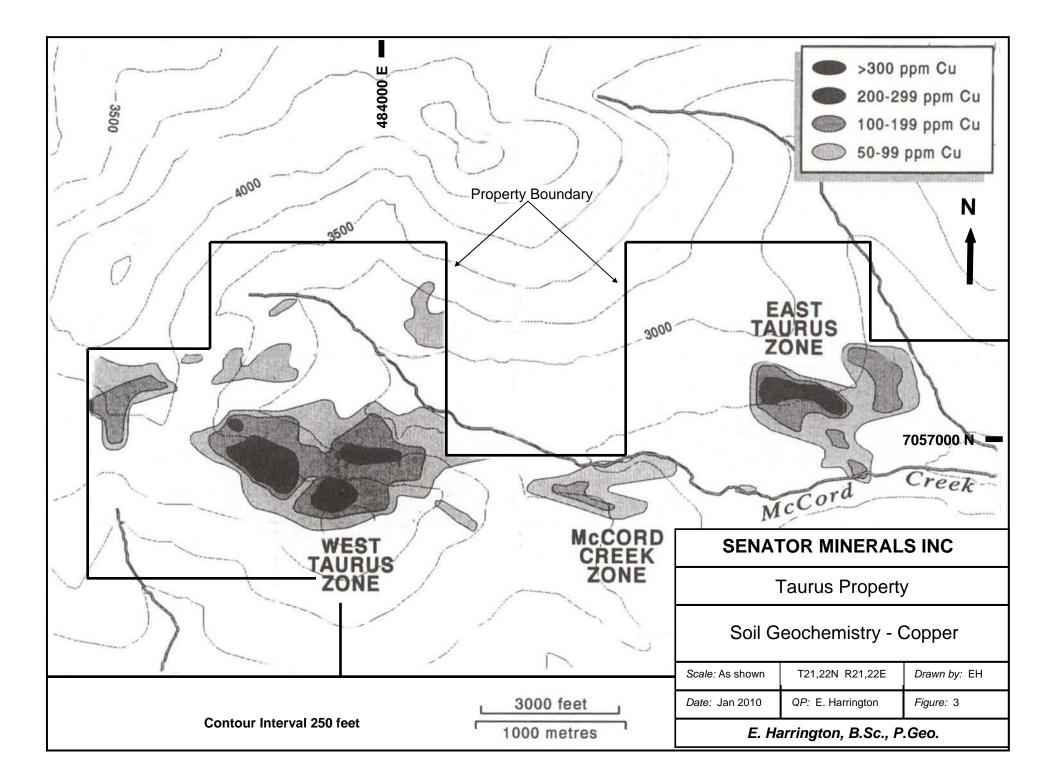
1980: CSMC drilled DDH-24 (351 ft) on the East Taurus zone and intersected well altered and mineralized quartz monzonite and quartz diorite over the entire length averaging 0.20% copper. Below the leach-cap (220 feet), an average grade of 0.43% copper was returned.

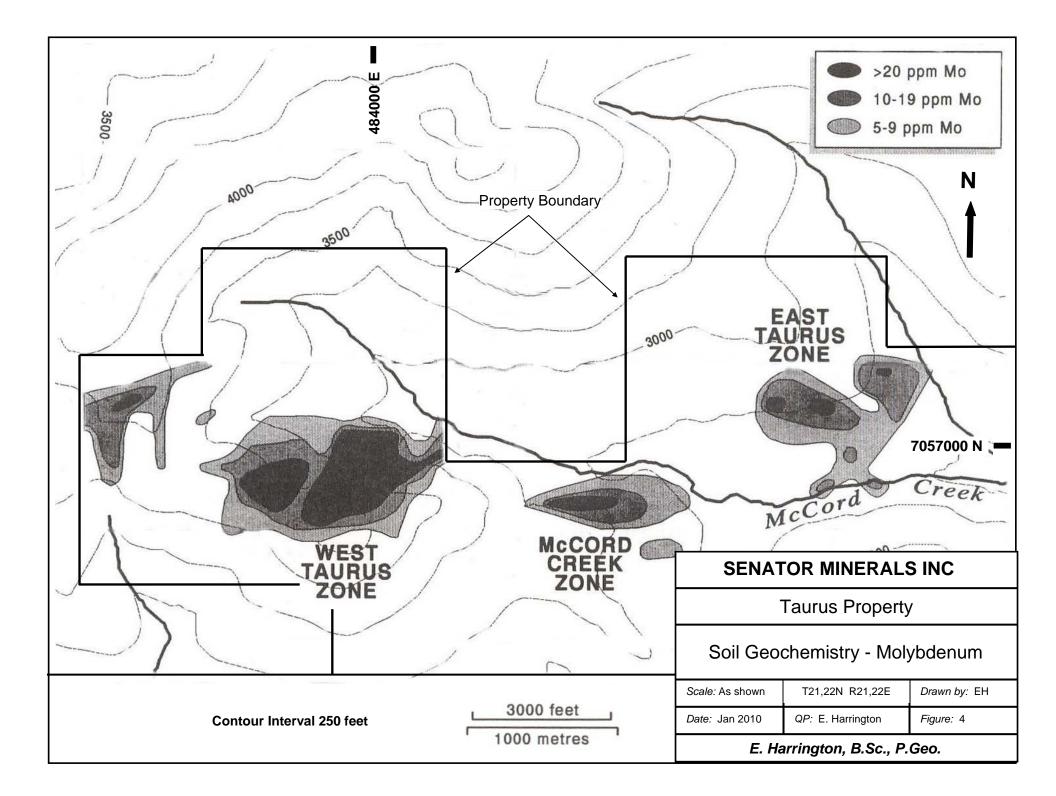
A summary of results from various rotary and diamond drilling programs from 1971 to 1980 follows:

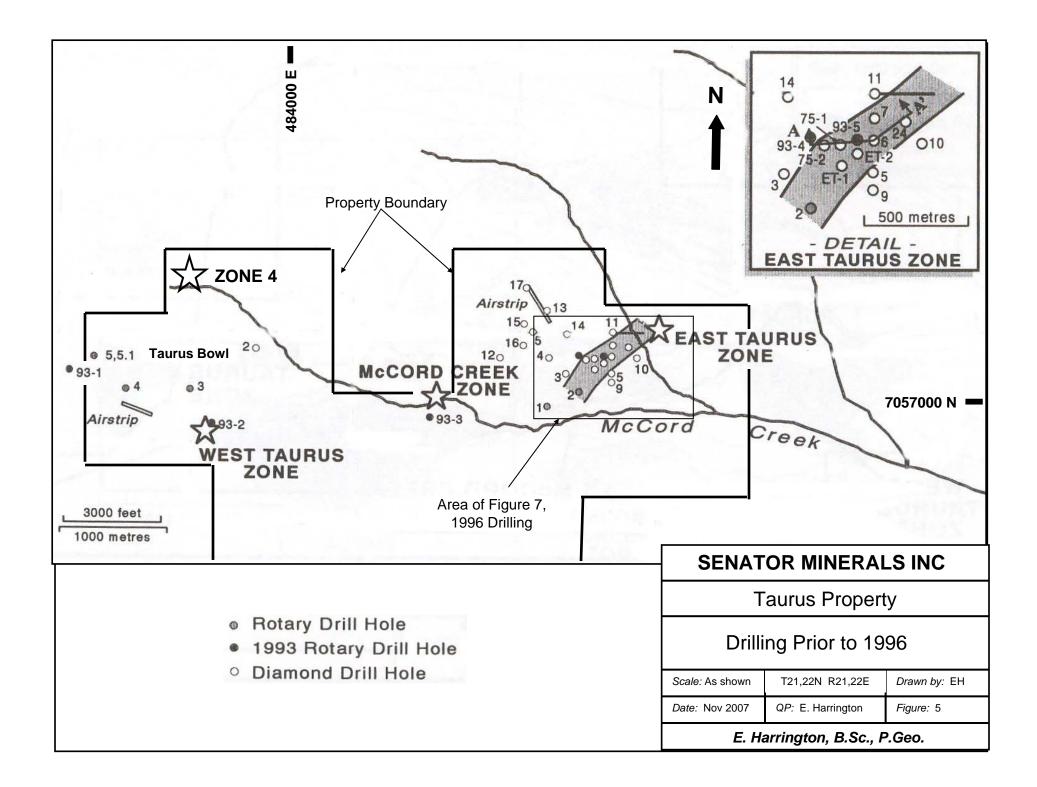
Table 1: Drilling 1971-1980

Year	Hole	Hole	RAA-Grid	Location	Lgth	Interce	ept (ft)	Interval	Cu	Мо	Comments
	Туре	No.	E-W	N-S	(ft)	From	То	(ft)	(%)	(%)	
1971	DDH	1	T30+00W	00+00S	121						Ms-To altd gneiss
1971	DDH	2	T30+00W	06+00S	103						Prop-altd gneiss
1971	DDH	3	T65+00E	15+00S	322						Qz-ms altd breccia
1971	DDH	4	T60+00E	09+00S	207						Prop-altd Tqmp
1971	DDH	5	T55+00E	00+00S	325						Qz-ms altd Tbx
1971	DDH	6	T80+00E	09+00S	365	140	365	225	0.317	0.030	Qs-ms altd Tqmp
		21				180	365	185	0.357	0.030	
						210	315	105	0.470	0.030	
1971	DDH	7	T80+00E	05+00S	350	130	245	115	0.360	0.015	Qs-ms altd Tqmp
1971	DDH	8	T80+00E	13+00S	360						Qz-altd gneiss
1971	DDH	9	T86+93E	17+00S	350						Qz-altd gneiss
1971	DDH	10	T80+00E	09+00S	350						Qz-altd gneiss
1971	DDH	11	T80+00E	01+00S	300						Qz-altd Tqmp
1971	DDH	12	T45+00E	09+00S	255	155	160	5	0.120	0.004	Qs-ms altd
				2							Tqmp/gneiss
1971	DDH	13	T59+10E	07+20N	398						Qz-ms altd Tbx
1971	DDH	14	T55+00E	01+00S	350						Ms-altd Tqp
1971	DDH	15	T52+00E	03+00N	396		5				Qz-ms altd Tbx
1971	DDH	16	T52+00E	05+00S	288						Propylitic altd Tqmp
1971	DDH	17	T52+00E	05+00N	416	<u>ن</u>					Ms-altd Tbx
1974	RDH	1	T60+00E	25+00S	240		~				Abandoned in OB
1974	RDH	2	T69+50E	20+30S	144						Abandoned in OB
1974	RDH	3	T70+00W	20+00S	72						Propyl. altd Tqmp
1974	RDH	4	T70+00W	20+00S	140						Propyl. altd Tqmp
1974	RDH	5	T80+00W	09+00S	30						Aband. in schist
1974	RDH	5.1	T80+00W	09+00S	263						Aband. in schist
1974	RDH	6	T10+00W	36+00N	160						Aband. in schist
1975	DDH	75-1	T74+35E	09+32S	908	50	908	858	0.345	0.039	Qz-ms altd Tqmp
						170	908	738	0.368	0.039	
						825	908	83	0.401	0.039	
1975	DDH	75-2	T71+50E	10+00S	904	0	904	904	0.183	0.019	Qz-ms altd Tqmp
						190	904	714	0.220	0.019	
1978	DDH	ET-1	T75+00E	13+80S	621	450	671	171	0.190	0.020	Qz-ms altd Tqmp
						570	621	51	0.210	0.030	
1979	DDH	ET-2	T77+40E	11+90S	950	180	950	770	0.260	0.048	Qz-ms altd Tqmp
						560	950	390	0.260	0.063	
1980	DDH	24	T84+00E	05+00S	351	15	351	336	0.200		Qz-ms altd Tqmp
						220	351	131	0.430		

1990: East Taurus property staked by J.B.O'Neill, who made a field examination of the East Taurus zone and took six samples of salvaged drill core from holes 75-1, ET-1, and ET-2. Assay results ranged from 0.027 to 1.83 ounces per ton (0.926 to 62.743 grams per tonne (g/t)) gold.


1991: P. D Leriche (P.Geo.) examined the Property and collected 7 rock samples from the East Taurus zone for Lodestar Explorations Inc. Results ranged from <5 to 325 ppb gold, 5 to 560 ppm (0.56%) copper, and 5 to 48 ppm (0.048%) molybdenum.


Noranda carried out a soil survey consisting of 18 samples was carried out on the Taurus Bowl, and provided results to Lodestar. Samples were taken along a north-south traverse line and showed a 2,500-foot long anomalous zone, with copper values over 55 ppm (up to a high of 429 ppm) and molybdenum values over 10 ppm (up to a high of 56 ppm).

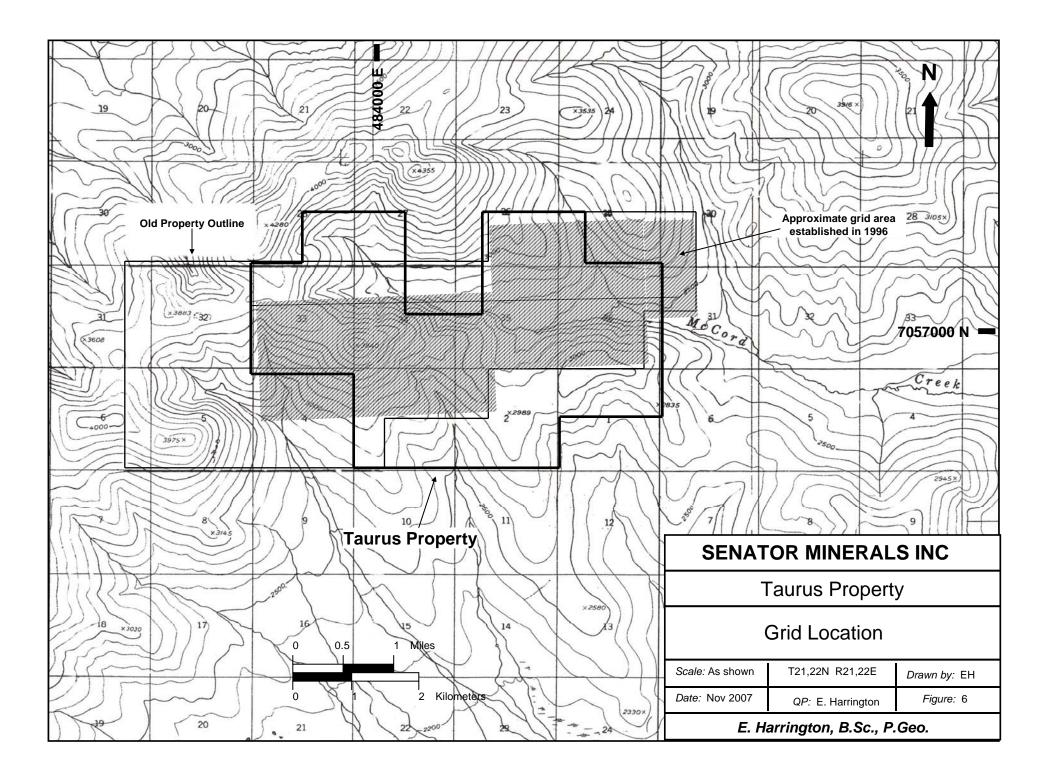

- 1992: Noranda, on behalf of Lodestar/Hemlo, carried out geological mapping and conducted airborne magnetic, electromagnetic, and resistivity surveys.
- 1993: Noranda drilled five RC holes totaling 1,325 feet (404 meters) in the Taurus Bowl, East Taurus, and McCord Creek zones. Hole 93-5, which twinned hole 75-1 drilled in 1975, returned a 160-foot intersection, from 115 to 275 feet, containing 0.47% copper. Noranda reported that the East Taurus zone had preliminary reserves of 25 million tonnes grading 0.3% copper and 0.039% molybdenum. While the reserve calculation is considered relevant, it is historical, and does not meet NI 43-101 standards. Senator is not treating the historical estimate as a NI 43-101-compliant defined resource or reserve as it has not been verified by a qualified person. Therefore, the historical estimate should not be relied upon.

Deeper drilling carried out on the 1975 and 1978-1979 work programs returned significantly better results than the shallower drilling of other historical work programs, suggesting that mineralization grades may improve with depth.

In 1997, some exploration work, including reverse circulation drilling, was conducted by Cross Canada International but, due to technical and organizational problems, no results are available.

8.2.1 1996 Exploration Program

During June, July, and August 1996, Reliance Geological Services Inc carried out an exploration program on the Taurus property consisting of linecutting, IP and magnetic surveys, and diamond drilling, under Miscellaneous Land Use Permit F9658983.


8.2.1.1 General Methods and Procedures

Fifty line-miles of grid line were cut with north-south lines established at 400 foot intervals (Figure 6). Stations were marked using embossed metal tags on wooden pickets at 200 foot intervals.

Lloyd Geophysics Inc of Vancouver, B.C., completed 50 line-miles of IP and magnetic surveys. The IP survey used a 6 channel IP-6 receiver. Dipole spacing was 300 feet. The magnetic survey used a GSM-19 Overhauser field magnetometer combined with an Omni Plus base-station magnetometer. Data was collected every 50 feet along cross lines.

Boyles Brothers Drilling Company, Anchorage, Alaska, completed 8 HQ/NQ diamond drill holes totaling 8,052 feet using a BB 15/CS 1000 drill rig. Drill core was geologically and geotechnically logged.

All cores were split using a bench-mounted manual splitter. Core samples, generally six feet lengths, were identified using sample books containing uniquely and consecutively numbered two-part pages, and were then shipped to Chemex Laboratories Ltd., North Vancouver, B.C. Core samples were assayed for gold, copper and molybdenum, and for multi-element ICP. The remaining sample half was returned to the core box. A total of 1,276 core samples were analyzed. All core boxes were stored in racks on site.

Exclusive air access to the Taurus site provided a high degree of security as air traffic into the project could be closely monitored. Qualified geologists supervised all sampling and sample storage prior to shipment.

8.2.1.2 Geophysics

The following is a summary of the geophysical report written by D. A. Klit, Lloyd Geophysics Inc, who planned and supervised the survey. IP data delineated four large zones of increased chargeability interpreted as representing a large porphyry system worthy of further exploration by drilling. No significant correlation between IP and ground magnetic surveys was evident.

Zone 1 (East Taurus)

Zone 1 encompasses the East Taurus Zone and is centered on line 51200E at about 47800N. The best defined portion of the anomaly covers an area measuring about 3,000 feet by 4,000 feet. Chargeability values are generally over 20 milliseconds (ms) below the first dipole separation, suggesting that a large portion of the zone is covered by overburden or a sulfide-poor layer up to 200 feet thick. The anomaly surfaces on the south side of McCord Creek, at about 7300N between lines 50000E and 53200E, where chargeability values are as high as 40 ms. The majority of the anomaly, with values greater than 20 ms, is within a resistivity low (below 500 ohm-m). A subtle east-west feature delineated by a resistivity low, along 49700N between lines 50800E and 53200E, may represent the McCord Creek fault.

Zone 2 (McCord Creek Zone)

Zone 2 is centered at about 44800E, 46000N, is 5,000 feet long in an east-west direction, and open to the south. Chargeability values range from 30 to >70 ms. The well defined northern boundary of the anomaly is indicative of a geological contact. The anomaly surfaces at about 46600N between lines 42800E and 44800E. Associated resistivity values are below 100 ohm-m.

Zone 3 (West Taurus)

This anomaly is defined by a northeast-southwest trending, oval-shaped zone centered at 40400E 47000N, with dimensions of about 2,600 feet by 4,000 feet.

Associated resistivity values vary from approximately 700 to 3,000 ohm-m on the deeper separations. High surface resistivity values of up to 16,000 ohm-m are probably caused by talus and/or overburden. Near-surface chargeability values are about 16 to 17 ms, increasing to >30 ms at depth. The anomaly is significantly deeper to the north of 47600E between lines 39600E and 40800E.

Zone 4

This zone is located in the northwest portion of the grid and is open to the north and west. Chargeability values are the same order of magnitude as those in the West Taurus Zone but are near surface.

A narrow chargeability/resistivity low separates Zone 3 from Zone 4. The low is coincident with a magnetic high and is possibly the result of a small post-mineralization intrusion.

The four chargeability anomalies are defined by chargeability values >24 ms, giving a combined area of approximately 4.7 square kilometers.

8.2.1.3 Diamond Drilling (Figure 7)

Eight HQ/NQ diamond drill holes totaling 8,052 feet, with core recovery exceeding 95%, were completed at the East Taurus Zone.

Drilling details are:

Drill Hole	Grid Location	Elevation (meters)	Azimuth	Dip	Length (feet)	Overburden (feet)
T96-30	49950N 51960E	2600	-	-90°	968	24
T96-31	49370N 51100E	2660	-	-90°	1450	20
T96-32	49280N 51490E	2641	320°	-60°	1037	39
T96-33	49280N 51490E	2641	280°	-55°	1107	47
T96-34	49038N 50640E	2684	-	-90°	957	22
T96-35	49038N 50640E	2684	140°	-60°	808	30
T96-36	49038N 50640E	2684	230°	-60°	788	10
T96-37	49880N 51780E	2600	050°	-50°	937	20

T96-30

Drill hole T96-30 intersected quartz monzonite porphyry and granodiorite containing local zones of sericite schist and intrusive breccia. Below an approximately 200 feet thick leach-cap, carrying negligible metal values, 75 feet of supergene mineralization was intersected averaging 0.50% copper and 0.026% molybdenum. Below the supergene zone, 458 feet of hypogene mineralization was intersected averaging 0.29% copper and 0.034% molybdenum.

Mineralized zones are dominated by chalcopyrite, pyrite and local molybdenite, occurring mainly as grains and blebs within quartz stringers and veinlets. Biotite-chlorite-magnetite and sericite-clay alteration dominate within mineralized intervals. Below the hypogene mineralization, granodiorite occurs with negligible metal values.

T96-31

Drill hole T96-31 intersected feldspar-quartz porphyry with local zones of intrusive breccia and quartz monzonite porphyry.

Below an approximate 140 feet thick oxidized leach-cap, carrying negligible metal values, 120 feet of supergene mineralization was intersected averaging 0.23% copper and 0.027% molybdenum. Below the supergene zone, 1,100 feet of hypogene mineralization was intersected averaging 0.15% copper and 0.22% molybdenum. Chalcopyrite, pyrite, molybdenite and rare chalcocite, occur mainly as fracture-fillings of blebs within quartz veins, and as local zones of disseminated grains. Biotite-magnetite and sericite-clay alteration dominate mineralized zones.

T96-32

From surface, drill hole T96-32 intersected quartz monzonite porphyry with local intrusive breccia, quartz latite, intrusive breccia, feldspar-quartz porphyry and granodiorite. Below an approximately 170 feet thick oxidized leach-cap, carrying negligible metal values, 774 feet of hypogene mineralization was intersected including 420 feet averaging 0.15% copper, 0.046% molybdenum, and 0.217 g/t gold, and 348 feet averaging 0.30% copper, 0.044% molybdenum and 0.188 g/t gold. Fracture-fillings and disseminated grains of chalcopyrite, pyrite, and lesser molybdenite, and chalcocite, occur throughout the mineralized interval, with pyrite and chalcopyrite content increasing with depth.

T96-33

From surface, drill hole T96-33 intersected quartz monzonite porphyry, quartz latite and feldspar-quartz porphyry with local intrusive breccia. Below a 190 feet thick oxidized leach-cap, carrying negligible metal values, a 90 feet thick supergene zone was intersected averaging 0.14% copper.

Below the supergene zone, low-grade hypogene mineralization was intersected averaging 0.07% copper over 772 feet. The hole bottomed in low-grade mineralization. Disseminated pyrite and pyritic stringers and veinlets are common throughout the mineralized zones, with minor chalcopyrite and molybdenite. Chlorite and sericite-clay alteration dominate, with local narrow zones of weak biotitemagnetite alteration.

T96-34

From surface, drill hole T96-34 intersected quartz monzonite porphyry with local quartz latite, intrusive breccia and sericite schist. Below a 174 feet thick oxidized leach-cap, carrying negligible metal values, 120 feet of low-grade hypogene copper mineralization, averaging 0.085%, was intersected. Disseminated pyrite, averaging 1.5%, occurs with minor chalcopyrite and molybdenite. Sericite-quartz alteration predominates.

T36-35

From surface, drill hole T96-35 intersected quartz monzonite porphyry, quartz latite, intrusive breccia and sericite schist. No significant assay values were returned. Sericite-quartz-pyrite alteration predominates.

T96-36

From surface, drill hole T96-36 intersected quartz monzonite porphyry, brecciated latite and feldspar-hornblende porphyry. No significant porphyry-style mineralization was observed, with copper/molybdenum values being negligible. A 24-foot interval within the feldspar-hornblende porphyry returned 0.48 g/t gold. Sericite-clay-quartz alteration is pervasive within monzonite and quartz latite, with disseminated pyrite averaging approximately 1%.

Feldspar-hornblende porphyry is pervasively altered to sericite-chlorite, with insignificant sulfide mineralization and relatively low fracture-filling density.

T96-37

Drill hole T96-37 intersected monzonite porphyry. Below a 240 feet thick oxidized leach-cap, carrying negligible metal values, 150 feet of supergene mineralization was intersected averaging 0.32% copper and 0.027% molybdenum. Below the supergene zone, 420 feet of hypogene mineralization averaging 0.20% copper and 0.031% molybdenum was intersected.

Pyrite, chalcopyrite and molybdenite commonly occur as fracture coatings, with lesser amounts as disseminated grains and blebs within quartz-gypsum-magnetite veinlets and chlorite-biotite clots.

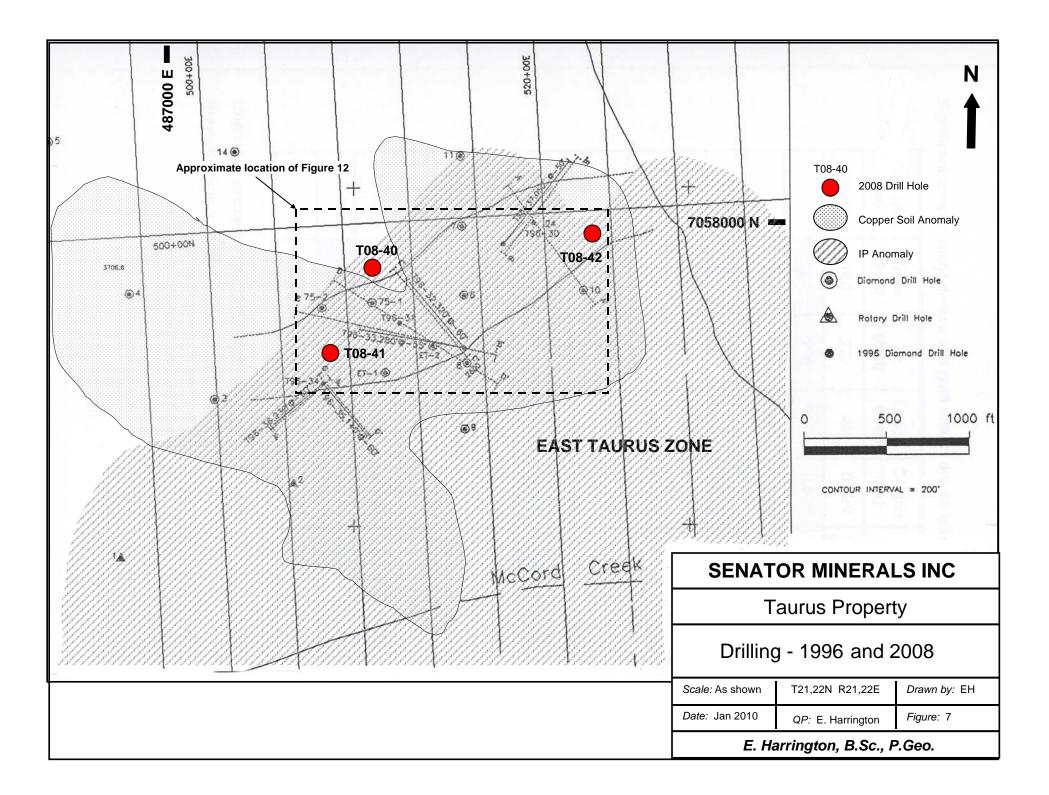
Weak to intense biotite-chlorite-sericite-magnetite alteration dominates within mineralized zones. Near the bottom of the mineralized zone, intense sericite-quartz alteration predominates. The hole bottomed in low-grade copper mineralization hosted by sericite-altered monzonite.

Significant copper, molybdenum and gold results are as follows (orientation of mineralization is not known):

Hole No.	From (feet)	To (feet)	Length (feet)	Copper%	Moly %	Gold g/t
T96-30	180	222	42	0.199	0.026	0.087
	222	296	74	0.502	0.024	0.078
	296	754	458	0.293	0.034	0.108
T96-31	162	282	120	0.234	0.027	0.071
	282	360	78	0.144	0.016	0.073
	402	1386	984	0.161	0.024	0.075
T96-32	207	627	420	0.146	0.046	0.217

Table 3: Selected 1996 Drilling Results

Hole No.	From (feet)	To (feet)	Length (feet)	Copper%	Moly %	Gold g/t
	627	981	348	0.300	0.044	0.188
T96-33	239	335	96	0.139	0.005	0.017
T96-34	201	321	120	0.085	0.001	0.035
T96-36	728	752	24	-	-	0.480
T96-37	260	296	36	0.125	0.018	0.058
	296	446	150	0.324	0.027	0.071
	446	866	420	0.204	0.031	0.077


Unshaded areas = Hypogene mineralized zone Shaded areas = Supergene mineralized zone

Some follow-up exploration work, including drilling, was conducted by Cross Canada International after the 1996 exploration program. However, due to technical and organizational problems, no data are available.

8.2.2 2007 Property Examination

In 2007, Senator requested Cazador Resources Ltd ("Cazador"), an independent geological consulting company, to carry out a field examination of the Taurus property. Field personnel consisted of Adam Travis ("Travis"), geologist and president of Cazador, Don Coolidge, prospector, and Brittany Travis, geological assistant.

For the purposes of the 2007 field examination, access to the Property was by air from a 2,500-foot gravel strip in Chicken, Alaska, which is located approximately 38 miles (61 kilometers) northwest of the Property. A Cessna 206 chartered from 40 Mile Air in Tok, Alaska, transported field personnel to the Property's eastern airstrip. There are two airstrips constructed on the Property. The eastern strip is approximately 1,500 feet long and is partially overgrown. The western strip is more overgrown, and could not be used by the Cessna, although it was judged that a smaller plane might be able to land.

Nine selected core intervals were taken from the core racks in order to prepare check samples of the 1996 drilling results.

Hole	Intersection (feet)			Inters	ection ((meters)	Assay results			
	from	to	interval	from	to	interval	Copper %	Moly %	Gold g/t	
T96-30	232.0	241.0	9.0	70.7	73.5	2.7	0.41	0.081	0.080	
	241.0	250.0	9.0	73.5	76.2	2.7	0.54	0.038	0.085	
	454.0	463.0	9.0	138.4	141.1	2.7	0.30	0.030	0.110	
T96-31	232.0	241.0	9.0	70.7	73.5	2.7	0.26	0.022	0.065	
	241.0	249.0	8.0	73.5	75.9	2.4	0.36	0.011	0.090	
	249.0	258.0	9.0	75.9	78.6	2.7	0.23	0.017	0.095	
T96-37	360.0	369.0	9.0	109.7	112.5	2.7	0.17	0.016	0.110	
<u>.</u>	369.0	378.0	9.0	112.5	115.2	2.7	0.22	0.020	0.075	
	378.0	386.0	8.0	115.2	117.7	2.4	0.13	0.018	0.070	

Table 4: 2007 Assay Results

The following table compares the grade calculated in 1996 to the grade calculated from the 2007 check samples.

Hole	Year	Intersection (feet)			Calculated Grade		
		from	to	interval	Copper %	Moly %	Gold g/t
T96-30	1996	222.0	296.0	74.0	0.502	0.024	0.078
	2007	232.0	250.0	18.0	0.475	0.060	0.083
				12			
	1996	296.0	754.0	458.0	0.293	0.034	0.108
	2007	454.0	463.0	9.0	0.300	0.030	0.110
						ti -	
T96-31	1996	162.0	282.0	120.0	0.234	0.027	0.071
	2007	232.0	258.0	26.0	0.280	0.017	0.083
						*	
T96-37	1996	296.0	447.0	151.0	0.324	0.027	0.071
	2007	360.0	386.0	26.0	0.175	0.018	0.086

Table 5: Comparison Grades

Note: Grades were calculated using weighted averages.

Check sampling assay results match well with 1996 reported results.

9.0 <u>GEOLOGICAL SETTING</u>

9.1 Regional Geology

(The following is summarized from Foster, 1967 and 1970)

The Taurus property is located in the Tanacross quadrangle covering the Alaska Range, Northway-Tanacross Lowland, and Yukon-Tanana Upland physiographic provinces. The quadrangle is dominated by a metamorphic terrane is intruded by Mesozoic and Tertiary granitic rocks, and locally covered by Tertiary volcanic rocks.

The Denali fault, a major active dextral fault that crosses the southwestern corner of the quadrangle, separates this metamorphic terrane from a relatively unmetamorphosed Palaeozoic and Mesozoic terrane to the south. The northern border is marked by the Tintina Fault.

The metamorphic terrane, characterized by complex folding and faulting, is interpreted as an allochthonous slice of continental, eugeosynclinal rocks (Tempelman-Kluit et al, 1976) correlative with the Pelly Schist of the Yukon and/or the Birth Creek Schist of the Yukon-Tanana Uplands of Alaska.

Metamorphic lithologies include greenstone, schist, phyllite, quartzite, gneiss, augen gneiss, amphibolite and marble. Garnet, staurolite, and biotite are common in amphibolite-grade schist.

In the Alaska Range, metamorphic grade increases northward from lower greenschist facies to amphibolite facies (Foster, 1970). The metamorphic rocks are intruded by dykes, sills and small bodies of diorite. Granitic intrusions are relatively small and sparse; the largest of which occurs near Yerrick Creek and is Late Cretaceous in age.

In the Yukon-Tanana Upland, amphibolic grade predominates with local greenschist equivalents. The metamorphic rocks are intruded by abundant quartz monzonite to granodiorite plutons. The oldest intrusion is the Taylor Mountain batholith, probably Late Triassic or Early Jurassic in age. Other large intrusions are probably middle Cretaceous in age. Tertiary intrusives are also present, such as the Mount Fairplay pluton which ranges in composition from syenite to granodiorite to quartz monzonite.

Tertiary volcanic cover rocks are relatively minor in the quadrangle, and may be associated with igneous activity responsible for porphyry mineralization. Felsic tuff, including welded tuff, is abundant; particularly in the Mount Fairplay and Sixtymile Butte areas and locally is associated with subvolcanic intrusions. Tertiary, Pleistocene, and Holocene (Prindle Volcano) age basalt is also present. Basalt at the Prindle Volcano contains inclusions of peridotite and granulite (A.R.M.A.P. study, Circular 734).

Sedimentary rocks, north of the Denali fault, consist of terrestrial conglomerate, sandstone, shale, tuffaceous shale, and tuff of Late Cretaceous or early Tertiary age

9.2 **Property Geology** (Figure 8)

9.2.1 General Geology

The Taurus property contains metamorphic basement rocks of Late Precambrian- or Early Palaeozoic-age, intruded by a Cretaceous granodiorite and Tertiary felsic stocks. The Tertiary-age intrusives include quartz monzonite porphyry, quartz latite, feldspar-quartz porphyry, intrusive breccia, quartz porphyry, and dacite porphyry. Intrusive breccia occurs along the southern border of the Cretaceous granodiorite pluton on the eastern side of the Property. Subsequent erosion without glaciation has resulted in leached surface outcrops and thick accumulations of alluvium and colluvium.

9.2.2 Lithologies

(Summarized from the geological reports of Cities Service Minerals Corp (1977), R.A. Blakestad (1974), and E.R. Chipp (1971)).

9.2.2.1 Precambrian

Metamorphic Basement Complex

The metamorphic basement complex consists of biotite gneiss and schist intruded by orthogneiss of quartz monzonitic to granitic composition. Augen gneiss, with augens of orthoclase and microcline up to 10 millimeters in size, occurs locally. The gneiss/schist unit consists primarily of quartz-biotite or quartz-feldspar-biotite gneiss or schist with lesser quartz-muscovite-garnet gneiss and impure quartzite. Sulfide mineralization, dominantly pyrite, is locally abundant.

9.2.2.2 Cretaceous

Granodiorite

Relatively unaltered granodiorite occurs over a large portion of the Property, characterized by fine- to medium-grained, hypidiomorphic-granular to hornblendeplagioclase porphyritic textures, with 10 to 20% hornblende, and variable amounts of biotite, orthoclase, plagioclase and augite phenocrysts. Orthoclase often exceeds plagioclase with many of the orthoclase phenocrysts showing perthitic textures. Disseminated pyrite and minor magnetite are relatively common.

9.2.2.3 Tertiary

Quartz Monzonite Porphyry

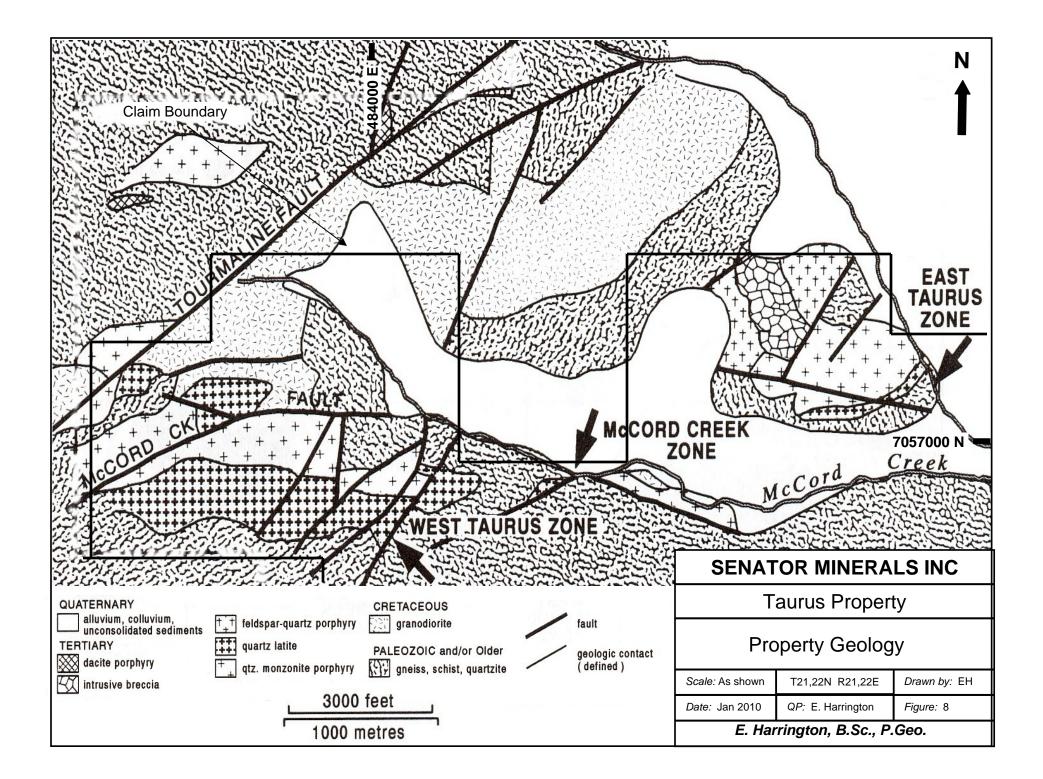
Quartz monzonite porphyry is characteristically heterogeneous in composition and texture, containing biotite, hornblende, and augite, with plagioclase and orthoclase phenocrysts (<6 mm and <15 mm respectively).

Subhedral quartz crystals are rare. The groundmass is gray or pink, aphanitic, and consists of a fine equigranular mass of quartz and orthoclase.

Feldspar-Quartz Porphyry

Buff to light gray feldspar-quartz porphyry occurs at the East Taurus Zone with plagioclase phenocrysts averaging 4 millimeters in length. Slivers and shards of quartz are also present and the groundmass is typically silicious and aphanitic. Up to 5% disseminated pyrite may be present. The rock is typically leached, characterized by open cavities to 5 centimeters and pyrite casts.

Quartz Latite


Quartz latite is white to buff, feldspar porphyritic to aphanitic in texture, and commonly brecciated, with up to 60% subangular fragments present in a siliceous, very fine-grained matrix. The unit is commonly peripheral to, and gradational with, quartz monzonite porphyry, and is interpreted to be a hypabyssal and/or a chilled margin phase of the quartz monzonite porphyry.

Quartz Porphyry

Quartz porphyry is widely distributed throughout the Property, and characterized by up to 15% quartz eyes and 30% plagioclase phenocrysts to 3 millimeters in length. This unit is common within the metamorphic basement complex of the West Taurus Zone where it is highly altered and often brecciated with tourmaline fracture infillings.

Intrusive Breccia

Intrusive breccia is widespread throughout the Property and consists of heterolithic fragments within a fine-grained dacitic to quartz latitic matrix. Unit geometry is unknown as contacts with other lithologies are obscured by alteration.

Dacite

Dark to medium gray, aphanitic to biotite-feldspar porphyritic dacite occurs with limited distribution on the Property. Plagioclase phenocrysts are zoned and up to 3 millimeters in length.

10.0 DEPOSIT TYPE

The exploration programs detailed in this technical report were designed to investigate a porphyry-style occurrence where late Precambrian or early Palaeozoic basement rocks are intruded by a Cretaceous granodiorite pluton and Tertiary felsic stocks, dykes, and volcanic rocks. Supergene and hypogene copper/molybdenum/ gold mineralization occur within the Tertiary intrusive complex.

11.0 MINERALIZATION

At the East Taurus Zone, mineralization in the leached cap consists of minor remnant pyrite, chalcopyrite, and molybdenite in quartz stockworks and silicified zones. Previously, there were no significant metal values encountered in the leach-cap, but hole T08-40, drilled in 2008, returned 0.186% copper, 0.330 g/t gold, and 0.038% molybdenum from 116 feet (35.4 meters) of leach-cap material.

Supergene mineralization varies in thickness from 75 to 150 feet and consists of minor chalcocite and covellite, with relict pyrite, chalcopyrite, and molybdenite. Chalcocite locally replaces chalcopyrite and pyrite in fractures and quartz veinlets.

Hypogene mineralization consists of pyrite, chalcopyrite, and molybdenite occurring dominantly as stringers or isolated grains/blebs along fractures. Lesser amounts occur as blebs within gray quartz or quartz-gypsum-magnetite-chlorite veins.

29

Molybdenite is common as isolated grains to 3 millimeters within vuggy fractures. Stockwork-style mineralization is insignificant.

In 1979, drill hole ET-2 in the East Taurus zone, intersected gold mineralization ranging from 200 ppb to 7,800 ppb (0.2 to 7.8 grams per tonne (g/t)), with an average grade over 553 feet (168 meters), from 27 to 580 feet (8 to 177 meters), of 603 ppb (0.603 g/t) gold. In 1990, six samples of salvaged drill core from holes 75-1, ET-1, and ET-2 returned gold values ranging from 0.027 to 1.83 ounces per ton (0.926 to 62.743 grams per tonne (g/t)). In 2008, hole T08-40 intersected 116 feet (35.4 meters) of 0.33 g/t gold and 772 feet (235.3 meters) grading 0.245 g/t gold.

In the Taurus Bowl area, pyrite with lesser chalcopyrite, covellite, chalcocite, malachite, and azurite occurs (Blakestad, 1974). Molybdenite is found in quartz veinlets hosted in sericite-altered quartz latite. Shallow drilling in the Taurus Bowl area returned copper values ranging from 58 to 460 ppm, with copper values reported to be increasing with depth.

Chalcopyrite and molybdenite are found as fracture fillings in close proximity to the Tourmaline and McCord Creek Faults where high oxidation and surface leaching are common.

11.1 Structure

Two major fault structures, the Tourmaline and McCord Creek faults, have been recognized on the Property.

The Tourmaline fault strikes northeast and is interpreted as a left-lateral strike-slip fault with a displacement of up to 4 miles (Chipp, 1971). Brecciated float with vuggy quartz fracture fillings and clusters of radiating tourmaline crystals is common along its inferred trace. The McCord Creek fault is a major structure trending east-west across the Property.

11.2 Alteration

An oxidized leach-cap, averaging approximately 150 feet thick, is present at the East Taurus Zone, underlain locally by supergene and hypogene mineralization. The cap is characterized by intense rusty, bright orange, red and yellow oxidation products, open leach-cavities, and superimposed, pervasive, argillic alteration. In most places, porphyritic textures are nearly or completely overprinted. Hematite and limonite, consisting mainly of goethite with minor jarosite, are the most common oxide minerals and occur as fracture coatings and stains.

At the East Taurus Zone, below the leach-cap, alteration is dominated by sericite-clay and biotite-chlorite-sericite-magnetite assemblages. Biotite-magnetite-sericitechlorite alteration is characterized by clot textures and sericite pseudomorphs after plagioclase. Copper is best developed within biotite-magnetite and sericite-rich assemblages. Late-stage gypsum vein stockworks are common. Calcite is rare. Pervasive sericite-chlorite alteration is confined to a late-stage, plagioclasehornblende porphyry intrusion. The unit is characterized by chlorite pseudomorphs after plagioclase and a distinct low fracture/vein density.

Within the metamorphic basement complex, alteration consists of zones of sericitequartz-tourmaline and/or argillic alteration. Granodiorite, intersected at depth, is dominantly altered to propylitic or argillic assemblages with chloritization of mafic minerals common. Mineral constituents in quartz monzonite porphyry, the principal host for mineralization, are commonly partially replaced by chlorite, sericite or biotite.

Disseminated biotite and magnetite, and biotite-magnetite-sericite-chlorite clots are common and locally overprint the porphyritic textures. Up to 3% magnetite is locally present within relatively biotite-rich alteration zones. Within feldspar-quartz porphyry, argillic alteration predominates with plagioclase phenocrysts commonly pseudomorphed by clay.

31

12.0 EXPLORATION

No exploration work was carried out from the 2007 Property visit until the 2008 drilling program.

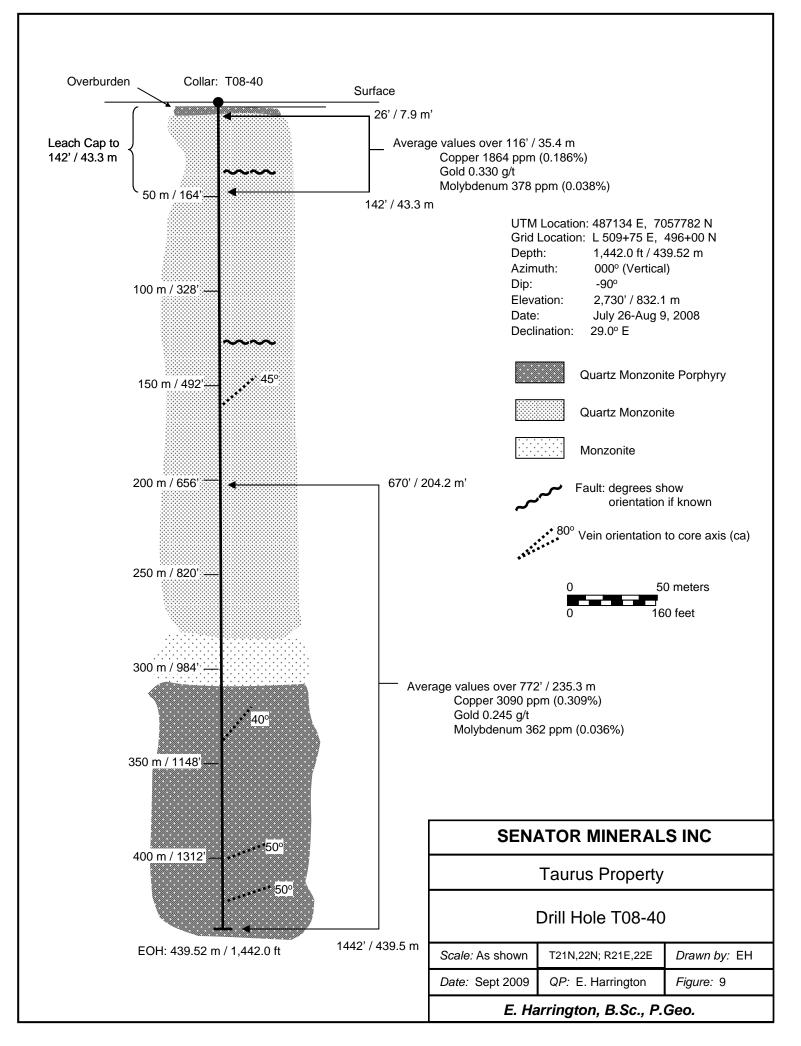
13.0 DRILLING

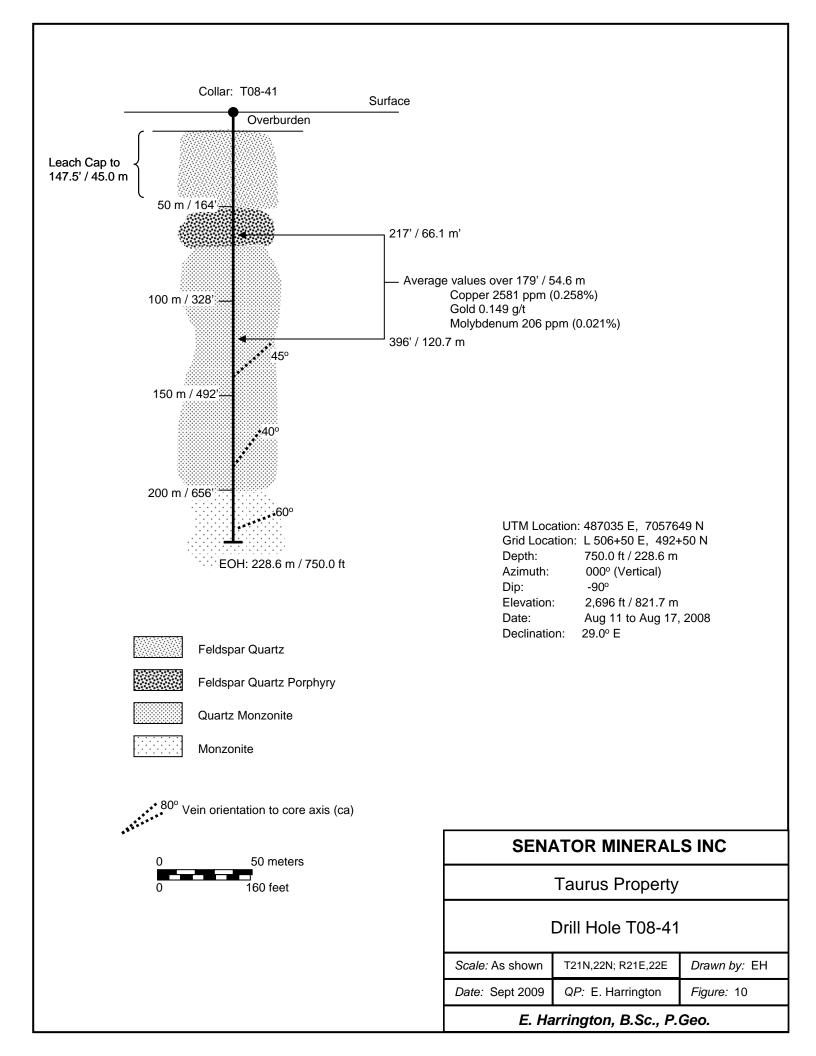
Historical drilling information has been presented in Section 8.2 Previous Work and Section 8.2.1 1996 Exploration Work.

In 2008, Senator carried out a core drilling program on the Taurus property consisting of three vertical NQ2 holes totaling 3,179 feet (968.96 meters). Core diameter is 1.992 inches (50.6 mm). T08-40 was drilled to a depth of 1,442 feet (439.5 meters), T08-41 to 750 feet (228.6 meters), and T08-42 to 987 feet (300.8 meters). Drilling was done by General Diamond Drilling, Whitehorse, Yukon ("General") from 16 July to 4 September.

Hole T08-40 was located to test the area north of hole 75-1 that bottomed in 0.55% copper and returned a 853-foot intersection of 0.345% copper and 0.039% molybdenum. Hole T08-41 was located to test the area east of hole ET-1 and south of hole 75-2. Six samples of core recovered from holes ET-1, ET-2, and 75-1 returned gold values ranging from 0.027 to 1.83 ounces per ton. Hole T08-42 was located to test for an eastern extension of the East Taurus zone. T08-40 was collared at an elevation of 2,730 feet, T08-41 at 2,696 feet, and T08-42 at 2,622 feet.

Core was geologically logged and rock quality designations ("RQD") were measured. RQD is a rock quality value generally calculated as a percentage and showing the structural quality of the rock. The higher the RQD value, the more stable or structurally sound the rock. RQD core recovery percentage is obtained by counting only pieces of sound core greater than 4 inches (100 mm) in length, and calculating a recovery percentage based on total core recovered. T08-40 has core recovery of 93.1% and RQD of 59.5%, T08-41 has core recovery of 95.8% and RQD of 29.8%, and T08-42 has core recovery of 93.7% and RQD of 54.0%. Geological logs are provided in Appendix B.


Geochemical quality control in the field consisted of inserting two different sample standards (Cu-155 and Cu-172) into the sample stream at twenty-sample intervals. Standard samples were numbered sequentially with the regular core samples. Standard specifications and insertion points are provided in Appendix C.


A total of 997 samples were submitted for analyses: 948 core samples; and 49 standard samples (twenty-six Cu-155 standard samples and twenty-three Cu-172 standard samples). Sample data are provided in Appendix D. The following table summarizes analyses results from the 2008 drilling program.

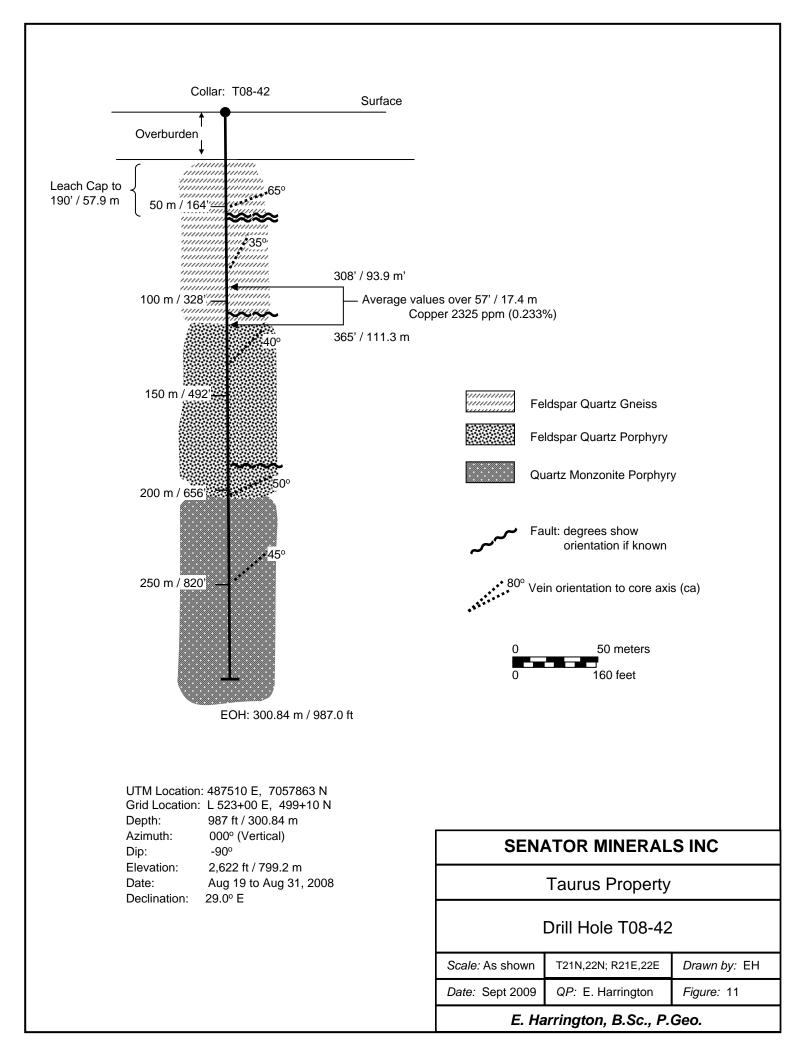

Hole	Interval		Value Range					Average Value			
	Feet	Meters	Copper (ppm)		Gold (g/t)		Moly (ppm)		Cu	Gold	Moly
			Low	High	Low	High	Low	High	%	(g/t)	%
T08-40	116	35.4	642	5170	0.154	1.090	137	1560	0.186	0.330	0.038
	772	235.3	24	15400	0.027	2.660	12	1480	0.309	0.245	0.036
T08-41	179	54.6	731	5140	0.030	0.509	65	893	0.258	0.149	0.021
T08-42	57	17.4	1070	4260	0.010	0.021	10	171	0.232	-	-

 Table 6: 2008 Drilling Geochemical Summary

The upper mineralized section of T08-40 is coincident with the leach-cap zone identified in the geological log and is the first leach-cap recognized at Taurus to date that carries significant copper, molybdenum, and gold mineralization.

Within the leach-cap, copper mineralization occurs predominantly as oxide material such as malachite. T08-40 ended in significant copper mineralization.

In T08-41, samples 850505 to 850567 were taken consecutively from 217 to 396 feet (66.1 to 120.7 meters). The leach-cap was identified in the geological log to extend to 147.5 feet (44.96 meters). As no copper mineralization was seen during logging, the leach-cap section was not sampled.

In T08-42, samples 850761 to 850779 were taken consecutively from 308 to 365 feet (93.9 to 111.3 meters). The leach-cap was identified in the geological log to extend to 190 feet (57.9 meters). As logging showed quartz vein-hosted molybdenum mineralization, the leach-cap section of T08-42 was sampled, but no significant values were returned.

Throughout all three holes, copper values ranged from 6 to 15,400 ppm (1.54%), gold values from <0.005 to 2.66 g/t, and molybdenum values from 4 to 1,560 ppm.

14.0 SAMPLING METHOD and APPROACH

Details of sampling method and approach during the 1996 exploration work have been given in Section 8.2.1.1 General Methods and Procedures.

During the 2008 drilling program, core was placed in waxed cardboard core boxes containing up to 10 feet (3.05 meters) of core, and marked with footage markers. Core samples generally consisted of 3-foot (0.91 meter) lengths of core cut in half parallel to the core axis, with one half of the core comprising the sample.

Samples were individually bagged, with a uniquely numbered identification tag inserted into the sample bag, and the unique sample number written on the exterior of the bag.

15.0 SAMPLE PREPARATION, ANALYSIS and SECURITY

Details of sample preparation, analysis and security during the 1996 exploration work have been given in section 8.2.1.1 General Methods and Procedures.

In 2008, core samples for shipping were collected sequentially in groups of ten and placed in a larger transport bag, which was in turn sealed with a uniquely numbered metal tag. Samples were flown to Delta Junction, Alaska, where they were picked up by ALS Chemex and delivered to Chemex's Fairbanks facility for processing. Chemex's sample processing consists of:

- Bar code log sample login;
- Weighing the received sample;
- Fine crushing 70% <2mm, with a crushing QC test;
- Split sample using a riffle splitter;
- Pulverizing 85% <75 microns (um), with a pulverizing QC test;
- ME-ICP61 a four-acid digestion process resulting in 33 element values using inductively coupled plasma-atomic emission spectrometry (ICP-AES); and
- Au-ICP23 a fire assay inductively coupled plasma-atomic (FA-ICP) process using 30 grams of sample material, and having a 5 parts per billion (ppb) lower detection limit for gold.

Chemex's sample processing and analytical results are considered by the writer to be industry standard.

16.0 DATA VERIFICATION

During the 2008 drilling program, geochemical quality control in the field consisted of inserting two different sample standards (Cu-155 and Cu-172) into the sample stream at twenty-sample intervals. Standard samples were numbered sequentially with the regular core samples. Quality control sample standards were provided by WCM Sales Ltd, Burnaby, BC. WCM's published copper and gold values for the standards are:

- Standard Cu 155 copper 0.47% (4700 ppm) and gold 0.61 g/t; and
- Standard Cu 172 copper 0.21% (2100 ppm) and gold 0.26 g/t

The following statistical analysis shows generally good correlation between values returned from Chemex's analyses and the published analytical values of the standards, although copper value reliability is poorer than for gold.

Standard	Average Value (ave)		Standard Deviation (SD)		Copper Range ave. +/- SD		Gold Range ave. +/- SD		% of Analyses Within Range	
	Cu (ppm)	Au (g/t)	Cu (ppm)	Au (g/t)	From	То	From	То	Cu	Au
Cu-155	4610	0.593	224	0.034	4386	4834	0.559	0.627	68.0	80.0
Cu-172	2037	0.266	85	0.024	1953	2121	0.242	0.289	73.9	91.3

In addition to the geochemical analyses carried out by Chemex, one 3-foot core sample per core box was subjected to testing by the hand-held NITON X-ray Fluorescence ("XRF") analyzer. XRF analyses consisted of continuous readings as the analyzer was moved along the core. Chemex and corresponding NITON values are shown in Appendix E.

Use of the NITON analyzer was intended to provide timely chemical analysis of core in order to guide drilling decisions regarding continuing or stopping the hole.

39

In general, electronically derived NITON values were substantially less than the chemically derived assay analyses from Chemex. Chemex average values from T08-40 were approximately twice the NITON average values. This value discrepancy became less as sampling progressed, and by hole T08-42, Chemex values were only 20% to 40% greater than NITON values. In each hole, there was less variation between Chemex/NITON molybdenum values than between Chemex/NITON copper values. The low NITON values from T08-40 core were the reason for the hole being stopped while still intersecting significant mineralization.

17.0 ADJACENT PROPERTIES

The Taurus property is situated within the Tintina Gold Belt, a 2,000 kilometer-long metal-rich arc-shaped belt extending from northeastern British Columbia, through the Yukon, and into Alaska. Within and associated with the belt are copper, gold, and molybdenum vein-type and porphyry-type deposits. Although there are no properties adjacent to the Taurus property relevant to this report, the following information on the Casino and Pebble deposits has been included because of proximity and similarities in lithological type, age, and structure.

Full Metal Minerals, Vancouver, BC, with three exploration programs in the Yukon and nine in Alaska, has staked claims completely surrounding the Taurus property.

17.1 Casino

The Casino deposit is situated on regional geologic strike approximately 110 miles to the southeast, midway between Dawson City and Whitehorse, Yukon Territory. Casino and Taurus both occur within the same belt of Palaeozoic or earlier metamorphic rocks, are both spatially and probably genetically related to early Tertiary calc-alkaline intrusions, and are unglaciated, so that zones of supergene enrichment at Casino are preserved. According to Godwin (1976), the grade of copper in the supergene zone at the Casino deposit was increased by an average factor of 1.7 over hypogene grade through precipitation of chalcocite in a subhorizontal enriched zone. The copper added in this zone was extracted from up to 150 meters of overlying rock. The controls for enrichment processes include hypogene copper and the presence of breccia, alteration and pyrite.

The following table shows the NI 43-101 compliant Mineral Resource estimate for the Casino deposit as reported by Western Copper Corp in its Pre-feasibility Report on the Casino Project dated 5 August 2008 (accessed on SEDAR, 21 September 2009).

Material	million/tonnes	Cu %	Au g/t	Mo %	
Mill Ore Reserve	913.5	0.212	0.237	0.024	
Heap Leach Reserve	77.9	0.062	0.427	-	

17.2 Pebble

The Pebble deposit is a calc-alkalic copper-gold-molybdenum porphyry deposit formed in association with granodiorite intrusions emplaced at about 90 Ma. The deposit comprises the contiguous Pebble West and Pebble East Zones. Mineralization in the two zones precipitated during early potassium-silicate alteration (potassium feldspar, biotite, and magnetite) and associated quartz-sulphide veining, and was later variably overprinted by phyllosilicate alteration. Additional, very highgrade mineralization was introduced to the Pebble East Zone during late-stage advanced argillic alteration centered on a major fault zone. Mineralization in both zones is dominated by hypogene pyrite, chalcopyrite and molybdenite; bornite is an important component in some parts of the East Zone. However, the West Zone contains subordinate supergene mineralization and a very minor zone of oxide mineralization. Mineralization in the Pebble West Zone occurs in several hydrothermal centers formed around small granodiorite stocks intruding Jurassic-Cretaceous flysch, diorite sills, and alkalic intrusions and associated intrusion breccias.

Mineralization at the Pebble East Zone was discovered by Northern Dynasty in 2005, and occurs within a granodiorite stock, as well as in surrounding flysch cut by granodiorite sills, and is overlain by post-mineralization volcanic and sedimentary strata. The mineralization at Pebble East is deeper and higher grade than that in the Pebble West area.

Copper-gold-molybdenum mineralization extends over an easterly elongated area of 4.9 by 3.3 km, and to a depth of 610 m (2000 ft) in the Pebble West Zone, and to at least 1525 m (5000 ft) in the Pebble East Zone. Mineralization in the Pebble East Zone remains open to the east, northwest, south and southeast. A much larger zone of strong alteration and low-grade mineralization extends north, south and west of the known Pebble deposit.

In 2008, a NI 43-101-compliant Mineral Resource estimate for the entire Pebble deposit, both East and West Zones, was reported. The Pebble Mineral Resources, at a 0.30% copper equivalent (CuEQ) cut-off, are:

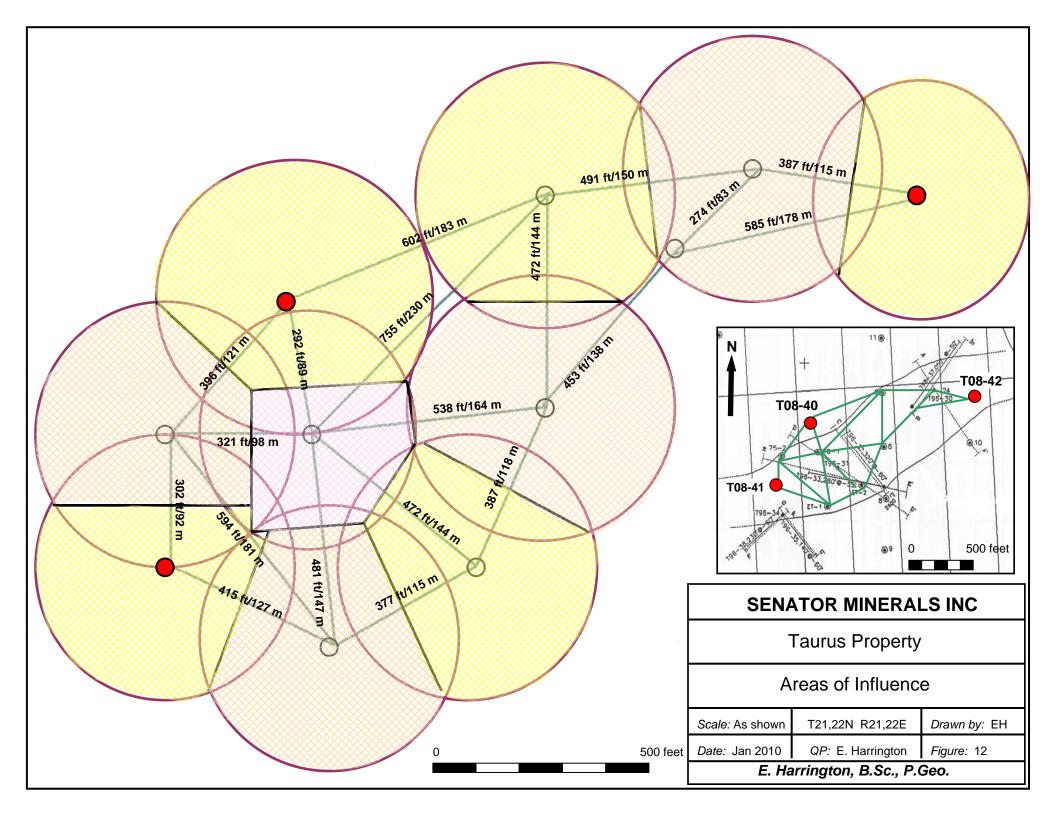
- 5.1 billion tonnes of Measured and Indicated Mineral Resources grading 0.43% copper (48 billion pounds), 0.35 g/t gold (57 million ounces), and 256 ppm molybdenum (2.9 billion pounds); and
- 4.0 billion tonnes of Inferred Mineral Resources grading 0.27% copper (24 billion pounds), 0.29 g/t gold (37 million ounces) and 220 ppm molybdenum (1.9 billion pounds).

While information presented on the Casino deposit is not necessarily indicative of mineralization found on the Taurus property, similarities in lithological type, age, structure, and size suggest exploration potential.

42

Reliance Geological Services Inc.

18.0 MINERAL PROCESSING and METALLURGICAL TESTING


No mineral processing or metallurgical testing has been conducted on material taken from the Taurus property.

19.0 MINERAL RESOURCE and MINERAL RESERVE ESTIMATES

After incorporating previous results with those of the 2008 drill program, an estimated inferred resource at Taurus has been calculated by writer as 75,268,894 million tons grading 0.275% copper, 0.032% molybdenum, and 0.166 g/t gold. The estimated inferred resource would contain approximately 414 million pounds of copper, 48 million pounds of molybdenum, and 400,000 ounces of gold.

In order to calculate this inferred resource, the following assumptions, parameters, and methods were used (Figure 12 and Appendix F):

- Results were used from ten "qualified holes" only, being those that were drilled vertically and had three holes within 600 feet. Average distance between holes was 474 feet;
- These ten holes averaged 824 feet in depth;
- An area of influence with a radius of either 250 or 300 feet was centered on the qualified holes in order to best reduce voids;
- Where areas of influence overlapped, the overlaps were subtracted from the total of the individual areas;
- Where there were multiple overlaps, area calculations were carried out using triangle geometry;
- Once an area of influence was calculated for an individual drill hole, tonnage was calculated using drill-indicated intervals. Tonnage is based on 168 pounds per cubic foot of rock;

- Weighted averages were calculated using drill-indicated grades in order to arrive at a final inferred resource grade estimate. Cut-off grades of 0.1% Cu and 0.01% Mo and .1 g/t gold were used;
- Historical drill holes were included along with more recent drilling, but four of the historical holes had not been assayed for gold, so when an interval from an historical hole was used for copper and moybdenum, the gold value was assumed to be zero.

The writer is not aware of any problems, other than what is stated in Section 6.0 Property Description and Location, that would adversely affect mineral exploration and development on the Property.

As Taurus is at a relatively early stage of development, the number of exploration targets surrounding the inferred resource suggests that, with more drilling, the inferred resource could be significantly increased and upgraded.

20.0 OTHER RELEVANT DATA and INFORMATION

No other relevant data and information is available on the Taurus property.

21.0 INTERPRETATION and CONCLUSIONS

21.1 Interpretation

Mineralization occurs beneath an oxidized leach-cap averaging 150 feet thick. Diamond drill results from 1996 and 2008 indicate that significant widths of porphyrystyle supergene and hypogene mineralization are open to the east, west, and north of the East Taurus Zone, beyond the areas previously defined by diamond drilling. Drilling shows significant copper mineralization at a depth of over 1,400 feet. For the first time, significant copper, molybdenum, and gold mineralization has been encountered within leach-cap material (Hole T08-40). T08-40 is the most northerly drill site, and is located along the northern edge of the East Taurus IP anomaly and outside of the copper and molybdenum soil anomalies. As the topography of the East Taurus zone rises to the north-northwest, the mineralized leach-cap may be an indication of significant mineralization at higher elevation.

IP survey results indicate four chargeability anomalies, at inferred depths of approximately 500 feet, which collectively cover approximately 4.7 square kilometers (1.8 square miles). The IP anomalies are associated with copper-molybdenum soil geochemistry anomalies, and porphyry mineralization/alteration intersected by diamond drilling. T08-40, located outside of an anomalous soil area and along the northern edge of an IP anomaly, returned significant mineralization within the leach-cap. As topography rises to the northwest of T08-40, the unglaciated nature of the Property may have allowed geochemical elements in the soil to migrate downhill over time making the area to the north and northwest of the East Taurus zone, which was thought to be outside the area of interest, more prospective;

The combined area of geochemical and geophysical anomalies is approximately 10 square kilometers (3.86 square miles). Using an average thickness of 1,000 feet, an area of 3.86 square miles, and a rock weight of 168 pounds per cubic foot, the Property's anomalous target zone hosts approximately 9 billion tons of material.

The most significant 1996 drill results from the supergene zone included:

- 75 feet of 0.50% copper and 0.024% molybdenum in T96-30; and
- 150 feet of 0.324% copper and 0.027% molybdenum in T96-37.

From the 2008 drilling, the most significant supergene mineralization occurs in T08-41 with 179 feet of 0.258% copper, 0.021% molybdenum, and 0.149 g/t gold. The most significant 1996 results from the hypogene zone include:

- 458 feet of 0.29% copper, 0.045% molybdenum and 0.11 g/t gold in T96-30;
- 348 feet of 0.30% copper, 0.044% molybdenum and 0.19 g/t gold in T96-32; and
- 420 feet of 0.204% copper, 0.031% molybdenum and 0.077 g/t gold in T96-37.

During the 2008 drilling program, significant hypogene mineralization intersections were:

- T08-40: 772 feet of 0.309% copper, 0.036% moly, and 0.245 g/t gold, extending to the bottom of the hole and terminating in 0.154% copper and 0.0118% molybdenum;
- T08-41: 179 feet of 0.258% copper, 0.026% moly, and 0.149 g/t gold;
- T08-42: 57 feet of 0.232% copper, 0.004% moly, and 0.015 g/t gold.

Drilling results suggest that mineralization in the East Taurus Zone is open to the north, south, east, and west.

Hole 75-1, drilled vertically to 908 feet (276 meters) in 1975, had calculated results of 0.401% copper and 0.039% molybdenum from the last 83 feet (25 meters), with the hole terminating in mineralization grading 0.55% copper.

A plagioclase-hornblende porphyritic intrusion, intersected at depth in T96-36, also post-dates porphyry mineralization, but hosts significantly higher gold values (0.48 g/t over 24 feet). Intrusion geometry is unknown.

Although the most significant mineralization encountered is hosted in quartz monzonite porphyry, the surrounding schist and gneiss should not be overlooked as potential targets. Drill hole DH-10, completed in 1970, bottomed in gneiss averaging 0.14% copper.

In hole T96-32, a 768-foot cut through the hypogene zone intersected 0.216% copper, 0.045% molybdenum, and 0.204 g/t gold.

The Taurus property is located approximately 110 miles southwest along strike from the Casino porphyry deposit located in Yukon Territory. Both deposits have similar host rocks, mineralization/alteration styles, and intact, unglaciated supergene enrichment zones.

The Casino deposit contains 1.002 billion tonnes with weighted average grades of 0.251 g/t gold and 0.215% copper (weighted average grades calculated by the writer based on Table 4 data). In 2003, molybdenum grade of the Casino deposit was estimated to be 0.02%.

The Pebble deposit contains a Measured and Indicated Mineral Resource of 5.1 billion tons grading 0.43% copper (48 billion pounds), 0.35 g/t gold (57 million ounces), and 256 ppm molybdenum (2.9 billion pounds).

Although the Taurus property has been the subject of surface exploration and at least seven drilling programs between 1971 and 1996, the Property remains relatively unexplored.

A summary of significant exploration observations follows:

- The four zones of anomalous IP chargeability shown by the 1996 IP survey cover a total area of approximately 4.7 square kilometers at an inferred depth of 500 feet (152 meters). Copper-in-soil (>100 ppm or 0.01%) and molybdenum-in-soil anomalies (>10 ppm, or 0.001%) are associated with the IP anomalies, overlying approximately 10% of the IP area;;
- Areas up-slope from geochemical anomalies may also be prospective for significant mineralization;

48

- While forty-five holes have been drilled, with more than half located in the East Taurus zone, only twenty-five were more than 300 feet (100 meters) in depth;
- Historical drilling has shown the leach-cap, which can be as much as 280 feet (85 meters) thick, to be generally barren of significant mineralization. However T08-40 intersected 116 feet of mineralized leach-cap material suggesting that there may be enrichment, possibly hydrothermal, in some areas;
- Hole 75-1, drilled vertically to 908 feet (276 meters) in 1975, had calculated results of 0.401% copper and 0.039% molybdenum from the last 83 feet (25 meters), with the hole terminating in mineralization grading 0.55% copper;
- Holes 75-1 and ET-1 were not assayed for gold, but in 1990 six samples of salvaged core assayed from .027 to 1.83 ounces per ton;
- Hole ET-2, drilled vertically to 950 feet (290 meters) in 1979, intersected gold mineralization ranging from 200 ppb to 7,800 ppb (0.2 to 7.8 g/t), with an average grade over 553 feet (168 meters), from 27 to 580 feet (8 to 177 meters), of 603 ppb (0.603 g/t) gold;
- Vertical hole T08-40 drilled in 2008 returned two intervals of significant mineralization: 116 feet grading 0.186% copper, 0.038% moly, and 0.33 g/t gold and 772 feet (235.3 meters) of 0.309% copper, 0.036% molybdenum, and 0.245 g/t gold, ending in mineralized rock;
- In 1971, two shallow holes drilled in the Taurus Bowl encountered copper geochemical values ranging from 58 to 460 ppm, with copper values increasing with depth. In 1993, a 185-foot (56-meter) RC hole was drilled in the Taurus Bowl area but was abandoned. No copper mineralization was observed, but gold values over the entire hole ranged from 40 ppb to 168 ppb (0.04 to 0.168 g/t). Copper and gold mineralization encountered in the Taurus Bowl area suggests that the mineralizing system may span at least 15,000 feet from East Taurus to Taurus Bowl;

49

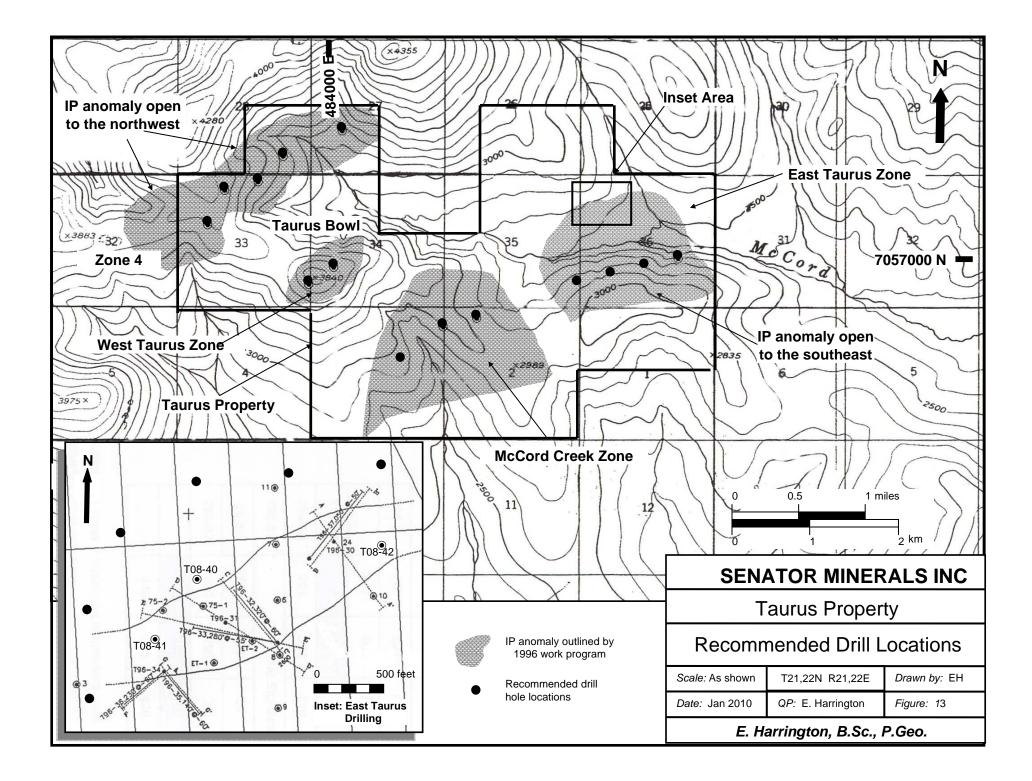
- The Taurus Bowl area, with coincident anomalies of copper and molybdenum in soils and IP chargeability, was drill tested but not at depth;
- Although the most significant copper-gold-molybdenum mineralization has been encountered in quartz-monzonite porphyry, the surrounding schists and gneisses could also hold potential to host mineralization: In 1970, DH-10, located south of the 2008 East Taurus drilling, terminated in gneiss averaging 0.14% copper; and
- Both Taurus and Casino show porphyry-style copper-gold-molybdenum mineralization with similar host rocks and mineralization/alteration styles, as well as intact, un-glaciated supergene enrichment zones.

21.2 Conclusions

The Taurus property is considered to have good potential to host an economic copper-molybdenum-gold porphyry-style deposit because:

- Porphyry-style mineralization and alteration, identified in an alkaline intrusive complex in the East Taurus zone, extends over a large area approximately 1,500 feet east-west and 600 feet north-south;
- Significant copper, molybdenum, and gold values have been obtained from depths of over 1,400 feet in the East Taurus Zone;
- Mineralization at the East Taurus Zone is open to the west, north, south, and east, and at depth; and
- Target areas, consisting of favorable geology and coincident geophysical and geochemical anomalies, have been defined at the East Taurus, McCord Creek, West Taurus and No. 4 zones. The combined area of the identified geophysical and geochemical targets is approximately 3.86 square miles (10 square kilometers). Results from drill hole T08-40 (2008) suggest that the target area for significant mineralization can be expanded beyond the boundaries of the geochemical and geophysical anomalies.

22.0 RECOMMENDATIONS


Four target areas of potential porphyry-style mineralization have been outlined on the Taurus property warranting core drilling. The number of target areas identified by exploration work to date supports the recommendation of at least twenty drill holes. Drilling is designed to reach depths of up to 1,500 feet (460 meters). Recommended drill hole locations are shown in Figure 13.

The main priority of the next core drilling program should be to test the area north and west of the East Taurus zone in order to expand the inferred resource estimate. Core drilling is also recommended to test IP and geochemical anomalies comprising the portion of East Taurus south of McCord Creek, the central McCord Creek zone, and the western Zone 4 and West Taurus zones.

As expanding the size of the East Taurus deposit is a priority, drilling should commence at East Taurus and possibly only move to other target areas when the extent of mineralization at East Taurus has been defined.

A tributary to McCord Creek is located approximately 300 feet east of drill hole T08-42, and McCord Creek is located approximately 1,600 feet south. To the east and south, the terrain is generally soft and boggy, and would not be suitable for summer drilling. Therefore drilling in these areas should be carried out when the ground is frozen. The shallowness of McCord Creek would probably make running water unavailable during the winter. Although mineralization appears to be open to the east and west, no drill holes have been recommended.

It is estimated that drilling would total approximately 40,000 feet (12,200 meters) and cost US\$6,000,000.

23.0 REFERENCES

Alaska Division of Geological and Geophysical Surveys, 1973:

Aeromagnetic Map, Tanacross quadrangle, Alaska; Alaska Division of Geological and Geophysical Surveys, Pen File map AOF-11, 1 sheet, scale: 1:250,000.

Baird, J.G., 1970:

Report on Induced Polarization Survey, Taurus Project, Alaska; private report for International Minerals and Chemical Corp, 6 pages plus 4 plates.

Blakestad, R.A., 1974:

Taurus-Bluff Option, Geology and Drilling, 1974; private report for Rioamex, 37 pages plus drill logs and 4 maps.

Blanchflower, J.D., 1991:

Evaluation Report on the Taurus Property; private company report for Lodestar Explorations Inc, 37 pages plus drill logs and 7 maps.

Cities Service Minerals Corp, 1977:

A Report on the Taurus Prospect, East Central Alaska; private company report, 16 pages plus drill logs and 13 maps.

- 1980: Data Compilation, Cities Service Company Prospects, Tanacross Quadrangle, Alaska; private company report for Cities Service Minerals Corp, 6 pages
- Corbett, J.D., 1975:

Taurus Prospect Geophysical Review; private company report for Cities Service Minerals Corp, 4 pages

Dennison, D.F., 1977:

Petrography of Taurus Thin Sections; private company report for Cities Service Minerals Corp, 6 pages.

Foster, H.L., 1967:

Geology of the Mount Fairplay area, Alaska, U.S. Geological Survey, Bulletin 1241-B, pages B1-B18.

Foster,H.L., 1970: Reconnaissance geologic map of the Tanacross quadrangle, Alaska; U.S. Geological Survey, Misc. Geol. Inv. Map 1-593, 1 sheet, scale: 1:250,000.

Galbraith, J.H., 1978:

A Report on a Stream-Sediment Orientation Survey on the Taurus Prospect, East Central Alaska; private company report for Cities Service Minerals Corp, 23 pages. George Cross News Letter, 1990:

Drilling Results on the South Kemess Property; news release by El Condor Resources Ltd. and St. Philips Resources Ltd - December 18, 1990, No. 244.

George Cross News Letter, 1991:

Drilling Results on the South Kemess Property; news release by El Condor Resources Ltd. and St. Philips Resources Ltd - February 1, 1991, No. 23, 2 pages.

Godwin, C.I., 1976:

Casino Porphyry Copper and Copper-Molybdenum Deposits of the Calc-Alkalic Suite: The Canadian Institute of Mining and Metallurgy, Porphyry Deposits of the Canadian Cordillera, Special Volume 15, edited by A. Sutherland-Brown, pages 344-354.

Hendricksen, T.A., and Ashleman, J.C., 1980:

Cities Service Option, Final Report; private report for U.S. Borax & Chemical Corp, 6 pages.

Hone, R.M., 1971:

Report on Petrographic Examination of Forty-five Rock Samples; private company report for Resource Associates of Alaska, 53 pages.

Leriche, P.D., 1991:

Summary Geological Report on the Taurus Property for Lodestar Exp. Inc.

Leriche, P.D., 1996:

Summary Report on the Taurus Property for Alaska Mining Inc and Fairbanks Mining Inc.

Leriche, P.D., 1992:

Summary Geological Report on the Taurus Property for Lodestar Exp. Inc.

Leriche, P.D., 1994:

Taurus Copper-Molybdenum Porphyry Deposit. CIM Special Volume 46, pp. 451-457.

Mertie, J.B., Jr., 1931:

A geologic reconnaissance of the Dennison Fork District, Alaska; U.S. Geological Survey, Bulletin 827, 44 pages.

1937: The Yukon-Tanana region, Alaska; U.S. Geological Survey, Bulletin 872, 276 pages.

Rebagliati, C.M., and Banner, R.H. January 23, 2003:

CRS – Copper Resources Corp and First Trimark Ventures Inc, Qualifying Report, Casino Property, Yukon Territory.

Rebagliati, C.M, Lang, J., Titley, E., Rennie, D., Melis, L., Barratt, D., Hodgson, S.,
 2009: Technical Report on the 2008 Program and Update on Mineral
 Resources and Metallurgy Pebble Copper-Gold-Molybdenum Project, Iliamna
 Lake Area, Southwestern Alaska, *for Northern Dynasty Minerals Ltd.*

Saunders, R.H., 1967:

Mineral Occurrences in the Yukon-Tanana Region, Alaska; Department of Natural Resources, 59 pages.

Stevens, D., 1980:

1980 Annual Labor Report, Taurus-Bluff Prospect; assessment report on Drill hole DDH-24, 7 pages.

1971-1980:

Various exploration reports and data on the Taurus Property, Alaska (including interim reports by U.S. Borax, 1980).

Tempelman-Kluit, D.J., Gordey, S.P., and Reed, B.C., 1976:

Stratigraphic and structural studies in the Pelly Mountains, Yukon Territory, Canada; Geological Survey of Canada, Paper 76-1A, pp 97-106.

GLOSSARY

Conversion Factors								
To Convert From	То	Multiply By						
Feet	Meters	0.305						
Meters	Feet	3.281						
Miles	Kilometers (km)	1.609						
Kilometers	Miles	0.6214						
Acres	Hectares (ha)	0.405						
Hectares	Acres (ac)	2.471						
Grams	Ounces (Troy)	0.03215						
Grams/Tonne (g/t)	Ounces (Troy)/Short Ton (opt)	0.02917						
Ounces/Ton(opt)	Grams/Tonne (g/t)	34.2857						
Tonnes (metric)	Pounds	2,205						
Tonnes (metric)	Short Tons	1.1023						

Alteration: Any change in the mineralogical composition of a rock that is brought about by physical or chemical means.

Anomaly: A geochemical or geophysical character which deviates from regularity.

Argillic: Pertaining to clay or clay minerals. Disseminated precious metal deposits may exhibit "argillic" alteration characterized by the formation of the clay minerals kaolinite and montmorillonite. Epithermal precious metal deposits may exhibit "advanced argillic" alteration characterized by the clays dickite, kaolinite and pyrophyllite.

Bleb: A small, usually round, mineral inclusion.

Breccia: A rock composed of highly angular course fragments.

- **Colluvium:** Loose deposits of rock, gravel or sand, usually located at the foot of a slope or cliff, having been brought there under the influence of gravity
- **Craton**: The generally large central portion of a continent
- **Erosion:** A group of physical and chemical processes by which material is moved from one place to another.

Eugeosyncline: That part of a tectonic sedimentary basin in which volcanism is associated with clastic sedimentation generally located away from the craton.

Felsic: Composed of light-colored minerals such as feldspar and quartz.

Ga: Billion years.

Gangue: Assessory minerals associated with ore in a vein.

Gneiss: A course-grained metamorphic rock in which bands of granular minerals alternate with more schistose bands.

Heterolithic: Composed of a variety of rock or mineral types.

Reliance Geological Services Inc. -

Hypabyssal: An intrusion whose depth is intermediate between that of abyssal (deep) and shallow, near surface.

Hypogene: Mineral deposits or enrichments formed by ascending solutions.

Igneous: Formed by solidification of molten rock (magma).

Left-lateral Fault: A fault in which the displacement is such that the side opposite the observer appears displaced to the left.

Ma: Million years.

Mafic: Igneous rocks with a high content of dark iron-magnesium minerals.

Metasomatism: Process whereby rocks are altered when volatiles exchange ions with them and a new mineral may grow inside the body of an old mineral.

Normal Fault: A fault in which the hanging wall is lowered relative to the foot wall.

Phenocryst: A crystal that is significantly larger than the crystals of surrounding minerals.

Pluton: Igneous rock formed beneath the surface by consolidation from magma.

Porphyry: Rocks containing conspicuous large mineral crystals (phenocrysts) in a finer grained matrix.

Propylitic Alteration: Low-pressure and low-temperature alteration consisting of epidote, chlorite, Mg-Fe-Ca carbonates partially replacing wall-rock minerals; generally imparts a greenish color.

Pseudomorph: A mineral with the external crystal form of one mineral and the internal chemistry of another.

Schist: A medium- to course-grained metamorphic rock with sub-parallel orientation of micaceous minerals (i.e. muscovite, biotite, phlogopite, sericite) which dominate composition.

Sericitic Alteration: Forming sericite from the decomposition of feldspars.

Silicious: Containing silica.

Stockwork: A rock mass interpenetrated by small veins.

Supergene: A mineral deposit or enrichment formed near the surface commonly by descending solutions.

Terrane: A region considered in relation to its fitness for some purpose; an extent of ground or territory.

Vuggy: Containing small unfilled cavities usually lined with crystalline material.

Edward Harrington, B.Sc., P.Geo. 3476 Dartmoor Place, Vancouver, BC, V5S 4G2 Tel: (604) 437-9538 Email: eh@eharringtongeo.com

CERTIFICATE OF AUTHOR

I, Edward D. Harrington, geologist, do hereby certify that:

- I graduated with a B.Sc. degree in Geology from Acadia University, Wolfville, Nova Scotia in 1971.
- I belong to the Society of Economic Geologists, and am a Member in good standing with the Association of Professional Engineers and Geoscientists of British Columbia, License #23328.
- 3. I have pursued my career as a geologist for over twenty years in Canada, the United States, the Sultanate of Oman, Mexico, Argentina, and Australia.
- 4. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association as defined in NI 43-101, and past relevant work experience, I am a "qualified person" for the purposes of NI 43-101.
- 5. I am responsible for the preparation of the technical report titled "Technical Report on the Taurus Property, Fairbanks Recording District, Alaska, U.S.A" and dated 15 January 2010 (the "Technical Report"). I supervised exploration work on the Taurus Property during June, July and August, 1996 and 16 July to 4 September, 2008. I have read NI 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.
- I am independent of Senator Minerals Inc applying all of the tests in section 1.4 of NI 43-101, and I have not had prior involvement with the Property that is the subject of this Technical Report.

- 7. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading. This Technical Report is based on geological assessment reports, raw assay data, personal interviews and fieldwork, and published and unpublished literature researched by me and/or in the Reliance Geological Services library and records, and I have visited the subject Property personally.
- 8. I consent to the use of this Technical Report, only in its entirety, in a prospectus or any similar offering document, for presentation to any stock exchange or other regulatory authority, and for publication, including electronic publication accessible by the public. Any use of excerpts must be subject to my prior written consent.

Dated this 15th day of January 2010.

Edward D. Harrington, B.Sc., P.Geo.

APPENDIX A

Claim Information

nformatio	<u>n - Taurus</u>	Property, Alask					
Size	<u>ADL</u>	Document	<u>Meridian</u>	<u>Twnsp</u>	<u>Range</u>	Sec.	<u>Quarter</u>
(acres) 160	645895	2004-022269	Copper River	22 N	21 E	33	NW
160	645896	2004-022270	Copper River	22 N	21 E	33	SW
160	645897	2004-022271	Copper River	22 N	21 E	28	SE
160	645898	2004-022272	Copper River	22 N	21 E	33	NE
160	645899	2004-022273	Copper River	22 N	21 E	33	SE
160	645900	2004-022274	Copper River	22 N	21 E	27	SW
160	645901	2004-022275	Copper River	22 N	21 E	34	NW
160	645902	2004-022276	Copper River	22 N	21 E	34	SW
160	645903	2004-022277	Copper River	21 N	21 E	3	NW
160	645904	2004-022278	Copper River	21 N	21 E	3	SW
160	645905	2004-022279	Copper River	21 N	21 E	3	SE
160	645906	2004-022280	Copper River	21 N	21 E	3	NE
160	645907	2004-022281	Copper River	22 N	21 E	34	SE
160	645908	2004-022282	Copper River	22 N	21 E	35	SW
160	645909	2004-022283	Copper River	21 N	21 E	2	NW
160	645910	2004-022284	Copper River	21 N	21 E	2	SW
160	645911	2004-022285	Copper River	21 N	21 E	2	SE
160	645912	2004-022286	Copper River	21 N	21 E	2	NE
160	645913	2004-022287	Copper River	22 N	21 E	35	SE
160	645914	2004-022288	Copper River	22 N	21 E	36	SW
160	645915	2004-022289	Copper River	21 N	21 E	1	NW
160	645916	2004-022290	Copper River	21 N	21 E	1	NE
160	645917	2004-022291	Copper River	22 N	21 E	36	SE
160	645918	2004-022292	Copper River	22 N	21 E	36	NE
160	645919	2004-022293	Copper River	· 22 N	21 E	36	NW
40	645920	2004-022294	Copper River	22 N	21 E	25	SW of SW
40	645921	2004-022295	Copper River	22 N	21 E	25	NW of SW
160	645922	2004-022296	Copper River	22 N	21 E	26	SE
160	645923	2004-022297	Copper River	22 N	21 E	35	NE
40	645924	2004-022298	Copper River	22 N	21 E	35	SE of NW
40	645925	2004-022299	Copper River	22 N	21 E	35	NE of NW
40	645926	2004-022300	Copper River	22 N	21 E	26	SE of SW
40	645927	2004-022301	Copper River	22 N	21 E	26	NE of SW
	Size (acres) 160 160 160 160 160 160 160 160 160 160	Size (ACM)1606458951606458971606458971606458981606459011606459021606459031606459031606459031606459031606459031606459031606459031606459031606459031606459031606459131606459131606459131606459131606459131606459131606459131606459131606459131606459131606459131606459131606459131606459131606459131606459131606459234064592340645924406459254064592540645926	Size (acres)ADLDocument1606458952004-0222601606458972004-022711606458982004-022731606459002004-022761606459012004-022761606459022004-022761606459032004-022761606459032004-022781606459042004-022801606459052004-022801606459062004-022801606459072004-022801606459082004-022801606459102004-022801606459102004-022801606459112004-022801606459132004-022801606459142004-022801606459152004-022801606459162004-022901606459172004-022901606459182004-022901606459192004-022901606459192004-022901606459142004-022901606459152004-022901606459212004-022901606459212004-022901606459212004-022901606459232004-022901606459242004-022901606459252004-022901606459262004-022901606459262004-022901606459262004-022901606459262004-02290	(acres)	Size (acres)ADLDocumentMeridianTwnsp1606458952004-02269Copper River22 N1606458962004-02277Copper River22 N1606458972004-02273Copper River22 N1606458982004-02273Copper River22 N1606459092004-02274Copper River22 N1606459002004-02275Copper River22 N1606459012004-02276Copper River22 N1606459022004-02277Copper River21 N1606459032004-02278Copper River21 N1606459042004-02280Copper River21 N1606459052004-02280Copper River22 N1606459062004-02280Copper River21 N1606459072004-02280Copper River21 N1606459082004-02280Copper River22 N1606459102004-02280Copper River21 N1606459102004-02280Copper River21 N1606459112004-02280Copper River21 N1606459122004-02287Copper River21 N1606459132004-02280Copper River22 N1606459142004-02280Copper River22 N1606459152004-02280Copper River22 N1606459162004-02290Copper River	Size (arres)ADLDocumentMeridianTunnspRange1606458952004-02269Copper River22 N21 E1606458972004-02271Copper River22 N21 E1606458982004-02272Copper River22 N21 E1606458992004-02273Copper River22 N21 E1606459092004-02274Copper River22 N21 E160645902004-02277Copper River22 N21 E160645902004-02277Copper River22 N21 E1606459032004-02277Copper River21 N21 E1606459042004-02278Copper River21 N21 E1606459052004-02278Copper River21 N21 E1606459042004-02280Copper River21 N21 E1606459052004-02280Copper River21 N21 E1606459042004-02280Copper River21 N21 E1606459042004-02280Copper River21 N21 E1606459102004-02280Copper River21 N21 E1606459102004-02280Copper River21 N21 E1606459112004-02280Copper River21 N21 E1606459122004-02280Copper River21 N21 E1606459142004-02280Copper River21 N21 E <td>Size (ADI)ADLDocumentMeridianTwnspRangeSec.160648802004-02270Copper River22 N21 E33160648802004-02271Copper River22 N21 E33160648802004-02272Copper River22 N21 E33160648902004-02273Copper River22 N21 E33160648902004-02274Copper River22 N21 E34160645902004-02275Copper River22 N21 E34160645902004-02276Copper River21 N21 E34160645902004-02277Copper River21 N21 E34160645902004-02278Copper River21 N21 E34160645902004-02281Copper River21 N21 E34160645902004-02281Copper River21 N21 E34160645902004-02281Copper River21 N21 E34160645912004-02281Copper River21 N21 E34160645912004-02281Copper River21 N21 E34161645912004-02281Copper River21 N21 E34161645912004-02281Copper River21 N21 E34161645912004-02281Copper River21 N21 E34161</td>	Size (ADI)ADLDocumentMeridianTwnspRangeSec.160648802004-02270Copper River22 N21 E33160648802004-02271Copper River22 N21 E33160648802004-02272Copper River22 N21 E33160648902004-02273Copper River22 N21 E33160648902004-02274Copper River22 N21 E34160645902004-02275Copper River22 N21 E34160645902004-02276Copper River21 N21 E34160645902004-02277Copper River21 N21 E34160645902004-02278Copper River21 N21 E34160645902004-02281Copper River21 N21 E34160645902004-02281Copper River21 N21 E34160645902004-02281Copper River21 N21 E34160645912004-02281Copper River21 N21 E34160645912004-02281Copper River21 N21 E34161645912004-02281Copper River21 N21 E34161645912004-02281Copper River21 N21 E34161645912004-02281Copper River21 N21 E34161

Reliance Geological Services Inc. —

APPENDIX B

Drill Logs

	DIAMOND DRILL LOG	Project:	TAL	JRUS				
	DIAMOND DRIEL LOG	Location:	L 509·	+75 E, 49	97+50 N	N		
			oordin			le #:	T08-40	
		Northir		Eastin	0		1 of 12	
		705778	-	48713		evation:	2,730 ft / 832.1 m	
		Azimuth:				g by:	E. Harrington	
		Hole Depth	n: 1,44	2 ft / 439.	.52 Da	te:	July 26 to Aug 9/08	
Meters	Grain size 90 [.] 0 [.] - [.] - [.] - [.] - [.] - [.]	Samples					Descrip	otion
				Struc	cture		Alteration	Lithology
1	\uparrow							0-3.91 - overburden
_2	Overburden							3.91-4.27 - ground and broken core, quartzite and
2								porphyry, regolith material(?)
_3								
4 5								4.27-14.78'/1.3-4.5 m - Qtz Monzonite Porph
6							- hematitic and limonitic	light to medium gray, with white-cream colored
_0							fractures, patchy biotite	feldspar phenocrysts 15-20%, which appear
	3							crushed and broken. Fractures show hematite
8 9								and limonite coatings. Quatz veinlets @ 30-50°/ca
	A							generally < 2mm, showing lamination. Anhedral
- 10 -								biotite <5%. Core moderately broken.
1			@12.	.5m - 5cm	n breccia	а		
<u> </u>				re zone @				12.95-13.49 m - dark gray non-porphyritic with
— 3 —				gly limonit				anhedral to euhedral pyrite <5%.
<u> </u>				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				@ 13.18 m - moly and covelite (?) - NITON reading
— 5 —								Cu 1150 ppm; Mo 670 ppm
<u> </u>								
— 7 — — 8 —	0 0 0 0 0							14.78-927' /4.5-282.55 m - Quartz Monzonite
9								14.78-43.28'/4.5-13.19m - quartz monzonite
- 20 -			- hair	line fractu	ures @	10-60 [°]	- limonite on fracture	medium to dark gray. Disseminated pyrite <3%
1 -	A MAR		but m	ostly 45°/	'ca		surfaces, local hematite	Fracture surfaces very rusty. Numerous hairline
2	ANA							fractures @ 35-60°/ca. Minor porphyritic sections.
<u> </u>							95-99'/28.96-30.18m	Weakly magnetic with local blebs of magnetite
— 4 —	Ben Smachetite.						soft white grainey matter	(@ 24.54 m).
— 5 —							on fractures surfaces	@ 82.5'/25.15m - NITON reading Cu - 7,799 ppm
<u> </u>	5 which fract fill						gypsum or carbonate ?	Mo 24 ppm
— 7 —	and the second second second							
<u> </u>								
— 9 —								
- 30 -								

	(Grain	Size	e mn	n				Drill Hole: T08-40 Page: 2 of 12
eters	0.06	0.50	2	8	32	Samples	Structure	Alteration	Lithology
_1		Jan Jan							
•			1						
2 —									
3 —			1						
4 —	-		1						
5 —	-				-	-			
6 —	-		-	-					
7 —									
8 —		_	1						from 142' / 43.28m - Quartz Monzonite, med gray
9 —									quartz <30%, biotite <5%, trace chlorite, mod to
			Ŧ						weakly magnetic, "salt and pepper" appearance
40 -		The	3				- 130-142' / 39.62-43.28 m	- 12.82-142'/3.91-43.28m	
1 —		m	1				strongly limonitic fault, well	leach cap	
2 —		n	-	1.			broken and ground		
3 —	-	5	-	-				- trace chlorite	
4 —			AI				- hariline fractures, generally		
5 —	-	1							
6 —	-						@ 45°/ca, weakly limonitic		
7 —	-	>	1				and hematitic		@158.5'/48.31m - Cu bloom on fracture surfaces
8 —	100		6						malachite and azurite, quartz veining <5mm
9 —		X							@ 0-30°/ca, with surrounding rock rotten, veining
		2/		-					is weakly limonitc and extends to 195'/59.44m,
50 -		- V.			-				occasional Cu bloom in veining, minor carbonate.
-1 —			-						
2 —	-	N	~	-					
3 —									@ 190'/57.91m - grain size decreases otherwise
4 —			1						-
5 —	-	5		1.				Provide front and	core is similar. Disseminated pyrite < 3% appears
6 —	-	1						- limonitic fractures	fresh and unaltered. Weak fracturing shows mind
7 —				1					limonite. Occassional quartz-carb veining @
8 —	-		1	18					40-50°/ca with trace of azurite. Weakly
9	-	11		1					disseminated magnetite.
		KU	- 9!	ts-ca	cb				
60 -		1/	h	i tra					
1 —		14		Innice	1				
2 —									
3 —	-								
4 —	-								
5 —	-								
6 —	-								
-7 —									
-8 —									
9									
5									

		Grain	Size	mm	า				Drill Hole: T08-40 Page: 3 of 12
eters	0.06	0.50	2	8	32	Samples	Structure	Alteration	Lithology
1							232-277' / 70.9-84.43m -		
2			lessentint projection of				core moderately broken with	242-277' / 73.76-84.43m	from 242 '/ 73.76m - core siliceous, disseminated
_2 _							fractures @ 30-70°/ca	limonitic coating on fract.	pyrite <3%, bitotite content decreases to <1%,
_ 3 _		-	-		an ann Sinnan an Indianaicht				color more consistantly gray rather than "pepper
_4 _ _5 _	1	299			and a second		244' / 74.37m - 2cm qtz-carb		and salt". Occassional quartz-carb veins <1cm
		//					vein @ 45°/ca containing		but generally <3mm @ 30-50°/ca.
_6 _ _7 _	1						rounded fragments of wall rx		
•					Province of a data for the branch of the bra				
- 8 -					NAMES OF STREET		248.2' / 75.65m - 1 cm qtz-		
-9 -	_						carb vein @ 30°/ca		
80 -									
							258-259' / 78.64-78.94m -		
-2 —				1			1 cm qtz-carb vein @ 20°/ca		
-3 — -4 —		1.1.1.	1	gou					284-289' / 86.56-88.09 m - rounded xenoliths <5cm
-4 — -5 —	XX	VIL	1	10	Sec.		275-277'/83.82-84.45m -	@ 291' / 88.7m - greasy	of dark gray fine-grained material
-6 —	-	11					core well ground, gouge	gray-green blebs, chlorite	
-7	-	1	1					alteration(?)	
•	4129	Ø					280.5 / 85.5 m - 1 cm		
-8 — -9 —			1				"greasy" grey quartz vein @		
90 -			P				40o/ca cut by white qtz-carb		291-327' / 88.7-99.67m - occassional bands of
1	X	XXX	R		mart yes from an Annual and		stringers at various angles		coarse mafic material. "Greasy" greenish-gray
-2 -	XX	x xx/	P					301-317' / 91.74-96.62m	irregular grains <5mm, generally @ 45°/ca,
-3 -		1 A	D		an dar an an an air da ann an an		297-298' / 90.53-90.83m -	limonitic fracture coatings	disseminated pyrite <2%, non-magnetic.
_4 _		19/1	1	_			qouge with minor limonite		
-5 -		X	P						
-6 -		1.		_			301-302' / 91.74-92.05m -		
-7 -		1	R		the production of the second second		gouge with strong limonite		
-8 -		1	1						
-9 -							317.5' / 96.77m - slicken-		
100 -		er det er först singe braketet et er u	F				sides on qtz vein @ 25º/ca		
-1-							associated with mafic band		
-2 -	-						343-344' / 104.55-104.85 m		
-3 -	-						core well broken and gouge		
-4 -		XXXXX	CX.V				with limonite on fractures		328-360' / 99.97-109.88m - core weakly to mod
-5 -			1						fractured with limonite on fracture surfaces.
-6 -		XXY,	1		An a supervision of the low sector of the supervision of the low sector of the supervision of the supervisio		351' / 106.98m - 20 cm of		Occassional quartz-carb veins <6mm, along with
-7 -			nt				well ground core		hairline veinlets. Disseminated pyrite <3% and
- 8 -									very minor magnetite.
-9 -									

	Ģ	Grain S	Size	e mn	n				Drill Hole: T08-40	Page: 4 of 12
Meters	0.06	0.50	2	8	32	Samples	Structure	Alteration		Lithology
_1 _		- L - L	-)					363.5-369' / 110.79	-112.47m - 25-30% pinkish
-2 —									feldspar. Contacts	are not clear but appear to be
-2 -3 —			2						@35-40°/ca. Not p	orphyritic, but feldspars <5mm
_4	and an		T						Biotite <4%, trace d	isseminated pyrite.
-5 —			1							
-6 —	-		-							
-7 —	-		1				385-387' / 117.35-117.96 m			16.43 m - quartz monzonite.
- 8	- 人子:	RET					mass of hairline qtz-carb			-looking "pepper and salt"
-9 —	- 11						fractures with soapy		appearance. Biotit	e <5%, dissem pyrite <3%.
12 -		Ind	2				"serpentinized" soft and			
-1 —	- / /	-	1/	1.00	-		greasy patches.			
2 —		In	-Tcho	alcopy	tite.					-145 m - finer grained and
-3		1					410-411' / 124.97-125.27m	<1% chlorite patches		rance. Chlorite <1%.
-4 —	and device A station can be followed	1					minor gouge with limonite			-carb healed hairline fractures
-5 —	Propagation and a second second second	1					@ 45°/ca.		@ 30-50°/ca.	
- 6 —	X	XXXX								
-7 —		XXX			+	-	417.5 ' / 127.25 - gouge with			m - trace lead-gray silvery
8 —	X	XXXXX					limonite and hematite.		material - Moly.	
9										
130 🗕		1					415-416' / 126.49-126.8 m			57-120.03 m - pink granitic
-1 —							core moderately ground, with			Cut by qtz-carb stringers at
2 —						-	irregular qtz-carb veinlets.		upper contact.	
3 —						1	439.5-442' / 133.96-134.72m			
-4 —			-4				well ground core with		396.5' / 120.85 m -	5 cm qtz-carb vein @ 45°/ca
-5 —	10	N/XX	1				limonite - fault. No			agments. Trace chalcopyrite
6 —		1-14		-			orientation.			
7 —		1			1				403' / 122.83 m -)
8 —			e						407' / 124.05 m -	vuggy qtz-carb veins < 1cm
9							445-448' / 135.64-136.55m		410' / 124.97 m -	(@ 45°/ca
140 -							qtz-carb stringers and veins		424.5' / 129.39 m -	
-1 -	Annual Stationer	Bip					<3 cm @ 45°/ca, vuggy)
2 —		12.20	2		17				436' / 132.89 m -	< 4cm porphyry band
-3		- Fit							437' / 133.2 m -	@ 45°/ca
-4 —		10	,				460.5-475' / 140.36-145 m		,	
-5		1 200			4		irregular coarse bands with	460.5-493'/140.4-150.3m		
6 —			1	clay	alt.		qtz-carb veining. Core soft	clay alteration, core soft		
-7 —	For the second	41	1	51		¢	and locally gouged.	and crumbly		
- 8 -			-	-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		······································		
-9 -		T Li		ļ.						

	(Grain			n					Drill Hole: T08-40 Page: 5 of 12
Meters	0.06	0.50	2	8		32	Samples	Structure	Alteration	Lithology
1	-		=							475.5-527' / 144.93-160.62 m - core more granular
_2 _			1						500-522.5' / 152.4-159.3m	in appearance, clay altered. Weakly magnetic
_3 _	-								variable clay alteration	throughout. Biotite <2%, minor chlorite, pinkish
			16						with chlorite patches on	feldspars 5-10%, disseminated pyrite <2%.
_5 _		4	1	da	ina	H			fractures.	Occassional qtz-carb veins < 1cm @ 40-75°/ca
_6	-	- /	1	Y	1					but generally around 45°/ca. Veining is laminated
-0			1							and locally vuggy.
-8		-1-	-							
_9		-	1							527-576.5' / 160.63-175.72 m - quartz monzonite
-										Disseminated pyrite <3%
- 160 -		1	. [_]					527-537' / 160.6-163.7m		
- i —			2					numerous qtz-carb veins	537-550' / 163.7-167.6m	527-537' / 160.63-163.68m - numerous qtz-carb
-2 -		1						and stringers.	clay alteration with minor	stringers and veins < 5cm, but mostly <5mm.
-3 - -4 -									chlorite	@ 20-45°/ca but mostly around 45°/ca. Veining
-4 - -5 -										is vuggy and laminated.
-5 - -6 -		- 1-	.							
-0 -	-	- +/	+							537-550' / 163.68-167.64 m - clay altered feldspars
- /	-	E	=							minor chlorite. Trace disseminated chalcopyrite
-8 - -9 -			1							
 170			-	7						557-559' / 169.77-170.38 m - coarser more granitic
_ 1 _			T	2						bands with upper and lower contacts @ 40-45°/ca
1			11							Trace disseminated chalcopyrite. Some
-2 - -3 -		1								feldspars altered to clay.
-3 - 1	1	YA								
_5 _		+								
										568-572' / 173.13-174.35 m - irregular qtz-carb
_7										veins < 3cm, vuggy with drusy calcite. Small
_8									576.5-627' / 175.7-191.1m	breccia zones <10cm healed with qtz-carb.
_9			;						chlorite content variable	
		1						588-590'/179.22-179.8 m	<2%.	576.5-627' / 175.72-191.11 m - quartz monzonite
180 - _ 1 _								594.5-595.5'/181.2-181.51 m		fresh granular appearance. Moderately magnetic.
•		1.						612-613'/186.54-186.84 m		Biotite <5%, hornblende <2%, pinkish feldspars.
-2 - -3 -								qtz-carb veins @ 25-45°/ca		Disseminated pyrite content variable <3%. Small
3								vuggy with some breccia		local breccias healed with qtz-carb showing
—4 — —5 —								healing. Bladed calcite @		slickensides and pyrite skins on fractures.
—5 — —6 —								590' / 179.8m.		Chlorite content varies <2%, but appears to be
		1								more intense around qtz-carb veining.
-7 -		1		1						
-8 -										
<u> </u>										

		Grain		e mn	n				Drill Hole: T08-40 Page: 6 of 12
Meters	0.06	0.50	2	8	32	Samples	Structure	Alteration	Lithology
1_									627-661' / 191.11-201.47m - qtz monzonite, variably
—2 —		1			-				magnetic, biotite <2%, hornblende <3%
3 _		11	+	D					
			+	Ð			636-653' / 193.55-199.03m		632-633' / 192.63-192.94m - granitic intrusion @
5		1					qtz-carb veins and stringers		35°/ca. Pink with qtz-carb stringers and veins
6		1		1	1		<2cm, generally @ 45°/ca		<5cm @ 15-45°/ca.
7		1							
8		11)					635-636' / 193.55-193.85m - granitic intrusion as
9									above.
		X	XX				654-655.5'/199.34-199.8m		
- 200		-	Y		Provide Article		core well broken and gouged		Missing core Box 178-660.5-673.5'/201.32-205.28m
		Bernard Brown Charles		T			irregular qtz-carb veins and		
-2-	and the second second			In	ISSING		stringers.		678-681' / 206.65-207.57m - weakly porphyritic with
— 3 — 4					RE-				feldspar phenocrysts <4mm ,10%. Contacts
4 _ 5 _							673.5'/205.28m - 0.15m		appear gradational. Minor disseminated
5 6		X	XX	1			gouge		chalcopyrite from 677-678' / 206.35-206.65m.
— 0 — 7	6	0	00	51					
7 8 _		6 -	200	2					(Box 80-85) 679-729' / 206.96-222.2m - qtz. Monz.
0		V	1	5			681-702' / 207.57-213.97m	- epidote patches on	Biotite and mafics <5%, finely disseminated
	•	V	1	1			numerous qtz-carb veins	some fractures	chalcopyrite <0.5% and trace molybdenite.
= 210 = 1							<5cm but mostly <3mm		Disseminated pyrite <2%. Pyrite, chalco, and moly
— I —			1				healing localized brecciation	- limonitic fractures	also on fracture surfaces.
-2 -	-		Y				irregular larger veins @ 30-		
-3 -	24	Y		N	·		45°/ca	- red crusts on fracture	@ 721' / 219.76m - irregular sharp-edged chunks
— 4 —				Eck	alco			surfaces, carbonate(?)	of pyrite and chalcopyrite localized over 0.15m,
— 5 —		h A	-				700-710' / 213.36-216.4m		appear to be fracture fillings.
-6 -						2	possible breccia, greenish		
-7 -		1	1				host rock shows indistinct		(Box 86-91) 729-780.5' / 222.2-237.9m - qtz. Monz.
- 8 -	1	•		1			pinkish blobs.		with local porphyritic sections. Generally green
— 9 — • 220 •	Ą								and pink. Core is fresh and hard. Disseminated
1	0		per s	FCI	Lolco			- epidote blebs and	pyrite <2%, chalcopyrite <1%, trace moly.
		h . V	an an a Carl Se an an a gun		Conversion of the		@723' / 220.37 - chalco	patches on fractures	Locally, moly blebs associated with qtz veins and
-2 -				TI		~	on fracture surfaces		stringers. Epidote alteration. Biotite + mafics<10%
-3 -									Trace galena. Minor qtz-carb stringers @40-45°/ca
	9.	4	h	(v5			
-5 -		-							
-6 - 7		M A				5A			
-7 -	-	4	1	1					
- 8 -		43		1+		-			
<u> 9 </u>					T L				

	(Grain	Siz	ze	mn	n					Drill Hole: T08-40 Page: 7 of 12
Meters	0.06	0.50) 2	2	. 8	3	2	Samples	Structure	Alteration	Lithology
1		6	/	1							(Box 92-97) 780.5-831.2' / 237.9-253.35m -
_2 _		/	2								qtz. Monzonite, greenish color, hornblende
3		1	1								predominant mafic <3%, biotite <1%. Qtz-carb
4		1	×								stringers @ 35-40°/ca. Disseminated pyrite <2%
5		2									chalcopyrite <1%, trace moly. Some sulfide
6 -			5								concentrations along dark gray qtz veins. Gray
0		4							-		qtz veins are irregular <3cm and are cut by
8	× 3	•		1	LI						white to buff carbonate and qtz-carb veins. Local
9			0 /		11			-	- qtz-carb stringers @		blebs of magnetite with some disseminations.
		./	1		1				35-40°/ca		
240		X			11					- minor epidote blebs	812.3-814' / 247.59-248.11m - brownish-red fine-
		1		1			1			- talcy fracture surfaces	grained intrusive. Upper contact @ 15º/ca. Diss
-2 - 2		1	\$	1	11				@ 799.5' / 243.69m - 10cm		pyrite <3%, chalcopyrite <2%, and trace moly.
— 3 — — 4 —		1							breccia healed with dark		Minor epidote blebs.
4 5		•	•		11				gray quartz.		
-		X			1						
— 6 —		1			1				@821' / 250.24 m - white		
_ / _		1	-	-	1				bladed calcite vein @ 5°/ca		
		1	3	1	N				no sulfides.		
9 250 _		~	-		11						
230	5.	/	L 1	-	11						(Box 98-103) 831.2-876.5' / 253.35-267.16 m -
					1						Qtz monzonite. Greenish color. Disseminated
<u> </u>					11	T					pyrite <2%, chalcopyrite <1%, trace moly.
-3 -		1		-	+ +				840-846' / 256.03-256.86 m		Chalcopyrite can also be concentrated along
— 4 — — 5 —									core well broken and ground,	- minor epidote	veins and fractures.
— 5 — — 6 —		,	1		1				possible fault(?).		
— 0 — — 7 —			X	X	X					840-854' / 256.03-260.3 -	@ 865.5' / 263.8m - 3 cm quartz vein with <10%
			1	1	1		1			clay alteration and talcy	chalcopyrite in chunks.
8 9 _			1							fracture surfaces.	
- 9 - - 260 -		1	/		1						871-876' / 265.48-267 m - orange-red crusts on
200 -		/	1								fractures. NITON reading #107: Cu - 1071 ppm,
				Ì							Mo - 246 ppm, Sr - 4,953 ppm, Ca - 129 K ppm
-2 -		1	1								
-3 -		- /	/		1						(Box 104-109) 876.5-927' / 267.16-282.55 m -
— 4 —		/	1								Quartz monzonite. Greenish. Mafics <10%
5				1			1				Disseminated pyrite <1%, chalcopyrite <1%,
-6-			1						+		trace moly.
—7 —	i	2	0	1	+		-		@ 885' / 269.75 m - 0.3m		
	0	54	1	\$	1				qtz-healed breccia/fracture		878-883' / 267.61-269.14m - weakly porphyritic
<u> </u>	-	A	~	1-					zone		

	(Grain Siz		mm	1				Drill Hole: T08-40 Page: 8 of 12
Meters	0.06	0.50 2	2	8	32	Samples	Structure	Alteration	Lithology
1		~~~//	1		Lauto-server 1				(Box 104-109) continued -
-2		- 4/1/						- epidote blebs	@ 886' / 270.05 m - hematite rich quartz stringers
_3 _		*							20°/ca
		*	17						
_5 _		1.	5	an	ens				897-922' / 273.41-281.03 m - "greasy" gray qtz
_6 _		11	F	- 91	54				veins <1cm @ 10-20°/ca, some showing hematite.
_ 7 _	-10		1	-					
-8		1.					922-925' / 281.03-281.9 m	- massive specular	916.5-933.4' / 279.35-284.53 m - core is black
_9	4						fractures @ 20-30°/ca	hematite and pyrite	with specular hematite. Pyrite content <3%, with
• 280 ·		1					with slickensides parallel		local concentrations to 15%. Hematitic stringers.
1			-				to core axis.		
-2 -	r	22							(Box 110-115) 927-974.5' / 282.55-297.03 m -
		· ·	+	280	2.5				Monzonite. Greenish color. Biotite <5%.
		· XXX	X				929-930' / 283.16-283.5 m -		
		life	\$	her	atite		core gouged		927-933.5' / 282.55-284.53 m - red and specular
6		11	1	Ter	mt.				hematite, and massive pyrite with trace of
0 7			1						chalcopyrite.
8	-		1 A						
9			V						@ 936.7' / 285.51m - 10 cm hematite vein 25°/ca
_ 290 _		1/					954-956.4' / 290.8-291.51 m		euhedral pyrite <1cm, irregular minor qtz-carb
1		1					weakly brecciated(?) core.	- clay alteration	veinlets at a variety of orientations.
-2 -		. /	1				Irregularly broken with clay		
 3			1				alteration, qtz-carb healed		Disseminated pyrite <1%, chalcopyrite <0.5%,
_ 3 _			1						trace moly and galena.
_5 _		1	1	¥.	1				
_6 _	Y	Mole (heal					
_7		XXX	X	frac	tures				(Box 116-1210 974.5-1027' / 297.03-313.03 m -
, - 8		121.	T	-					Monzonite. Green to pink. Disseminated pyrite
_9 _							971-972' / 296-296.3 m -	- epidote blebs	<0.5%, chalcopyrite <0.5%, trace moly.
300 -		1.7					core gouged		
_1		P.T.	11		1 1				974.5-1013' / 297.03-308.76 m - numerous
			117	Legel	longth eclines		@ 991'/302.06m -		irregular cream to buff colored carbonate veinlets,
-2 — -3 —		XPT		pro	charles		slickensides @ 90°/ca in		with some massive carbonate <1cm. Larger veins
3 _1		A.					fracture @ 35°/ca		range from 30-45°/ca. Possible weak breccia.
-4		1							
-5 — -6 —			11				974.5-1013' / 297.03-308.8m		
-7		F					weak breccia(?)		@ 1013' / 308.76 m - Qtz monzonite porphyry
-		AD	6						
-8		200	D]					
-9 —			1		ľ ľ l				

	(Grain	Siz	e m	m				Drill Hole: T08-40	Page: 9 of 12
Meters	0.06	0.50) 2	8	3 3	2 Sample	s Structure	Alteration	Litholog	ју
1		2							(Box 122-127) 1022-1078.8' /	313.03-328.82 m
2		. 1	2						Quartz monzonite porphyry.	Greenish. Moderately
3		44	> @)			+	- epidote blebs	soft core, weakly porphyritic.	Disseminated pyrite
			0	T					<1%, chalcopyrite <1%, trac	e moly. Note: moly
5		47		1				@ 1036' / 315.77m -	seems more visually prevalen	t than previously.
 6			٣					orange-red crusts on	Major calcite veining at:	
		1	0					fractures	1047.5-1048.5'/319.28-319.58	8m - @ 70º/ca
/ 8		0							1067-1072'/324.31-326.75m -	@ 30-35°/ca
0									Veining is vuggy and shows d	rusy calcite. No
-	-	-	-						sulfide concentrations. Minor	irregular carbonate
- 320 -		17	9						veinlets at all angles. Gray qu	artz veins @
- 1							1057-1063'/322.17-324m -		35-50°/ca. Occassional iron-c	arbonate chunks
— 2 — — 3 —		3	0				weak breccia healed with		<3cm rounded to sharp-edged	ł.
3		14	-	K			gray quartz and cream			
		11	20		1	1	colored carbonate, different			
	(10/	2	5	Veri	4.	ages of veining.		(Box 128-133) 1078.8-1129.5	/ 328.82-344.27m
-0-	12	A	1	1	1				Quartz monzonite porphyry.	Greenish.
/ 8	V	11-			1				Disseminated pyrite <1%, cha	llcopyrite <0.5%,
9									trace moly.	
330		. 4	1				@ 1083'/330.1 m- qtz-carb	- epidote blebs		
1		-	-	1			vein @ 30°/ca, vuggy and		1090-1092'/332.23-332.84m	qtz-carb veins and
		1	0				laminated.	- locally, feldspar is soft	1095-1098'/333.76-334.67m	veinlets <1cm
— 2 — — 3 —			10	n				and crumbly with clay	1103-1111'/336.19-338.63m	generally @ 40o/ca
4	1		11	+	1			alteration.	1114-1119'/339.55-341.07m	
5		9	1	17	50	-20				
6		1			14					
				1	1					
8	T		h	V			1114.5-1118'/339.7-340.8m			
9		0	1	A			irregular gray quartz veins			
- 340 -		01	12	- 1			and sharp-edged wall rx, cut		(Box 134-139) 1129.5-1181.5	/ 344.27-360.12 m
- 340 -	1	SIL	16	-1			by qtz-carb veins. Breccia.		Quartz monzonite porphyry.	Greenish gray.
		1							Feldspar phenocrysts <3mm.	Disseminated
2		1		1					pyrite <1%, chalcopyrite <1%	, trace moly.
-3 -		4	A	1				- talcy fractures		
— 4 —			Ki	+	+				1129.5-1164' / 344.27-354.79	m - mixture of
5	1	51	5/-					- <3% epidote blebs	porphyritic and non- to weakly	porphyritic beds @
- 6 -		N		1					30-35°/ca. Carbonate stringer	rs and veins <1cm
-7 -		. 1	17	1					@ 30-40°/ca.	
- 8 -	4	3 /3	1.	1						
-9 -		. 1%)	1						

		Grain Size	e mi	-				Drill Hole: T08-40	Page: 10 of 12
/leters	0.06	0.50 2	8	32	Samples	Structure	Alteration	Lithol	ogy
1 _		2/1	1.			@ 1149.5' / 350.37m -			
-2 -	4	3/1				black stringers in carb vein			
		10/ 20				NITON reading Cu- 1439ppm			
3 4		0/0/				Mo - 1482 ppm			
-		480/ 1	11			· ·		(Box 140-145) 1181.5-1233	/360.12-375.82m
-5-	2	2	11					Quartz monzonite porphyry.	
-6-		D						Biotite <5%, chlorite <2%.	
-7 -							- <2% chlorite	<1%, chalcopyrite <0.5%,	
- 8 -		B						,	
-9-		0						@1184' / 360.88 m - 2cm c	arbonate vein @ 35o/ca
360 -		-	+					with blebs of pyrite and chal	copyrite vein laminated
-1 -		0 0					- minor talcy-coated		
-2 -		۵	1				fractures	1211-1214'/369.11-370 m -	white to buff colored
-3 -		2				@ 1200' / 365.76m - 4cm		gtz-carb vein @ 30°/ca, lam	
-4 -		6 B				carbonated vein with purple		multiple generations of filling	
-5 -		R				coloration, vein area			
-6 -		Pr.				brecciated and carbonate		@1195' / 364.24 m - 5cm q	tz-carb vein @ 35°ca
-7 -	۵		-			healed.		Contains pyrite blebs but no	
-8 -		0	+						chalcopyfile.
-9 -		,							
370 -			-						
-1 -		0 .							
-2 -			-		-				
-3 -		0							1075 00 004 50
-4 —								(Box 146-151) 1233-1284.5	
-5 —		4.						Quartz monzonite porphyry.	
-6		-	+					<2%, chalcopyrite <1%, tra	ice moly.
-7 —	2							Biotite <5%.	
- 8 —	- F	2			-		- epidote blebs		
_9		R						1254.5-1256' / 382.23-382.8	
380 -		,						45°/ca, with chunks of incor	porated wall rock.
_1 _	1	1 2							
-2 —	C							1275-1276' / 388.62-388.92	<u> </u>
-3 —	٩	10						1279.5-1280.5'/389.99-390.	3m ∫ fractures/breccias
- 3 - 4		1 1							@ 45°/ca
- 5		D.							
-5 — -6 —									
-	-	- 0 .							
-7 —	1	1		6	i	- qtz-carb-healed fracture			
- 8 -	P	Mr.	19	3-carl	*	zones			
-9 -		11/1	1-						

		Gr	ain	Size	mr	n				Drill Hole: T08-40	Page: 11 of 12
Meters	0.0)6	0.50	2	8	32	Samples	Structure	Alteration		Lithology
1 _					1					(Box 152-156) 1284.5	-1329' / 391.52-405.01 m
2		4	2		11					Quartz monzonite por	ohyry. Disseminated pyrite
3			2	•	1				- <3% epidote blebs	<1%, chalcopyrite <0	.5%, trace moly.
4			4	•	1						
5		0	-		1.					@ 1300 '/ 396.24m	qtz-carb veins <5cm
6 –	_	~	ŀ	1				@ 1301.5' / 396.7 m - 10cm		@ 1310.5' / 396.7m	@ 50-55°/ca, laminated
7		•	A	XXX	×	i.		gouge zone, core soft and		@ 1327' / 404.47m	containing wall rx frags.
- 8 -	_		1	1				clay-rich to 1305'/397.8m			
9 -				0						@ 1302.5' / 397 m - b	lack hairline fracture fillings
- 400		. 0	2							in qtz-carb vein. NITC	N reading Cu - 1353 ppm
1			n			+				Mo - 425 ppm, Fe - 7.	7 K ppm, Ti - 1976 ppm
		- [1]	C	1						S - 63.9 K ppm	
2 - 		1	2	·							
4				¥.,						(Box 157-162) 1329-1	382' / 405.08-421.23 m
5		5	1,							Quartz monzonite por	ohyry. Disseminated pyrite
6 –		. 1	N		T					<1%, chalcopyrite <0	.5%, trace moly. Core is
7		4	-1	-					- <3% epidote blebs	very siliceous.	
8 -			C	7 1	1						
9			- [-						1342-1352'/409.19-41	2.09m biotite content
_ 410 _				21	TE	rist				1358-1365.5'/413.92-4	16.2m increases to <15%
1 -		0	~	1	F	<15%					
2 -			2	31							-418.49 m - massive qtz-carb
$-\frac{2}{3}$ -			0	0	1						ock incorporated at upper and
	-	1		Ļ	K					lower contacts @ 45°/	ca.
	_			11		S15%					
6 -		-	Ψ.	Di/	1						
-7 -			E	.0	N	_					
-8 -			Υ.	1	1						
9 -	-		1	6-						· · · · · ·	424.3' / 421.23-434.13 m
420 -			-	4	1						ohyry. Disseminated pyrite
-1 -			6	-	TI					<1%, chalcopyrite <0	
-2 -			-	0					- <3% epidote blebs		Numerous qtz-carb and
-3 -			6	.71							einlets <1cm generally @
_4 _		_	-	2							generations with intersections
5	-	. 1	5-							and displacements.	
6	-	n]]	71							
<u> </u>	_										37-427.18 m - massive calcite
- 8 -	-	G	>	9						vein, upper contact @	50°/ca, lower @ 30°/ca.
9											

		Grai	in Siz	ze m	m	Т				Drill Hole: T08-40	Page: 12 of 12
Meters	0.06	0.	50 2	8	32	2	Samples	Structure	Alteration	Litholo	
1 _										(Box 168-170) 1423.4-1442' /	
_2 _	40		Ø					·		Quartz monzonite porphyry.	
		6								<1%, trace chalcopyrite, tra	
-3 -		12	47	A					- <15% epidote blebs,		
4 5 _		1	12	4				1421-1425'/433.12-434.3m	also patches on fractures	@ 1433'/436.78m	
		0		1				breccia healed with calcite	· ·	@1437.5'/438.15m	>
— 6 —			W					and minor quartz.		@1440.5'-1442'/439.06-439.	52m
-7 -		0	0					·		- massive calcite veins with r	
- 8 -								1425-1429'/434.34-435.56m		vuggy with drusy calcite. Cor	
<u> </u>		2	5					core well broken and healed			
- 440		En	H	1200	-0 .			with qtz-carb.			
		~~	44	10	D	4		· ·			
			14	TO.	OF						
						Er	nd of Hole: 1,4	442.0' / 439.52 m			
			-								
	-										
	-										
	-										
	-										
	-				_						
	-			_							
	-										
	-										
	-										
	-										
	-										
	-										
	-										
	-										
	-										
						-					
	-										
					1						

	DIAMOND DRILL LOG	Project:	TAURUS			
	DIAMOND DRILL LOG	Location:	L506+50 E, 49	92+50 N		
		Co		Hole #:	T08-41	
		Northing		Page:	1 of 6	
		7057		Scale:		
		Azimuth:		Log by:	E. Harrington	
		Depth:7	50'/228.6 m	Date:	Aug 11 - 17, 2008	
Meters	Grain size 90 م م م ه و	Samples			Descr	iption
			Structu	re	Alteration	Lithology
1						
<u> </u>						Overburden
3	Overburden					
4						-
5						-
6						(Box 1-6) 29-68.5' / 8.84-20.88m
7						0-34' / 0-10.36 - overburden, regolith broken rock
8					F	-
9						material from 29-34'/8.84-10.36m
10 -						34-68.5' / 10.36-20.88m - mottled light-gray to buff
<u> </u>						feldspathic quartz rock, with no mafic minerals.
<u> </u>			- core extremely		- moderately to strongly	Quartz ~40%, feldspar ~60%
-3 -			broken, with maj		limonitic	Moderately to strongly limonitic, both in the rock
4			@ 35-60°/ca (co	ore axis)		and on fracture surfaces. Core is extremely well
						broken. Occassional vuggy quartz veins showing
6 —						druzy quartz.
- 7						
— 8 — — 9 —						(Box 7-12) 68.5-116.5' / 20.88-35.51 m
					1	Feldspar-quartz rock. Locally gnessic @30-40°/ca
- 20 -					- moderately to strongly	contacts are indistinct but appear gradational.
<u> </u>					limonitic	Moderately to strongly limonitic. Some sections
<u> </u>			82-86'/24.99-26.2	21 m -		appear porphyritic, but phenocrysts are composed
— 3 —			"gnessic" texture			of aggregates of feldspar and quartz set in a light
<u> </u>			30-40°/ca	<u> </u>		gray host feldspar-quartz rock.
<u> </u>	M		00 40 /00			
<u> </u>			93-96'/28.34-29.2	26 m -		
— 7 —						
- 8 -	くかれたく		clay-healed brec	cia		
<u> 9 </u>	St N			0.06 m		
- 30 -	1000		97-98.5'/28.34-29			
	North Anna Anna Anna Anna Anna Anna Anna Ann		"gneissic" texture	9		

		Gra	ain Si	ze n	nm					Drill Hole: T08-41 Page: 2 of 6
Meters	0	.06	0.50	2	8	32	Samples	Structure	Alteration	Lithology
1		2	TO	B]					
_2		D		D					108-110'/32.92-33.53m -	
3				Π					dark-orange crusty matter	
									on fractures - jarosite(?)	
5										(Box 13-18) 116.5-166' / 35.51-50.6 m
		~	,	-				117-131' / 35.66-39.93m		Feldspar-quartz, with no mafic content. Light-gray
-6		}.	151					weak breccia, qtz-carb and		Moderately limonitic rock and fractures.
-7		1 1	Ϋ́́́́́́	,]				limonite-healed		Pale "celadon" green patches in core - possibly
-8		1 A		$\left \right\rangle$					@129' / 39.32 m - dark-	sericite alteration(?). Traces of hematite
-9		1	<u>`</u>	1					orange patches - jarosite?	disseminated in core. Locally porphyritic.
- 40 -		03	n	D a	Æ					@145' / 44.2 m - trace moly
1 -		ď.		67	1					@ 147.5-153' / 44.96-46.63 m - finely disseminated
2 —		00	20	6	1					pyrite <1%.
_3			-	1-	1				- leach cap to	131-142' / 39.93-43.28m - core porphyritic.
-4 -		-		4					147.5' / 44.96 m	
-5 -				١ţ "		ĺ				
6										
-7										(Box 19-24) 166-212.5' / 50.6-64.77 m
-8 -										Feldspar quartz porphyry, upper contact gradational
<u> </u>		0								Moderately to strongly limonitic fractures. Core
50		· • •	A	1.	1				- moderately to strongly	moderately broken.
1 -		10	7						limonitic fractures	188.5' / 57.45 m trace moly
2 -			' n		Ì	Ì		180-182' / 54.86-55.47m		196' / 59.74 m
3 -				1	Ì			limonite-healed breccia		Disseminated pyrite <1%, not consistently
<u> </u>		6	1.1		:			(drill water lost)		disseminated, with concentrations on fractures
-5 -		7	12F	\uparrow				,		@ 195' / 59.44 m - 4mm qtz vein @ 10°/ca
6 —			/							
-7 -		()			i i					
- 8 -			S.					201-203.5' / 61.26-62.03m		(Box 25-30) 212.5-255' / 64.77-76.66m
— 9 —		0						clay- and limonite-healed		Quartz monzonite, feldspar and quartz with minor
60 -					:			breccia		local chlorite. Greenish gray. Disseminated pyrite
<u> </u>		FT.	45.4						- local chlorite	<2% with concentrations on fractures. Dark
2 —		79	÷}.`	1						metallic flakes <0.5% (bornite?). Trace moly.
_3 _			\mathcal{O}							Core is well broken but does not appear gouged.
— 4 —										Generally not limonitic, but is weakly limonitic
— 5 —				17			@218.5'/66.6m			from 212.5-216' / 64.77-65.84m. Grain size is
<u> </u>		· · ,				. 1	NITON reading			indistinct, and color is an even gray - rather than
-7 -		•					#237, Cu-2.81%			mottled.
-8 -		. •					dark metallic			
9	-	-	$\left \begin{array}{c} \lambda \\ \lambda \end{array} \right $;		flakes			

		Gi	ain	Size	e mr	n				Drill Hole: T08-41 Page: 3 of 6
Meters	0.	06	0.50) 2	8	32	Samples	Structure	Alteration	Lithology
1							@233.5'/71.2m			
-							NITON reading			
<u> </u>							#238, Cu-0.48%		241-242'/73.46-73.76m -	
— 3 —		4					Mo-0.1%	@250.5' / 76.35m - clay-	strongly chloritic fractures	
<u> </u>				ſ		2 2 3		rich fractures @ 10°/ca		
<u> </u>	T		35			· · · · · · · · · · · · · · · · · · ·				(Box 31-36) 255-300.5' / 77.72-91.59m
6 —		i i ja s	3		-					Quartz monzonite, light-gray color and generally
— 7 —										"featureless" appearance. Disseminated pyrite<2%
8 -									- irregular patches of	metallic flakes (bornite?) <0.5%, trace moly
9 —			<u>.</u>						chloritic alteration	Concentrations of pyrite on fractures. Core mod
- 80 -										to well broken.
1	a		. †.		• • • • • • •	¹				295.5-298.5' / 90.07-90.98m - "quartzitic" band
<u> </u>										with upper contact @ 70° /ca and lower @ 45° /ca.
— 3 —	ŀ									Core appears vuggy because of removed pyrite.
<u> </u>			•	[-			Core appears vuggy because or removed pyrite.
<u> </u>			. - .						288-291'/87.78-88.7m -	
<u> </u>			ł			l		293-294'/89.31-89.61m -		
— 7 —					- 1. 1.				chloritic patches	
- 8 -					. :			well broken core with		
<u> </u>	-				1			gouge material		(Box 37-42) 300.5-346.3' / 91.59-105.55 m
_ 90 _		X	х×	××	•					Quartz monzonite, greenish gray, very siliceous.
<u> </u>	-				÷					Slightly mottled appearance. Core generally
<u> </u>	-		. ,							moderately broken but can be locally well broken.
— 3 —			. -	1					- chlorite content locally	Disseminated pyrite <2%, with concentrations on
<u> </u>		1		: <u>)</u>					variable to 3%.	fractures. No limonite in core or on fractures.
<u> </u>										Disseminated bornite(?) <0.5% and trace moly.
6 –				.		* * *** * *				Scattered chloritic blebs <3%
-7 -										
- 8 -										
9		1			4.4					
100		· · ·								(Box 43-48) 346.3-390.5' / 105.55-119.02 m
1										Quartz monzonite, light greenish-gray. Minor clay
2	• •			-	1.5					on fracture surfaces. Disseminated pyrite <2%,
-3 -										trace chalcopyrite, trace moly, trace bornite(?).
4				- A 1					 occassional chlorite 	Occassional green chlorite blebs. Sulfide
5	1				·				blebs to 3%	concentrations, pyrite and moly, on some fractures.
6 –	1			-	_		+			Very minor quartz stringers @ 40-50°/ca, vuggy
7	1.1.16				1		358.5'/109.3m	358.5'/109.3m - fracture-		with minor limonite.
8	ľ.						NITON #255	hosted mineralization		
9		1			1))	Cu-1628 ppm	@ 40°/ca		
							Mo-1236 ppm			

		Grain	Siz	ze n	าท	den				Drill Hole: T08-41 Page: 4 of 6
Meters	0.06	0.50	2	2	8	32	Samples	Structure	Alteration	Lithology
1				1		ΙT				
		· `	- (Ì				
— 2 —		:	1			ΙĪ				
— 3 —	•		1		İ	Ì		382-383'/116.43-116.74m		
<u> </u>	i i				1	İ T		very weak breccia		
— 5 —						11		,		(Box 49-54) 390.5-440.5' / 119.02-134.26 m
<u> </u>	÷	Rent 1	2		ĺ					Quartz monzonite, very siliceous. Disseminated
-7 -	11.	1	1			Ì				pyrite <1%, with concentrations on fractures.
- 8 -		~				ÌΤ			- very siliceous	Trace moly.
<u> </u>			-1	r —						
- 120 -						i t		@ 408'/124.36m - 3cm		
<u> </u>			:			İ		gray qtz vein at 45°/ca		
<u> </u>						j t				
— 3 —	11.		y		1.	i T		409-412'/124.66-125.58m		
<u> </u>	1 i	1				1		core well broken with		
— 5 —	1 i	XXY	1/x			i T		minor gouge		
— 6 —		XXÝ X_Y	(¥.		Ì	i 1				
— 7 —	1				ĺ	i 1		412-415.5'/125.58-126.64m		
- 8 -	1				Ì.	i T		core gouged @ 5°/ca		
9 130						i t				
					į.	i T				(Box 55-60) 440.5-480' / 134.26-146.3 m
<u> </u>			.)	Ì	i T				Quartz monzonite, as above. Very siliceous.
<u> </u>						1				Minor chlortic blebs. Light gray color. Core
-3 -						İŤ				moderately broken but no predominant orientation.
<u> </u>	1		-	_		ĻĪ			- very siliceous	Disseminated pyrite <3%, trace moly and trace
— 5 —	11		1			1				chalcopyrite.
<u> </u>	1				·	1 T			- chloritic blebs	@ 462' / 140.82m - 7 cm gray qtz vein @ 45º/ca
— 7 —	1					ΙŤ				3 y 1
- 8 -	1								- clay on some fracture	@ 444.5' / 135.48 m - 1 cm gray qtz vein @ 30 [°] /ca
<u> </u>				1	:				surfaces	with <15% pyrite and trace moly.
- 140 -	1	1								
— 1 —	1									
<u> </u>	1									(Box 61-66) 480-522' / 146.3-159.11 m
-3 -	1				1	11		-		Quartz monzonite, medium gray with a weakly
— 4 —						11			- minor talc on fractures	mottled appearance. Minor chlorite blebs.
— 5 —										Disseminated pyrite <2%.
<u> </u>			1	_		++				
—7 —								487-494'/148.44-150.57m		
- 8 -								well broken core		
<u> </u>										
			ļ,	· .						

		Gra	in Siz	ze m	hm	T				Drill Hole: T08-40 Page: 5 of 6
Meters	0.06	6 0.	50 2	2	8	32	Samples	Structure	Alteration	Lithology
1		i.	:	Ŋ						
-										
2 3				1						
3										
5 6	11									(Box 67-72) 522-560' / 159.11-170.69 m
0 	1 i									Quartz monzonite, medium gray. Disseminated
8	11		ĺ							pyrite <2%. Core generally well broken, with
0	11								- moderate talc on	more solid sections showing clay-healed breccia.
	11)		{ -					fractures.	Pyrite concentrations on fractures, with some
- 160 -		\sim	ا مر					522-560'/159.11-170.69m		euhedral pyrite.
_1 _		$\sim 1^{-1}$	\leq)		1		weakly to moderately		
<u> </u>		7) I			i E		brecciated		
-3-	1.	\mathcal{A}^{\sim}								
— 4 — _		11	\sim		ĺ			544-553'/165.8-168.55m		
— 5 —		\mathbb{K}	× .		į.			very well broken core		
<u> </u>		Ń	-					· · · · · · · · · · · · · · · · · · ·		
-7 -	1 •			· .						
- 8 -	1	S.	2							(Box 73-78) 560-607.5' / 170.69-185.17 m
9 170	1 1	\sim	X							Quartz monzonite, moderately to strongly siliceous
1	1		-/	+						Disseminated pyrite <2% with concentrations on
_2 _					Ì.,					fractures.
_2 _										
4		:								572-582' / 174.35-177.39 m - fractures to 4mm
-5		1,		[filled with quartz-carbonate, at generally high
6		1			İ					angles to core axis ~25°/ca.
		″ /			ĺ					
-8 -		7			İ.					587-592.5' / 178.92-180.59 m - clay-filled breccia
9 —										with minor gouge.
- 18 -		\sum_{i}	K							
10] "	11	$\langle \cdot \rangle$		Ì.					
-2 -					1 :					(Box 79-84) 607.5-654' / 185.17-199.34 m
-3 -					ļ					Quartz monzonite, gray. Disseminated pyrite <1%
										with trace moly. Moderate to strong silicification.
-5 -										
6 -			\neg	_			-		- clay on fractures	@ 623.5'/190.04m - hairling quartz stringer <2mm
										40°/ca with pyrite and chlorite.
-8 -										@ 640'/195.07 m - 8 cm gray quartz vein @
										40°/ca, with pyrite along vein center and in
J										perpendicular fractures.

	• l	Grain Size	e mn	n				Drill Hole: T08-41 Page: 6 of 6
Meters	0.06	0.50 2	8	32	Samples	Structure	Alteration	Lithology
_ 1 _		XXXX				625-629'/190.5-191.72m		
•						core well broken with		
<u> </u>		XXX				minor gouge.		
-3 -						632.8-633.5'/192.9-193.1m		(Box 85-90) 654-698' / 199.34-212.75 m
— 4 —		1				broken core with gouge		Monzonite, light to medium gray, moderately to
— 5 —		1						strongly siliceous. Clay on fracture surfaces.
— 6 —								Core moderately broken, with 40-50°/ca orientation
-7 -				. 1				possibly more predominant. Disseminated pyrite
-8 -						653-655'/199.03-199.64m		< 1%.
— 9 — - 200 —	T i i	XXXXX				well broken core with		677-693' / 206.35-211.23 m - weakly brecciated
200 -						minor gouge		
								696-698' / 212.14-212.75 m - fractures irregularly
2		XXXX				@ 665'/202.64m - 10 cm		filled with pyrite.
— 3 — — 4 —						minor gouge		
 5								674.5-677' / 205.59-206.35 m - core well broken
6		XXXX						with minor gouge.
		/						
		X+J	-					@ 674' / 205.44 m - pyrite-rich fractures
9		2 5		* 5.4				
210				-				
1 _								
— <u>2</u> —								(Box 91-97) 698-750' / 212.75-228.6 m
3		-						Monzonite. Chlortite blebs to 3%. Disseminated
_4 _								pyrite<2%. Greenish gray.
5		- ep-1						
<u> </u>								706-710'/215.19-216.41m - highly siliceous
— 7 —								"quartzitic" bed, upper contact @ 70º/ca, lower
- 8 -		\bigcirc						contact @ 50°/ca.
9				· .			- weak clay on fractures	
- 220 -								710-742'/216.41-226.16m - monzonite containing
<u> </u>		$\langle \rangle$						sharp edged and rounded chunks of grey
<u> </u>								siliceous rock (similar to "quartzitic" bed).
— 3 —		φ						740 740/202 40 202 47
<u> </u>	- ··							742-743'/226.16-226.47m - fine-grained siliceous
<u> </u>		\mathcal{L}						band <5% pyrite, upper contact @ 40°/ca.
6 —		ليهجو						
— 7 —				n sişter ile İ				@ 738'/224.94 m - 7 cm quartz vein @ 60 [°] /ca
- 8 -								with pyrite and moly in center of vein and in
<u> </u>		EOH	75	Q.	End of Lists 750	/ 000 0 m		vein fractures perpendicular to the vein center line.
1			28	611	End of Hole 750	/ 228.6 M		

	DIAMOND DRILL LOG	Project:	TAURUS			
	DIAMOND DRILL LOG	Location:	L523+00 E, 499+			
			Coordinates	Hole #:	T08-42	
		Northi	ng Easting	Page:	1 of 9	
		70578		Scale:		
		Azimuth:	0 Dip: -90	Log by:	E. Harrington	
		Hole Dept	h: 987' / 300.84 m	Date:	Aug 19 - 31, 2008	
	Grain size					
Meters	-0.06 -0.50 -2 -8 -32	Samples			Descrip	otion
			Structure	е	Alteration	Lithology
_1 _						
<u> </u>						(Box 1-3) 32-77' / 9.75-23.47 m
— 3 —						Overburden and regolith material. Mud and clay
4						with boulder cuttings.
5						
6						
7						
8						
9						
- 10 -						
10						
	Overburden					
2	Overbuiden					
_3 _						
— 4 —						
— 5 —						(Box 4-9) 77-139' / 23.47-42.37 m
6 —						Feldspar-quartz gneiss. White feldspar 75-80%
— 7 —						
<u> </u>						gray quartz <25%. Gneissocity 45 [°] /core axis (ca)
9				/		
- 20 -	┟┼┼┼╂┼┼┼┼┼			-		77-122' / 23.47-37.19m - core well broken, gouged,
<u> </u>						and strongly limonitic, with locally strong hematite.
			٢			
	↓ ↓ ↓ ↓ ↓ ↓					122-130' / 37.19-39.62 m - feldspar-qtz, very
3						weakly gneissic, contacts appear gradational.
4					- strongly limonitic with	
— 5 —			77-122'/23.47-37.1	9m - core	locally strong hematite	
— 6 —			strongly broken an			
— 7 —				3-3-9-9	- feldspars altered to clay	
<u> </u>						
9 —						
- 30 -						
			1			

		Gr	ain	Siz	e m	m					Drill Hole: T08-42 Page: 2 of 9
Meters	0		0.50				32	Samples	Structure	Alteration	Lithology
1	Т		/		-			-			
		1 1	M,	$\left \right\rangle$]						@116.5' / 35.51m - 2mm fracture @ 5°/ca with
2	-	T	1º.	1							strong molybdenum mineralization NITON #343.
_3	-	11						@116.5'/35.51m			
4	-					1		NITON #343 (ppm)			@ 130' / 39.62 m - pyrite concentrations on
<u> </u>	-	1 1	1			Locy		Cu-182 Mo-3111			fractures <1%
6 —	-	1.4	17								
-7 -	-	1.1	-	4	5						
8 —	-										(Box 10-15) 139-190.5' / 42.37-58.06 m
9 —	-				J						139-146'/42.37-44.5 - Feldspar-quartz gneiss, with
- 40 -	+		4.		l						gneissocity @ 45°/ca.
1	-	12	1-	- +	F h	why	1				
<u> </u>	-										146-190.5' / 44.5-58.06 m - Feldspar-quartz,
— 3 —	-		Я,	2			1				
— 4 —	-	1	X	2						- strong limonite and	generally "granular" in appearance, with local gneissic sections. White feldspar 60-70%, quartz
— 5 —	-			T					160 1721/E1 E1 E2 42m	v	30-40%. Well broken and gouged core shows
6 —	-								169-172'/51.51-52.43m -	locally strong hematite	
— 7 —	-		l.						Fault. Ground and broken		strong limonite and locally strong hematite.
8	-	-							core with limonite and hem.		Disseminated pyrite <2%, trace moly, trace
9 —	-			1					179 1701/E4 25 56 60m		chalcocite.
- 50 -									178-179'/54.25-56.69m -		
1	-		Ja.		0	. 1			ground core		179-183' / 54.56-55.78 m - qneissic section with
<u> </u>	-		XX XX XX	x	fai	MC	× /. ·				gneissocity @ 65º/ca.
<u> </u>	-				÷.				183-186'/55.78-56.69m -		
<u> </u>	-		× 4	v	,9	50	en		Fault. Well broken and		@ 181.7' / 55.38 m - <5cm gray quartz vein
<u> </u>	-		Sh.		2	rorg	'		ground core.		paralleling gneissocity with <2% pyrite and <2%
6 —	-		XX	XX	fre	ulf					moly.
— 7 —	-		1	\sim	-				Leach cap to 190'/57.91m		
8 -					-						(Box 16-21) 190.5-241' / 58.06-73.45 m
9 -			4		-		. (Disseminated pyrite <2%, trace moly, dark
60 -				_							metallix fg flakes (chalcocite?) <<0.5%.
1		1		~			· .				Core generally moderately to strongly silicified.
2				4		luer	~				Core is poorly broken with general fractures oriented
3		1			h	oly		@0401/04.00			at 45°/ca.
4		10			ch	los	ste	@213'/64.92m			190.5-211' / 58.06-64.31 m - feldspar-qtz gneiss
5			1.		fre	eta	he.	NITON #364			with gneissocity @ 70°/ca.
6 —		· · · · · · ·			÷.,			Cu - 0.314%			@ 204.8'/62.42m - 1cm gray qtz vein @ 10°/ca
				.)							with strong moly mineralization.
											211-241'/64.31-73.45m - medium gray mottled
				·		1					feldspar-qtz with no mafics. Upper contact poor @
э				<u>_</u>							45°/ca.

	G	irain	Siz	e r	nm					Drill Hole: T08-42 Page: 3 of 9
Meters	0.06	0.50	2		8	32	Samples	Structure	Alteration	Lithology
1							@239'/72.85m			@239'/72.85m - chalcocite fracture, NITON #363
2							NITON #363		- minor chlorite blebs	fracture @ 5º/ca
3				-	1 91	4 -	Cu - 1.08%			
3			1		F 91	v↓ -				229-241' / 64.31-73.45 m - medium gray, mottled
5		. -	-	1		1				feldspar-qtz, no mafics. Grain size increases to
6				-						<4mm. Upper contact indistinct, gradational(?).
7										Minor chlorite blebs. Core soft with more alteration
8										to clay. Same mineral disseminations as above.
9				1			@269' / 81.99m			
							NITON #368			(Box 22-27) 241-286.2' / 73.45-87.23 m
- 80 -							Cu-0.188%		- weak clay formation on	Feldspar-quartz, mottled appearance, gray quartz
_2							Mo-0.155%		some fractures.	veins generally <5mm at low angle to core ~10°/ca
2 3			-	4	ch.	Jen .				but can be up to 40° /ca. Disseminated pyrite <2%,
4					Ŝ		@278' / 84.73m			with trace moly, chalcopyrite, and chalcocite.
5			1-	-	1		NITON #370			
 6							Cu-0.357%			@251.5-252.5' / 76.66-76.96 m - brecciated
7		:					Mo-0.077%			fracture filled with clay.
'			1	ſ						@ 269' / 81.99 m - 3mm gray qtz vein @ 10º/ca
8 9			17	6	gh v	en				with moly and chalcopyrite NITON #368.
90				13	X					@278' / 84.73 m - 4mm vuggy gray qtz vein @
1			,		7					10o/ca, with chalcopyrite NITON #370.
2		/	e	/						
3				İ						(Box 28-33) 286.2-330' / 87.23-100.58 m
		/								Feldspar-quartz, mottled, no mafics. Disseminated
5										pyrite <2%, chalcocite <0.5%, trace moly.
6		.								Numerous gray quartz veins with concentrations of
7								320-322' / 97.54-98.15m -		pyrite, chalcocite, and moly.
7 8								broken core with clay		@ 287' / 87.48 m - 2mm qtz vein @ 35°/ca
0					1					@ 291' / 88.7 m - 2mm qtz vein @ 35º/ca
				÷						@ 292' / 89.0 m - vuggy qtz vein
1		1	71	!		+	·			@ 297' / 90.53 m - 15mm gray qtz vein with
2	4	P	1							mineralization along center of vein @ 20°/ca.
3										NITON #380, Cu- 159 ppm, Mo- 800 ppm
4							342.5' / 104.39m	· · · ·		@ 298' / 90.83 m - 3mm qtz vein @ 35°/ca
5							NITON #389	343.5'/104.7m - 10cm gouge		@ 307' / 93.57 m - 2mm qtz vein @ 30°/ca.
6							Cu - 2.64%			
7		***	74	2	- Fig.		Mo - 0.004%	352-360'/107.29-109.73m -	359.5'/109.58m - chloritic	324-331' / 98.76-100.89 m - fine-grained section
8		++>		P	1	-uu-		well broken core with strong	fracture in fault zone.	latite(?), irregular area with no clearly defined
9		XX	7					gouge. Fault.		contacts.
									· · .	

	G	rain Siz	e mm	1				Drill Hole: T08-42 Page: 4 of 9
Meters	0.06	0.50 2	8	32	Samples	Structure	Alteration	Lithology
1	EE							(Box 34-39) 330-380' / 100.58-115.82 m
2								Feldspar-quartz. Disseminated pyrite <3%,
								chalcocite <<0.5%.
3 4								331-336' / 100.87-102.41 m - irregular gneissocity
		0 0 4	r					predominantly @ 45°/ca.
— 5 —		000	5		_			@ 342.5' / 104.39 m - fracture @ 34°/ca with
6 —								chalcocite, NITON #389.
7 —								360-380' / 109.73-115.82 m - core more "granular"
8		$\neg \varphi$						in appearance and mottled, with strongly
9		Δ				390-392'/118.87-119.48m		porphyritic sections. Contacts irregular and
- 120 -						fractures @ 10°/ca filled with		indistinct.
1	ي. بر	s D				clay.		
<u> </u>	1	\mathcal{I}			NITON #404			(Box 40-45) 380-428.5' / 115.82-130.61 m
3		~ Z)		ĺ	Cu - 0.091%			Feldspar-quartz porphyry. Disseminated pyrite<2%
		1===	Tr		Mo -0.02%			<0.5% chalcocite, trace moly. Minor chlorite
			I					Feldspars <5mm but generally <3mm.
6		$\varphi =$			NITON #402			408'/124.36m - 5cm gray fg bands @45°/ca
_7 _		Ø			Cu - 0.314%			
8 9		$\left \right\rangle$			Mo - 0.003%			409.5'/124.82m - 2mm qtz vein @ 20º/ca, with
9 130		1P						pyrite crusts. NITON #404.
·	6				NITON #414			418-420'/127.41-128.02m - fractures @ 15°/ca with
2	l, l,				2mm qtz vn 80º/ca			heavy pyritic crusts, NITON #402.
3 4		-			Cu - 718 ppm			
4 5	1				Mo - 667 ppm			(Box 46-51) 428.5-478.5' / 130.61-145.85 m
		1-						Feldspar-quartz porphyry (variably porphyritic).
6 7					NITON #415			Disseminated pyrite <2%, trace moly, chalcoite
8					mineralized fract.			Mineral concentrations on fractures, copper may
9		1			Cu - 2268 ppm			be associated with pyrite. Occassional gray qtz
		n			Mo - 65 ppm			veining <1cm, generally @ 40-50°/ca.
- 140 - 1	1	$\gamma \geq 1$						437.5-448'/133.35-136.55m - numerous gray qtz
	1 4				NITON #418			veins <2mm at a variety of angles 20-70°/ca, but
2		174			Cu - 1.08%			mostly 30-45°/ca.
3	ſ	7.1			Mo - 0.069%			465.6′/141.19m - 5mm gray qtz vein @ 75°/ca,
4								vuggy, with pyrite and black "sooty" material
6		_)					(chalcocite?). NITON #418.
— o — — 7 —		β α						471-477'/143.56-145.39m - poorly porphyritic
	0					490-492'/149.35-149.96m -		
8 9	c					broken core and gouge.		(Box 52-57) 478.5-525.3' / 145.85-160.11 m
3		XXX	e			Fault		Feldspar-quartz porphyry.

		Grain S							Drill Hole: T08-42 Page: 5 of 9
Meters	0.06	0.50	2	8	32	Samples	Structure	Alteration	Lithology
1		0 1)	15	ghi	nen	495'/150.88m			Disseminated pyrite <2%, trace moly. Chlorite
2		0	ŢŢ	7'3'		1cm qtz vn 25o/ca		- weak clay on fractures	blebs.
3		00	P)		NITON #425		· ·	485-525.3'/145.85-160.11m - mixture of porphyritic
3		2				Cu - 0.081%			and weakly porphyritic beds.
5		6				Mo - 0.169%			499-501'/152.1-152.7m - strongly porphyritic bed
6		6				524.6'/159.9m			with upper contact @ 30°/ca.
						Pyrite blebs		- local silicification	492-499'/149.96-152.1m - very siliceous "qtzitic"
—7 —		0				NITON #429			section. Disseminated pyrite <2% with trace moly
- 8 -		10				Cu - 0.384%			@ 509'/155.14m - pyrite-rich fracture @ 30°/ca
9		B				Mo - 0.132%			with 2cm "halo" of silicification on either side.
- 160	.	-4		+		525'/160.02m			@ 523.5'/159.56m - 2mm gray qtz vein. Druzzy
		0 1				NITON #428 ~~.			qtz from each side and pyrite in the middle.
-2		0	1	** * * * *		Cu - 0.074%			@ 525'/160.02m - <4cm gray qtz vein, with pyrite
— 3 — — 4 —		00				Mo - 1.65%			and moly , @ 45°/ca. NITON #428
4 5						542.6'/166.88m			
 6			\square			NITON #440			
		0				Cu - 0.065%			 (Box 58-63) 525.3-569' / 160.11-173.43 m
_7	11	þ				Mo - 1.52%			Feldspar-quartz porphyry, with weakly porphyritc
— 8 — — 9 —		par			ĺ	553'/168.55m			and non-porphyritic sections. Core is generally
9 170						NITON #442		- moderate to strong	siliceous with the non-porphyritic sections tending
_ 1/0 _	1	O P				Cu - 0.338%		silicification	to be more siliceous. Greenish-gray with white
— I —		00	1			Mo - 0.032%			feldspar phenocrysts. Disseminated pyrite <2%,
2 3		d b		į :		560'/170.69m			with trace chalcopyrite and moly.
4		-	19	50.	rein	NITON #439			541-557' / 164.9-169.8m - weakly to non-porphyritic
5	1	ω /	4	19		Cu - 0.037%			@ 542.6'/166.88m - moly on fractures @ 40-45°
6						Mo - 0.244%			NITON #440.
		$ _{\mathcal{L}}$		moly	,				@ 553'/168.55m - 5mm gray qtz vein @ 70°/ca,
8		0		froe	three.	581'/177.09m			druzy qtz with pyrite <10%, moly <<0.5%, trace
9		\sim				NITON #450			chalcocite.
		Δ				Cu - 0.029%			@ 560'/170.69m - 1cm gray qtz vein @ 45°/ca with
180		D				Mo - 0.777%			pyrite <5%, moly <<0.5% . NITON #439. Dark
2		n							green staining around vein.
		β					602-605'/183.49-184.4m -		
		ant		Fa	M	615.5'/187.6m	core ground. Fault		(Box 64-69) 569-618.2 ' / 173.43-188.43 m
4 5		Din				NITON #453		- talcy fractures	Feldspar-quartz porphyry. Disseminated pyrite<3%
 6		C				Cu - 0.013%		- chlorite blebs <4%	and trace moly. Talcy fractures. Moderate to
				ς Å ,		Mo - 0.344%		- moderate to strong	strong silicification. Pyrite-rich fractures at a variety
— 7 —		2 1	45	9 Av	4			silicification	of angles.
— 8 — 0		-	7 -		1	K	@ 621'/189.28 - 2mm gray		@ 572'/174.35m - 1 cm gray qtz vein @ 45°/ca
9							qtz vein @ 20°, py and moly		containing flecks of moly

	(Grain S	ize	mr	n				Drill Hole: T08-42 Page: 6 of 9
Meters	0.06	0.50	2	8	32	Samples	Structure	Alteration	Lithology
1			1	-gh	ven	ſ	@ 624'/190.2m - 5mm qtz		@ 581'/177.09m - fracture @ 50°/ca with moly ,
2			T				vein @ 60° , py and moly		NITON #450.
3			\uparrow	· · · · · · · · ·					608.5-610' / 185.47-185.93 m - irregular hairline
3	112				i i i i i i i i i i i i i i i i i i i		635-649'/193.54-197.82m -		fracturing with pyrite, and minor chalcopyrite and
	† 1						numerous 1-2mm qtz veins		moly.
6		1					@ 20-70°/ca, py and moly	/	@ 613.5'/187m - clear, vitreous, soft, sharp-edged
7		1			ita han			$\overline{\}$	"chunks" <1cm in surrounding rock. Gypsum(?).
8							663-664.5'/202.08-202.54m -		@ 615.5'/187.6m - 1 cm gray qtz vein @ 30º/ca
9	*		11				irregular pyrite-rich fractures		with pyrite <15%, and moly. Clear muscovite.
							with minor moly.		NITON #453.
- 200 -			1						
2		art	5	fra	-nich Aures.				(Box 70-75) 618.2-667' / 188.43-203.3 m
3		540,						- weak talc on fractures	Feldspar-quartz flow breccia(?). Cut core shows
4		· · ·	4			•.			chunks of feldspar-quartz rock (as well as gneissic
5		D			/].	· .	\smallsetminus		and porphyritic) to about 15 cm in matrix of
6			-	541	dy	NITON #477	681-684'/207.6-208.5m -		feldspar-quartz material. Contacts are not generally
7		α	1	5		Cu-0.029%	breccia healed with fg		sharp and well defined. Chunks are semi-round to
8		52				Mo-0.057%	"monzonitic" material		occassionally semi-angular and appear somewhat
9							\sim		"digested". Greenish color. Disseminated
_ 210 _		đ	Ø)						pyrite <3% with moly <<0.5% . Mineralization is
1		0					``.		concentrated in fractures and gray quartz veins.
2							· · · · · · · · · · · · · · · · · · ·		@ 621' / 189.28 m - 2mm gray qtz vein @ 20º/ca
3			γ				`` ``		with pyrite and moly.
4									@ 624' / 190.2 m - 5 mm qtz vein @ 60°/ca, with
5		$\neg 0$					· · · · · · · · · · · · · · · · · · ·		pyrite and moly .
6		11	5].			707-711'/215.8-216.71m		635-649' / 193.54-197.82 m - numerous 1-2 mm
7		m¥.	XXX XXX		hogi.		core well broken and gouged	``,	gray qtz veins @ 20-70°/ca, with concentrations of
8		ωq.	14	Fin	oly			``,	pyrite and moly.
9		- Cara - 5	T)	· [] ·	<u>``</u>			658.5-667' / 200.7-203.3 m - Quartz monzonite
- 220 -	a las					· · · · ·			porphyry. Upper contact appears gradational.
1			/			``、		``、	663-664.5' / 202.08-202.54 m - irregular pyrite-rich
2		ω'			ver.	NITON #482		``,	fractures with moly.
3			1	1	19	,		<u>``</u>	
4			R			NITON #492	×		(Box 76-81) 667-714.5' / 203.3-217.78 m
5		- /	V			Cu - 0.077%	``\	-	Quartz monzonite porphyry, with feldspar phenos
6		X	T			Mo - 0.394%		on fractures	<5mm. Greenish. Disseminated pyrite <3%, with
7		b			2 с. с.				trace moly and chalcopyrite. Minor micaceous
8		× /					``\		material, grayish-brown muscovite(?).
9		~					``\		@ 673' / 205.13 m - 15mm vuggy gray qtz vein @
3				2					50 [°] /ca, with pyrite and moly. NITON #477

	(Grai				n					Drill Hole: T08-42 Page: 7 of 9
Meters	0.06	0.5	50	2	8	;	32	Samples	Structure	Alteration	Lithology
										`\	@ 677' / 206.35 m - 2mm gray qtz vein @ 40°/ca
										`` ``	with pyrite and moly.
										``.	
						Τ				``\\	685-686 / 208.79-209.09 m - irregular gray qtz vein
						Τ					<10cm @ 5°/ca, with pyrite and moly.
				Ì							
										``\	@ 713.5' / 217.47 m - 4mm gray qtz vein @ 30°/ca
										``.	with pyrite and moly .
				Ì			Ì			```	\
				Ì			İ				(Box 82-87) 714.5-764.5' / 217.78-233.02 m
				Ì							Quartz monzonite porphyry. Dull waxy greenish
				Ì			Ì			- weak clay on some	masses, not granular or vitreous (feldspar alt).
				Ì						fractures, not talcy	Numerous gray qtz stringers and veinlets <2mm
				Ì			Ì				at a variety of angles to core axis. Disseminated
				Ì			Ì				pyrite <3%, with trace moly and chalcopyrite.
				Í							Fractures and qtz veins show concentrations of
				1			1				pyrite and moly . Chalcopyrite is difficult to
				1			1				distinguish and may be incorporated with pyrite as
				İ		+	Ì				NITON readings of pyrite concentrations usually
				1		+	Ť.				show some copper content.
						+	Ť.				
						+	Ť.				@ 726.2' / 221.35 m - 3mm gray qtz vein @ 45°/ca
				Ť		+	1 I				with pyrite and black "sooty" coating on euhedral
						+	1 I				qtz. NITON #482. Fracture 4 cm away coated
						+	Ť.				with moly . NITON #492.
						+	1 I				
				Ť		+	1 I				@ 763.3' / 232.68 m - 2mm gray qtz vein @ 5º/ca
				Ť		+	1 I				vuggy with druzzy euhedral qtz, pyrite and moly.
						+	1 I				NITON #479
				İ		+	† I				
						+	1 I				
						+	† I				
						+	† I				
			-			+	1 I				
			+			+					
			+			+					
		+	+	+	\square	+					
		+	+			+					
		+	+			+					
		+	+		\square	+					

Network 0.08 0.04 0.05 0.24 2 8 32 Samples Structure Atteration Lithology 1 <		Gi	ain Si	ze i	mm				Drill Hole: T08-42 Page: 8 of 9
2 Cuartz monzonite porphyty. Pink feldspar pheonos 3 - core very siliceous digested surface. Disseminated pyrite <3% with	Meters	0.06	0.50	2	8 32	Samples	Structure	Alteration	Lithology
2 2 Cuartz monzonite porphyry. Pink feldspar phenons 3 - core very siliceous digested surface. Disseminated pyrite 3% with 6 @ 765 / 233.35 m - 2mm gray qtz vein @ 30° 7 @ 765 / 233.35 m - 4mm gray qtz vein @ 30° 8 @ 0765 / 233.55 m - 4mm gray qtz vein @ 30° 7 @ 076 / 238.55 m - 4mm gray qtz vein @ 30° 8 @ 077 / 238.55 m - 4mm gray qtz vein @ 30° 9 @ 077 / 238.55 m - 4mm gray qtz vein @ 30° 7 @ 077 / 238.55 m - 4mm gray qtz vein @ 30° 8 @ 077 / 238.55 m - 4mm gray qtz vein @ 10°/ca 9 @ 078 / 241.71 m - 4mm gray qtz vein @ 10°/ca 21 @ 178 / 241.71 m - 4mm gray qtz vein @ 10°/ca 23 @ 078 / 241.71 m - 4mm gray qtz vein @ 10°/ca 3 @ 078 / 241.71 m - 4mm gray qtz vein @ 10°/ca 4 \$ 50 @ 00 m mm gray qtz vein @ 10°/ca 4 \$ 6 @ 00 m mm gray qtz vein @ 10°/ca 7 @ 00 m mm gray qtz vein @ 10°/ca @ 00 m mm gray qtz vein @ 10°/ca 7 @ 00 m mm gray qtz vein @ 10°/ca @ 00 m mm gray qtz vein @ 10°/ca 7 @ 00 m mm gray qtz vein @ 10°/ca @ 00 m mm gray qtz vein @ 30°/ca 9 <t< td=""><td>1</td><td></td><td></td><td>Π</td><td></td><td></td><td></td><td></td><td>*</td></t<>	1			Π					*
3 - core very siliceous closen insted pytite <3% with trace moly.			\bigcirc	Ì.	at what				Quartz monzonite porphyry. Pink feldspar pheonos
4 - core very siliceous digested surface. Disseminated pyrite <3% with			1.1.	F	moly				<10mm, do not appear distinctly, possibly
6 Instant Provided State S			-1	4	-54			- core very siliceous	digested surface. Disseminated pyrite <3% with
6 @ 765.5 / 233.35 m - 2mm gray qtz vein @ 30° 7		D	1	1					trace moly.
7 8 with pyrite and moly. 8 0 0771.57 / 235.15 m - 4mm gray qtz vein with euhedral pyrite with purple irridesence, trace moly. 240 782-812 / 238.35-247.5 m - irregular gray qtz vein et various angles to core axis (most prominent is 45) with pyrite and moly. 2 45) with pyrite and moly. 3 0 0797.157 / 248.07 ± 27.288.35-247.5 m - irregular gray qtz vein @ 70%ca with massive pyrite, surrounded by 5mm halo of dard green chloritic material. 6 0 0 dard green chloritic material. 7 0 0 0.57.262.57 / 248.02-262.89 m Quartz monzonite porphyry, greenish-gray. Pale green waxy blebs. Numerous hairline qtz veins with pyrite and moly. 250 0 0 8.814.67 / 248.29 m - fracture @ 10°/ca heavy with with pyrite and moly. 250 0 0 8.814.67 / 248.29 m - fracture @ 10°/ca, heavy with euhedral pyrite and moly. 7 0 0 8.844 / 257.27 / 252.13 m - 5mm gray qtz vin @ 30°/ca with pyrite and moly. 7 0 0 8.844 / 257.27 / 252.13 m - 5mm gray qtz vin @ 30°/ca with pyrite and moly. 8 0 0 8.844 / 257.27 m - 1mo @ 30°/ca with pyrite and moly. 7 0 0 8.844 / 257.25 m - 1mo msgray qtz vin @ 30°/ca with pyrite and moly. <td< td=""><td></td><td></td><td>/</td><td>Π</td><td></td><td></td><td></td><td></td><td>@ 765.5' / 233.35 m - 2mm gray qtz vein @ 30°</td></td<>			/	Π					@ 765.5' / 233.35 m - 2mm gray qtz vein @ 30°
8 (B77.5 / 225.15 m - 4mm gray qtz vein with eubedral pytite with purple irridesence, trace moly. 240 (Box 94-99) 22 (238.35-247.5 m - irregular gray qtz veins at various angles to core axis (most prominent is 45°) with pytite and moly. 2 (Box 94-99) 813.7-862.5' / 248.02-262.89 m Quartz mozonite porphyny, greenish-gray. Pale green waxy blebs. Numerous hairline qtz veins with pyrite and moly. 250 (Box 94-99) 813.7-862.5' / 248.02-262.89 m Quartz mozonite porphyny, greenish-gray. Pale green waxy blebs. Numerous hairline qtz veins with pyrite and moly. 250 (Box 94-99) 813.7-862.5' / 248.02 m - fracture Q 10°/ca with pyrite and moly. 250 (Box 94-99) 813.7-862.5' / 248.02 m - fracture Q 10°/ca with pyrite and moly. 250 (Box 94-99) 813.7-862.5' / 248.20 m - fracture Q 10°/ca, heavy 3 (Box 94-99) 813.7-862.5' / 248.20 m - fracture Q 10°/ca, heavy 4 (Box 94-99) 813.7-862.5' / 248.20 m - fracture Q 10°/ca, heavy 9 (Box 100-102) 828.20 m - fracture Q 10°/ca, heavy 9 (Box 100-102) 828.20 m - fracture Q 10°/ca, with Mo - 2109 ppm 9 (Box 100-102) 828.20 m - fracture Q 10°/ca, with Mo - 3714 ppm 9 (Box 100-103) 824 m - fracture Q 10°/ca, with Mo - 3714 ppm 9 (Box 100-105) 825.20 m - fracture Q 10°/ca, with Mo - 2897 ppm 9 (Box 100-105) 825.20 m - fracture Q 10°/ca, with Mo - 2897 ppm <tr< td=""><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td>with pyrite and moly.</td></tr<>			0						with pyrite and moly.
9 euhedral pyrite with purple inridesence, trace moly. 782-812 / 283 35-247.5 m. irregular gray qtz veins 1 at various angles to core axis (most prominent is 2 (a) 783-781 / 241.71 m 4mm gray qtz vein (@ 70°/ca) 3 (a) 783-781 / 241.71 m 4mm gray qtz vein (@ 70°/ca) 4 (a) 783 / 241.71 m 4mm gray qtz vein (@ 70°/ca) 6 (a) 783 / 241.71 m 4mm gray qtz vein (@ 70°/ca) 7 (Box 94-99) 813.7-662.5 / 248.02-262.89 m 7 (Box 94-99) 813.7-662.5 / 248.02-262.89 m 9 (a) 783 / 241.71 m 4mm gray qtz vein (@ 70°/ca) 9 (Box 94-99) 813.7-662.5 / 248.02-662.89 m 11 (Box 94-99) 813.7-662.5 / 248.02 m fracture (@ 10°/ca) 9 (Box 94-99) 813.7-662.5 / 248.02 m fracture (@ 10°/ca) 9 (Box 94-99) 813.7-662.5 / 248.02 m fracture (@ 10°/ca) 9 (Box 94-99) 813.7-662.5 / 248.02 m fracture (@ 10°/ca) 11 (C) - 225 ppm (B) 240.2 m fracture @ 10°/ca) 12 (C) - 225 ppm (B) 240.2 m fracture @ 10°/ca) 14 (C) - 2105 ppm (B) 242.2 m fracture @ 10°/ca) 15 (C) - 2105 ppm (B) 272.252.13 m 5mm gray qtz vein (@ 30°/ca) 16	-		P						@771.5' / 235.15 m - 4mm gray qtz vein with
240 782-812' / 238.35-247.5 m - irregular gray qtz veins at various angles to core axis (most prominent is 45°), with pyrite and moly. 2 @ 793' / 241.71 m - 4mm gray qtz vein @ 70°/ca with massive pyrite, surrounded by 5mm halo of dard green chloritic material. 6		i.	17						
at vanous angles to core axis (most prominent is at vanous angles to core axis (most prominent is at vanous angles to core axis (most prominent is at vanous angles to core axis (most prominent is at vanous angles to core axis (most prominent is at vanous angles to core axis (most prominent is at vanous angles to core axis (most prominent is at vanous angles to core axis (most prominent is at vanous angles to core axis (most prominent is at vanous angles to core axis (most prominent is at vanous angles to core axis (most prominent is at vanous angles to core axis (most prominent is at vanous angles to core axis (most prominent is at vanous angles to core axis (most prominent is at vanous angles to core axis (most prominent is at vanous angles to core axis (most prominent is at vanous angles to core axis (mast prominent is at vanous angles to core axis (mast prominent is at vanous angles to core axis (mast prominent is at vanous angles to core axis (mast prominent is at vanous angles to core axis (mast prominent is at vanous angles to core axis (mast prominent is at vanous angles to core axis (mast prominent is at vanous angles to core axis (mast prominent is at vanous angles to cor									
2 45°) with pyrite and moly. 3 0 4 0 6 0 7 0 8 0 9 0 1 0 1 0 1 0 1 0 1 0 1 0 250 0 1 0 250 0 1 0 250 0 1 0 250 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 3 0 4 0 4 0 5 0 6 0 7 0 8 0 9 0 14 0 15 0 16 0			V	1					at various angles to core axis (most prominent is
			- and a second						
4 with massive pyrite, surrounded by 5mm halo of dard green chloritic material. 6 G 7 B 8 G 9 Quartz monzonite porphyry, greenish-gray. Pale green waxy blebs. Numerous hairline qtz veins with pyrite and moly. 12 Quartz monzonite porphyry. greenish-gray. Pale green waxy blebs. Numerous hairline qtz vein with pyrite and moly. 12 Quartz monzonite porphyry. greenish-gray. Pale green waxy blebs. Numerous hairline qtz vein with pyrite and moly. 12 Quartz monzonite porphyry. greenish-gray. Pale green waxy blebs. Numerous hairline qtz vein @ 70°/ca 12 Quartz monzonite porphyry. 14 NITON #503 Qu-250 ppm @ 814.6' / 248.29 m - fracture @ 10°/ca, heavy Mo - 3714 ppm @ 824' / 251.16 m - fracture @ 100/ca, with pyrite, and moly. 15 G Q 6 Q With pyrite and moly. 7 Q 827.2' / 252.13 m - frmg gray qtz vein @ 30°/ca 8 Q Q Q 9 Q Q Q 9 Q Q Q 10 Q Q Q 10 Q Q Q <tr< td=""><td></td><td>\mathcal{V}</td><td>· · /</td><td>[]</td><td></td><td></td><td></td><td></td><td></td></tr<>		$ \mathcal{V} $	· · /	[]					
6 dard green chloritic material. 6 G 7 G 3 G 4 G 5 G 6 G 7 G 7 G 7 G 7 G 7 G 7 G 7 G 7 G 7 G 7 G 7 G 7 G 7 G 7 G 7 G 6 G 7 G 7 G 7 G 7 G 8 G 9 G 9 G 10 G 11 G 12 G 13 G 14 G 15 G 16 G 17 G			11	21					
6 7 6 (Box 94-99) 813.7-862.5' / 248.02-262.89 m 9 250 Quartz monzonite porphyry, greenish-gray. Pale green waxy blebs. Numerous hairline qtz veins with pyrite and moly. 1 2 8 814.6' / 248.29 m - 4mm gray qtz vn@ 70°/ca 1 2 8 814.6' / 248.29 m - 4mm gray qtz vn@ 70°/ca 1 2 8 814.6' / 248.29 m - 4mm gray qtz vn@ 70°/ca 1 2 2 9 9 3 A 0 814.6' / 248.29 m - 4mm gray qtz vn@ 70°/ca 4 5 6 0 814.6' / 248.29 m - 4mm gray qtz vn@ 70°/ca 4 5 0 824' / 251.16 m - fracture @ 10°/ca, heavy NITON #504 with euhedral pyrite and moly. 0 Cu - 803 ppm 9 9 9 7 0 0 824' / 251.16 m - fracture @ 10°/ca, with 8 0 0 824' / 251.26 m - 5mm gray qtz vein @ 30°/ca 9 0 0 824' / 251.2 m - 5mm gray qtz vein @ 30°/ca 12 0 0 834' / 257.25 m - two 3mm qtz veins @ 30°/ca 14 0 834' / 257.25 m - two 3mm qtz veins @ 30°/ca	-								
7 (Box 94-99) 813.7-862.5*/7288.02-262.89 m 9 Quartz monzonite porphyry, greenish-gray. Pale 9 pyrite and moly. 1 (Box 94-99) 813.7-862.5*/7288.02-262.89 m 250 pyrite and moly. 1 (Box 94-99) 813.7-862.5*/7288.02-262.89 m 250 (Box 94-99) 813.7-862.5*/7288.02-262.89 m 2 (Box 94-99) 813.7*862.4* 2 (Box 94-99) 813.7*862.4* 2 (Box 94-99) 813.7*862.4* 2 (Box 94-99) 813.7*862.4* 2 (Box 94-99) 813.7*862.4* 3 (Box 94-99) 813.7*862.4* 4 (Box 94-99) 813.7*862.4* 5 (Box 100-107) 8504 6 (Box 100-105) 862.5-912.7* 7 (Box 100-105) 862.5-912.7* 8 - core very siliceous									Ŭ
8 Quartz monzonite porphyry, greenish-gray. Pale 9 green waxy blebs. Numerous hairline qtz veins with 1 pyrite and moly. 2 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 9 0 1 0 2 0 3 0 4 0 4 0 6 0 7 0 8 0 9 0 9 0 1 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 2 0 <t< td=""><td></td><td>U</td><td>- V</td><td></td><td></td><td></td><td></td><td></td><td>(Box 94-99) 813.7-862.5' / 248.02-262.89 m</td></t<>		U	- V						(Box 94-99) 813.7-862.5' / 248.02-262.89 m
9 green waxy blebs. Numerous hairline qtz veins with 2 0 9 1 0 814.6 / 248.29 m - 4mm gray qtz vn @ 70°/ca 0 0 814.6 / 248.29 m - fracture @ 10°/ca, heavy 0 0 9 4 0 9 5 0 0 6 0 9 7 0 0 8 0 9 260 - 0 0 7 0 0 8 0 0 9 0 0 9 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0	-		C						· · · ·
250 pyrite and moly. 1 @ 814.6 / 248.29 m - 4mm gray qtz vn @ 70°/ca 2 with pyrite and moly. 3 @ 814.6 / 248.29 m - fracture @ 10°/ca, heavy Mo - 2109 ppm @ 814.6 / 248.29 m - fracture @ 10°/ca, heavy NITON #504 @ 824' / 251.16 m - fracture @ 10°/ca, with 6 0 0 7 0 @ 824' / 251.16 m - fracture @ 10°/ca, with Mo - 3714 ppm @ 824' / 251.16 m - fracture @ 10°/ca, with NITON #504 @ 824' / 251.16 m - fracture @ 10°/ca, with Mo - 3714 ppm @ 824' / 251.21 m - 5mm gray qtz vein @ 30°/ca 9 @ 834' / 254.2 m - fracture @ 15°/ca, with massive 9 0 // fracture with pyrite and moly (NITON #504). 2 0 @ 834' / 254.2 m - fracture @ 15°/ca, with massive 9 1 0 // fracture with pyrite and moly (NITON #504). 2 0 0 // fracture with pyrite and moly (NITON #504). 2 0 0 // fracture with pyrite and moly (NITON #504). 2 0 0 // fracture with pyrite and moly (NITON #504). 3 0 0 // fracture with pyrite and moly. <td></td> <td></td> <td>12</td> <td>-1</td> <td></td> <td></td> <td></td> <td></td> <td></td>			12	-1					
1 Image: Second sec			γ						· · ·
2 3 With pyrite and moly. 3 Mo - 2109 ppm @ 814.6' / 248.29 m - fracture @ 10°/ca, heavy 4 Mo - 2109 ppm @ 814.6' / 248.29 m - fracture @ 10°/ca, heavy 5 Gu - 203 ppm @ 824' / 251.16 m - fracture @ 100/ca, with 6 With outhedral pyrite and moly. @ 824' / 251.16 m - fracture @ 100/ca, with 7 Ø @ 827.2' / 252.13 m - 5mm gray qtz vein @ 30°/ca 8 With pyrite and moly (NITON #503). Cut by 9 Mo - 2897 ppm @ 834' / 257.25 m - fracture @ 15°/ca, with massive 9 Pyrite and lead-gray nodules of chacocite. 1 @ 844' / 257.25 m - two 3mm qtz vein @ 30°/ca 9 Ø Ø 2 Ø Ø 3 Ø Ø 4 Massive pyrite, with chalcopyrite and moly. 1 Ø Ø 2 Ø Ø 3 Ø Ø 4 Ø 5 Ø 6 Ø Ø 7 Ø Ø 8 Ø Ø 9 Ø Ø		and the second			1	NITON #503			@ 814.6' / 248.29 m - 4mm gray gtz vn @ 70°/ca
3 Mo - 2109 ppm @ 814.6' / 248.29 m - fracture @ 10°/ca, heavy 4 With euhedral pyrite and moly. 5 @ 824' / 251.16 m - fracture @ 100/ca, with 6 With euhedral pyrite and moly. 7 @ 824' / 251.16 m - fracture @ 100/ca, with Mo - 3714 ppm Pyrite, chalcopyrite and moly. 0 With 272.2' / 252.13 m - 5mm gray qtz vein @ 30°/ca 0 With 700 #507 Cu - 1947 ppm With pyrite and moly (NITON #504). 0 With 297.2' / 252.13 m - 5mm gray qtz vein @ 30°/ca 0 With 297.2' / 254.2 m - fracture @ 15°/ca, with massive 9 Pyrite and lead-gray nodules of chacocite. 1 With 275.25 m - two 3mm qtz veins @ 30°/ca 0 Bat4' / 257.25 m - two 3mm qtz veins @ 30°/ca 0 Doth surrounded by dark green chloritic halo. 4 Massive pyrite, with chalcopyrite and moly. 5 Mith pyrite and moly. 6 With pyrite and moly. 7 With pyrite and moly. 8 Cu - 105/16 (20.39 m - 4mm gray qtz vein @ 10°/ca 4 Massive pyrite, with chalcopyrite and moly. 6 Cu - 105/16 (20.59-912' / 262.89-277.98 m <td></td> <td>V. 1. 1. 1.</td> <td>3 -</td> <td>S</td> <td>feld.</td> <td>Cu - 225 ppm</td> <td></td> <td></td> <td></td>		V. 1. 1. 1.	3 -	S	feld.	Cu - 225 ppm			
4 A with euhedral pyrite and moly. 5 6 @ 824' / 251.16 m - fracture @ 10o/ca, with 6 7 @ 827.2' / 252.13 m - 5mm gray qtz vein @ 30°/ca 7 0 @ 827.2' / 252.13 m - 5mm gray qtz vein @ 30°/ca 8 9 0 With pyrite and moly (NITON #503). Cut by 9 0 0 fracture with pyrite and moly (NITON #503). Cut by 1 0 0 834' / 254.2 m - fracture @ 15°/ca, with massive 9 0 0 834' / 257.25 m - two 3mm qtz veins @ 30°/ca 1 2 0 0 844' / 257.25 m - two 3mm qtz veins @ 30°/ca 3 0 0 844' / 257.25 m - two 3mm qtz veins @ 30°/ca 4 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 6 0 0 0 6 0 0 0 0 7 0 0 0 0 0 6 0 0 0 0 0 6 <td></td> <td></td> <td></td> <td></td> <td></td> <td>Mo - 2109 ppm</td> <td></td> <td></td> <td></td>						Mo - 2109 ppm			
5 Cu - 803 ppm @ 824' / 251.16 m - fracture @ 100/ca, with 6 pyrite, chalcopyrite and moly. 7 @ 827.2' / 252.13 m - 5mm gray qtz vein @ 30°/ca 8 9 9 with pyrite and moly (NITON #503). Cut by Mo - 2897 ppm fracture with pyrite and moly (NITON #504). 1 @ 834' / 254.2 m - fracture @ 15°/ca, with massive 9 pyrite and lead-gray nodules of chacocite. 1 @ 844' / 257.25 m - two 3mm qtz vein @ 30°/ca 260 @ 844' / 257.25 m - two 3mm qtz veins @ 30°/ca 1 Massive pyrite, with chalcopyrite and moly. 2 @ 851' / 259.39 m - 4mm gray qtz vein @ 10°/ca 4 Massive pyrite, with chalcopyrite and moly. 7 @ 851' / 259.39 m - 4mm gray qtz vein @ 10°/ca 8 - core very siliceous Quartz monzonite porphyry, with pink feldspars to		1	3 /			NITON #504			with euhedral pyrite and moly.
6 Wo-3714 ppm pyrite, chalcopyrite and moly. 7 Ø INTON #507 @ 827.2' / 252.13 m - 5mm gray qtz vein @ 30°/ca 8 Ø With pyrite and moly (NITON #503). Cut by 9 Ø Ø Intron #507 260 Ø Ø Ø 1 Ø Ø Ø 2 Ø Ø Ø 1 Ø Ø Ø 2 Ø Ø Ø 1 Ø Ø Ø 2 Ø Ø Ø 1 Ø Ø Ø 2 Ø Ø Ø 1 Ø Ø Ø 2 Ø Ø Ø 3 Ø Ø Ø 4 Ø Ø Ø 4 Ø Ø Ø 4 Ø Ø Ø 4 Ø Ø Ø 6 Ø Ø Ø 7 Ø Ø Ø <tr< td=""><td></td><td></td><td>محكم الم</td><td></td><td></td><td>Cu - 803 ppm</td><td></td><td></td><td></td></tr<>			محكم الم			Cu - 803 ppm			
7 0			うり			Mo - 3714 ppm			pyrite, chalcopyrite and moly.
8 0 // // // // // // // // // // // // //						NITON #507			@ 827.2' / 252.13 m - 5mm gray qtz vein @ 30°/ca
9 Mo - 2897 ppm fracture with pyrite and moly (NITON #504). 260 @ 834' / 254.2 m - fracture @ 15°/ca, with massive pyrite and lead-gray nodules of chacocite. pyrite and lead-gray nodules of chacocite. 2 @ 844' / 257.25 m - two 3mm qtz veins @ 30°/ca 3 both surrounded by dark green chloritic halo. 4 Massive pyrite, with chalcopyrite and moly. 5 NITON #506. 6	-	<u> </u>			- 1 - 1 - 1	Cu - 1947 ppm			
260 @ 834' / 254.2 m - fracture @ 15°/ca, with massive 1 pyrite and lead-gray nodules of chacocite. 2 @ 844' / 257.25 m - two 3mm qtz veins @ 30°/ca both surrounded by dark green chloritic halo. 3 Massive pyrite, with chalcopyrite and moly. 4 NITON #506. 6 @ 851' / 259.39 m - 4mm gray qtz vein @ 10°/ca 7 (Box 100-105) 862.5-912' / 262.89-277.98 m 8 - core very siliceous Quartz monzonite porphyry, with pink feldspars to						Mo - 2897 ppm			
1 pyrite and lead-gray nodules of chacocite. 2 @ 844' / 257.25 m - two 3mm qtz veins @ 30°/ca 3 both surrounded by dark green chloritic halo. 4 Massive pyrite, with chalcopyrite and moly. 5 NITON #506. 6 @ 851' / 259.39 m - 4mm gray qtz vein @ 10°/ca 7 With pyrite and moly. 8 - core very siliceous Quartz monzonite porphyry, with pink feldspars to		C	5 7						
2 @ 844' / 257.25 m - two 3mm qtz veins @ 30°/ca 3 both surrounded by dark green chloritic halo. 4 Massive pyrite, with chalcopyrite and moly. 5 Mitton #506. 6 @ 851' / 259.39 m - 4mm gray qtz vein @ 10°/ca with pyrite and moly. 7 @ 851' / 259.39 m - 4mm gray qtz vein @ 10°/ca 8 - core very siliceous Quartz monzonite porphyry, with pink feldspars to	- 260 -								pyrite and lead-gray nodules of chacocite.
2 3 both surrounded by dark green chloritic halo. 3 Massive pyrite, with chalcopyrite and moly. 4 NITON #506. 5 @ 851' / 259.39 m - 4mm gray qtz vein @ 10°/ca 6 with pyrite and moly. 7 @ 851' / 259.39 m - 4mm gray qtz vein @ 10°/ca 8 - core very siliceous 9 - core very siliceous 9 - core very siliceous		Ô	a D						
3 4 Massive pyrite, with chalcopyrite and moly. 4 NITON #506. 5 8 6 9 7 8 8 - 8 - 9 -		22	Ð						· ·
4 5 NITON #506. 5 0 0 6 0 0 7 0 0 8 0	3			\int					· · ·
5 0	4								
6 7 with pyrite and moly. 7 8 (Box 100-105) 862.5-912' / 262.89-277.98 m 8 - core very siliceous Quartz monzonite porphyry, with pink feldspars to			h						
7 8 (Box 100-105) 862.5-912' / 262.89-277.98 m 8 - core very siliceous Quartz monzonite porphyry, with pink feldspars to	6 —								
- core very siliceous Quartz monzonite porphyry, with pink feldspars to	7	\sim	(III)						
	8		1					- core very siliceous	
	9		15-	1					30mm, but generally 5-10mm. Greenish color with

	Grain Size mm				nm				Drill Hole: T08-42 Page: 9 of 9	
Meters	0.06	6 0	.50 2		8 3	32	Samples	Structure	Alteration	Lithology
1		5	51 L	T	carbo					waxy green blebs. Disseminated pyrite <3% with
2		2	1/2-	5	fracto	ne				trace moly . Concentrations of pyrite and moly
3	1	()	R							on fractures and in gray qtz veining. Minor biotite.
	6	\sim								Core looks fresh and is poorly fractured.
5			φ	Concession of the local division of the loca						882-892' / 268.83-271.88 m - light-brown carbonate
6	-	£			fract	١	NITON #515			filled fractures @ 10-40°/ca.
7			7=	Ŧ	Da	Č (Cu - 1.82%			@ 907' / 276.45 m - fracture with pyrite and
						Ν	No - 0.005%			chalcopyrite. NITON #515.
		6				-				
9 —			21%	F	a com	oh. N	NITON #536			(Box 106-111) 912-962' / 277.98-293.22 m
280 -			NP			Ċ	Cu - 0.457%			Quartz mozonite porphyry, greenish. Disseminated
2			سر ا	-		Ν	Mo - 0.019%		- siliceous, fresh looking	pyrite <2% with trace chalcopyrite and moly.
3									core	916-922' / 279.2-281.03 m - carbonate healed
			\Diamond							fractures @ 5-10°/ca.
5			an			١	NITON #535		- about 5% chlorite	@ 925' / 281.94 m / fracture @ 70°/ca with
6		-	D			C	Cu - 0.019%			chalcopyrite. NITON #536.
7		P				Ν	Mo - 0.077%			@ 944.5' / 287.88 m - 4mm qtz vein @ 25°/ca.
8			1-	4	ah		NITON #534			NITON #535.
9		æ		F	Ven	Ċ	Cu - 0.414%			@ 950.5' / 289.71 m - 2mm qtz vein @ 35°/ca.
_ 290 _		Ø	j V.			Ν	Mo - 0.20%			NITON #534.
1] [İİ		İ					
2										(Box 112-114) 962-987' / 293.22-300.84 m
3										Quartz monzonite porphyry, very siliceous.
4			r	4						Disseminated pyrite <2%, with trace chalcopyrite
5					Paco					and moly.
6 —				72	facol					@ 962.5' / 293.37 m - 5-10mm gray qtz vein @ 30°
7		21	1/1	~			NITON #543			with pyrite, chalcopyrite and moly. NITON #543?
8		5	18				Cu - 0.037%			@ 969.5' / 295.5 m - bands of fine-grained
9							No - 0.247%			material @ 70°/ca. NITON #544 and #545.
- 300 -							NITON #548			@ 968' / 295.05 m - 4mm gray qtz vein @ 10°/ca
1							Cu - 1183 ppm			with pyrite, chalcopyrite and moly.
2		Er	nd of H		е	ľ	Vlo - 358 ppm			973.5-977' / 296.72-297.79 m - vuggy core filled with
3			'/ 300							euhedral quartz and brown carbonate. NITON #548.
4			1 1	_						Gray quartz stringers generally <1mm with pyrite
5										and moly .
6 —										
— 7 —										
					1					
9 —										
, , , , , , , , , , , , , , , , , , ,										

APPENDIX C

Standard Specifications and Sample Insertion Points

CU 155

Copper, Molybdenum, Silver, Gold Reference Material

Page 1 of 2

LAB	LAB 1	LAB 1	LAB 1	LAB 1	LAB 2	LAB 2	LAB 2	LAB 2	LAB 3	LAB 3
Replicate	Cu %	Mo %	Ag g/t	Au g/t	Cu %	Mo %	Ag g/t	Au g/t	Cu %	Mo %
1	0.47	0.027	8	0.565	0.459	0.027	7	0.63	0.490	0.027
2	0.47	0.028	8	0.596	0.476	0.028	8	0.61	0.478	0.027
3	0.47	0.027	8	0.590	0.482	0.028	7	0.61	0.494	0.027
4	0.47	0.028	8	0.594	0.482	0.028	8	0.61	0.491	0.027
5	0.48	0.028	8	0.580	0.474	0.028	7	0.62	0.483	0.027
A										
Average	0.472	0.028	8.000	0.585	0.475	0.028	7.400	0.616	0.487	0.027
Std Dev.	0.0045	0.0005	0.0000	0.0128	0.0094	0.0004	0.5477	0.0089	0.0065	0.0000
Average T	0.474	0.028	7.338	0.605						
Std Dev.	0.0160	0.0014	0.5904	0.0152						
Recommended	Cu %	Mo %	Ag g/t	Au g/t						
Value	0.47	0.028	7	0.61						

Legal Notice:

WCM Sales Ltd. (WCM Minerals) has prepared and analyzed the reference materials using qualified analytical laboratories and generally accepted assay procedures. WCM Sales Ltd. accepts liability only for the cost of the standards purchased. The purchaser, with the receipt of the product, releases WCM Sales Ltd. from all liabilities related to the use of the reference materials and information.

Lloyd Twaites Glen Armanini Registered Assayers, Province of British Columbia

CU 155

Copper, Molybdenum, Silver, Gold Reference Material

Page 2 of 2

LAB	LAB 3	LAB 3	LAB 4	LAB 4	LAB 4	LAB 4	LAB 5	LAB 5	LAB 5	LAB 5	LAB 6
Replicate	Ag g/t	Au g/t	Cu %	Mo %	Ag g/t	Au g/t	Cu %	Mo %	Ag g/t	Au g/t	Mo %
1	6.7	0.60	0.47	0.0275	7.5	0.60	0.450	0.028	7.4	0.62	0.030
2	6.5	0.63	0.51	0.0306	7.5	0.60	0.451	0.028	7.3	0.62	0.029
3	6.5	0.60	0.46	0.0282	7.5	0.60	0.446	0.029	7.4	0.62	0.031
4	6.3	0.61	0.49	0.0300	7.5	0.59	0.448	0.030	7.3	0.61	0.031
5	6.1	0.61	0.48	0.0296	7.6	0.60					0.031
Average	6.420	0.610	0.482	0.029	7.520	0.598	0.449	0.029	7.350	0.618	0.030
Std Dev.	0.2280	0.0122	0.0192	0.0013	0.0447	0.0045	0.0022	0.0010	0.0577	0.0050	0.0009
Average⊺	0.474	0.028	7.338	0.605							
Std Dev.	0.0160	0.0014	0.5904	0.0152		_					
Rec.	Cu %	Mo %	Ag g/t	Au g/t							
Value	0.47	0.028	7	0.61							

Legal Notice:

WCM Sales Ltd. (WCM Minerals) has prepared and analyzed the reference materials using qualified analytical laboratories and generally accepted assay procedures. WCM Sales Ltd. accepts liability only for the cost of the standards purchased. The purchaser, with the receipt of the product, releases WCM Sales Ltd. from all liabilities related to the use of the reference materials and information.

Lloyd Twaites Glen Armanini Registered Assayers, Province of British Columbia

CU 172

Copper, Molybdenum, Silver, Gold Reference Material

Page 1 of 2

LAB	LAB 1	LAB 1	LAB 1	LAB 1	LAB 2	LAB 2	LAB 2	LAB 2	LAB 3	LAB 3
Replicate	Cu %	Mo %	Ag g/t	Au g/t	Cu %	Mo %	Ag g/t	Au g/t	Cu %	Mo %
1	0.213	0.101	22	0.241	0.208	0.103	23	0.26	0.214	0.102
2	0.221	0.103	23	0.254	0.207	0.104	23	0.26	0.214	0.104
3	0.213	0.100	23	0.250	0.204	0.104	24	0.25	0.212	0.104
4	0.216	0.101	23	0.259	0.206	0.104	23	0.26	0.215	0.103
5	0.213	0.102	23	0.258	0.208	0.106	24	0.26	0.213	0.105
6	0.216			0.238	0.209	0.104	23			
7	0.218									
8	0.213									
9	0.217									
10	0.217									
Average	0.2157	0.1014	22.800	0.2500	0.2070	0.1042	23.333	0.2580	0.2136	0.1036
Std Dev.	0.0027	0.0011	0.4472	0.0088	0.0018	0.0010	0.5164	0.0045	0.0011	0.0011
Average T	0.2124	0.1045	23.812	0.2556						
Std Dev.	0.0038	0.0028	0.8710	0.0142						
Recommended	Cu %	Mo %	Ag g/t	Au g/t						
Value	0.21	0.105	24	0.26						

Legal Notice:

WCM Sales Ltd. (WCM Minerals) has prepared and analyzed the reference materials using qualified analytical laboratories and generally accepted assay procedures. WCM Sales Ltd. accepts liability only for the cost of the standards purchased. The purchaser, with the receipt of the product, releases WCM Sales Ltd. from all liabilities related to the use of the reference materials and information.

Lloyd Twaites Glen Armanini Registered Assayers, Province of British Columbia

CU 172

Copper, Molybdenum, Silver, Gold Reference Material

Page 2 of 2

LAB	LAB 3	LAB 3	LAB 4	LAB 4	LAB 4	LAB 4	LAB 5	LAB 5	LAB 5	LAB 5
Replicate	Ag g/t	Au g/t	Cu %	Mo %	Ag g/t	Au g/t	Cu %	Mo %	Ag g/t	Au g/t
1	23.2	0.23	0.21	0.105	25.6	0.245	0.212	0.108	24.0	0.26
2	24.9	0.27	0.21	0.103	24.7	0.250	0.211	0.111	24.2	0.26
3	23.0	0.23	0.21	0.105	25.0	0.245	0.218	0.111	24.2	0.26
4	24.1	0.26	0.21	0.105	24.5	0.245	0.212	0.106	24.8	0.27
5	24.0	0.27	0.21	0.103	24.5	0.260	0.214	0.110	24.4	0.30
6										
7										
8										
9										
10										
Average	23.840	0.2520	0.2100	0.1042	24.860	0.2490	0.2134	0.1092	24.320	0.2700
Std Dev.	0.7635	0.0205	0.0000	0.0011	0.4615	0.0065	0.0028	0.0022	0.3033	0.0173
AverageT										
Std Dev.										
Rec.	Cu %	Mo %	Ag g/t	Au g/t						
Value	0.21	0.105	24	0.26						

Legal Notice:

WCM Sales Ltd. (WCM Minerals) has prepared and analyzed the reference materials using qualified analytical laboratories and generally accepted assay procedures. WCM Sales Ltd. accepts liability only for the cost of the standards purchased. The purchaser, with the receipt of the product, releases WCM Sales Ltd. from all liabilities related to the use of the reference materials and information.

Lloyd Twaites Glen Armanini Registered Assayers, Province of British Columbia

APPENDIX D

Core Sample Data

Sample	Stan	dard	Sample	Stan	dard
•	Cu-155	Cu-172	•	Cu-155	Cu-172
850030		٠	850520		•
850040	•		850540	•	
850060		•	850560		•
850080	•		850580	•	
850100		•	850600		•
850120	•		850620	•	
850140		•	850640		•
850160	•		850660	•	
850180		•	850680		•
850200	•		850700	•	
850220		•	850720		•
850240	•		850740	•	
850260		•	850760		•
850280		•	850780	•	
850300	•		850800		•
850320	•		850820	•	
850340	•		850840	•	
850360		•	850860	•	
850380	•		850880		•
850400		•	850900	•	
850420	•		850920		•
850440		•	850940	•	
850460	•		850960		•
850480		•	850980	•	
850500	•				

Hole: T08-40 Core Samples

Sample		Feet			Meters		Sample		Feet			Meters	Meters		
	from	to	interval	from	to	interval	_	from	to	interval	from	to	interval		
850001	26.00	29.00	3.00	7.92	8.84	0.91	850034	125.00	128.00	3.00	38.10	39.01	0.91		
850002	29.00	32.00	3.00	8.84	9.75	0.91	850035	128.00	131.00	3.00	39.01	39.93	0.91		
850003	32.00	35.00	3.00	9.75	10.67	0.91	850036	131.00	142.00	11.00	39.93	43.28	3.35		
850004	35.00	38.00	3.00	10.67	11.58	0.91	850037	142.00	145.00	3.00	43.28	44.20	0.91		
850005	38.00	41.00	3.00	11.58	12.50	0.91	850038	145.00	148.00	3.00	44.20	45.11	0.91		
850006	41.00	44.00	3.00	12.50	13.41	0.91	850039	148.00	152.00	4.00	45.11	46.33	1.22		
850007	44.00	47.00	3.00	13.41	14.33	0.91	850040	Standard C	u-155						
850008	47.00	50.00	3.00	14.33	15.24	0.91	850041	152.00	155.00	3.00	46.33	47.24	0.91		
850009	50.00	53.00	3.00	15.24	16.15	0.91	850042	155.00	158.00	3.00	47.24	48.16	0.91		
850010	53.00	56.00	3.00	16.15	17.07	0.91	850043	158.00	161.00	3.00	48.16	49.07	0.91		
850011	56.00	59.00	3.00	17.07	17.98	0.91	850044	161.00	164.00	3.00	49.07	49.99	0.91		
850012	59.00	62.00	3.00	17.98	18.90	0.91	850045	164.00	167.00	3.00	49.99	50.90	0.91		
850013	62.00	65.00	3.00	18.90	19.81	0.91	850046	167.00	170.00	3.00	50.90	51.82	0.91		
850014	65.00	68.00	3.00	19.81	20.73	0.91	850047	170.00	173.00	3.00	51.82	52.73	0.91		
850015	68.00	74.00	6.00	20.73	22.56	1.83	850048	173.00	176.00	3.00	52.73	53.64	0.91		
850016	74.00	77.00	3.00	22.56	23.47	0.91	850049	176.00	179.00	3.00	53.64	54.56	0.91		
850017	77.00	80.00	3.00	23.47	24.38	0.91	850050	179.00	182.00	3.00	54.56	55.47	0.91		
850018	80.00	83.00	3.00	24.38	25.30	0.91	850051	182.00	187.00	5.00	55.47	57.00	1.52		
850019	83.00	86.00	3.00	25.30	26.21	0.91	850052	187.00	190.00	3.00	57.00	57.91	0.91		
850020	86.00	89.00	3.00	26.21	27.13	0.91	850053	190.00	193.00	3.00	57.91	58.83	0.91		
850021	89.00	92.00	3.00	27.13	28.04	0.91	850054	193.00	196.00	3.00	58.83	59.74	0.91		
850022	92.00	95.00	3.00	28.04	28.96	0.91	850055	196.00	199.00	3.00	59.74	60.66	0.91		
850023	95.00	98.00	3.00	28.96	29.87	0.91	850056	199.00	202.00	3.00	60.66	61.57	0.91		
850024	98.00	101.00	3.00	29.87	30.78	0.91	850057	202.00	205.00	3.00	61.57	62.48	0.91		
850025	101.00	104.00	3.00	30.78	31.70	0.91	850058	205.00	208.00	3.00	62.48	63.40	0.91		
850026	104.00	107.00	3.00	31.70	32.61	0.91	850059	208.00	211.00	3.00	63.40	64.31	0.91		
850027	107.00	110.00	3.00	32.61	33.53	0.91	850060	Standard C	u-172						
850028	110.00	113.00	3.00	33.53	34.44	0.91	850061	211.00	214.00	3.00	64.31	65.23	0.91		
850029	113.00	116.00	3.00	34.44	35.36	0.91	850062	214.00	217.00	3.00	65.23	66.14	0.91		
850030	Standard	Cu-172					850063	217.00	220.00	3.00	66.14	67.06	0.91		
850031	116.00	119.00	3.00	35.36	36.27	0.91	850064	220.00	223.00	3.00	67.06	67.97	0.91		
850032	119.00	122.00	3.00	36.27	37.19	0.91	850065	223.00	226.00	3.00	67.97	68.88	0.91		
850033	122.00	125.00	3.00	37.19	38.10	0.91	850066	226.00	229.00	3.00	68.88	69.80	0.91		

Sample		Feet			Meters		Sample		Feet			Meters	
-	from	to	interval	from	to	interval	-	from	to	interval	from	to	interval
850067	229.00	232.00	3.00	69.80	70.71	0.91	850102	328.00	331.00	3.00	99.97	100.89	0.91
850068	232.00	235.00	3.00	70.71	71.63	0.91	850103	331.00	334.00	3.00	100.89	101.80	0.91
850069	235.00	238.00	3.00	71.63	72.54	0.91	850104	334.00	337.00	3.00	101.80	102.72	0.91
850070	238.00	241.00	3.00	72.54	73.46	0.91	850105	337.00	340.00	3.00	102.72	103.63	0.91
850071	241.00	244.00	3.00	73.46	74.37	0.91	850106	340.00	343.00	3.00	103.63	104.55	0.91
850072	244.00	247.00	3.00	74.37	75.29	0.91	850107	343.00	346.00	3.00	104.55	105.46	0.91
850073	247.00	250.00	3.00	75.29	76.20	0.91	850108	346.00	349.00	3.00	105.46	106.38	0.91
850074	250.00	253.00	3.00	76.20	77.11	0.91	850109	349.00	352.00	3.00	106.38	107.29	0.91
850075	253.00	256.00	3.00	77.11	78.03	0.91	850110	352.00	355.00	3.00	107.29	108.20	0.91
850076	256.00	259.00	3.00	78.03	78.94	0.91	850111	355.00	358.00	3.00	108.20	109.12	0.91
850077	259.00	262.00	3.00	78.94	79.86	0.91	850112	358.00	361.00	3.00	109.12	110.03	0.91
850078	262.00	265.00	3.00	79.86	80.77	0.91	850113	361.00	364.00	3.00	110.03	110.95	0.91
850079	265.00	268.00	3.00	80.77	81.69	0.91	850114	364.00	367.00	3.00	110.95	111.86	0.91
850080	Standard	Cu-155					850115	367.00	370.00	3.00	111.86	112.78	0.91
850081	268.00	271.00	3.00	81.69	82.60	0.91	850116	370.00	373.00	3.00	112.78	113.69	0.91
850082	271.00	274.00	3.00	82.60	83.52	0.91	850117	373.00	376.00	3.00	113.69	114.60	0.91
850083	274.00	277.00	3.00	83.52	84.43	0.91	850118	376.00	379.00	3.00	114.60	115.52	0.91
850084	277.00	280.00	3.00	84.43	85.34	0.91	850119	379.00	382.00	3.00	115.52	116.43	0.91
850085	280.00	283.00	3.00	85.34	86.26	0.91	850120	Standard C	u-155				
850086	283.00	286.00	3.00	86.26	87.17	0.91	850121	382.00	385.00	3.00	116.43	117.35	0.91
850087	286.00	289.00	3.00	87.17	88.09	0.91	850122	385.00	388.00	3.00	117.35	118.26	0.91
850088	289.00	292.00	3.00	88.09	89.00	0.91	850123	388.00	391.00	3.00	118.26	119.18	0.91
850089	292.00	295.00	3.00	89.00	89.92	0.91	850124	391.00	394.00	3.00	119.18	120.09	0.91
850090	295.00	298.00	3.00	89.92	90.83	0.91	850125	394.00	397.00	3.00	120.09	121.01	0.91
850091	298.00	301.00	3.00	90.83	91.74	0.91	850126	397.00	400.00	3.00	121.01	121.92	0.91
850092	301.00	304.00	3.00	91.74	92.66	0.91	850127	400.00	403.00	3.00	121.92	122.83	0.91
850093	304.00	307.00	3.00	92.66	93.57	0.91	850128	403.00	406.00	3.00	122.83	123.75	0.91
850094	307.00	310.00	3.00	93.57	94.49	0.91	850129	406.00	409.00	3.00	123.75	124.66	0.91
850095	310.00	313.00	3.00	94.49	95.40	0.91	850130	409.00	412.00	3.00	124.66	125.58	0.91
850096	313.00	316.00	3.00	95.40	96.32	0.91	850131	412.00	415.00	3.00	125.58	126.49	0.91
850097	316.00	319.00	3.00	96.32	97.23	0.91	850132	415.00	418.00	3.00	126.49	127.41	0.91
850098	319.00	322.00	3.00	97.23	98.15	0.91	850133	418.00	421.00	3.00	127.41	128.32	0.91
850099	322.00	325.00	3.00	98.15	99.06	0.91	850134	421.00	424.00	3.00	128.32	129.24	0.91
850100	Standard	Cu-172					850135	424.00	427.00	3.00	129.24	130.15	0.91
850101	325.00	328.00	3.00	99.06	99.97	0.91	850136	427.00	430.00	3.00	130.15	131.06	0.91

Sample		Feet			Meters		Sample		Feet			Meters	
	from	to	interval	from	to	interval		from	to	interval	from	to	interval
850137	430.00	433.00	3.00	131.06	131.98	0.91	850172	529.00	532.00	3.00	161.24	162.15	0.91
850138	433.00	436.00	3.00	131.98	132.89	0.91	850173	532.00	535.00	3.00	162.15	163.07	0.91
850139	436.00	439.00	3.00	132.89	133.81	0.91	850174	535.00	538.00	3.00	163.07	163.98	0.91
850140	Standard (Cu-172					850175	538.00	541.00	3.00	163.98	164.90	0.91
850141	439.00	442.00	3.00	133.81	134.72	0.91	850176	541.00	544.00	3.00	164.90	165.81	0.91
850142	442.00	445.00	3.00	134.72	135.64	0.91	850177	544.00	547.00	3.00	165.81	166.73	0.91
850143	445.00	448.00	3.00	135.64	136.55	0.91	850178	547.00	550.00	3.00	166.73	167.64	0.91
850144	448.00	451.00	3.00	136.55	137.46	0.91	850179	550.00	553.00	3.00	167.64	168.55	0.91
850145	451.00	454.00	3.00	137.46	138.38	0.91	850180	Standard C	u-172				
850146	454.00	457.00	3.00	138.38	139.29	0.91	850181	553.00	556.00	3.00	168.55	169.47	0.91
850147	457.00	460.00	3.00	139.29	140.21	0.91	850182	556.00	559.00	3.00	169.47	170.38	0.91
850148	460.00	463.00	3.00	140.21	141.12	0.91	850183	559.00	562.00	3.00	170.38	171.30	0.91
850149	463.00	466.00	3.00	141.12	142.04	0.91	850184	562.00	565.00	3.00	171.30	172.21	0.91
850150	466.00	469.00	3.00	142.04	142.95	0.91	850185	565.00	568.00	3.00	172.21	173.13	0.91
850151	469.00	472.00	3.00	142.95	143.87	0.91	850186	568.00	571.00	3.00	173.13	174.04	0.91
850152	472.00	475.00	3.00	143.87	144.78	0.91	850187	571.00	574.00	3.00	174.04	174.96	0.91
850153	475.00	478.00	3.00	144.78	145.69	0.91	850188	574.00	577.00	3.00	174.96	175.87	0.91
850154	478.00	481.00	3.00	145.69	146.61	0.91	850189	577.00	580.00	3.00	175.87	176.78	0.91
850155	481.00	484.00	3.00	146.61	147.52	0.91	850190	580.00	583.00	3.00	176.78	177.70	0.91
850156	484.00	487.00	3.00	147.52	148.44	0.91	850191	583.00	586.00	3.00	177.70	178.61	0.91
850157	487.00	490.00	3.00	148.44	149.35	0.91	850192	586.00	589.00	3.00	178.61	179.53	0.91
850158	490.00	493.00	3.00	149.35	150.27	0.91	850193	589.00	592.00	3.00	179.53	180.44	0.91
850159	493.00	496.00	3.00	150.27	151.18	0.91	850194	592.00	595.00	3.00	180.44	181.36	0.91
850160	Standard (Cu-155					850195	595.00	598.00	3.00	181.36	182.27	0.91
850161	496.00	499.00	3.00	151.18	152.10	0.91	850196	598.00	601.00	3.00	182.27	183.18	0.91
850162	499.00	502.00	3.00	152.10	153.01	0.91	850197	601.00	604.00	3.00	183.18	184.10	0.91
850163	502.00	505.00	3.00	153.01	153.92	0.91	850198	604.00	607.00	3.00	184.10	185.01	0.91
850164	505.00	508.00	3.00	153.92	154.84	0.91	850199	607.00	610.00	3.00	185.01	185.93	0.91
850165	508.00	511.00	3.00	154.84	155.75	0.91	850200	Standard C	u-155				
850166	511.00	514.00	3.00	155.75	156.67	0.91	850201	610.00	613.00	3.00	185.93	186.84	0.91
850167	514.00	517.00	3.00	156.67	157.58	0.91	850202	613.00	616.00	3.00	186.84	187.76	0.91
850168	517.00	520.00	3.00	157.58	158.50	0.91	850203	616.00	619.00	3.00	187.76	188.67	0.91
850169	520.00	523.00	3.00	158.50	159.41	0.91	850204	619.00	622.00	3.00	188.67	189.59	0.91
850170	523.00	526.00	3.00	159.41	160.32	0.91	850205	622.00	625.00	3.00	189.59	190.50	0.91
850171	526.00	529.00	3.00	160.32	161.24	0.91	850206	625.00	628.00	3.00	190.50	191.41	0.91

Sample		Feet			Meters		Sample		Feet			Meters	
_	from	to	interval	from	to	interval	-	from	to	interval	from	to	interval
850207	628.00	631.00	3.00	191.41	192.33	0.91	850241	731.00	734.00	3.00	222.81	223.72	0.91
850208	631.00	634.00	3.00	192.33	193.24	0.91	850242	734.00	737.00	3.00	223.72	224.64	0.91
850209	634.00	637.00	3.00	193.24	194.16	0.91	850243	737.00	740.00	3.00	224.64	225.55	0.91
850210	637.00	640.00	3.00	194.16	195.07	0.91	850244	740.00	743.00	3.00	225.55	226.47	0.91
850211	640.00	643.00	3.00	195.07	195.99	0.91	850245	743.00	746.00	3.00	226.47	227.38	0.91
850212	643.00	646.00	3.00	195.99	196.90	0.91	850246	746.00	749.00	3.00	227.38	228.30	0.91
850213	646.00	649.00	3.00	196.90	197.82	0.91	850247	749.00	752.00	3.00	228.30	229.21	0.91
850214	649.00	652.00	3.00	197.82	198.73	0.91	850248	752.00	755.00	3.00	229.21	230.12	0.91
850215	652.00	655.00	3.00	198.73	199.64	0.91	850249	755.00	758.00	3.00	230.12	231.04	0.91
850216	655.00	658.00	3.00	199.64	200.56	0.91	850250	758.00	761.00	3.00	231.04	231.95	0.91
850217	658.00	661.00	3.00	200.56	201.47	0.91	850251	761.00	764.00	3.00	231.95	232.87	0.91
	Lost Core						850252	764.00	767.00	3.00	232.87	233.78	0.91
850218	670.00	673.00	3.00	204.22	205.13	0.91	850253	767.00	770.00	3.00	233.78	234.70	0.91
850219	673.00	676.00	3.00	205.13	206.04	0.91	850254	770.00	773.00	3.00	234.70	235.61	0.91
850220	Standard (Cu-172					850255	773.00	776.00	3.00	235.61	236.52	0.91
850221	676.00	679.00	3.00	206.04	206.96	0.91	850256	776.00	779.00	3.00	236.52	237.44	0.91
850222	679.00	682.00	3.00	206.96	207.87	0.91	850257	779.00	782.00	3.00	237.44	238.35	0.91
850223	682.00	685.00	3.00	207.87	208.79	0.91	850258	782.00	785.00	3.00	238.35	239.27	0.91
850224	685.00	688.00	3.00	208.79	209.70	0.91	850259	785.00	788.00	3.00	239.27	240.18	0.91
850225	688.00	691.00	3.00	209.70	210.62	0.91	850260	Standard C	u-172				
850226	691.00	694.00	3.00	210.62	211.53	0.91	850261	788.00	791.00	3.00	240.18	241.10	0.91
850227	694.00	697.00	3.00	211.53	212.45	0.91	850262	791.00	794.00	3.00	241.10	242.01	0.91
850228	697.00	700.00	3.00	212.45	213.36	0.91	850263	794.00	797.00	3.00	242.01	242.93	0.91
850229	700.00	703.00	3.00	213.36	214.27	0.91	850264	797.00	800.00	3.00	242.93	243.84	0.91
850230	703.00	705.00	2.00	214.27	214.88	0.61	850265	800.00	803.00	3.00	243.84	244.75	0.91
850231	705.00	707.00	2.00	214.88	215.49	0.61	850266	803.00	806.00	3.00	244.75	245.67	0.91
850232	707.00	710.00	3.00	215.49	216.41	0.91	850267	806.00	809.00	3.00	245.67	246.58	0.91
850233	710.00	713.00	3.00	216.41	217.32	0.91	850268	809.00	812.00	3.00	246.58	247.50	0.91
850234	713.00	716.00	3.00	217.32	218.24	0.91	850269	812.00	815.00	3.00	247.50	248.41	0.91
850235	716.00	719.00	3.00	218.24	219.15	0.91	850270	815.00	818.00	3.00	248.41	249.33	0.91
850236	719.00	722.00	3.00	219.15	220.07	0.91	850271	818.00	821.00	3.00	249.33	250.24	0.91
850237	722.00	725.00	3.00	220.07	220.98	0.91	850272	821.00	824.00	3.00	250.24	251.16	0.91
850238	725.00	728.00	3.00	220.98	221.89	0.91	850273	824.00	827.00	3.00	251.16	252.07	0.91
850239	728.00	731.00	3.00	221.89	222.81	0.91	850274	827.00	830.00	3.00	252.07	252.98	0.91
850240	Standard (Cu-155					850275	830.00	833.00	3.00	252.98	253.90	0.91

Sample		Feet			Meters		Sample		Feet			Meters	
	from	to	interval	from	to	interval	-	from	to	interval	from	to	interval
850276	833.00	836.00	3.00	253.90	254.81	0.91	850311	932.00	935.00	3.00	284.07	284.99	0.91
850277	836.00	839.00	3.00	254.81	255.73	0.91	850312	935.00	938.00	3.00	284.99	285.90	0.91
850278	839.00	842.00	3.00	255.73	256.64	0.91	850313	938.00	941.00	3.00	285.90	286.82	0.91
850279	842.00	845.00	3.00	256.64	257.56	0.91	850314	941.00	944.00	3.00	286.82	287.73	0.91
850280	Standard (Cu-172					850315	944.00	947.00	3.00	287.73	288.65	0.91
850281	845.00	848.00	3.00	257.56	258.47	0.91	850316	947.00	950.00	3.00	288.65	289.56	0.91
850282	848.00	851.00	3.00	258.47	259.38	0.91	850317	950.00	953.00	3.00	289.56	290.47	0.91
850283	851.00	854.00	3.00	259.38	260.30	0.91	850318	953.00	956.00	3.00	290.47	291.39	0.91
850284	854.00	857.00	3.00	260.30	261.21	0.91	850319	956.00	959.00	3.00	291.39	292.30	0.91
850285	857.00	860.00	3.00	261.21	262.13	0.91	850320	Standard C	u-155				
850286	860.00	863.00	3.00	262.13	263.04	0.91	850321	959.00	962.00	3.00	292.30	293.22	0.91
850287	863.00	866.00	3.00	263.04	263.96	0.91	850322	962.00	965.00	3.00	293.22	294.13	0.91
850288	866.00	869.00	3.00	263.96	264.87	0.91	850323	965.00	968.00	3.00	294.13	295.05	0.91
850289	869.00	872.00	3.00	264.87	265.79	0.91	850324	968.00	971.00	3.00	295.05	295.96	0.91
850290	872.00	875.00	3.00	265.79	266.70	0.91	850325	971.00	974.00	3.00	295.96	296.88	0.91
850291	875.00	878.00	3.00	266.70	267.61	0.91	850326	974.00	977.00	3.00	296.88	297.79	0.91
850292	878.00	881.00	3.00	267.61	268.53	0.91	850327	977.00	980.00	3.00	297.79	298.70	0.91
850293	881.00	884.00	3.00	268.53	269.44	0.91	850328	980.00	983.00	3.00	298.70	299.62	0.91
850294	884.00	887.00	3.00	269.44	270.36	0.91	850329	983.00	986.00	3.00	299.62	300.53	0.91
850295	887.00	890.00	3.00	270.36	271.27	0.91	850330	986.00	989.00	3.00	300.53	301.45	0.91
850296	890.00	893.00	3.00	271.27	272.19	0.91	850331	989.00	992.00	3.00	301.45	302.36	0.91
850297	893.00	896.00	3.00	272.19	273.10	0.91	850332	992.00	995.00	3.00	302.36	303.28	0.91
850298	896.00	899.00	3.00	273.10	274.02	0.91	850333	995.00	998.00	3.00	303.28	304.19	0.91
850299	899.00	902.00	3.00	274.02	274.93	0.91	850334	998.00	1001.00	3.00	304.19	305.10	0.91
850300	Standard (Cu-155					850335	1001.00	1004.00	3.00	305.10	306.02	0.91
850301	902.00	905.00	3.00	274.93	275.84	0.91	850336	1004.00	1007.00	3.00	306.02	306.93	0.91
850302	905.00	908.00	3.00	275.84	276.76	0.91	850337	1007.00	1010.00	3.00	306.93	307.85	0.91
850303	908.00	911.00	3.00	276.76	277.67	0.91	850338	1010.00	1013.00	3.00	307.85	308.76	0.91
850304	911.00	914.00	3.00	277.67	278.59	0.91	850339	1013.00	1016.00	3.00	308.76	309.68	0.91
850305	914.00	917.00	3.00	278.59	279.50	0.91	850340	Standar Cu	-155				
850306	917.00	920.00	3.00	279.50	280.42	0.91	850341	1016.00	1019.00	3.00	309.68	310.59	0.91
850307	920.00	923.00	3.00	280.42	281.33	0.91	850342	1019.00	1022.00	3.00	310.59	311.51	0.91
850308	923.00	926.00	3.00	281.33	282.24	0.91	850343	1022.00	1025.00	3.00	311.51	312.42	0.91
850309	926.00	929.00	3.00	282.24	283.16	0.91	850344	1025.00	1028.00	3.00	312.42	313.33	0.91
850310	929.00	932.00	3.00	283.16	284.07	0.91	850345	1028.00	1031.00	3.00	313.33	314.25	0.91

Sample		Feet			Meters		Sample		Feet			Meters	
-	from	to	interval	from	to	interval	_	from	to	interval	from	to	interval
850346	1031.00	1034.00	3.00	314.25	315.16	0.91	850381	1130.00	1133.00	3.00	344.42	345.34	0.91
850347	1034.00	1037.00	3.00	315.16	316.08	0.91	850382	1133.00	1136.00	3.00	345.34	346.25	0.91
850348	1037.00	1040.00	3.00	316.08	316.99	0.91	850383	1136.00	1139.00	3.00	346.25	347.17	0.91
850349	1040.00	1043.00	3.00	316.99	317.91	0.91	850384	1139.00	1142.00	3.00	347.17	348.08	0.91
850350	1043.00	1046.00	3.00	317.91	318.82	0.91	850385	1142.00	1145.00	3.00	348.08	349.00	0.91
850351	1046.00	1049.00	3.00	318.82	319.74	0.91	850386	1145.00	1148.00	3.00	349.00	349.91	0.91
850352	1049.00	1052.00	3.00	319.74	320.65	0.91	850387	1148.00	1151.00	3.00	349.91	350.82	0.91
850353	1052.00	1055.00	3.00	320.65	321.56	0.91	850388	1151.00	1154.00	3.00	350.82	351.74	0.91
850354	1055.00	1058.00	3.00	321.56	322.48	0.91	850389	1154.00	1157.00	3.00	351.74	352.65	0.91
850355	1058.00	1061.00	3.00	322.48	323.39	0.91	850390	1157.00	1160.00	3.00	352.65	353.57	0.91
850356	1061.00	1064.00	3.00	323.39	324.31	0.91	850391	1160.00	1163.00	3.00	353.57	354.48	0.91
850357	1064.00	1067.00	3.00	324.31	325.22	0.91	850392	1163.00	1166.00	3.00	354.48	355.40	0.91
850358	1067.00	1070.00	3.00	325.22	326.14	0.91	850393	1166.00	1169.00	3.00	355.40	356.31	0.91
850359	1070.00	1073.00	3.00	326.14	327.05	0.91	850394	1169.00	1172.00	3.00	356.31	357.23	0.91
850360	Standard	Cu-172					850395	1172.00	1175.00	3.00	357.23	358.14	0.91
850361	1073.00	1076.00	3.00	327.05	327.96	0.91	850396	1175.00	1178.00	3.00	358.14	359.05	0.91
850362	1076.00	1079.00	3.00	327.96	328.88	0.91	850397	1178.00	1181.00	3.00	359.05	359.97	0.91
850363	1079.00	1082.00	3.00	328.88	329.79	0.91	850398	1181.00	1184.00	3.00	359.97	360.88	0.91
850364	1082.00	1085.00	3.00	329.79	330.71	0.91	850399	1184.00	1187.00	3.00	360.88	361.80	0.91
850365	1085.00	1088.00	3.00	330.71	331.62	0.91	850400	Standard C	u-172				
850366	1088.00	1091.00	3.00	331.62	332.54	0.91	850401	1187.00	1190.00	3.00	361.80	362.71	0.91
850367	1091.00	1094.00	3.00	332.54	333.45	0.91	850402	1190.00	1193.00	3.00	362.71	363.63	0.91
850368	1094.00	1097.00	3.00	333.45	334.37	0.91	850403	1193.00	1196.00	3.00	363.63	364.54	0.91
850369	1097.00	1100.00	3.00	334.37	335.28	0.91	850404	1196.00	1199.00	3.00	364.54	365.46	0.91
850370	1100.00	1103.00	3.00	335.28	336.19	0.91	850405	1199.00	1202.00	3.00	365.46	366.37	0.91
850371	1103.00	1106.00	3.00	336.19	337.11	0.91	850406	1202.00	1205.00	3.00	366.37	367.28	0.91
850372	1106.00	1109.00	3.00	337.11	338.02	0.91	850407	1205.00	1208.00	3.00	367.28	368.20	0.91
850373	1109.00	1112.00	3.00	338.02	338.94	0.91	850408	1208.00	1211.00	3.00	368.20	369.11	0.91
850374	1112.00	1115.00	3.00	338.94	339.85	0.91	850409	1211.00	1214.00	3.00	369.11	370.03	0.91
850375	1115.00	1118.00	3.00	339.85	340.77	0.91	850410	1214.00	1217.00	3.00	370.03	370.94	0.91
850376	1118.00	1121.00	3.00	340.77	341.68	0.91	850411	1217.00	1220.00	3.00	370.94	371.86	0.91
850377	1121.00	1124.00	3.00	341.68	342.60	0.91	850412	1220.00	1223.00	3.00	371.86	372.77	0.91
850378	1124.00	1127.00	3.00	342.60	343.51	0.91	850413	1223.00	1226.00	3.00	372.77	373.68	0.91
850379	1127.00	1130.00	3.00	343.51	344.42	0.91	850414	1226.00	1229.00	3.00	373.68	374.60	0.91
850380	Standard	Cu-155					850415	1229.00	1232.00	3.00	374.60	375.51	0.91

Sample		Feet			Meters		Sample		Feet			Meters	
	from	to	interval	from	to	interval		from	to	interval	from	to	interval
850416	1232.00	1235.00	3.00	375.51	376.43	0.91	850451	1331.00	1334.00	3.00	405.69	406.60	0.91
850417	1235.00	1238.00	3.00	376.43	377.34	0.91	850452	1334.00	1337.00	3.00	406.60	407.52	0.91
850418	1238.00	1241.00	3.00	377.34	378.26	0.91	850453	1337.00	1340.00	3.00	407.52	408.43	0.91
850419	1241.00	1244.00	3.00	378.26	379.17	0.91	850454	1340.00	1343.00	3.00	408.43	409.35	0.91
850420	Standard	Cu-155					850455	1343.00	1346.00	3.00	409.35	410.26	0.91
850421	1244.00	1247.00	3.00	379.17	380.09	0.91	850456	1346.00	1349.00	3.00	410.26	411.18	0.91
850422	1247.00	1250.00	3.00	380.09	381.00	0.91	850457	1349.00	1352.00	3.00	411.18	412.09	0.91
850423	1250.00	1253.00	3.00	381.00	381.91	0.91	850458	1352.00	1355.00	3.00	412.09	413.00	0.91
850424	1253.00	1256.00	3.00	381.91	382.83	0.91	850459	1355.00	1358.00	3.00	413.00	413.92	0.91
850425	1256.00	1259.00	3.00	382.83	383.74	0.91	850460	Standard C	u-155				
850426	1259.00	1262.00	3.00	383.74	384.66	0.91	850461	1358.00	1361.00	3.00	413.92	414.83	0.91
850427	1262.00	1265.00	3.00	384.66	385.57	0.91	850462	1361.00	1364.00	3.00	414.83	415.75	0.91
850428	1265.00	1268.00	3.00	385.57	386.49	0.91	850463	1364.00	1367.00	3.00	415.75	416.66	0.91
850429	1268.00	1271.00	3.00	386.49	387.40	0.91	850464	1367.00	1370.00	3.00	416.66	417.58	0.91
850430	1271.00	1274.00	3.00	387.40	388.32	0.91	850465	1370.00	1373.00	3.00	417.58	418.49	0.91
850431	1274.00	1277.00	3.00	388.32	389.23	0.91	850466	1373.00	1376.00	3.00	418.49	419.40	0.91
850432	1277.00	1280.00	3.00	389.23	390.14	0.91	850467	1376.00	1379.00	3.00	419.40	420.32	0.91
850433	1280.00	1283.00	3.00	390.14	391.06	0.91	850468	1379.00	1382.00	3.00	420.32	421.23	0.91
850434	1283.00	1286.00	3.00	391.06	391.97	0.91	850469	1382.00	1385.00	3.00	421.23	422.15	0.91
850435	1286.00	1289.00	3.00	391.97	392.89	0.91	850470	1385.00	1388.00	3.00	422.15	423.06	0.91
850436	1289.00	1292.00	3.00	392.89	393.80	0.91	850471	1388.00	1391.00	3.00	423.06	423.98	0.91
850437	1292.00	1295.00	3.00	393.80	394.72	0.91	850472	1391.00	1394.00	3.00	423.98	424.89	0.91
850438	1295.00	1298.00	3.00	394.72	395.63	0.91	850473	1394.00	1397.00	3.00	424.89	425.81	0.91
850439	1298.00	1301.00	3.00	395.63	396.54	0.91	850474	1397.00	1400.00	3.00	425.81	426.72	0.91
850440	Standard	Cu-172					850475	1400.00	1403.00	3.00	426.72	427.63	0.91
850441	1301.00	1304.00	3.00	396.54	397.46	0.91	850476	1403.00	1406.00	3.00	427.63	428.55	0.91
850442	1304.00	1307.00	3.00	397.46	398.37	0.91	850477	1406.00	1409.00	3.00	428.55	429.46	0.91
850443	1307.00	1310.00	3.00	398.37	399.29	0.91	850478	1409.00	1412.00	3.00	429.46	430.38	0.91
850444	1310.00	1313.00	3.00	399.29	400.20	0.91	850479	1412.00	1415.00	3.00	430.38	431.29	0.91
850445	1313.00	1316.00	3.00	400.20	401.12	0.91	850480	Standard C	u-172				
850446	1316.00	1319.00	3.00	401.12	402.03	0.91	850481	1415.00	1418.00	3.00	431.29	432.21	0.91
850447	1319.00	1322.00	3.00	402.03	402.95	0.91	850482	1418.00	1421.00	3.00	432.21	433.12	0.91
850448	1322.00	1325.00	3.00	402.95	403.86	0.91	850483	1421.00	1424.00	3.00	433.12	434.04	0.91
850449	1325.00	1328.00	3.00	403.86	404.77	0.91	850484	1424.00	1427.00	3.00	434.04	434.95	0.91
850450	1328.00	1331.00	3.00	404.77	405.69	0.91	850485	1427.00	1430.00	3.00	434.95	435.86	0.91

Sample		Feet			Meters	
	from	to	interval	from	to	interval
850486	1430.00	1433.00	3.00	435.86	436.78	0.91
850487	1433.00	1436.00	3.00	436.78	437.69	0.91
850488	1436.00	1439.00	3.00	437.69	438.61	0.91
850489	1439.00	1442.00	3.00	438.61	439.52	0.91

Hole: T08-41 Core Samples

Sample		Feet			Meters		Sample		Feet			Meters	
-	from	to	interval	from	to	interval	-	from	to	interval	from	to	interval
850490	144.00	147.00	3.00	43.89	44.81	0.91	850523	268.00	271.00	3.00	81.69	82.60	0.91
850491	147.00	150.00	3.00	44.81	45.72	0.91	850524	271.00	274.00	3.00	82.60	83.52	0.91
850492	150.00	153.00	3.00	45.72	46.63	0.91	850525	274.00	277.00	3.00	83.52	84.43	0.91
850493	184.00	187.00	3.00	56.08	57.00	0.91	850526	277.00	280.00	3.00	84.43	85.34	0.91
850494	187.00	190.00	3.00	57.00	57.91	0.91	850527	280.00	283.00	3.00	85.34	86.26	0.91
850495	190.00	193.00	3.00	57.91	58.83	0.91	850528	283.00	286.00	3.00	86.26	87.17	0.91
850496	193.00	196.00	3.00	58.83	59.74	0.91	850529	286.00	289.00	3.00	87.17	88.09	0.91
850497	196.00	199.00	3.00	59.74	60.66	0.91	850530	289.00	292.00	3.00	88.09	89.00	0.91
850498	199.00	202.00	3.00	60.66	61.57	0.91	850531	292.00	295.00	3.00	89.00	89.92	0.91
850499	202.00	205.00	3.00	61.57	62.48	0.91	850532	295.00	298.00	3.00	89.92	90.83	0.91
850500	Standard C	Cu-155					850533	298.00	301.00	3.00	90.83	91.74	0.91
850501	205.00	208.00	3.00	62.48	63.40	0.91	850534	301.00	303.00	2.00	91.74	92.35	0.61
850502	208.00	211.00	3.00	63.40	64.31	0.91	850535	303.00	306.00	3.00	92.35	93.27	0.91
850503	211.00	214.00	3.00	64.31	65.23	0.91	850536	306.00	309.00	3.00	93.27	94.18	0.91
850504	214.00	217.00	3.00	65.23	66.14	0.91	850537	309.00	312.00	3.00	94.18	95.10	0.91
850505	217.00	220.00	3.00	66.14	67.06	0.91	850538	312.00	315.00	3.00	95.10	96.01	0.91
850506	220.00	223.00	3.00	67.06	67.97	0.91	850539	315.00	318.00	3.00	96.01	96.93	0.91
850507	223.00	226.00	3.00	67.97	68.88	0.91	850540	Standard C	u-155				
850508	226.00	229.00	3.00	68.88	69.80	0.91	850541	318.00	321.00	3.00	96.93	97.84	0.91
850509	229.00	232.00	3.00	69.80	70.71	0.91	850542	321.00	324.00	3.00	97.84	98.76	0.91
850510	232.00	235.00	3.00	70.71	71.63	0.91	850543	324.00	327.00	3.00	98.76	99.67	0.91
850511	235.00	238.00	3.00	71.63	72.54	0.91	850544	327.00	330.00	3.00	99.67	100.58	0.91
850512	238.00	241.00	3.00	72.54	73.46	0.91	850545	330.00	333.00	3.00	100.58	101.50	0.91
850513	241.00	244.00	3.00	73.46	74.37	0.91	850546	333.00	336.00	3.00	101.50	102.41	0.91
850514	244.00	247.00	3.00	74.37	75.29	0.91	850547	336.00	339.00	3.00	102.41	103.33	0.91
850515	247.00	250.00	3.00	75.29	76.20	0.91	850548	339.00	342.00	3.00	103.33	104.24	0.91
850516	250.00	253.00	3.00	76.20	77.11	0.91	850549	342.00	345.00	3.00	104.24	105.16	0.91
850517	253.00	256.00	3.00	77.11	78.03	0.91	850550	345.00	348.00	3.00	105.16	106.07	0.91
850518	256.00	259.00	3.00	78.03	78.94	0.91	850551	348.00	351.00	3.00	106.07	106.98	0.91
850519	259.00	262.00	3.00	78.94	79.86	0.91	850552	351.00	354.00	3.00	106.98	107.90	0.91
850520	Standard C	Cu-172					850553	354.00	357.00	3.00	107.90	108.81	0.91
850521	262.00	265.00	3.00	79.86	80.77	0.91	850554	357.00	360.00	3.00	108.81	109.73	0.91
850522	265.00	268.00	3.00	80.77	81.69	0.91	850555	360.00	363.00	3.00	109.73	110.64	0.91

Sample		Feet			Meters		Sample		Feet			Meters	
-	from	to	interval	from	to	interval	-	from	to	interval	from	to	interval
850556	363.00	366.00	3.00	110.64	111.56	0.91	850591	462.00	465.00	3.00	140.82	141.73	0.91
850557	366.00	369.00	3.00	111.56	112.47	0.91	850592	465.00	468.00	3.00	141.73	142.65	0.91
850558	369.00	372.00	3.00	112.47	113.39	0.91	850593	468.00	471.00	3.00	142.65	143.56	0.91
850559	372.00	375.00	3.00	113.39	114.30	0.91	850594	471.00	474.00	3.00	143.56	144.48	0.91
850560	Standard C	Cu-172					850595	474.00	477.00	3.00	144.48	145.39	0.91
850561	375.00	378.00	3.00	114.30	115.21	0.91	850596	477.00	480.00	3.00	145.39	146.30	0.91
850562	378.00	381.00	3.00	115.21	116.13	0.91	850597	480.00	483.00	3.00	146.30	147.22	0.91
850563	381.00	384.00	3.00	116.13	117.04	0.91	850598	483.00	486.00	3.00	147.22	148.13	0.91
850564	384.00	387.00	3.00	117.04	117.96	0.91	850599	486.00	489.00	3.00	148.13	149.05	0.91
850565	387.00	390.00	3.00	117.96	118.87	0.91	850600	Standard C	u-172				
850566	390.00	393.00	3.00	118.87	119.79	0.91	850601	489.00	492.00	3.00	149.05	149.96	0.91
850567	393.00	396.00	3.00	119.79	120.70	0.91	850602	492.00	495.00	3.00	149.96	150.88	0.91
850568	396.00	399.00	3.00	120.70	121.62	0.91	850603	495.00	498.00	3.00	150.88	151.79	0.91
850569	399.00	402.00	3.00	121.62	122.53	0.91	850604	498.00	501.00	3.00	151.79	152.70	0.91
850570	402.00	405.00	3.00	122.53	123.44	0.91	850605	501.00	504.00	3.00	152.70	153.62	0.91
850571	405.00	408.00	3.00	123.44	124.36	0.91	850606	504.00	507.00	3.00	153.62	154.53	0.91
850572	408.00	411.00	3.00	124.36	125.27	0.91	850607	507.00	510.00	3.00	154.53	155.45	0.91
850573	411.00	414.00	3.00	125.27	126.19	0.91	850608	510.00	513.00	3.00	155.45	156.36	0.91
850574	414.00	417.00	3.00	126.19	127.10	0.91	850609	513.00	516.00	3.00	156.36	157.28	0.91
850575	417.00	420.00	3.00	127.10	128.02	0.91	850610	516.00	519.00	3.00	157.28	158.19	0.91
850576	420.00	423.00	3.00	128.02	128.93	0.91	850611	519.00	522.00	3.00	158.19	159.11	0.91
850577	423.00	426.00	3.00	128.93	129.84	0.91	850612	522.00	525.00	3.00	159.11	160.02	0.91
850578	426.00	429.00	3.00	129.84	130.76	0.91	850613	525.00	528.00	3.00	160.02	160.93	0.91
850579	429.00	432.00	3.00	130.76	131.67	0.91	850614	528.00	531.00	3.00	160.93	161.85	0.91
850580	Standard C	Cu-155					850615	531.00	534.00	3.00	161.85	162.76	0.91
850581	432.00	435.00	3.00	131.67	132.59	0.91	850616	534.00	537.00	3.00	162.76	163.68	0.91
850582	435.00	438.00	3.00	132.59	133.50	0.91	850617	537.00	540.00	3.00	163.68	164.59	0.91
850583	438.00	441.00	3.00	133.50	134.42	0.91	850618	540.00	543.00	3.00	164.59	165.51	0.91
850584	441.00	444.00	3.00	134.42	135.33	0.91	850619	543.00	546.00	3.00	165.51	166.42	0.91
850585	444.00	447.00	3.00	135.33	136.25	0.91	850620	Standard C	u-155				
850586	447.00	450.00	3.00	136.25	137.16	0.91	850621	546.00	549.00	3.00	166.42	167.34	0.91
850587	450.00	453.00	3.00	137.16	138.07	0.91	850622	549.00	552.00	3.00	167.34	168.25	0.91
850588	453.00	456.00	3.00	138.07	138.99	0.91	850623	552.00	555.00	3.00	168.25	169.16	0.91
850589	456.00	459.00	3.00	138.99	139.90	0.91	850624	555.00	558.00	3.00	169.16	170.08	0.91
850590	459.00	462.00	3.00	139.90	140.82	0.91	850625	558.00	561.00	3.00	170.08	170.99	0.91

Sample		Feet			Meters		Sample		Feet			Meters	
	from	to	interval	from	to	interval	•	from	to	interval	from	to	interval
850626	561.00	564.00	3.00	170.99	171.91	0.91	850661	660.00	663.00	3.00	201.17	202.08	0.91
850627	564.00	567.00	3.00	171.91	172.82	0.91	850662	663.00	666.00	3.00	202.08	203.00	0.91
850628	567.00	570.00	3.00	172.82	173.74	0.91	850663	666.00	669.00	3.00	203.00	203.91	0.91
850629	570.00	573.00	3.00	173.74	174.65	0.91	850664	669.00	672.00	3.00	203.91	204.83	0.91
850630	573.00	576.00	3.00	174.65	175.56	0.91	850665	672.00	675.00	3.00	204.83	205.74	0.91
850631	576.00	579.00	3.00	175.56	176.48	0.91	850666	675.00	678.00	3.00	205.74	206.65	0.91
850632	579.00	582.00	3.00	176.48	177.39	0.91	850667	678.00	681.00	3.00	206.65	207.57	0.91
850633	582.00	585.00	3.00	177.39	178.31	0.91	850668	681.00	684.00	3.00	207.57	208.48	0.91
850634	585.00	588.00	3.00	178.31	179.22	0.91	850669	684.00	687.00	3.00	208.48	209.40	0.91
850635	588.00	591.00	3.00	179.22	180.14	0.91	850670	687.00	690.00	3.00	209.40	210.31	0.91
850636	591.00	594.00	3.00	180.14	181.05	0.91	850671	690.00	693.00	3.00	210.31	211.23	0.91
850637	594.00	597.00	3.00	181.05	181.97	0.91	850672	693.00	696.00	3.00	211.23	212.14	0.91
850638	597.00	600.00	3.00	181.97	182.88	0.91	850673	696.00	699.00	3.00	212.14	213.06	0.91
850639	600.00	603.00	3.00	182.88	183.79	0.91	850674	699.00	702.00	3.00	213.06	213.97	0.91
850640	Standard C	Cu-172					850675	702.00	705.00	3.00	213.97	214.88	0.91
850641	603.00	606.00	3.00	183.79	184.71	0.91	850676	705.00	708.00	3.00	214.88	215.80	0.91
850642	606.00	609.00	3.00	184.71	185.62	0.91	850677	708.00	711.00	3.00	215.80	216.71	0.91
850643	609.00	612.00	3.00	185.62	186.54	0.91	850678	711.00	714.00	3.00	216.71	217.63	0.91
850644	612.00	615.00	3.00	186.54	187.45	0.91	850679	714.00	717.00	3.00	217.63	218.54	0.91
850645	615.00	618.00	3.00	187.45	188.37	0.91	850680	Standard C					
850646	618.00	621.00	3.00	188.37	189.28	0.91	850681	717.00	720.00	3.00	218.54	219.46	0.91
850647	621.00	624.00	3.00	189.28	190.20	0.91	850682	720.00	723.00	3.00	219.46	220.37	0.91
850648	624.00	627.00	3.00	190.20	191.11	0.91	850683	723.00	726.00	3.00	220.37	221.28	0.91
850649	627.00	630.00	3.00	191.11	192.02	0.91	850684	726.00	729.00	3.00	221.28	222.20	0.91
850650	630.00	633.00	3.00	192.02	192.94	0.91	850685	729.00	732.00	3.00	222.20	223.11	0.91
850651	633.00	636.00	3.00	192.94	193.85	0.91	850686	732.00	735.00	3.00	223.11	224.03	0.91
850652	636.00	639.00	3.00	193.85	194.77	0.91	850687	735.00	738.00	3.00	224.03	224.94	0.91
850653	639.00	642.00	3.00	194.77	195.68	0.91	850688	738.00	741.00	3.00	224.94	225.86	0.91
850654	642.00	645.00	3.00	195.68	196.60	0.91	850689	741.00	744.00	3.00	225.86	226.77	0.91
850655	645.00	648.00	3.00	196.60	197.51	0.91	850690	744.00	747.00	3.00	226.77	227.69	0.91
850656	648.00	651.00	3.00	197.51	198.42	0.91	850691	747.00	750.00	3.00	227.69	228.60	0.91
850657	651.00	654.00	3.00	198.42	199.34	0.91							
850658	654.00	657.00	3.00	199.34	200.25	0.91							
850659	657.00	660.00	3.00	200.25	201.17	0.91							
850660	Standard C	Cu-155											

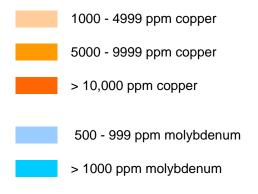
Hole: T08-42 Core Samples

Sample		Feet			Meters		Sample		Feet			Meters	
_	from	to	interval	from	to	interval	-	from	to	interval	from	to	interval
850692	12.00	116.00	104.00	3.66	35.36	31.70	850725	206.00	209.00	3.00	62.79	63.70	0.91
850693	116.00	119.00	3.00	35.36	36.27	0.91	850726	209.00	212.00	3.00	63.70	64.62	0.91
850694	119.00	122.00	3.00	36.27	37.19	0.91	850727	212.00	215.00	3.00	64.62	65.53	0.91
850695	122.00	125.00	3.00	37.19	38.10	0.91	850728	215.00	218.00	3.00	65.53	66.45	0.91
850696	125.00	128.00	3.00	38.10	39.01	0.91	850729	218.00	221.00	3.00	66.45	67.36	0.91
850697	128.00	131.00	3.00	39.01	39.93	0.91	850730	221.00	224.00	3.00	67.36	68.28	0.91
850698	131.00	134.00	3.00	39.93	40.84	0.91	850731	224.00	227.00	3.00	68.28	69.19	0.91
850699	134.00	137.00	3.00	40.84	41.76	0.91	850732	227.00	230.00	3.00	69.19	70.10	0.91
850700	Standard (Cu-155					850733	230.00	233.00	3.00	70.10	71.02	0.91
850701	137.00	140.00	3.00	41.76	42.67	0.91	850734	233.00	236.00	3.00	71.02	71.93	0.91
850702	140.00	143.00	3.00	42.67	43.59	0.91	850735	236.00	239.00	3.00	71.93	72.85	0.91
850703	143.00	146.00	3.00	43.59	44.50	0.91	850736	239.00	242.00	3.00	72.85	73.76	0.91
850704	146.00	149.00	3.00	44.50	45.42	0.91	850737	242.00	245.00	3.00	73.76	74.68	0.91
850705	149.00	152.00	3.00	45.42	46.33	0.91	850738	245.00	248.00	3.00	74.68	75.59	0.91
850706	152.00	155.00	3.00	46.33	47.24	0.91	850739	248.00	251.00	3.00	75.59	76.50	0.91
850707	155.00	158.00	3.00	47.24	48.16	0.91	850740	Standard C	u-155				
850708	158.00	161.00	3.00	48.16	49.07	0.91	850741	251.00	254.00	3.00	76.50	77.42	0.91
850709	161.00	164.00	3.00	49.07	49.99	0.91	850742	254.00	257.00	3.00	77.42	78.33	0.91
850710	164.00	167.00	3.00	49.99	50.90	0.91	850743	257.00	260.00	3.00	78.33	79.25	0.91
850711	167.00	170.00	3.00	50.90	51.82	0.91	850744	260.00	263.00	3.00	79.25	80.16	0.91
850712	170.00	173.00	3.00	51.82	52.73	0.91	850745	263.00	266.00	3.00	80.16	81.08	0.91
850713	173.00	176.00	3.00	52.73	53.64	0.91	850746	266.00	269.00	3.00	81.08	81.99	0.91
850714	176.00	179.00	3.00	53.64	54.56	0.91	850747	269.00	272.00	3.00	81.99	82.91	0.91
850715	179.00	182.00	3.00	54.56	55.47	0.91	850748	272.00	275.00	3.00	82.91	83.82	0.91
850716	182.00	185.00	3.00	55.47	56.39	0.91	850749	275.00	278.00	3.00	83.82	84.73	0.91
850717	185.00	188.00	3.00	56.39	57.30	0.91	850750	278.00	281.00	3.00	84.73	85.65	0.91
850718	188.00	191.00	3.00	57.30	58.22	0.91	850751	281.00	284.00	3.00	85.65	86.56	0.91
850719	191.00	194.00	3.00	58.22	59.13	0.91	850752	284.00	287.00	3.00	86.56	87.48	0.91
850720	Standard (Cu-172					850753	287.00	290.00	3.00	87.48	88.39	0.91
850721	194.00	197.00	3.00	59.13	60.05	0.91	850754	290.00	293.00	3.00	88.39	89.31	0.91
850722	197.00	200.00	3.00	60.05	60.96	0.91	850755	293.00	296.00	3.00	89.31	90.22	0.91
850723	200.00	203.00	3.00	60.96	61.87	0.91	850756	296.00	299.00	3.00	90.22	91.14	0.91
850724	203.00	206.00	3.00	61.87	62.79	0.91	850757	299.00	302.00	3.00	91.14	92.05	0.91

Sample		Feet			Meters		Sample		Feet			Meters	
-	from	to	interval	from	to	interval	-	from	to	interval	from	to	interval
850758	302.00	305.00	3.00	92.05	92.96	0.91	850793	401.00	404.00	3.00	122.22	123.14	0.91
850759	305.00	308.00	3.00	92.96	93.88	0.91	850794	404.00	407.00	3.00	123.14	124.05	0.91
850760	Standard (Cu-172					850795	407.00	410.00	3.00	124.05	124.97	0.91
850761	308.00	311.00	3.00	93.88	94.79	0.91	850796	410.00	413.00	3.00	124.97	125.88	0.91
850762	311.00	314.00	3.00	94.79	95.71	0.91	850797	413.00	416.00	3.00	125.88	126.80	0.91
850763	314.00	317.00	3.00	95.71	96.62	0.91	850798	416.00	419.00	3.00	126.80	127.71	0.91
850764	317.00	320.00	3.00	96.62	97.54	0.91	850799	419.00	422.00	3.00	127.71	128.63	0.91
850765	320.00	323.00	3.00	97.54	98.45	0.91	850800	Standard C	u-172				
850766	323.00	326.00	3.00	98.45	99.36	0.91	850801	422.00	425.00	3.00	128.63	129.54	0.91
850767	326.00	329.00	3.00	99.36	100.28	0.91	850802	425.00	428.00	3.00	129.54	130.45	0.91
850768	329.00	332.00	3.00	100.28	101.19	0.91	850803	428.00	431.00	3.00	130.45	131.37	0.91
850769	332.00	335.00	3.00	101.19	102.11	0.91	850804	431.00	434.00	3.00	131.37	132.28	0.91
850770	335.00	338.00	3.00	102.11	103.02	0.91	850805	434.00	437.00	3.00	132.28	133.20	0.91
850771	338.00	341.00	3.00	103.02	103.94	0.91	850806	437.00	440.00	3.00	133.20	134.11	0.91
850772	341.00	344.00	3.00	103.94	104.85	0.91	850807	440.00	443.00	3.00	134.11	135.03	0.91
850773	344.00	347.00	3.00	104.85	105.77	0.91	850808	443.00	446.00	3.00	135.03	135.94	0.91
850774	347.00	350.00	3.00	105.77	106.68	0.91	850809	446.00	449.00	3.00	135.94	136.86	0.91
850775	350.00	353.00	3.00	106.68	107.59	0.91	850810	449.00	452.00	3.00	136.86	137.77	0.91
850776	353.00	356.00	3.00	107.59	108.51	0.91	850811	452.00	455.00	3.00	137.77	138.68	0.91
850777	356.00	359.00	3.00	108.51	109.42	0.91	850812	455.00	458.00	3.00	138.68	139.60	0.91
850778	359.00	362.00	3.00	109.42	110.34	0.91	850813	458.00	461.00	3.00	139.60	140.51	0.91
850779	362.00	365.00	3.00	110.34	111.25	0.91	850814	461.00	464.00	3.00	140.51	141.43	0.91
850780	Standard (Cu-155					850815	464.00	467.00	3.00	141.43	142.34	0.91
850781	365.00	368.00	3.00	111.25	112.17	0.91	850816	467.00	470.00	3.00	142.34	143.26	0.91
850782	368.00	371.00	3.00	112.17	113.08	0.91	850817	470.00	473.00	3.00	143.26	144.17	0.91
850783	371.00	374.00	3.00	113.08	114.00	0.91	850818	473.00	476.00	3.00	144.17	145.08	0.91
850784	374.00	377.00	3.00	114.00	114.91	0.91	850819	476.00	479.00	3.00	145.08	146.00	0.91
850785	377.00	380.00	3.00	114.91	115.82	0.91	850820	Standard C	u-155				
850786	380.00	383.00	3.00	115.82	116.74	0.91	850821	479.00	482.00	3.00	146.00	146.91	0.91
850787	383.00	386.00	3.00	116.74	117.65	0.91	850822	482.00	485.00	3.00	146.91	147.83	0.91
850788	386.00	389.00	3.00	117.65	118.57	0.91	850823	485.00	488.00	3.00	147.83	148.74	0.91
850789	389.00	392.00	3.00	118.57	119.48	0.91	850824	488.00	491.00	3.00	148.74	149.66	0.91
850790	392.00	395.00	3.00	119.48	120.40	0.91	850825	491.00	494.00	3.00	149.66	150.57	0.91
850791	395.00	398.00	3.00	120.40	121.31	0.91	850826	494.00	497.00	3.00	150.57	151.49	0.91
850792	398.00	401.00	3.00	121.31	122.22	0.91	850827	497.00	500.00	3.00	151.49	152.40	0.91

Sample		Feet			Meters		Sample		Feet			Meters	
-	from	to	interval	from	to	interval		from	to	interval	from	to	interval
850828	500.00	503.00	3.00	152.40	153.31	0.91	850863	599.00	602.00	3.00	182.58	183.49	0.91
850829	503.00	506.00	3.00	153.31	154.23	0.91	850864	602.00	605.00	3.00	183.49	184.40	0.91
850830	506.00	509.00	3.00	154.23	155.14	0.91	850865	605.00	608.00	3.00	184.40	185.32	0.91
850831	509.00	512.00	3.00	155.14	156.06	0.91	850866	608.00	611.00	3.00	185.32	186.23	0.91
850832	512.00	515.00	3.00	156.06	156.97	0.91	850867	611.00	614.00	3.00	186.23	187.15	0.91
850833	515.00	518.00	3.00	156.97	157.89	0.91	850868	614.00	617.00	3.00	187.15	188.06	0.91
850834	518.00	521.00	3.00	157.89	158.80	0.91	850869	617.00	620.00	3.00	188.06	188.98	0.91
850835	521.00	524.00	3.00	158.80	159.72	0.91	850870	620.00	623.00	3.00	188.98	189.89	0.91
850836	524.00	527.00	3.00	159.72	160.63	0.91	850871	623.00	626.00	3.00	189.89	190.80	0.91
850837	527.00	530.00	3.00	160.63	161.54	0.91	850872	626.00	629.00	3.00	190.80	191.72	0.91
850838	530.00	533.00	3.00	161.54	162.46	0.91	850873	629.00	632.00	3.00	191.72	192.63	0.91
850839	533.00	536.00	3.00	162.46	163.37	0.91	850874	632.00	635.00	3.00	192.63	193.55	0.91
850840	Standard (850875	635.00	638.00	3.00	193.55	194.46	0.91
850841	536.00	539.00	3.00	163.37	164.29	0.91	850876	638.00	641.00	3.00	194.46	195.38	0.91
850842	539.00	542.00	3.00	164.29	165.20	0.91	850877	641.00	644.00	3.00	195.38	196.29	0.91
850843	542.00	545.00	3.00	165.20	166.12	0.91	850878	644.00	647.00	3.00	196.29	197.21	0.91
850844	545.00	548.00	3.00	166.12	167.03	0.91	850879	647.00	650.00	3.00	197.21	198.12	0.91
850845	548.00	551.00	3.00	167.03	167.94	0.91	850880	Standard C					
850846	551.00	554.00	3.00	167.94	168.86	0.91	850881	650.00	653.00	3.00	198.12	199.03	0.91
850847	554.00	557.00	3.00	168.86	169.77	0.91	850882	653.00	656.00	3.00	199.03	199.95	0.91
850848	557.00	560.00	3.00	169.77	170.69	0.91	850883	656.00	659.00	3.00	199.95	200.86	0.91
850849	560.00	563.00	3.00	170.69	171.60	0.91	850884	659.00	662.00	3.00	200.86	201.78	0.91
850850	563.00	566.00	3.00	171.60	172.52	0.91	850885	662.00	665.00	3.00	201.78	202.69	0.91
850851	566.00	569.00	3.00	172.52	173.43	0.91	850886	665.00	668.00	3.00	202.69	203.61	0.91
850852	569.00	572.00	3.00	173.43	174.35	0.91	850887	668.00	671.00	3.00	203.61	204.52	0.91
850853	572.00	575.00	3.00	174.35	175.26	0.91	850888	671.00	674.00	3.00	204.52	205.44	0.91
850854	575.00	578.00	3.00	175.26	176.17	0.91	850889	674.00	677.00	3.00	205.44	206.35	0.91
850855	578.00	581.00	3.00	176.17	177.09	0.91	850890	677.00	680.00	3.00	206.35	207.26	0.91
850856	581.00	584.00	3.00	177.09	178.00	0.91	850891	680.00	683.00	3.00	207.26	208.18	0.91
850857	584.00	587.00	3.00	178.00	178.92	0.91	850892	683.00	686.00	3.00	208.18	209.09	0.91
850858	587.00	590.00	3.00	178.92	179.83	0.91	850893	686.00	689.00	3.00	209.09	210.01	0.91
850859	590.00	593.00	3.00	179.83	180.75	0.91	850894	689.00	692.00	3.00	210.01	210.92	0.91
850860	Standard (Cu-155					850895	692.00	695.00	3.00	210.92	211.84	0.91
850861	593.00	596.00	3.00	180.75	181.66	0.91	850896	695.00	698.00	3.00	211.84	212.75	0.91
850862	596.00	599.00	3.00	181.66	182.58	0.91	850897	698.00	701.00	3.00	212.75	213.66	0.91

Sample		Feet			Meters		Sample		Feet			Meters	
-	from	to	interval	from	to	interval	-	from	to	interval	from	to	interval
850898	701.00	704.00	3.00	213.66	214.58	0.91	850933	800.00	803.00	3.00	243.84	244.75	0.91
850899	704.00	707.00	3.00	214.58	215.49	0.91	850934	803.00	806.00	3.00	244.75	245.67	0.91
850900	Standard (Cu-155					850935	806.00	809.00	3.00	245.67	246.58	0.91
850901	707.00	710.00	3.00	215.49	216.41	0.91	850936	809.00	812.00	3.00	246.58	247.50	0.91
850902	710.00	713.00	3.00	216.41	217.32	0.91	850937	812.00	815.00	3.00	247.50	248.41	0.91
850903	713.00	716.00	3.00	217.32	218.24	0.91	850938	815.00	818.00	3.00	248.41	249.33	0.91
850904	716.00	719.00	3.00	218.24	219.15	0.91	850939	818.00	821.00	3.00	249.33	250.24	0.91
850905	719.00	722.00	3.00	219.15	220.07	0.91	850940	Standard C	u-155				
850906	722.00	725.00	3.00	220.07	220.98	0.91	850941	821.00	824.00	3.00	250.24	251.16	0.91
850907	725.00	728.00	3.00	220.98	221.89	0.91	850942	824.00	827.00	3.00	251.16	252.07	0.91
850908	728.00	731.00	3.00	221.89	222.81	0.91	850943	827.00	830.00	3.00	252.07	252.98	0.91
850909	731.00	734.00	3.00	222.81	223.72	0.91	850944	830.00	833.00	3.00	252.98	253.90	0.91
850910	734.00	737.00	3.00	223.72	224.64	0.91	850945	833.00	836.00	3.00	253.90	254.81	0.91
850911	737.00	740.00	3.00	224.64	225.55	0.91	850946	836.00	839.00	3.00	254.81	255.73	0.91
850912	740.00	743.00	3.00	225.55	226.47	0.91	850947	839.00	842.00	3.00	255.73	256.64	0.91
850913	743.00	746.00	3.00	226.47	227.38	0.91	850948	842.00	845.00	3.00	256.64	257.56	0.91
850914	746.00	749.00	3.00	227.38	228.30	0.91	850949	845.00	848.00	3.00	257.56	258.47	0.91
850915	749.00	752.00	3.00	228.30	229.21	0.91	850950	848.00	851.00	3.00	258.47	259.38	0.91
850916	752.00	755.00	3.00	229.21	230.12	0.91	850951	851.00	854.00	3.00	259.38	260.30	0.91
850917	755.00	758.00	3.00	230.12	231.04	0.91	850952	854.00	857.00	3.00	260.30	261.21	0.91
850918	758.00	761.00	3.00	231.04	231.95	0.91	850953	857.00	860.00	3.00	261.21	262.13	0.91
850919	761.00	764.00	3.00	231.95	232.87	0.91	850954	860.00	863.00	3.00	262.13	263.04	0.91
850920	Standard (Cu-172					850955	863.00	866.00	3.00	263.04	263.96	0.91
850921	764.00	767.00	3.00	232.87	233.78	0.91	850956	866.00	869.00	3.00	263.96	264.87	0.91
850922	767.00	770.00	3.00	233.78	234.70	0.91	850957	869.00	872.00	3.00	264.87	265.79	0.91
850923	770.00	773.00	3.00	234.70	235.61	0.91	850958	872.00	875.00	3.00	265.79	266.70	0.91
850924	773.00	776.00	3.00	235.61	236.52	0.91	850959	875.00	878.00	3.00	266.70	267.61	0.91
850925	776.00	779.00	3.00	236.52	237.44	0.91	850960	Standard C	u-172				
850926	779.00	782.00	3.00	237.44	238.35	0.91	850961	878.00	881.00	3.00	267.61	268.53	0.91
850927	782.00	785.00	3.00	238.35	239.27	0.91	850962	881.00	884.00	3.00	268.53	269.44	0.91
850928	785.00	788.00	3.00	239.27	240.18	0.91	850963	884.00	887.00	3.00	269.44	270.36	0.91
850929	788.00	791.00	3.00	240.18	241.10	0.91	850964	887.00	890.00	3.00	270.36	271.27	0.91
850930	791.00	794.00	3.00	241.10	242.01	0.91	850965	890.00	893.00	3.00	271.27	272.19	0.91
850931	794.00	797.00	3.00	242.01	242.93	0.91	850966	893.00	896.00	3.00	272.19	273.10	0.91
850932	797.00	800.00	3.00	242.93	243.84	0.91	850967	896.00	899.00	3.00	273.10	274.02	0.91


Sample		Feet			Meters	
-	from	to	interval	from	to	interval
850968	899.00	902.00	3.00	274.02	274.93	0.91
850969	902.00	905.00	3.00	274.93	275.84	0.91
850970	905.00	908.00	3.00	275.84	276.76	0.91
850971	908.00	911.00	3.00	276.76	277.67	0.91
850972	911.00	914.00	3.00	277.67	278.59	0.91
850973	914.00	917.00	3.00	278.59	279.50	0.91
850974	917.00	920.00	3.00	279.50	280.42	0.91
850975	920.00	923.00	3.00	280.42	281.33	0.91
850976	923.00	926.00	3.00	281.33	282.24	0.91
850977	926.00	929.00	3.00	282.24	283.16	0.91
850978	929.00	932.00	3.00	283.16	284.07	0.91
850979	932.00	935.00	3.00	284.07	284.99	0.91
850980	Standard	Cu-155				
850981	935.00	938.00	3.00	284.99	285.90	0.91
850982	938.00	941.00	3.00	285.90	286.82	0.91
850983	941.00	944.00	3.00	286.82	287.73	0.91
850984	944.00	947.00	3.00	287.73	288.65	0.91
850985	947.00	950.00	3.00	288.65	289.56	0.91
850986	950.00	953.00	3.00	289.56	290.47	0.91
850987	953.00	956.00	3.00	290.47	291.39	0.91
850988	956.00	959.00	3.00	291.39	292.30	0.91
850989	959.00	962.00	3.00	292.30	293.22	0.91
850990	962.00	965.00	3.00	293.22	294.13	0.91
850991	965.00	968.00	3.00	294.13	295.05	0.91
850992	968.00	971.00	3.00	295.05	295.96	0.91
850993	971.00	975.00	4.00	295.96	297.18	1.22
850994	975.00	978.00	3.00	297.18	298.09	0.91
850995	978.00	981.00	3.00	298.09	299.01	0.91
850996	981.00	984.00	3.00	299.01	299.92	0.91
850997	984.00	987.00	3.00	299.92	300.84	0.91

APPENDIX E

Comparison Values Chemex vs NITON

NITON 2 45 45 45 123	Results oper Chemex 38 56 31	Molybo NITON <lod< th=""><th>denum Chemex 3</th></lod<>	denum Chemex 3
NITON 2 45 45 45 123	Chemex 38 56	<lod< th=""><th></th></lod<>	
45 LOD 123	56		3
LOD 123			3
123	31	<lod< td=""><td>7</td></lod<>	7
	51	<lod< td=""><td>3</td></lod<>	3
	101	<lod< td=""><td>4</td></lod<>	4
LOD	50	<lod< td=""><td>5</td></lod<>	5
LOD	24	<lod< td=""><td>1</td></lod<>	1
	34	<lod< td=""><td>13</td></lod<>	13
	13		2
LOD	84	<lod< td=""><td>3</td></lod<>	3
LOD	39	12	5
		13	6
		<lod< td=""><td>10</td></lod<>	10
LOD			9
	14		9
		11	34
	77		10
			9
			272
			214
			299
			305
			67
			419
			541
			606
			213
			453
			458
			663
			781
			661
			285
			535
			142
			227
			230
			202
			248
			285
			136
			285
			177
			378
			386
			444
			493
			292
	LOD LOD LOD LOD LOD LOD	LOD 34 LOD 13 LOD 84 LOD 39 LOD 30 LOD 30 LOD 30 LOD 30 LOD 15 LOD 14 54 179 120 77 LOD 80 2050 4410 2153 3910 1912 3090 228 2180 2405 8190 989 2690 5863 7760 1114 3480 1740 4440 2389 3780 2132 4340 534 1635 3576 4160 988 3140 2237 3780 986 2900 1789 3280 1974 3690 1420 3850 5326 11550	LOD 34 <lod< th=""> LOD 13 <lod< td=""> LOD 84 <lod< td=""> LOD 39 12 LOD 30 13 LOD 16 <lod< td=""> LOD 17 <lod< td=""> LOD 15 <lod< td=""> LOD 14 <lod< td=""> LOD 17 <lod< td=""> LOD 14 <lod< td=""> LOD 80 23 2050 4410 124 2153 3910 85 1912 3090 158 228 2180 225 2405 8190 25 989 2690 51 5863 7760 125 1114 3480 214 1740 4440 68 2389 3780 279 2132 4340 297 534 1635 406 3576 4160</lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<>

<LOD - below instrument level of detection error

T08-40		Results	(ppm)			
100-40	Со	pper	Molybdenum			
Sample	NITON	Chemex	NITON	Chemex		
850308	82	84	96	440		
850310	169	61	<lod< td=""><td>196</td></lod<>	196		
850313	1447	2830	604	821		
850316	987	2290	109	347		
850318	167	163	233	356		
850323	727	2490	157	364		
850326	2582	3920	28	140		
850327	1904	3970	113	201		
850329	1710	4360	796	659		
850333	1956	4010	95	269		
850339	2041	3130	78	1480		
850343	2113	4560	184	214		
850346	1977	3820	295	395		
850349	1480	3370	88	343		
850352	1826	4360	235	371		
850355	1319	2970	265	493		
850358	1610	3100	193	221		
850361	562	2280	286	640		
850365	1615	2940	352	634		
850367	1331	2820	37	134		
850369	1616	3050	98	169		
850372	57	1310	15	124		
850375	198	1150	39	154		
850378	1162	2590	170	325		
850382	960	2190	119	294		
850385	904	2700	94	290		
850388	586	2060	124	300		
850391	962	2700	152	270		
850394	1937	2640	101	177		
850396	1691	1870	133	219		
850399	1898	2710	160	291		
850403	565	807	248	166		
850405	1315	2830	451	323		
850408	1200	1820	324	563		
850411	1064	1740	185	265		
850414	1582	2300	176	398		
850418	1252	2300	186	390		
850422	2097	3360	109	299		
850422	1864	1875	109	299		
850424	2723	6570	388	529		
850431	1422	4830	157	354		
850434	1422	2130	217	366		
850436	669	1980	147	300		
850439	632	1565	219	351		
850443	1385	4240	310	504		
850445	3259	4140	242	449		
850448	1431	2880	251	415		
850452	1554	5350	608	523		

T08-40		Results	(ppm)	
100-40	Cop	oper	Molybe	denum
Sample	NITON	Chemex	NITON	Chemex
850455	1024	2420	232	353
850457	1190	3650	90	422
850461	2210	3220	181	511
850464	1218	3490	150	314
850467	734	2720	72	334
850470	1336	3480	186	514
850473	760	3540	236	368
850477	1645	2400	144	351
850479	1131	1985	185	390
850482	834	2090	116	240
850485	1198	3360	192	258
850489	886	1540	54	118
Total	138,222.3	294,243.0	16,555.7	32,830.0
Average	1,279.8	2,724.5	153.3	304.0
Chemex/NITO	N Values	2.13		1.98

T08-41		Results	s (ppm)	
100-41	Сор	per	Molybo	denum
Sample	NITON	Chemex	NITON	Chemex
850490	<lod< td=""><td>74</td><td>136</td><td>253</td></lod<>	74	136	253
850492	<lod< td=""><td>45</td><td>73</td><td>125</td></lod<>	45	73	125
850496	72	75	181	293
850501	121	327	74	279
850518	1767	2220	103	119
850523	1803	3250	47	78
850526	1556	2770	37	78
850528	1922	2690	76	174
850530	2822	3760	122	138
850533	2695	2910	104	157
850535	674	2250	52	156
850538	1576	2670	78	69
850542	1707	2980	58	151
850544	2055	3540	265	432
850546	673	2710	41	230
850549	359	1865	211	185
850551	1029	1595	43	152
850554	996	2260	78	182
850556	1149	2480	116	247
850558	1391	2460	72	131
850562	554	731	153	199
850565	259	1930	1041	678
850570	875	1760	44	429
850572	361	1015	29	194
850575	248	596	76	157
850577	540	306	56	400
850582	343	873	17	133
850584	396	803	88	183
850586	204	386	141	90
850580	438	1570	832	207
850590	1278	1365	114	80
850593	818	1230	46	145
			117	
850595 850598	516 1949	935 1145	116	118 114
850601	611	666	42	87
850604	155		42	58
850604	89	<u>339</u> 467	63	103
			48	
850609	110	262		66 65
850612	84	183	29 <lod< td=""><td>65</td></lod<>	65
850614	393	751		91 170
850618	266	431	57	179
850619	804	970	15	91
850622	652	1145	45	74
850624	296	642	154	131
850626	314	804	22	43
850630	394	481	116	53
850632	88	209	17	31

T08-41		Results	s (ppm)	
100-41	Сор	per	Molybo	denum
Sample	NITON	Chemex	NITON	Chemex
850634	173	265	45	85
850637	566	1315	62	54
850641	486	335	75	19
850643	495	302	94	31
850646	331	378	31	22
850649	209	358	29	91
850651	447	678	46	37
850654	188	199	72	120
850656	609	446	90	140
850658	174	611	68	209
850662	54	475	13	21
850664	516	375	<lod< td=""><td>12</td></lod<>	12
850667	241	334	18	23
850669	408	720	26	21
850673	353	475	24	24
850674	273	246	20	27
850677	134	140	10	6
850681	140	214	39	48
850683	<lod< td=""><td>347</td><td><lod< td=""><td>21</td></lod<></td></lod<>	347	<lod< td=""><td>21</td></lod<>	21
850685	<lod< td=""><td>43</td><td><lod< td=""><td>13</td></lod<></td></lod<>	43	<lod< td=""><td>13</td></lod<>	13
850688	193	378	14	43
850690	147	262	29	23
Total	43537	73822	6293	8918
Average	631	1070	91	129
Chemex/NITO	N Values	1.70		1.42

T08-42	Results (ppm) Copper Molybdenum								
Sample	NITON	Chemex	NITON	Chemex					
850695	73	75	288	277					
850699	50	121	61	53					
850702	102	190	10	14					
850705	204	493	39	97					
850709	504	693	17	30					
850711	72	195	47	143					
850715	660	1230	60	438					
850723	796	1920	<lod< td=""><td>20</td></lod<>	20					
850727	698	1580	<lod< td=""><td>27</td></lod<>	27					
850729	885	1630	63	61					
850731	738	843	34	154					
850735	1436	954	42	40					
850737	470	766	37	43					
850741	673	1160	<lod< td=""><td>69</td></lod<>	69					
850744	1227	1810	126	95					
850746	1132	1475	85	122					
850749	791	2150	79	270					
850751	159	763	800	40					
850753	65	205	37	31					
850756	205	732	139	84					
850758	672	2050	<lod< td=""><td>14</td></lod<>	14					
850762	1448	1560	52	171					
850764	598	1475	26	51					
850766	1613	1070	<lod< td=""><td>22</td></lod<>	22					
850769	1825	1365	45	35					
850772	960	2460	11	25					
850774	495	4040	84	39					
850778	3522	1880	<lod< td=""><td>12</td></lod<>	12					
850781	548	878	43	9					
850785	189	376	18	16					
850786	659	893	15	19					
850790	1250	967	12	88					
850793	258	376	<lod< td=""><td>10</td></lod<>	10					
850795	223	818	12	14					
850798	186	125	<lod< td=""><td>13</td></lod<>	13					
850801	2735	635	12	26					
850805	614	713	19	18					
850806	362	643	40	39					
850810	776	1050	22	22					
850812	1245	1180	14	39					
850815	1493	474	31	75					
850817	108	254	13	17					
850822	328	449	29	41					
850824	882		<lod< td=""><td>5</td></lod<>	5					
850827	829	154	23	16					
850830	167	211	57	38					
850833	524	414	18	66					
850835	600	736	116	99					

T08-42		Results		
	Сор			denum
Sample	NITON	Chemex	NITON	Chemex
850837	95	281	11	45
850839	240	442	41	46
850842	80	235	48	14
850848	352	768	77	131
850850	193	373	25	23
850853	123	358	<lod< td=""><td>336</td></lod<>	336
850856	394	990	71	106
850863	380	480	101	135
850866	695	812	461	257
850868	266	649	2142	494
850871	548	541	63	161
850873	1174	980	79	112
850876	428	714	46	119
850878	356	944	177	330
850882	313	592	108	322
850888	474	1100	178	155
850891	465	1010	34	50
850894	768	1000	24	76
850896	282	750	17	65
850898	512	959	13	33
850903	448	1010	56	148
850905	509	732	34	56
850907	3236	1190	59	92
850911	457	837	17	75
850913	273	430	39	59
850915	1276	2660	46	110
850918	572	953	23	43
850922	356	639	33	146
850924	228	423	13	30
850927	452	718	65	75
850933	468	710	43	140
850936	263	710	31	119
850938	383	825	18	64
850942	309	593	36	133
850945	267	692	11	33
850950	273	756	69	147
850953	208	315	19	45
850955	317	946	19	45
850958	293	463	62	107
850958	293	819	66	192
850962	253	819	19	62
850966		823 1470	42	62 197
	684			65
850970	1565	1200	44	
850973	513	1035	167	221
850976	859	1390	33	83
850979	244	655	55	64
850983	349	669	46	137
850988	307	1070	32	59

T08-42		Results	; (ppm)	
100-42	Сор	per	Molyb	denum
Sample	NITON	Chemex	NITON	Chemex
850994	302	747	79	152
850997	268	674	48	114
Total	60,437	86,767	7,711	9,279
Average	617	885	79	95
Chemex/NITON \	/alues	1.44		1.20

APPENDIX F

Inferred Resource Calculation

Zone	Drill Hole	Diameter (ft)	Total Al (sq. ft.)	Segment Area (sq. ft)	Calculated Al (sq. ft.)	Drill Interval (ft)	Calculated Volume (ft ³)	Calculated Tons	Calculated Tonnes
Α	T08-42	500	196,350	29,603	166,747	57	9,504,579	798,385	724,283
В	T96-30	600	282,740	33,122	249,618	42	10,483,956	880,652	798,910
						74	18,471,732	1,551,625	1,407,604
						458	114,325,044	9,603,304	8,711,925
С	7	600	282,740	29,785	252,955	115	29,089,825	2,443,545	2,216,735
D	6	600	282,740	51,165	231,575	225	52,104,375	4,376,768	3,970,516
E	ET-2	600	282,740	81,357	201,383	770	155,064,910	13,025,452	11,816,430
F	ET-1	600	282,740	75,567	207,173	171	35,426,583	2,975,833	2,699,616
G	75-1			102,159	102,159	858	87,652,422	7,362,803	6,679,388
Н	T08-40	600	282,740	54,350	228,390	116	26,493,240	2,225,432	2,018,868
						772	176,317,080	14,810,635	13,435,912
I	75-2	600	282,740	121,525	161,215	904	145,738,360	12,242,022	11,105,718
J	T08-41	600	282,740	85,052	197,688	179	35,386,152	2,972,437	2,696,535
							Total:	75,268,894	68,282,439

Zone	Drill		Grade Over Interva	al	W	leighted Average	
	Hole	Copper (ppm)	Molybdenum (ppm)	Gold (ppm)	Copper	Molybdenum	Gold
А	T08-42	2325	40	0.015	1,683,956,966	28,971,303	10,864
В	T96-30	1990	260	0.087	1,589,831,213	207,716,641	69,505
		5020	240	0.078	7,066,170,123	337,824,866	109,793
		2930	340	0.108	25,525,940,388	2,962,054,516	940,888
С	7	3600	150	0	7,980,247,531	332,510,314	0
D	6	3170	300	0	12,586,535,532	1,191,154,782	0
E	ET-2	2600	480	0.433	30,722,717,856	5,671,886,373	5,116,514
F	ET-1	1900	200	0	5,129,270,696	539,923,231	0
G	75-1	3450	390	0.070	23,043,888,710	2,604,961,332	467,557
Н	T08-40	1860	380	0.330	3,755,093,637	767,169,668	666,226
		3090	360	0.245	41,516,966,860	4,836,928,178	3,291,798
	75-2	1830	190	0	20,323,463,456	2,110,086,370	0
J	T08-41	2580	210	0.258	6,957,060,783	566,272,389	695,706
				Total:	187,881,143,751	22,157,459,964	11,368,852

Calculated grade (weighted average/total tonnage):

2751 ppm324 ppm0.275%0.032%

0.166 g/t